JP2000146477A - Laminated heat exchanger - Google Patents

Laminated heat exchanger

Info

Publication number
JP2000146477A
JP2000146477A JP10327208A JP32720898A JP2000146477A JP 2000146477 A JP2000146477 A JP 2000146477A JP 10327208 A JP10327208 A JP 10327208A JP 32720898 A JP32720898 A JP 32720898A JP 2000146477 A JP2000146477 A JP 2000146477A
Authority
JP
Japan
Prior art keywords
bead
beads
refrigerant
heat exchanger
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10327208A
Other languages
Japanese (ja)
Inventor
Akinari Narahara
明成 奈良原
Yoshihiro Sasaki
美弘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP10327208A priority Critical patent/JP2000146477A/en
Publication of JP2000146477A publication Critical patent/JP2000146477A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members

Abstract

PROBLEM TO BE SOLVED: To provide a thinner laminate heat exchanger capable of improving heat exchange efficiency by eliminating stagnation on the side of the upstream of beads while securing durability. SOLUTION: A plurality of beads 25 are formed on a pair of plates of a liquid tube element, each of which bead is protruded into refrigerant flow passages correspondingly to each of the plates and is joined with each other. The plurality of the beads 25 are disposed such that bead positions of a line of the adjacent beads arranged perpendicularly to a refrigerant flow passage direction correspondingly to a position of the bead line between the beads. There is satisfied a relationship C<D, C<A, 1<B/A<1.3 among A, B, C, D where A denotes a pitch perpendicular to the refrigerant flow passage direction of the beads 25, B a pitch of the beads 25 in the direction of the refrigerant flow passage, C a width of a skirt of the bead 25 in the direction perpendicular to the refrigerant flow passage direction, D a width of the skirt of the bead 25 in the direction of the refrigerant flow passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車あるいは自
動車用空気調和装置に用いられる積層型エバポレータ等
の積層型熱交換器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a laminated heat exchanger such as a laminated evaporator used for an automobile or an air conditioner for an automobile.

【0002】[0002]

【従来の技術】一般に、自動車あるいは自動車用空気調
和装置に用いられる積層型熱交換器には、ラジエータ、
エバポレータ、コンデンサ、ヒータコア等がある。
2. Description of the Related Art Generally, a laminated heat exchanger used in an automobile or an air conditioner for an automobile includes a radiator,
There are evaporators, condensers, heater cores and the like.

【0003】このうち、例えば自動車用空気調和装置の
冷凍サイクルを構成する積層型エバポレータは、車室内
のクーラユニットに設けられており、膨張弁にて低圧の
霧状とされた冷媒が内部へ導かれて、取り入れ空気との
熱交換が行われるようになっている。
[0003] Among them, for example, a laminated evaporator constituting a refrigerating cycle of an air conditioner for an automobile is provided in a cooler unit in a vehicle cabin, and a low-pressure mist-like refrigerant is introduced into the inside by an expansion valve. Thus, heat exchange with intake air is performed.

【0004】この種の積層型エバポレータの取り入れ空
気が通過するコア部は、一対のプレートが最中状に組み
合わされて内部に冷媒流路が形成された偏平な液管エレ
メントを、伝熱フィンを介して多数積層するようにして
構成されている。そして、液管エレメントのプレートに
は、冷媒流路内に突出するビードが多数形成される。し
たがって、液管エレメント内を流れる冷媒は、これら多
数のビードにより攪拌され、その流れが拡散されるよう
になっている。これにより、エバポレータの熱交換効率
の向上が図られることになる。
[0004] The core portion through which the intake air of this type of laminated evaporator passes, a flat liquid pipe element in which a pair of plates are combined in the middle and a refrigerant flow passage is formed inside, and heat transfer fins are formed. It is configured so as to be stacked in large numbers through the intermediary. A large number of beads projecting into the coolant channel are formed on the plate of the liquid tube element. Therefore, the refrigerant flowing in the liquid pipe element is agitated by these many beads, and the flow is diffused. Thereby, the heat exchange efficiency of the evaporator is improved.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、自動
車用空気調和装置のコンパクト化の観点から、熱交換器
の薄厚化・高性能化の要請が高まっている。
In recent years, there has been an increasing demand for thinner and higher-performance heat exchangers from the viewpoint of making air conditioners for automobiles more compact.

【0006】しかしながら、単に熱交換器の空気通過方
向の厚さを薄くしようとすると、ビードの冷媒流路方向
に垂直な方向の間隔が詰められて、液管エレメント内の
冷媒の流速が速くなる。このため、図8に示すように、
ビード25の冷媒流れ方向上流側に、冷媒が殆んど流れ
ず熱交換に寄与しない冷媒の淀み域24が発生し、熱交
換器としての性能を低下させることになるという問題が
あった。また、ビードは熱交換器としての耐久強度を向
上させる機能をも果たしているので、ビードの形成に際
しては、強度低下をきたすことのないように配慮する必
要もある。
However, if the thickness of the heat exchanger in the air passage direction is simply reduced, the interval between the beads in the direction perpendicular to the refrigerant flow direction is reduced, and the flow velocity of the refrigerant in the liquid pipe element increases. . For this reason, as shown in FIG.
On the upstream side of the bead 25 in the refrigerant flow direction, there is a problem that a refrigerant stagnation region 24 that hardly flows and does not contribute to heat exchange is generated, thereby deteriorating the performance as a heat exchanger. Further, since the bead also has a function of improving the durability strength as a heat exchanger, it is necessary to take care not to reduce the strength when forming the bead.

【0007】一方、特開平7−167581号公報に
は、ビードの幅、ピッチ、液管エレメントの厚み、プレ
ートの板厚等の範囲を設定することにより、所望する熱
交換効率、通路抵抗、強度等を得ることができるように
した積層型熱交換器が開示されている。しかしながら、
この積層型熱交換器では、ビードの幅やピッチは平面内
における最短の寸法を採っており、冷媒の流れ方向との
関係については検討されていない。このため、熱交換器
を極力薄厚化し、かつ図8に示したような冷媒の淀み域
24の発生を確実に回避する観点からは、不十分と考え
られる。また、熱交換器の強度については、プレートの
板厚に関してのみ検討されていて、ビードの幅やピッチ
の変更が全体としての強度に影響を及ぼす点については
何ら考慮されていない。したがって、この種の従来の積
層型熱交換器では、前述した問題の解決は困難であると
言える。
On the other hand, Japanese Patent Application Laid-Open No. Hei 7-167581 discloses a method for setting a desired heat exchange efficiency, passage resistance, and strength by setting ranges of a bead width, a pitch, a liquid tube element thickness, a plate thickness, and the like. And the like are disclosed. However,
In this laminated heat exchanger, the width and pitch of the bead are the shortest dimensions in a plane, and the relationship with the flow direction of the refrigerant is not studied. Therefore, it is considered insufficient from the viewpoint of making the heat exchanger as thin as possible and reliably avoiding the generation of the stagnation region 24 of the refrigerant as shown in FIG. Further, the strength of the heat exchanger is studied only with respect to the plate thickness, and no consideration is given to the point that a change in the width or pitch of the bead affects the strength as a whole. Therefore, it can be said that it is difficult to solve the above-mentioned problem with this type of conventional stacked heat exchanger.

【0008】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、本発明の目的は、耐久強度
を確保しつつ、ビード上流側の淀みを解消して熱交換効
率を向上させることができる薄厚の積層型熱交換器を提
供することにある。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to eliminate heat stagnation on the upstream side of a bead while ensuring durability, thereby improving heat exchange efficiency. An object of the present invention is to provide a thin stacked heat exchanger which can be improved.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の請求項1に記載の発明は、一対のプレートが最中状に
組み合わされ内部に流路が形成された液管エレメント
を、伝熱フィンを介して複数個互いに積層してなるコア
部を備えた積層型熱交換器であって、前記一対のプレー
トには、それぞれ前記流路内に突出して相互に接合され
る複数のビードが対応して形成され、前記複数のビード
は、流路方向に垂直な方向に並ぶビード列のビード位置
が隣接するビード列のビード間位置に対応するように配
置されており、前記ビードの流路方向に垂直な方向のピ
ッチA、前記ビードの流路方向のピッチB、前記ビード
の裾部の流路方向に垂直な方向の幅C、前記ビードの裾
部の流路方向の幅Dは、C<D、C<A、1<B/A<
1.3、の関係を満たすことを特徴とする。
According to the first aspect of the present invention, there is provided a liquid tube element having a pair of plates combined in a middle state and having a flow passage formed therein. A laminated heat exchanger having a core portion formed by laminating a plurality of fins via fins, wherein the pair of plates correspond to a plurality of beads projecting into the flow path and being joined to each other. The plurality of beads are arranged such that the bead positions of the bead rows arranged in a direction perpendicular to the flow path direction correspond to the positions between the beads of the adjacent bead rows, and the flow direction of the beads The pitch A in the direction perpendicular to the pitch, the pitch B in the flow direction of the bead, the width C in the direction perpendicular to the flow direction of the hem of the bead, and the width D of the flow direction of the hem of the bead are C <D, C <A, 1 <B / A <
1.3.

【0010】また、請求項2に記載の発明は、上記請求
項1に記載の積層型熱交換器において、前記ピッチA、
ピッチB、幅C、および幅Dは、3.4mm≦A≦3.
95mm、4.0mm≦B≦4.5mm、3.0mm≦
C≦3.9mm、3.0mm≦D≦3.9mm、の関係
をさらに満たすことを特徴とする。
Further, according to a second aspect of the present invention, in the laminated heat exchanger according to the first aspect, the pitch A,
The pitch B, the width C, and the width D are 3.4 mm ≦ A ≦ 3.
95mm, 4.0mm ≦ B ≦ 4.5mm, 3.0mm ≦
It is characterized by further satisfying the relationship of C ≦ 3.9 mm, 3.0 mm ≦ D ≦ 3.9 mm.

【0011】また、請求項3に記載の発明は、上記請求
項2に記載の積層型熱交換器において、前記ビードの頂
部の流路方向に垂直な方向の幅E、前記ビードの頂部の
流路方向の幅Fは、E≦F、1.0mm≦E≦1.8m
m、1.0mm≦F≦1.8mm、の関係を満たすこと
を特徴とする。
According to a third aspect of the present invention, there is provided the laminated heat exchanger according to the second aspect, wherein a width E of the top of the bead in a direction perpendicular to a flow path direction and a flow of the top of the bead are changed. The width F in the road direction is E ≦ F, 1.0 mm ≦ E ≦ 1.8 m
m, 1.0 mm ≦ F ≦ 1.8 mm.

【0012】また、請求項4に記載の発明は、上記請求
項2に記載の積層型熱交換器において、前記コア部の空
気が通過する方向の厚さGは、45mm≦G≦60m
m、の関係を満たすことを特徴とする。
According to a fourth aspect of the present invention, in the laminated heat exchanger according to the second aspect, the thickness G of the core portion in a direction in which air passes is 45 mm ≦ G ≦ 60 m.
m, is satisfied.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1は、本発明の一実施形態に
係る積層型エバポレータの側面図、図2は、液管エレメ
ントおよび伝熱フィンの分解斜視図、図3は、積層型エ
バポレータの断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view of a laminated evaporator according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a liquid tube element and a heat transfer fin, and FIG. 3 is a sectional view of the laminated evaporator.

【0014】図1に示すように、本実施形態の積層型エ
バポレータ100は、熱交換器本体であるコア部10
と、タンク1とを備えており、冷媒入口孔14から流入
してコア部10を通って冷媒出口孔15から流出する冷
媒と、図1における紙面に垂直な方向に流れる空気と
で、熱交換させるようにしたものである。
As shown in FIG. 1, a laminated evaporator 100 of the present embodiment has a core portion 10 which is a heat exchanger body.
And a tank 1 which exchanges heat between refrigerant flowing from the refrigerant inlet hole 14 and flowing out of the refrigerant outlet hole 15 through the core portion 10 and air flowing in a direction perpendicular to the plane of FIG. It is intended to be.

【0015】この積層型エバポレータ100のコア部1
0は、一対のプレートP1,P2を凹面を互いに向き合
わせて最中状に組み合わせてなる液管エレメント2を複
数個、伝熱フィン3を介して互いに積層することで構成
されている(図2参照)。なお、図1では、コア部10
の液管エレメント2および伝熱フィン3は、一部のみ図
示して他は省略している。
The core part 1 of the laminated evaporator 100
No. 0 is constituted by laminating a plurality of liquid pipe elements 2 each having a pair of plates P1 and P2 facing each other with concave surfaces facing each other in the middle, via heat transfer fins 3 (FIG. 2). reference). Note that, in FIG.
The liquid tube element 2 and the heat transfer fins 3 are only partially illustrated and the others are omitted.

【0016】図2および図3に示すように、各プレート
P1,P2には、中央に仕切壁23が形成されている。
したがって、各液管エレメント2の内部にはU字状の冷
媒流路22が形成されており、一方の下端部21から流
入した冷媒は、例えば図3中矢印で示す方向に、U字状
の冷媒流路22を通って他方の下端部21から流出する
ようになっている。
As shown in FIGS. 2 and 3, a partition wall 23 is formed at the center of each of the plates P1 and P2.
Therefore, a U-shaped refrigerant flow path 22 is formed inside each liquid pipe element 2, and the refrigerant flowing from one lower end portion 21 has a U-shaped refrigerant flow, for example, in a direction indicated by an arrow in FIG. 3. It flows out from the other lower end portion 21 through the refrigerant flow path 22.

【0017】エバポレータ100の下部に設けられた2
本のタンク1は、それぞれが樋状の天板11及び底板1
2を合わせることにより構成されており、このタンク1
は、天板11に形成された複数のスリット状接続孔13
に各液管エレメント2の下端部21をそれぞれ挿入して
液密にろう付けすることにより液管エレメント2に接合
されている。
2 is provided below the evaporator 100.
The tank 1 has a top plate 11 and a bottom plate 1 each having a gutter shape.
2 and the tank 1
Is a plurality of slit-like connection holes 13 formed in the top plate 11.
The lower end portions 21 of the liquid pipe elements 2 are respectively inserted into the liquid pipe elements 2 and brazed in a liquid-tight manner so as to be joined to the liquid pipe elements 2.

【0018】また、一方のタンク1の底板12の下面に
は、冷媒入口孔14と冷媒出口孔15とが開設されてお
り、これら冷媒入口孔14と冷媒出口孔15との間には
仕切り板6が設けられて冷媒が行き交わないようになっ
ている。この冷媒入口孔14には、膨張弁4により低圧
の霧状とされた冷媒が流入され、冷媒出口孔15から
は、熱交換後の冷媒が流出されてコンプレッサへ帰還す
るようになっている。
A coolant inlet hole 14 and a coolant outlet hole 15 are formed on the lower surface of the bottom plate 12 of one of the tanks 1, and a partition plate is provided between the coolant inlet hole 14 and the coolant outlet hole 15. 6 is provided so that the refrigerant does not flow. The refrigerant formed into a mist of low pressure by the expansion valve 4 flows into the refrigerant inlet hole 14, and the refrigerant after the heat exchange flows out from the refrigerant outlet hole 15 and returns to the compressor.

【0019】この積層型エバポレータ100では、上述
した冷媒入口孔14と冷媒出口孔15にフランジ5をろ
う付けし、このフランジ5に、膨張弁4を取り付けてい
る。この膨張弁4は、冷媒の流出入孔が形成されたブロ
ックに膨張弁が内蔵された、いわゆる一体型の膨張弁で
ある。フランジ5には、雌螺子孔51が形成されてお
り、膨張弁4に形成された貫通孔41にボルト7を挿入
して締め付けることによって、膨張弁4をフランジ5に
固定することができるようになっている。
In the laminated evaporator 100, the flange 5 is brazed to the refrigerant inlet hole 14 and the refrigerant outlet hole 15 described above, and the expansion valve 4 is attached to the flange 5. The expansion valve 4 is a so-called integral type expansion valve in which an expansion valve is built in a block in which a refrigerant outflow / inflow hole is formed. A female screw hole 51 is formed in the flange 5, and the expansion valve 4 can be fixed to the flange 5 by inserting a bolt 7 into a through hole 41 formed in the expansion valve 4 and tightening the bolt 7. Has become.

【0020】図4は、積層型エバポレータにおける冷媒
の流れを模式的に示す斜視図である。このように、冷媒
入口孔14へ流入した冷媒は、冷媒入口孔14が設けら
れたタンク1の第1の領域31から各液管エレメント2
の下端部21を通ってU字状の冷媒流路22を流れ、他
方の下端部21から他方のタンク1の第2の領域32へ
流れる。この他方のタンク1には、仕切り板6が設けら
れていないので、当該タンク1へ流入した冷媒は、当該
タンク1の第3の領域33へ流れ、ここに接続された各
液管エレメント2の下端部21から、U字状の冷媒流路
22を通って他方の下端部21から冷媒出口孔15が形
成されたタンク1の第4の領域34へ流れた後、冷媒出
口孔15から流出し、コンプレッサへ帰還する。なお、
コア部10内における冷媒の流し方、および冷媒入口孔
14や冷媒出口孔15の位置については、従来から種々
のタイプが知られており、変更が可能である。
FIG. 4 is a perspective view schematically showing the flow of the refrigerant in the laminated evaporator. As described above, the refrigerant flowing into the refrigerant inlet hole 14 is supplied from the first region 31 of the tank 1 provided with the refrigerant inlet hole 14 to each of the liquid pipe elements 2.
Flows through the U-shaped refrigerant flow path 22 through the lower end 21 of the tank 1 and flows from the other lower end 21 to the second region 32 of the other tank 1. Since the other tank 1 is not provided with the partition plate 6, the refrigerant flowing into the tank 1 flows to the third region 33 of the tank 1 and the liquid pipe element 2 After flowing from the lower end portion 21 through the U-shaped refrigerant flow path 22 to the fourth region 34 of the tank 1 in which the refrigerant outlet hole 15 is formed from the other lower end portion 21, it flows out from the refrigerant outlet hole 15. Return to the compressor. In addition,
Various types have been known for the flow of the refrigerant in the core portion 10 and the positions of the refrigerant inlet holes 14 and the refrigerant outlet holes 15 and can be changed.

【0021】図5(A)は、プレートに形成されたビー
ドをその頂部方向から見た図、図5(B)は、図5
(A)のX−X線に沿う断面図、図5(C)は、図5
(A)のY−Y線に沿う断面図である。
FIG. 5A is a view of a bead formed on a plate as viewed from the top, and FIG. 5B is a view of FIG.
FIG. 5A is a cross-sectional view taken along the line XX, and FIG.
It is sectional drawing which follows the YY line of (A).

【0022】図3にも示したように、一対のプレートP
1,P2のそれぞれには、冷媒流路22内に突出する複
数のビード25が形成されている。これらの複数のビー
ド25は、一対のプレートP1,P2間において、その
位置が対応するように形成されており、ビード25の頂
部26相互がろう付けにより接合される。
As shown in FIG. 3, a pair of plates P
Each of P1 and P2 has a plurality of beads 25 protruding into the coolant channel 22. The plurality of beads 25 are formed so that their positions correspond between the pair of plates P1 and P2, and the tops 26 of the beads 25 are joined by brazing.

【0023】複数のビード25は、流路方向に垂直な方
向に並ぶビード列R1のビード位置が隣接するビード列
R2,R3のビード間位置に対応するように配置されて
おり、いわゆる千鳥(斜め)格子形状を呈している。
The plurality of beads 25 are arranged so that the bead positions of the bead row R1 arranged in the direction perpendicular to the flow path direction correspond to the positions between the beads of the adjacent bead rows R2 and R3. ) It has a lattice shape.

【0024】そして、ビード25の冷媒流路22方向に
垂直な方向のピッチA、ビード25の冷媒流路22方向
のピッチB、ビード25の裾部の冷媒流路22方向に垂
直な方向の幅C、ビード25の裾部の冷媒流路22方向
の幅Dは、 C<D ……(1) C<A ……(2) 1<B/A<1.3 ……(3) の関係を満たすように設定されている。
The pitch A of the bead 25 in the direction perpendicular to the direction of the refrigerant flow path 22, the pitch B of the bead 25 in the direction of the refrigerant flow path 22, and the width of the foot of the bead 25 in the direction perpendicular to the direction of the refrigerant flow path 22. C, the width D of the bottom of the bead 25 in the direction of the refrigerant flow path 22 is represented by the following relationship: C <D (1) C <A (1) C <A (1) 1 <B / A <1.3 (3) Is set to meet.

【0025】(1)式より、ビード25の形状が、冷媒
流路22方向、すなわち冷媒の流れ方向に長軸が沿うよ
うな惰円ないし長円形状となる。また、(2)式より、
冷媒の流れ方向から見てビード間に隙間H(図5(A)
参照)を設けることができる。(3)式の下限は、所定
の流路抵抗を確保する観点から、上限は、所定の耐久強
度を確保する観点から定めたものであり、好ましくは、
1.1<B/A<1.2、より好ましくは、B/A=
1.15に設定される。
According to the equation (1), the shape of the bead 25 is an infinite circle or an elliptical shape whose major axis is along the direction of the refrigerant flow path 22, that is, the flow direction of the refrigerant. Also, from equation (2),
The gap H between the beads when viewed from the flow direction of the refrigerant (FIG. 5A)
Cf.). The lower limit of the formula (3) is determined from the viewpoint of securing a predetermined flow resistance, and the upper limit is determined from the viewpoint of securing a predetermined durability.
1.1 <B / A <1.2, more preferably B / A =
1.15 is set.

【0026】また、上述したピッチA、ピッチB、幅
C、および幅Dは、上記(1)〜(3)式に加えて、以
下の(4)〜(7)式の関係を満たすように設定するの
が、積層型エバポレータの空気通過方向の厚さ(幅)を
薄くしつつ、耐久性を維持しかつ熱交換性能を向上させ
る観点から望ましい。つまり、熱交換器のビードの成形
は、従来から平板をロール成形やプレス成形により行わ
れているが、このビードをあまり小さく成形してしまう
と、塑性変形量の大きいビードの付け根部が薄くなりす
ぎて、耐久性が劣るものになってしまう。一方、ビード
を大きく成形してしまうと、限られた熱交換器の占有ス
ペース(熱交換器の幅)ではビードの数が少なくなり、
性能的に劣る製品になってしまう。そこで、本発明者ら
の実験検討によると、下記のような数値範囲の熱交換器
が、耐久性も維持し、かつ熱交換率も良い熱交換器であ
ることが解った。
The above-mentioned pitch A, pitch B, width C and width D satisfy the following equations (4) to (7) in addition to the above equations (1) to (3). The setting is desirable from the viewpoint of maintaining the durability and improving the heat exchange performance while reducing the thickness (width) of the stacked evaporator in the air passage direction. In other words, the bead of the heat exchanger has been conventionally formed by roll forming or press forming a flat plate, but if this bead is formed too small, the root of the bead with large plastic deformation becomes thin. Too much, resulting in poor durability. On the other hand, if the bead is formed too large, the number of beads in the limited space occupied by the heat exchanger (the width of the heat exchanger) decreases,
It becomes a product with inferior performance. Thus, according to experimental studies by the present inventors, it has been found that a heat exchanger having the following numerical range is a heat exchanger that maintains durability and has a good heat exchange rate.

【0027】 3.4mm≦A≦3.95mm ……(4) 4.0mm≦B≦4.5mm ……(5) 3.0mm≦C≦3.9mm ……(6) 3.0mm≦D≦3.9mm ……(7) さらに、ビード25の頂部26の冷媒流路22方向に垂
直な方向の幅E、ビード25の頂部の冷媒流路22方向
の幅Fは、 E≦F ……(8) 1.0mm≦E≦1.8mm ……(9) 1.0mm≦F≦1.8mm ……(10) の関係を満たすように設定されている。
3.4 mm ≦ A ≦ 3.95 mm (4) 4.0 mm ≦ B ≦ 4.5 mm (5) 3.0 mm ≦ C ≦ 3.9 mm (6) 3.0 mm ≦ D ≦ 3.9 mm (7) Further, the width E of the top 26 of the bead 25 in the direction perpendicular to the direction of the coolant flow path 22 and the width F of the top of the bead 25 in the direction of the coolant flow path 22 are as follows: E ≦ F (8) 1.0 mm ≦ E ≦ 1.8 mm (9) 1.0 mm ≦ F ≦ 1.8 mm (10)

【0028】(8)式より、ビード25の頂部26の形
状が、冷媒流路22方向、すなわち冷媒の流れ方向に長
軸が沿うような惰円ないし長円形状、あるいは円形状と
なる。これにより、ビード25の頂部26付近における
冷媒の流れが滑らかとなる。また、(9),(10)式
より、ビード25の良好な成形性を保ちながら、一対の
プレートP1,P2同士のビード25における所定の接
合面積を確保することができ、耐久強度の向上を図るこ
とができる。
According to equation (8), the shape of the top 26 of the bead 25 is a circular or elliptical shape in which the major axis extends along the refrigerant flow path 22, that is, the flow direction of the refrigerant, or a circular shape. Thus, the flow of the refrigerant near the top 26 of the bead 25 becomes smooth. Further, according to the expressions (9) and (10), it is possible to secure a predetermined joining area in the bead 25 between the pair of plates P1 and P2 while maintaining the good formability of the bead 25, and improve the durability strength. Can be planned.

【0029】また、本実施形態では、上記のように積層
型エバポレータ100のコア部10の空気通過方向の厚
さGを薄くすることが可能となり、そのコア部10の厚
さGは、 45mm≦G≦60mm ……(11) の関係を満たすように設定されている。
Further, in the present embodiment, the thickness G of the core portion 10 of the laminated evaporator 100 in the air passage direction can be reduced as described above, and the thickness G of the core portion 10 is 45 mm ≦ G ≦ 60 mm (11)

【0030】したがって、この積層型エバポレータ10
0が搭載される自動車用空気調和装置全体の構成をコン
パクトにすることができ、空気調和装置のレイアウトの
自由度が大きくなると共に、車室内空間を占有するスペ
ースが小さくて済む。
Therefore, the laminated evaporator 10
0 can be made compact, the degree of freedom of the layout of the air conditioner can be increased, and the space occupying the vehicle interior space can be reduced.

【0031】次に、本実施形態の作用について説明す
る。
Next, the operation of the present embodiment will be described.

【0032】膨張弁4により低圧の霧状とされた冷媒
は、冷媒入口孔14からタンク1の第1の領域31に流
入する。この冷媒は、図3に示したように、各液管エレ
メント2の下端部21を通ってU字状の冷媒流路22を
流れる。
The refrigerant made into a low-pressure mist by the expansion valve 4 flows into the first region 31 of the tank 1 from the refrigerant inlet hole 14. As shown in FIG. 3, the refrigerant flows through the U-shaped refrigerant flow path 22 through the lower end 21 of each liquid pipe element 2.

【0033】図6は、ビード間の流れ状態の計測結果を
模式的に示す図であって、(A)は本実施形態の積層型
エバポレータの場合を示す図、(B)は従来の積層型エ
バポレータの場合を示す図、図7は、プレートの表面温
度分布の計測結果を示す図であって、(A)は本実施形
態の積層型エバポレータの場合を示す図、(B)は従来
の積層型エバポレータの場合を示す図である。
FIGS. 6A and 6B are diagrams schematically showing the measurement results of the flow state between the beads. FIG. 6A is a diagram showing the case of the laminated evaporator of the present embodiment, and FIG. FIG. 7 is a diagram showing a measurement result of a surface temperature distribution of a plate, in which FIG. 7A is a diagram showing a case of a laminated evaporator of the present embodiment, and FIG. 7B is a diagram showing a conventional laminated evaporator. It is a figure which shows the case of a type evaporator.

【0034】冷媒は、惰円ないし長円形状のビード25
の表面に沿って滑らかに送られる。しかも、冷媒の流れ
方向から見てビード間に隙間Hが形成されているので
(図5(A)参照)、冷媒は、隣接するビード25の間
をさほど絞られることなく流される。つまり、流れが絞
られることによって流速が上がる部分がなく、冷媒の流
れに自由度が与えられ、図6(A)に示すように、適度
な渦27が形成される。これにより、図7(A)に示す
ように、ビード25の上流側に従来発生しがちであった
冷媒の淀みが解消される。したがって、冷媒は、冷媒流
路22を常に巡回して停滞する部分がなくなるため、液
管エレメントの1枚当たりの熱交換面積が広がり、熱交
換器としての性能が向上する。
The refrigerant is a bead 25 having an oval or oval shape.
Smoothly sent along the surface. In addition, since the gap H is formed between the beads as viewed from the flow direction of the refrigerant (see FIG. 5A), the refrigerant flows between the adjacent beads 25 without being narrowed so much. In other words, there is no portion where the flow velocity increases due to the restriction of the flow, and the degree of freedom is given to the flow of the refrigerant, and an appropriate vortex 27 is formed as shown in FIG. As a result, as shown in FIG. 7 (A), the stagnation of the refrigerant, which tends to occur conventionally on the upstream side of the bead 25, is eliminated. Therefore, the refrigerant always circulates around the refrigerant flow path 22 and has no stagnant portion, so that the heat exchange area per liquid tube element is increased, and the performance as a heat exchanger is improved.

【0035】一方、従来の積層型エバポレータでは、図
6(B)に示すように、冷媒は、隣接するビード25の
間で絞られて流速が増加する。これにより、流れの自由
度が小さくなって、冷媒は、図中矢印で示される決まっ
た方向に流れるようになる。したがって、冷媒は、図7
(B)に示す領域24に関係なく流れるため、この領域
24は、冷媒の移動がない淀み領域となって、熱伝達に
寄与しなくなってしまう。
On the other hand, in the conventional laminated evaporator, as shown in FIG. 6B, the refrigerant is throttled between the adjacent beads 25, and the flow velocity increases. As a result, the degree of freedom of the flow is reduced, and the refrigerant flows in a predetermined direction indicated by an arrow in the drawing. Therefore, the refrigerant is
Since the air flows regardless of the area 24 shown in FIG. 2B, the area 24 becomes a stagnation area where the refrigerant does not move, and does not contribute to heat transfer.

【0036】このように、本実施形態によれば、積層型
エバポレータの耐久強度を確保しつつ、ビード上流側に
発生しがちな冷媒の淀みを解消することにより熱交換効
率を向上させることができる。
As described above, according to the present embodiment, the heat exchange efficiency can be improved by eliminating the refrigerant stagnation that tends to occur on the upstream side of the bead while securing the durability of the laminated evaporator. .

【0037】なお、以上説明した実施形態は、本発明を
限定するために記載されたものではなく、本発明の技術
的範囲の範囲内において当業者により種々変更すること
ができる。例えば、上記実施形態では、積層型エバポレ
ータについて説明したが、本発明はこれに限られるもの
ではなく、他の積層型熱交換器にも適用することができ
ることは勿論である。
The embodiments described above are not described to limit the present invention, and can be variously modified by those skilled in the art within the technical scope of the present invention. For example, in the above embodiment, the stacked evaporator has been described. However, the present invention is not limited to this, and it is needless to say that the present invention can be applied to other stacked heat exchangers.

【0038】[0038]

【発明の効果】以上述べたように本発明によれば、請求
項毎に次のような効果を奏する。請求項1に記載の発明
によれば、積層型熱交換器の耐久強度を確保することが
できると共に、ビード上流側に発生しがちな冷媒の淀み
を確実に解消することにより熱交換効率を向上させるこ
とができる。
As described above, according to the present invention, the following effects can be obtained for each claim. According to the first aspect of the present invention, the durability of the stacked heat exchanger can be ensured, and the heat exchange efficiency can be improved by reliably eliminating the refrigerant stagnation that tends to occur on the upstream side of the bead. Can be done.

【0039】請求項2に記載の発明によれば、上記請求
項1に記載の発明の効果に加え、積層型熱交換器の空気
通過方向の厚さを薄くすることができる。
According to the second aspect of the invention, in addition to the effect of the first aspect, the thickness of the stacked heat exchanger in the air passage direction can be reduced.

【0040】請求項3に記載の発明によれば、ビード頂
部付近における冷媒の流れが滑らかとなると共に、プレ
ート同士のビードにおける所定の接合面積を確保するこ
とができ、耐久強度の向上を図ることができる。
According to the third aspect of the present invention, the flow of the refrigerant in the vicinity of the top of the bead becomes smooth, and a predetermined joining area in the bead between the plates can be secured, thereby improving the durability. Can be.

【0041】請求項4に記載の発明によれば、積層型熱
交換器が搭載される空気調和装置全体の構成をコンパク
トにすることができ、空気調和装置のレイアウトの自由
度が大きくなると共に占有スペースが小さくて済む。
According to the fourth aspect of the present invention, the overall configuration of the air conditioner on which the stacked heat exchanger is mounted can be made compact, and the degree of freedom of the layout of the air conditioner is increased and the air conditioner is occupied. Space is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る積層型エバポレー
タの側面図である。
FIG. 1 is a side view of a laminated evaporator according to an embodiment of the present invention.

【図2】 液管エレメントおよび伝熱フィンの分解斜視
図である。
FIG. 2 is an exploded perspective view of a liquid tube element and a heat transfer fin.

【図3】 積層型エバポレータの断面図である。FIG. 3 is a cross-sectional view of a laminated evaporator.

【図4】 積層型エバポレータにおける冷媒の流れを模
式的に示す斜視図である。
FIG. 4 is a perspective view schematically showing a flow of a refrigerant in the laminated evaporator.

【図5】 (A)は、プレートに形成されたビードをそ
の頂部方向から見た図、(B)は、(A)のX−X線に
沿う断面図、(C)は、(A)のY−Y線に沿う断面図
である。
5A is a view of a bead formed on a plate as viewed from the top, FIG. 5B is a cross-sectional view taken along line XX of FIG. 5A, and FIG. 5C is a view of FIG. FIG. 3 is a cross-sectional view taken along line YY of FIG.

【図6】 ビード間の流れ状態の計測結果を模式的に示
す図であって、(A)は本実施形態の積層型エバポレー
タの場合を示す図、(B)は従来の積層型エバポレータ
の場合を示す図である。
6A and 6B are diagrams schematically showing a measurement result of a flow state between beads, wherein FIG. 6A is a diagram showing a case of a laminated evaporator of the present embodiment, and FIG. 6B is a diagram of a conventional laminated evaporator; FIG.

【図7】 プレートの表面温度分布の計測結果を示す図
であって、(A)は本実施形態の積層型エバポレータの
場合を示す図、(B)は従来の積層型エバポレータの場
合を示す図である。
7A and 7B are diagrams showing measurement results of a surface temperature distribution of a plate, wherein FIG. 7A shows a case of a laminated evaporator of the present embodiment, and FIG. 7B shows a case of a conventional laminated evaporator. It is.

【図8】 従来の積層型エバポレータのビード間の流れ
状態を模式的に示す図である。
FIG. 8 is a view schematically showing a flow state between beads of a conventional laminated evaporator.

【符号の説明】[Explanation of symbols]

1…タンク、 2…液管エレメント、 3…伝熱フィン、 4…一体型の膨張弁、 10…コア部、 14…冷媒入口孔、 15…冷媒出口孔、 22…冷媒流路、 25…ビード、 100…積層型エバポレータ(熱交換器)、 P1,P2…プレート。 DESCRIPTION OF SYMBOLS 1 ... Tank, 2 ... Liquid pipe element, 3 ... Heat transfer fin, 4 ... Integrated expansion valve, 10 ... Core part, 14 ... Refrigerant inlet hole, 15 ... Refrigerant outlet hole, 22 ... Refrigerant flow path, 25 ... Bead , 100: laminated evaporator (heat exchanger), P1, P2: plate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対のプレート(P1,P2) が最中状に組み
合わされ内部に流路(22)が形成された液管エレメント
(2) を、伝熱フィン(3) を介して複数個互いに積層して
なるコア部(10)を備えた積層型熱交換器であって、 前記一対のプレート(P1,P2) には、それぞれ前記流路(2
2)内に突出して相互に接合される複数のビード(25)が対
応して形成され、 前記複数のビード(25)は、流路(22)方向に垂直な方向に
並ぶビード列のビード位置が隣接するビード列のビード
間位置に対応するように配置されており、 前記ビード(25)の流路(22)方向に垂直な方向のピッチ
A、前記ビード(25)の流路(22)方向のピッチB、前記ビ
ード(25)の裾部の流路(22)方向に垂直な方向の幅C、前
記ビード(25)の裾部の流路(22)方向の幅Dは、 C<D、 C<A、 1<B/A<1.3、 の関係を満たすことを特徴とする積層型熱交換器。
1. A liquid pipe element in which a pair of plates (P1, P2) are combined in the middle and a flow path (22) is formed inside.
(2) is a laminated heat exchanger having a core part (10) formed by laminating a plurality of layers via a heat transfer fin (3), wherein the pair of plates (P1, P2) includes: Each of the channels (2
2) A plurality of beads (25) protruding into and joined to each other are formed correspondingly, and the plurality of beads (25) are located at a bead position in a row of beads arranged in a direction perpendicular to the direction of the flow path (22). Are arranged so as to correspond to the positions between the beads of the adjacent bead rows, the pitch A in a direction perpendicular to the flow path (22) direction of the bead (25), the flow path (22) of the bead (25) Direction B, the width C of the hem of the bead (25) in the direction perpendicular to the flow path (22) direction, and the width D of the hem of the bead (25) in the flow path (22) direction is C < D, C <A, and 1 <B / A <1.3.
【請求項2】 前記ピッチA、ピッチB、幅C、および
幅Dは、 3.4mm≦A≦3.95mm、 4.0mm≦B≦4.5mm、 3.0mm≦C≦3.9mm、 3.0mm≦D≦3.9mm、 の関係をさらに満たすことを特徴とする請求項1記載の
積層型熱交換器。
2. The pitch A, pitch B, width C, and width D are as follows: 3.4 mm ≦ A ≦ 3.95 mm, 4.0 mm ≦ B ≦ 4.5 mm, 3.0 mm ≦ C ≦ 3.9 mm, 2. The laminated heat exchanger according to claim 1, further satisfying the following relationship: 3.0 mm ≦ D ≦ 3.9 mm.
【請求項3】 前記ビード(25)の頂部(26)の流路(22)方
向に垂直な方向の幅E、前記ビード(25)の頂部(26)の流
路(22)方向の幅Fは、 E≦F、 1.0mm≦E≦1.8mm、 1.0mm≦F≦1.8mm、 の関係を満たすことを特徴とする請求項2記載の積層型
熱交換器。
3. A width E of the top portion (26) of the bead (25) in a direction perpendicular to the direction of the flow path (22), and a width F of the top portion (26) of the bead (25) in the direction of the flow path (22). 3. The laminated heat exchanger according to claim 2, wherein the following relationship is satisfied: E ≦ F, 1.0 mm ≦ E ≦ 1.8 mm, and 1.0 mm ≦ F ≦ 1.8 mm.
【請求項4】 前記コア部(10)の空気が通過する方向の
厚さGは、 45mm≦G≦60mm、 の関係を満たすことを特徴とする請求項2記載の積層型
熱交換器。
4. The laminated heat exchanger according to claim 2, wherein the thickness G of the core portion in the direction in which the air passes is 45 mm ≦ G ≦ 60 mm.
JP10327208A 1998-11-17 1998-11-17 Laminated heat exchanger Pending JP2000146477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10327208A JP2000146477A (en) 1998-11-17 1998-11-17 Laminated heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10327208A JP2000146477A (en) 1998-11-17 1998-11-17 Laminated heat exchanger

Publications (1)

Publication Number Publication Date
JP2000146477A true JP2000146477A (en) 2000-05-26

Family

ID=18196532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10327208A Pending JP2000146477A (en) 1998-11-17 1998-11-17 Laminated heat exchanger

Country Status (1)

Country Link
JP (1) JP2000146477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831654A1 (en) * 2001-10-31 2003-05-02 Valeo Climatisation THERMAL EXCHANGER TUBES WITH OPTIMIZED PLATES
KR100819011B1 (en) * 2001-08-29 2008-04-02 한라공조주식회사 Heat exchanger
JP2009052874A (en) * 2007-07-30 2009-03-12 Kobe Steel Ltd Plate fin type heat exchanger
WO2022107868A1 (en) * 2020-11-20 2022-05-27 株式会社ティラド Heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819011B1 (en) * 2001-08-29 2008-04-02 한라공조주식회사 Heat exchanger
FR2831654A1 (en) * 2001-10-31 2003-05-02 Valeo Climatisation THERMAL EXCHANGER TUBES WITH OPTIMIZED PLATES
EP1308687A1 (en) * 2001-10-31 2003-05-07 Valeo Climatisation Tube for plate-like heat exchanger
US6786276B2 (en) 2001-10-31 2004-09-07 Valeo Climatisation Heat exchanger tube with optimized plates
JP2009052874A (en) * 2007-07-30 2009-03-12 Kobe Steel Ltd Plate fin type heat exchanger
WO2022107868A1 (en) * 2020-11-20 2022-05-27 株式会社ティラド Heat exchanger

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
US6401804B1 (en) Heat exchanger only using plural plates
US6827139B2 (en) Heat exchanger for exchanging heat between internal fluid and external fluid and manufacturing method thereof
US7303003B2 (en) Heat exchanger
JP3158232B2 (en) Stacked heat exchanger
US20090166017A1 (en) Heat exchanger
JP2001074388A (en) Refrigerant evaporator
JP2006183994A (en) Heat exchanger
JP2002162174A (en) Snaky heat exchanger
JP3829499B2 (en) Heat exchanger
JP3965901B2 (en) Evaporator
JP2005195316A (en) Heat exchanger
JP4122670B2 (en) Heat exchanger
US20070051504A1 (en) Heat exchanger
US6230787B1 (en) Stack type evaporator
JP2000146477A (en) Laminated heat exchanger
JP3403544B2 (en) Heat exchanger
JP4264997B2 (en) Refrigerant evaporator
JP2005195318A (en) Evaporator
JP2004338644A (en) Heat exchange device for vehicle
JP3677898B2 (en) Double heat exchanger
JP3805665B2 (en) Heat exchanger
JP3000188B2 (en) Stacked heat exchanger
JP5525805B2 (en) Heat exchanger
JP2941768B1 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403