JP2000146649A - Method for measuring propagation delay time of ultrasonic wave - Google Patents

Method for measuring propagation delay time of ultrasonic wave

Info

Publication number
JP2000146649A
JP2000146649A JP36184098A JP36184098A JP2000146649A JP 2000146649 A JP2000146649 A JP 2000146649A JP 36184098 A JP36184098 A JP 36184098A JP 36184098 A JP36184098 A JP 36184098A JP 2000146649 A JP2000146649 A JP 2000146649A
Authority
JP
Japan
Prior art keywords
time
received
wave
transmitter
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36184098A
Other languages
Japanese (ja)
Inventor
Kojiro Sakiyama
幸二郎 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP36184098A priority Critical patent/JP2000146649A/en
Publication of JP2000146649A publication Critical patent/JP2000146649A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the point of time of arrival of sound waves not in an initial rise section at which received waves are unstable but at the timing when a received waveform is stabilized after the lapse of a predetermined delay time at the time of measuring the propagation delay time of ultrasonic waves. SOLUTION: By shortening the time to impress a transmitter with a high-frequency voltage, making large an external impedance viewed from the transmitter, and lengthening the reverberation duration of ultrasonic waves, a series of received waveforms which rise, once drop, and suddenly rise as indicated in 1, 2, 3, 4, 5, 6, 7, and 8 in Fig 1 are made to occur in the waveform of a received voltage. Then, the received waves which suddenly rise are triggered, the time between the instant when the ultrasonic waves are projected and the instant when the waves are triggered is measured, and predetermined delay time is subtracted from the measured time to obtain the propagation delay time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】図2の如く管路(30)の中を流
速(V)で流れる流水中に超音波送受波器(31)及び
(32)を対向して配置し、超音波を流水に対して順方
向及び逆方向に送受信して送受信間の伝播時間を計測す
れば、流速(V)は順逆各伝播時間の差に比例すること
から、伝播時間を計測することにより逆に流速を測定し
ている。本発明は、流速計の基本となる伝播時間測定方
法に関する。
2. Description of the Related Art As shown in FIG. 2, ultrasonic transducers (31) and (32) are arranged opposite to each other in flowing water flowing at a flow rate (V) in a pipe (30) to transmit ultrasonic waves. If the propagation time is measured by transmitting and receiving the flowing water in the forward and reverse directions and measuring the propagation time between transmission and reception, the flow velocity (V) is proportional to the difference between the forward and reverse propagation times. Is measured. The present invention relates to a method for measuring a propagation time, which is the basis of an anemometer.

【0002】[0002]

【従来の技術】従来の伝播時間測定方法では、送波器に
高周波電圧を永く印加して、図4の点線(41)で示す
ように、強大な音波を伝送した。そして音波の到着時点
を検出する場合に、図5の点線(43)に示す受信電圧
波形の第二波を、しきい値(44)でトリガー(しきい
値を設定して信号電圧と比較し、一致した時点を検出す
ること)し、音波到着の時点とした。この方法では、受
信波の振幅が変動すれば、トリガーした受信波が、第一
波であったり第三波であったりして順番を間違えて計測
し、誤差を生じるおそれがある。そのために受信波(4
3)の包絡線のピーク値が常に一定となるように振幅安
定化回路を付加したり、(例えば昭和53・8・29
超音波技術便覧ページ 593)最初に計測したときの
受信波の番号を追尾する方法(例えば昭和63・6電気
学会発行最近のセンサーページ 176)によって常に
同一番号の受信波をトリガーできるような回路が付加さ
れている。
2. Description of the Related Art In a conventional propagation time measuring method, a high-frequency voltage is applied to a transmitter for a long time to transmit a powerful sound wave as shown by a dotted line (41) in FIG. When detecting the arrival time of the sound wave, the second wave of the reception voltage waveform shown by the dotted line (43) in FIG. 5 is triggered by the threshold value (44) (the threshold value is set and compared with the signal voltage). And the point of coincidence is detected), and the point of arrival of the sound wave is determined. In this method, if the amplitude of the received wave fluctuates, the triggered received wave may be the first wave or the third wave, and the measurement may be performed in an incorrect order, which may cause an error. Therefore, the received wave (4
An amplitude stabilizing circuit may be added so that the peak value of the envelope of (3) is always constant, or (for example, Showa 53.8.29)
Ultrasonic technology handbook page 593) A circuit that can always trigger the same number of received waves by a method of tracking the number of the received wave when first measured (for example, recent sensor page 176 issued by the Institute of Electrical Engineers of Japan, 63.6) Has been added.

【0003】[0003]

【発明が解決しょうとする課題】従来の振幅安定化回路
を付加する方法や、追尾方式は、回路が複雑となり、装
置が高価となる欠点があった。この発明は特別に複雑な
回路を付加せず、簡単且つ確実に目標の受信波をトリガ
ーする方法を提案する。
The conventional method of adding an amplitude stabilizing circuit and the conventional tracking method have the disadvantage that the circuit becomes complicated and the apparatus becomes expensive. The present invention proposes a method for simply and reliably triggering a target reception wave without adding a particularly complicated circuit.

【0004】[0004]

【問題を解決するための手段】図2で四極双投切替スイ
ッチ(35)が右側にONの状態では、送波器(21)
と高周波発信器(33)とは、逆接続した一対のダイオ
ード(36)を介して接続する。これは送波器から見た
外部インピーダンスを大きくして制動作用を小さくし、
残響時間を永くするためである。受波器(32)は高感
度増幅器(34)に接続する。切替スイッチ(35)を
左側にONした場合には、(32)が送波器となり、
(31)は受波器となるように、これ等の送受波器は送
受両用の圧電磁器振動子を使用する。
In FIG. 2, when the four-pole double-throw changeover switch (35) is turned on to the right, the transmitter (21) is turned on.
And the high-frequency transmitter (33) are connected via a pair of reversely connected diodes (36). This increases the external impedance seen from the transmitter to reduce the braking effect,
This is to extend the reverberation time. The receiver (32) is connected to a high sensitivity amplifier (34). When the changeover switch (35) is turned ON to the left, (32) becomes a transmitter,
These transmitters and receivers use piezoelectric ceramic vibrators for both transmission and reception so that (31) is a receiver.

【0005】この装置で送波器(31)に図3の実線で
示す如き一周期未満の短時間高周波電圧を印加すれば、
音波の振幅は図4実線(40)のように、立ち上がりは
急峻であるが直ちに減衰をし、その後残響が暫時持続す
る波形となる。この音波は受波器(32)に到着すれば
共振して始動し、高感度増幅器(34)の出力電圧(以
後受信電圧という)は図5実線(42)のように一応立
ち上がるが、充分に成長せず逆に降下する。その後、音
波の残響で受信電圧は再び急上昇する。この現象を更に
詳しく説明をするために、図4で描いた音波の曲線(4
0)と図5で描いた受信電圧曲線(42)の立ち上がり
部分を図1に拡大して併記し、その関連について説明を
する。
When a short-time high-frequency voltage of less than one cycle as shown by a solid line in FIG.
As shown by the solid line (40) in FIG. 4, the amplitude of the sound wave has a steep rise but is immediately attenuated, and thereafter, has a waveform in which reverberation continues for a while. When this sound wave arrives at the receiver (32), it starts to resonate, and the output voltage of the high-sensitivity amplifier (34) (hereinafter referred to as reception voltage) rises as shown by the solid line (42) in FIG. It descends without growing. Thereafter, the received voltage rises sharply again due to the reverberation of the sound wave. In order to explain this phenomenon in more detail, the sound wave curve (4
0) and the rising portion of the reception voltage curve (42) drawn in FIG. 5 are enlarged and shown in FIG. 1 and the relationship between them is described.

【0006】図1により音波の強さと、受信電圧曲線と
の関係を作図的に説明をする。仮に一定の振幅(h)の
音波を連続して受信したときの受信電圧曲線が、図1の
曲線(21・22・23・24・25・6・27・2
8)であると想定する。受信電圧曲線が急上昇を開始す
る(6)の時期に、短時間印加したときに発射される音
波の曲線(11・12・13・14・15・6・17・
18)が、急減衰から緩やかな残響に移行する時期
(6)で両曲線が交差するように描く。実際の場合は、
想定した受信電圧曲線は、仮定した音波の振幅値に対す
る受波器固有の受信感度特性で決まる。また音波の曲線
は送波器固有の印加電圧対送信音圧の特性で決まるので
あるが、電圧が不変であれば印加時間を加減して音波振
幅の減衰開始の時期(11)及び残響に移行する時期
(6)を短縮或いは遅延することは可能である。
Referring to FIG. 1, the relationship between the intensity of the sound wave and the reception voltage curve will be described graphically. If a sound wave having a constant amplitude (h) is continuously received, the reception voltage curve is the curve (21,22,23,24,25,6,27,2) in FIG.
8). At the time of (6) when the reception voltage curve starts to rise sharply, the curve of the sound wave emitted when applied for a short time (11.12.13.14.15.6.17.)
18), both curves are drawn so as to intersect at the time (6) when the transition from rapid decay to gentle reverberation occurs. In the real case,
The assumed receiving voltage curve is determined by the receiving sensitivity characteristic peculiar to the receiver with respect to the assumed amplitude value of the sound wave. The sound wave curve is determined by the characteristic of the applied voltage versus the transmission sound pressure specific to the transmitter. If the voltage does not change, the application time is adjusted to shift to the time (11) of the start of the attenuation of the sound wave amplitude and reverberation. It is possible to shorten or delay the timing (6).

【0007】実際の受信電圧曲線(1・2・3・4・5
・6・7・8)は次のようにして作図的に求められる。
第1波(1)のピーク値Hは想定した受信電圧(2
1)の大きさをEとし音波(11)の振幅をSとす
れば
[0007] The actual reception voltage curve (1, 2, 3, 4, 5, 5)
・ 6 ・ 7 ・ 8) can be obtained diagrammatically as follows.
Peak value H 1 is assumed received voltage of the first wave (1) (2
If the magnitude of 1) and E 1 and the amplitude of the sound wave (11) and S 1

【数1】 となる。また受信電圧(22)の大きさをEとし音波
(12)の振幅をSとすれば第2波(2)のピーク値
(Equation 1) Becomes The peak value of H 2 amplitude S 2 Tosureba second wave of the sound wave to the magnitude of the received voltage (22) and E 2 (12) (2) is

【数2】 となる。以下同様にして第8波(8)のピーク値H
想定した受信電圧(28)の大きさをEとし音波(1
8)の振幅をSとすれば
(Equation 2) Becomes Hereinafter in the same manner peak value H 8 eighth wave (8) is the size of the assumed received voltage (28) and E 8 waves (1
If the amplitude of the 8) and S 3

【数3】 となる。ここで、第6波より左側では音波の振幅とhと
の比は1より非常に大きくて、実際の受信電圧のピーク
値Hを結ぶ包絡線は山形となる。特
にHはhより大となり、一旦受信波(6)に
降下する。斯様にして立ち上がりから一旦受信波(6)
に降下する山形の波形が形成される。次に第6波より右
側では音波とhとの比が1に近くて、実際の受信電圧H
は想定した受信電圧Eより若干小さい値と
なる。そして右側は受信電圧が急上昇する領域であるの
で、第8波の如き急激に上昇する受信波が出現する。斯
くして受信波が立ち上がりを開始してから一旦降下し、
再び急上昇する一連の受信波形(1)(2)(3)
(4)(5)(6)(7)(8)が得られる。
(Equation 3) Becomes Here, on the left side of the sixth wave, the ratio between the amplitude of the sound wave and h is much larger than 1, and the envelope connecting the peak values H 1 H 2 H 3 H 4 H 5 of the actual reception voltage has a mountain shape. . In particular, H 3 H 4 H 5 becomes larger than h and temporarily drops to the received wave (6). In this way, once received wave (6)
Is formed. Next, on the right side of the sixth wave, the ratio between the sound wave and h is close to 1 and the actual reception voltage H
7 H 8 is slightly smaller than the reception voltage E 7 E 8 was assumed. Since the right side is a region where the reception voltage rises sharply, a reception wave that rises sharply like the eighth wave appears. Thus, once the received wave starts rising, it falls once,
A series of received waveforms that rapidly rise again (1) (2) (3)
(4) (5) (6) (7) (8) are obtained.

【0008】[0008]

【実施例】図2において直径1.3Cmの管路(30)
に流水し、流水中に圧電磁器振動子を使用した送受波器
(31)(32)を距離20Cmを隔て対向して配置す
る。送受波器の共振周波数は200KHで、高周波発
信器(33)の印加電圧は振幅20V、印加時間は1サ
イクルとした。増幅器(34)の増幅率は10000倍
以上で、その出力をシンクロスコープで観測し、図6の
波形を得た。第8波の受信波が出現する時期は音波が到
着してから共振周波数(200KH)の周期(5μ
S)の8倍(40μS)となり一定である。よって、し
きい値を(10)の位置に設定して、発射から第8波を
検出するまでの時間を計測し、これより一定遅れ時間で
ある40μSを差し引いて伝播時間を求めることができ
た。
FIG. 2 shows a pipe (30) having a diameter of 1.3 cm.
The transmitters / receivers (31) and (32) each using a piezoelectric vibrator in the flowing water are arranged facing each other at a distance of 20 Cm. Resonant frequency of the transducer is 200KH z, the applied voltage of the high-frequency oscillator (33) was amplitude 20V, application time 1 cycle. The amplification factor of the amplifier (34) was 10000 times or more, and the output was observed with a synchroscope to obtain the waveform of FIG. Period of the resonant frequency from the time when the reception wave of the eighth-wave appears arrives waves (200KH z) (5μ
S), which is 8 times (40 μS), which is constant. Therefore, the threshold value was set at the position (10), the time from the launch to the detection of the eighth wave was measured, and the propagation time could be obtained by subtracting 40 μS, which is a constant delay time, from this. .

【0009】[0009]

【発明の効果】送波器に短時間の電圧を印加したときに
発生する音波 図4の(40)の波形は、送波器固有の
印加電圧対送信音圧の特性で決まり、その音波を受信し
たときの受信波形 図5の(42)は、受波器固有の受
信感度特性と音波の波形とが合成して、図1の(1・2
・3・4・5・6・7・8)のような波形が形成され
る。よって、この受信波形において急上昇する受信波
(8)が出現する時期は、増幅率の変化や音波の振幅変
動により影響されることが少ない。そして音波の到着時
から急上昇する受信波の検出時までの時間は共振周波数
の周期と検出した受信波が何番目であるかで決まり一定
である。即ち本発明の伝播時間測定方法では、特別に振
幅安定化回路や追尾方式を必要とせづ安定した測定が可
能となった。
The sound wave generated when a short-time voltage is applied to the transmitter The waveform of (40) in FIG. 4 is determined by the characteristic of the transmitter-applied voltage versus the transmission sound pressure. Received Waveform at the Time of Reception FIG. 5 (42) shows that the reception sensitivity characteristic unique to the receiver and the waveform of the sound wave are combined, and (1-2) in FIG.
(3, 4, 5, 6, 7, 8). Therefore, the time when the rapidly rising received wave (8) appears in the received waveform is hardly affected by a change in the amplification factor or a fluctuation in the amplitude of the sound wave. The time from the arrival of a sound wave to the detection of a rapidly rising received wave is determined by the period of the resonance frequency and the order of the detected received wave, and is constant. That is, the propagation time measuring method of the present invention requires a special amplitude stabilizing circuit and a tracking method, and enables stable measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超音波の波形と受信波形との関係を示す詳細な
説明図
FIG. 1 is a detailed explanatory diagram showing a relationship between a waveform of an ultrasonic wave and a received waveform.

【図2】回路図FIG. 2 is a circuit diagram

【図3】高周波電圧の波形FIG. 3 is a waveform of a high-frequency voltage

【図4】超音波の波形FIG. 4 is a waveform of an ultrasonic wave.

【図5】受信電圧の波形FIG. 5 is a waveform of a reception voltage.

【図6】受信電圧波形の実施例FIG. 6 is an example of a reception voltage waveform.

【符号の説明】[Explanation of symbols]

1・2・3・4・5・6・7・8 実際の受
信電圧波形 11・12・13・14・15・16・17・18
音波の波形 21・22・23・24・25・26・27・28
想定した受信電圧波形 30 管路 31・32 送受波器 c 超音波の音速 V 流速 33 高周波発信器 34 高感度増幅器 35 四極双投切り替えスイッチ 36・38 ダイオード 40 短時間印加時の音波 41 長時間印加時の音波 42 短時間印加時の受信電圧波形 43 長時間印加時の受信電圧波形 10 本発明実施時に設定する しきい値 44 従来の方式で設定する しきい値
1, 2, 3, 4, 5, 6, 7, 8 Actual received voltage waveforms 11, 12, 13, 14, 15, 16, 17, 18
Waveform of sound wave 21 ・ 22 ・ 23 ・ 24 ・ 25 ・ 26 ・ 27 ・ 28
Assumed reception voltage waveform 30 Pipeline 31 ・ 32 Transmitter / receiver c Sound speed of ultrasonic wave V Flow velocity 33 High frequency transmitter 34 High sensitivity amplifier 35 Quadrupole double throw switch 36 ・ 38 Diode 40 Sound wave at short time application 41 Long time application Sound wave at time 42 Received voltage waveform when applied for a short time 43 Received voltage waveform when applied for a long time 10 Threshold value to be set when implementing the present invention 44 Threshold value to be set by conventional method

Claims (1)

【特許請求の範囲】[Claims] 【請求項 1】超音波の送波器と、送波器を励起する発
信器とを、一対の逆接続したダイオードを介して接続
し、発信器から短時間の電圧を印加した場合に発生する
音波は、受波器に到着した時点で受信波は一旦立上りを
始めるが、音波の減衰に追従して降下し、その後受波器
は継続している残響により付勢され、受信波が再び急上
昇する一連の受信波形を形成することになり、この急上
昇部で、しきい値を越える受信波を検出して、音波の発
射時から受信波を検出するまでの時間を計測し、これよ
り音波の到着時から検出時までの一定遅れ時間を差引い
て、超音波伝播時間とする測定方法。
An ultrasonic wave transmitter and a transmitter for exciting the transmitter are connected via a pair of reverse-connected diodes, and a short-time voltage is applied from the transmitter. When the sound wave arrives at the receiver, the received wave once rises, but falls following the attenuation of the sound wave, and then the receiver is energized by the continuing reverberation, and the received wave soars again A series of received waveforms is formed, and at this steep rising portion, a received wave exceeding a threshold is detected, and the time from when the sound wave is emitted to when the received wave is detected is measured. A measurement method in which a certain delay time from arrival to detection is subtracted to obtain an ultrasonic propagation time.
JP36184098A 1998-11-12 1998-11-12 Method for measuring propagation delay time of ultrasonic wave Pending JP2000146649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36184098A JP2000146649A (en) 1998-11-12 1998-11-12 Method for measuring propagation delay time of ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36184098A JP2000146649A (en) 1998-11-12 1998-11-12 Method for measuring propagation delay time of ultrasonic wave

Publications (1)

Publication Number Publication Date
JP2000146649A true JP2000146649A (en) 2000-05-26

Family

ID=18475035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36184098A Pending JP2000146649A (en) 1998-11-12 1998-11-12 Method for measuring propagation delay time of ultrasonic wave

Country Status (1)

Country Link
JP (1) JP2000146649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048062A (en) * 2012-08-29 2014-03-17 Tokiko Techno Kk Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048062A (en) * 2012-08-29 2014-03-17 Tokiko Techno Kk Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
US5793704A (en) Method and device for ultrasonic ranging
JPH04230882A (en) Electric measuring apparatus for measuring propagating time of signal
US6314055B1 (en) Range measuring system
RU93051547A (en) DEVICE FOR MEASURING DISTANCE USING ULTRASONIC
US4462256A (en) Lightweight, broadband Rayleigh wave transducer
DK1157258T3 (en) Method and apparatus for measuring the propagation time of a signal, in particular an ultrasonic signal
JPS6070383A (en) Ultrasonic obstacle detecting apparatus
JP2000146649A (en) Method for measuring propagation delay time of ultrasonic wave
JPH0968569A (en) Ultrasonic sensor
JP2957712B2 (en) Ultrasonic ranging device
RU2052769C1 (en) Ultrasonic method of measuring thickness of articles with large attenuation of ultrasound and apparatus for performing the method
JPH02176588A (en) Distance measuring instrument
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
KR0152725B1 (en) Distance measurement method and apparatus using ultrasonic wave
JPH01187485A (en) Ultrasonic distance measuring method
CN1103717A (en) Method for increasing measuring range of ultrasonic wave range finder
SU1188641A1 (en) Method of measuring rate of acoustic wave propagation in dielectrics and apparatus for accomplishment of same
JP2828678B2 (en) Ultrasonic detector
RU1820230C (en) Device for measuring speed of propagation of ultrasonic oscillations
SU1029007A1 (en) Ultrasonic referenceless thickness gauge
JPH09127239A (en) Radar apparatus
JPH0894740A (en) Ultrasonic distance measuring apparatus
SU1095039A1 (en) Device for measuring speed of ultrasound materials
RU1817020C (en) Method of ultrasonic testing of article thickness
JPH0545456A (en) Ultrasonic detector