JP2000143791A - Production of modified polyethylene terephthalate resin - Google Patents

Production of modified polyethylene terephthalate resin

Info

Publication number
JP2000143791A
JP2000143791A JP10314695A JP31469598A JP2000143791A JP 2000143791 A JP2000143791 A JP 2000143791A JP 10314695 A JP10314695 A JP 10314695A JP 31469598 A JP31469598 A JP 31469598A JP 2000143791 A JP2000143791 A JP 2000143791A
Authority
JP
Japan
Prior art keywords
treatment tank
hot water
pet resin
polyethylene terephthalate
polycondensation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10314695A
Other languages
Japanese (ja)
Other versions
JP3566110B2 (en
Inventor
Kazumi Kawakami
和美 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31469598A priority Critical patent/JP3566110B2/en
Publication of JP2000143791A publication Critical patent/JP2000143791A/en
Application granted granted Critical
Publication of JP3566110B2 publication Critical patent/JP3566110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a modified polyethylene terephthalate(PET) resin which comprises a deactivation treating step for a polycondensation catalyst in the PET resin and is improved so as to uniformly carry out the deactivation treatment. SOLUTION: When a modified PET resin is produced by feeding a PET resin containing a polycondensation catalyst in an undeactivated state to a hot water treating bath or a heating humidification treating bath and deactivating the polycondensation catalyst, the feed of the PET resin to the hot water treating bath or heating humidification treating bath is carried out by the gas power transfer and the solid gas ratio of the gas power transfer is regulated within the range of 10-30 kg/kg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質ポリエチレン
テレフタレート樹脂の製造方法に関し、詳しくは、成形
時の金型汚染が発生し難い様に改質されたポリエチレン
テレフタレート樹脂の製造方法に関する。
The present invention relates to a method for producing a modified polyethylene terephthalate resin, and more particularly to a method for producing a modified polyethylene terephthalate resin which is less likely to cause mold contamination during molding.

【0002】[0002]

【従来の技術】特公平7−37515号公報には、ポリ
エチレンテレフタレート(PET)樹脂のブロー成形時
の金型汚染を防止して表面外観に優れた成形体を得るた
め、固相重合工程を経て得られ且つ重縮合触媒を失活し
ない状態で含有するPET樹脂を熱水処理槽に供給して
重縮合触媒を失活させることにより、金型汚染の主原因
であるオリゴマー類(環状三量体)の総量が成形時に増
加するのを防止した発明が提案されている。
2. Description of the Related Art Japanese Patent Publication No. 7-37515 discloses a solid-state polymerization process in order to prevent mold contamination during blow molding of a polyethylene terephthalate (PET) resin and obtain a molded product having an excellent surface appearance. By supplying the obtained PET resin containing the polycondensation catalyst without deactivating the polycondensation catalyst to the hot water treatment tank to deactivate the polycondensation catalyst, oligomers (cyclic trimers) which are the main cause of mold contamination are obtained. The invention has been proposed in which the total amount of) is prevented from increasing during molding.

【0003】ところで、例えばサイロから上記の熱水処
理槽にPET樹脂チップを移送する際、当該熱水処理槽
における処理の均一化を図るため、熱水処理槽内におけ
る樹脂チップの滞留時間が可及的に一定になる様に樹脂
チップを移送することが望まれる。
When the PET resin chips are transferred from the silo to the above-mentioned hot water treatment tank, for example, the residence time of the resin chips in the hot water treatment tank is varied in order to make the processing in the hot water treatment tank uniform. It is desired to transfer the resin chips so as to be as constant as possible.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記実情に
鑑みなされたものであり、その目的は、PET樹脂中の
重縮合触媒の失活処理工程を包含する改質PET樹脂の
製造方法であって、上記の失活処理が均一に図られる様
に改良された上記の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a modified PET resin including a step of deactivating a polycondensation catalyst in the PET resin. In view of the above, it is an object of the present invention to provide the above-mentioned production method improved so that the above-mentioned deactivation treatment can be performed uniformly.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の目的
を達成すべく種々の調査と研究を重ねた結果、次の様な
知見を得た。
Means for Solving the Problems The present inventor has conducted various investigations and studies in order to achieve the above object, and has obtained the following findings.

【0006】PET樹脂チップの様な粒状体の移送手段
としては、スクリューコンベヤ、バケットコンベヤ、ベ
ルトコンベヤ等の各種の機械的装置による方法が知られ
ているが、これらの中において、スクリューコンベヤは
次の点で優れている。すなわち、移送の安定性(定量
性)に優れ、また、例えばバケットコンベヤの場合の様
にチップが一塊として熱水処理槽に投下されて槽内にお
ける滞留時間にバラツキを生じる欠点がない。
As a means for transferring a granular material such as a PET resin chip, various mechanical devices such as a screw conveyor, a bucket conveyor, and a belt conveyor are known. Excellent in terms of. That is, there is no defect that the transfer stability is excellent (quantitative) and that the chips are dropped as a lump into the hot water treatment tank as in the case of a bucket conveyor and the residence time in the tank varies.

【0007】しかしながら、スクリューコンベヤによる
場合は、スクリューの練り作用によりPET樹脂チップ
が何らかのダメージを受けることに起因すると推定され
るが、PET樹脂を射出成形してシートにした際にヘー
ズが悪化するという問題がある。
[0007] However, in the case of using a screw conveyor, it is presumed that the PET resin chip is damaged in some way by the kneading action of the screw, but the haze deteriorates when the PET resin is injection molded into a sheet. There's a problem.

【0008】本発明者は、上記の知見を活かして更に検
討を重ねた結果、重縮合触媒の失活処理工程への移送方
法として気力移送を採用し、しかも、気力移送の固気比
を特定の範囲に調節するならば、PET樹脂を射出成形
してシートにした際のヘーズ悪化の問題を解決した上で
失活処理の均一化が図られるとの知見を得た。
The present inventor has made further studies utilizing the above findings, and as a result, adopted the power transfer as a method of transferring the polycondensation catalyst to the deactivation treatment step, and specified the solid-gas ratio of the power transfer. It has been found that if the thickness is adjusted to the range described above, the problem of haze deterioration when a PET resin is formed into a sheet by injection molding can be solved, and the deactivation treatment can be made uniform.

【0009】本発明は、上記の種々の知見に基づき完成
されたものであり、その要旨は、重縮合触媒を失活しな
い状態で含有するポリエチレンテレフタレート樹脂を熱
水処理槽または加熱加湿処理槽に供給して重縮合触媒を
失活させることにより改質ポリエチレンテレフタレート
樹脂を製造するに当たり、熱水処理槽または加熱加湿処
理槽へのポリエチレンテレフタレート樹脂の供給を気力
移送によって行い且つ当該気力移送の固気比を10〜3
0kg/kgの範囲に調節することを特徴とする改質ポ
リエチレンテレフタレート樹脂の製造方法に存する。
The present invention has been completed on the basis of the above-mentioned various findings, and the gist of the present invention is to provide a polyethylene terephthalate resin containing a polycondensation catalyst without deactivating the polycondensation catalyst in a hot water treatment tank or a heat humidification treatment tank. In producing the modified polyethylene terephthalate resin by supplying and deactivating the polycondensation catalyst, the supply of the polyethylene terephthalate resin to the hot water treatment tank or the heating and humidification treatment tank is performed by pneumatic transfer, and the solid-gas of the pneumatic transfer is performed. The ratio is 10-3
The method for producing a modified polyethylene terephthalate resin is characterized in that it is adjusted to a range of 0 kg / kg.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において、PET樹脂は、テレフタル酸またはそ
のアルキル(炭素数1〜4)エステルを主成分とするジ
カルボン酸単位とエチレングリコールを主成分とするグ
リコール単位との重縮合体である。構成繰り返し単位に
おけるエチレンテレフタレート単位の割合は、80モル
%以上が好ましく、90モル%以上が更に好ましい。エ
チレンテレフタレート単位が80モル%未満では、成形
体としての機械的性質や耐熱性が劣る傾向がある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, the PET resin is a polycondensate of a dicarboxylic acid unit mainly containing terephthalic acid or an alkyl (1 to 4 carbon atoms) ester thereof and a glycol unit mainly containing ethylene glycol. The proportion of the ethylene terephthalate unit in the structural repeating unit is preferably at least 80 mol%, more preferably at least 90 mol%. If the ethylene terephthalate unit is less than 80 mol%, the mechanical properties and heat resistance of the molded article tend to be poor.

【0011】テレフタル酸およびそのアルキルエステル
以外のジカルボン酸単位としては、例えば、フタル酸、
イソフタル酸、4,4’−ジフェニルジカルボン酸、
4,4’−ジフェノキシエタンジカルボン酸、4,4’
−ジフェニルエーテルジカルボン酸、4,4’−ジフェ
ニルスルホンジカルボン酸、2,6−ナフタレンジカル
ボン酸などの芳香族ジカルボン酸、ヘキサヒドロテレフ
タル酸、ヘキサヒドロイソフタル酸などの脂環式ジカル
ボン酸、マロン酸、コハク酸、アジピン酸、アゼライン
酸、セバシン酸などの脂肪族ジカルボン酸の一種または
二種以上が挙げられる。
Examples of the dicarboxylic acid unit other than terephthalic acid and its alkyl ester include phthalic acid and
Isophthalic acid, 4,4′-diphenyldicarboxylic acid,
4,4′-diphenoxyethanedicarboxylic acid, 4,4 ′
-Diphenyl ether dicarboxylic acid, aromatic dicarboxylic acid such as 4,4'-diphenyl sulfone dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as hexahydroterephthalic acid and hexahydroisophthalic acid, malonic acid, succinic acid One or more kinds of aliphatic dicarboxylic acids such as acid, adipic acid, azelaic acid, and sebacic acid are exemplified.

【0012】また、エチレングリコール以外のグリコー
ル単位としては、例えば、プロピレングリコール、トリ
メチレングリコール、テトラメチレングリコール、ペン
タメチレングリコール、ヘキサメチレングリコール、デ
カメチレングリコール、ネオペンチルグリコール、ジエ
チレングリコール等の脂肪族グリコール、1,1−シク
ロヘキサンジメタノール、1,4−シクロヘキサンジメ
タノール等の脂環式グリコール、4,4’−ジヒドロキ
シビフェニル、2,2−ビス(4’−ヒドロキシフェニ
ル)プロパン、2,2−ビス(4’−β−ヒドロキシエ
トキシフェニル)プロパン、ビス(4−ヒドロキシフェ
ニル)スルホン、ビス(4−β−ヒドロキシエトキシフ
ェニル)スルホン酸などの芳香族グリコールの一種また
は二種以上が挙げられる。
Examples of glycol units other than ethylene glycol include aliphatic glycols such as propylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, neopentyl glycol, and diethylene glycol. Alicyclic glycols such as 1,1-cyclohexanedimethanol and 1,4-cyclohexanedimethanol, 4,4′-dihydroxybiphenyl, 2,2-bis (4′-hydroxyphenyl) propane, 2,2-bis ( One or more aromatic glycols such as 4′-β-hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, and bis (4-β-hydroxyethoxyphenyl) sulfonic acid are exemplified. .

【0013】更に、共重合成分として、例えば、p−ヒ
ドロキシ安息香酸、p−β−ヒドロキシエトキシ安息香
酸などのヒドロキシカルボン酸やアルコキシカルボン
酸、ステアリン酸、安息香酸、ステアリルアルコール、
ベンジルアルコール等の単官能成分、トリメリット酸、
ピロメリット酸、トリメタノールエタン、ペンタエリス
リトール等の三官能以上の多官能成分、等の一種または
二種以上を使用してもよい。
Further, as copolymerization components, for example, hydroxycarboxylic acids such as p-hydroxybenzoic acid and p-β-hydroxyethoxybenzoic acid, alkoxycarboxylic acids, stearic acid, benzoic acid, stearyl alcohol,
Monofunctional components such as benzyl alcohol, trimellitic acid,
One or two or more trifunctional or higher polyfunctional components such as pyromellitic acid, trimethanolethane, and pentaerythritol may be used.

【0014】ジカルボン酸単位としてはイソフタル酸が
好適であり、グリコール単位としては、ジエチレングリ
コール又は1,4−シクロヘキサンジメタノールが好適
であり、これらは、各々、好ましくは15モル%以内、
更に好ましくは5モル%以内の範囲で使用される。
The dicarboxylic acid unit is preferably isophthalic acid, and the glycol unit is preferably diethylene glycol or 1,4-cyclohexanedimethanol, each of which is preferably within 15 mol%.
More preferably, it is used within a range of 5 mol% or less.

【0015】重合は次の様に行われる。先ず、エステル
化触媒または金属化合物(マンガン化合物など)等のエ
ステル交換触媒の存在下、240〜280℃の温度、1
〜3kg/cm2Gの圧力でエステル化反応またはエス
テル交換反応を行ってビス(β−ヒドロキシエチル)テ
レフタレート及び/又はそのオリゴマーを得る。
The polymerization is carried out as follows. First, in the presence of an esterification catalyst or a transesterification catalyst such as a metal compound (such as a manganese compound), a temperature of 240 to 280 ° C.
An esterification reaction or transesterification reaction is performed at a pressure of 33 kg / cm 2 G to obtain bis (β-hydroxyethyl) terephthalate and / or an oligomer thereof.

【0016】次いで、ゲルマニウム化合物、アンチモン
化合物などの重縮合触媒および燐化合物(燐酸など)等
の安定剤の存在下、250〜300℃の温度、500〜
0.1mmHgの圧力で溶融重縮合を行ってポリマーを
得る。そして、溶融重縮合槽の底部に設けた抜き出し口
からストランド状に抜き出した後、カッターで切断して
チップ状とする。
Then, in the presence of a polycondensation catalyst such as a germanium compound or an antimony compound and a stabilizer such as a phosphorus compound (such as phosphoric acid), the temperature is from 250 to 300 ° C.
The polymer is obtained by performing melt polycondensation at a pressure of 0.1 mmHg. Then, after being extracted in a strand shape from an extraction port provided at the bottom of the melt polycondensation tank, it is cut into a chip shape by a cutter.

【0017】その後、更に、必要に応じ、予備結晶化を
行った後、固相重縮合を行ってチップ状のPET樹脂を
得る。通常、予備結晶化は、120〜200℃程度の温
度で1分間以上加熱して行われ、固相重縮合は、窒素な
どの不活性ガス流通下、190〜230℃の温度、1k
g/cm2G〜10mmHgの圧力で1〜50時間処理
することによって行われる。固相重合を経て得られたP
ET樹脂は、特に、ポトル等の容器の用途に好適に使用
される。
Thereafter, if necessary, preliminary crystallization is carried out, followed by solid-phase polycondensation to obtain a chip-shaped PET resin. Usually, the pre-crystallization is performed by heating at a temperature of about 120 to 200 ° C. for 1 minute or more, and the solid-phase polycondensation is performed at a temperature of 190 to 230 ° C., 1 k
The treatment is performed at a pressure of g / cm 2 G to 10 mmHg for 1 to 50 hours. P obtained through solid-state polymerization
The ET resin is particularly preferably used for a container such as a pottle.

【0018】上記において、重縮合触媒としてのゲルマ
ニウム化合物としては、二酸化ゲルマニウム、四酸化ゲ
ルマニウム、ゲルマニウムテトラエトキシド、ゲルマニ
ウムテトラn−ブトキシド等が挙げられ、その使用量
は、樹脂中のゲルマニウム原子としての含有量が10〜
200ppmの範囲となる量とするのが好ましく、25
〜120ppmの範囲となる量とするのが更に好まし
い。また、アンチモン化合物としては、三酸化アンチモ
ン、酢酸アンチモン、メトキシアンチモン等が挙げら
れ、その使用量は、樹脂中のアンチモン原子としての含
有量が100〜400ppmの範囲となる量とするのが
好ましく、150〜300ppmの範囲となる量とする
のが更に好ましい。特に、本発明は、重縮合触媒として
ゲルマニウム化合物を使用したPET樹脂に対して有用
である。
In the above, examples of the germanium compound as the polycondensation catalyst include germanium dioxide, germanium tetroxide, germanium tetraethoxide, germanium tetra n-butoxide, etc. The content is 10
Preferably, the amount is in the range of 200 ppm.
More preferably, the amount falls within the range of 120 ppm. Examples of the antimony compound include antimony trioxide, antimony acetate, and methoxyantimony.The amount of the antimony compound used is preferably such that the content as an antimony atom in the resin is in the range of 100 to 400 ppm, More preferably, the amount is in the range of 150 to 300 ppm. In particular, the present invention is useful for a PET resin using a germanium compound as a polycondensation catalyst.

【0019】本発明は、上記の様にして得られ且つ重縮
合触媒を失活しない状態で含有するPET樹脂を熱水処
理または加熱加湿処理して重縮合触媒を失活させること
により、成形時の金型汚染が発生し難い様に改質された
PET樹脂を製造する。
[0019] The present invention provides a method for dehydrating a polycondensation catalyst by subjecting the PET resin obtained as described above and containing the polycondensation catalyst to a state not deactivating the polycondensation catalyst by hot water treatment or heat humidification treatment. The modified PET resin is manufactured so that the mold contamination hardly occurs.

【0020】熱水処理または加熱加湿処理に供するPE
T樹脂としては、後述の方法で測定した固有粘度(I
V)が0.5〜1.2dl/gであるPET樹脂が好ま
しい。また、特にポトル等の容器の用途においては、上
記の条件に加え、密度が1.37g/cm3以上、オリ
ゴマー(環状三量体)含有量が0.5重量%以下、アセ
トアルデヒドの含有量が10ppm以下であるPET樹
脂が好ましい。
PE for hot water treatment or heat humidification treatment
As the T resin, the intrinsic viscosity (I
PET resins having a V) of 0.5 to 1.2 dl / g are preferred. In particular, in the use of a container such as a pottle, in addition to the above conditions, the density is 1.37 g / cm 3 or more, the oligomer (cyclic trimer) content is 0.5% by weight or less, and the acetaldehyde content is A PET resin having 10 ppm or less is preferable.

【0021】本発明においては、改質PET樹脂を製造
するため、上記のPET樹脂チップを熱水処理槽または
加熱加湿処理槽に供給して重縮合触媒を失活させる。熱
水処理槽または加熱加湿処理槽としては、特に制限され
ないが、設置面積を小さくし得る利点を考慮して塔型処
理槽が推奨される。
In the present invention, in order to produce a modified PET resin, the above-mentioned PET resin chip is supplied to a hot water treatment tank or a heating and humidification treatment tank to deactivate the polycondensation catalyst. The hot water treatment tank or the heating and humidification treatment tank is not particularly limited, but a tower type treatment tank is recommended in consideration of an advantage that the installation area can be reduced.

【0022】塔型処理槽においては、通常、塔下部に熱
水または加熱水蒸気供給管、塔上部に熱水または加熱水
蒸気抜き出し管、塔底部に改質PET樹脂チップ抜き出
し用バルブ(例えばロータリーバルブ等)が設置され
る。そして、PET樹脂チップは塔頂部から供給されて
塔底部から抜き出される。熱水処理槽の場合、PET樹
脂チップの抜き出しは熱水と共に行われる。従って、熱
水処理槽の場合は次に示す付帯設備として脱水機が必要
となるが、加熱加湿処理槽の場合は脱水機を省略し得る
利点がある。塔底部から抜き出された改質PET樹脂チ
ップは、脱水機(熱水処理槽を使用した場合)、加熱乾
燥機、冷却機などで順次に処理される。
In a tower-type treatment tank, usually, a hot water or heated steam supply pipe is provided at the bottom of the tower, a hot water or heated steam extraction pipe is provided at the top of the tower, and a modified PET resin chip extracting valve (for example, a rotary valve or the like) is provided at the bottom of the tower. ) Is installed. Then, the PET resin chips are supplied from the tower top and extracted from the tower bottom. In the case of a hot water treatment tank, extraction of the PET resin chip is performed together with hot water. Therefore, in the case of a hot water treatment tank, a dehydrator is required as an auxiliary equipment described below, but in the case of a heating and humidification treatment tank, there is an advantage that the dehydrator can be omitted. The modified PET resin chips extracted from the bottom of the tower are sequentially processed by a dehydrator (when a hot water treatment tank is used), a heat dryer, a cooler, and the like.

【0023】本発明の最大の特徴は、熱水処理槽または
加熱加湿処理槽へのPET樹脂チップの供給を気力移送
によって行い且つ当該気力移送の固気比を10〜30k
g/kgの範囲に調節する点に存する。ここに、気力移
送とは、管内に気体(空気または不活性ガス)を流し当
該気体流にPET樹脂チップを懸濁させて移送する方法
を言う。基本的な設備は、PET樹脂チップの受入ホッ
パー、その下部に連結されたフロータンク、その下部に
備えられた搬送配管から成る。
The most important feature of the present invention is that the supply of the PET resin chips to the hot water treatment tank or the heating and humidification treatment tank is performed by pneumatic transfer, and the solid-gas ratio of the pneumatic transfer is 10 to 30 k.
g / kg. Here, the pneumatic transfer refers to a method of flowing a gas (air or an inert gas) into a pipe and suspending and transferring the PET resin chip in the gas flow. The basic equipment is composed of a receiving hopper for receiving PET resin chips, a flow tank connected to a lower part of the hopper, and a conveying pipe provided at a lower part of the hopper.

【0024】上記の気力移送において、受入ホッパーか
らフロータンクに定量供給されたPET樹脂チップは、
搬送配管内の気体流により、上記の塔型処理槽の塔頂ま
たは塔頂に供給ホッパーが備えられている場合は当該供
給ホッパーに供給される。そして、搬送用気体は塔頂近
傍に設置された吸引ブロアーを介して系外に排出され、
PET樹脂チップは塔頂から塔内部に供給されて堆積さ
れる。
In the above pneumatic transfer, the PET resin chips quantitatively supplied from the receiving hopper to the flow tank are:
By the gas flow in the transport pipe, the gas is supplied to the supply hopper at the top or at the top of the tower-type treatment tank. The carrier gas is discharged out of the system via a suction blower installed near the top of the tower,
The PET resin chips are supplied from the top of the tower to the inside of the tower and are deposited.

【0025】上記の気力移送において、固気比(固体K
g/気体Kg)が10未満の場合は、PET樹脂チップ
を移送する気体流の運動エネルギーが小さ過ぎるため、
塔内の中央付近に山が形成される状態でPET樹脂チッ
プが堆積され、また、固気比が30を超える場合は、気
体流の運動エネルギーが大き過ぎるため、上記とは逆
に、塔内の中央付近に谷が形成される状態でPET樹脂
チップが堆積される。そのため、上記の山や谷が形成さ
れる何れの場合もPET樹脂チップの塔内のチップの滞
留時間(重縮合触媒の失活の程度)にバラツキが生じ
る。例えば、山が形成される堆積状態の場合は、山の頂
部のチップの滞留時間は頂部周辺および麓部のチップに
比べて長くなる。その結果、後述の実施例および比較例
によって明らかな通り、成形時においてオリゴマー類
(環状三量体)が大きな偏差でもって生成する。そし
て、例えば、ボトルの連続成形においては、オリゴマー
類の金型汚染に起因して表面外観が損なわれた不良品が
製品ロット中に混入し、また、これを防止するために頻
繁な金型掃除が必要となり、何れも生産安定性が悪化す
る。
In the above power transfer, the solid-gas ratio (solid K
g / gas Kg) is less than 10, the kinetic energy of the gas flow for transporting the PET resin chip is too small.
When the PET resin chip is deposited in a state where a mountain is formed near the center of the tower, and when the solid-gas ratio exceeds 30, the kinetic energy of the gas flow is too large. A PET resin chip is deposited in a state in which a valley is formed in the vicinity of the center. Therefore, in any case where the peaks and valleys are formed, the residence time of the chips in the tower of PET resin chips (the degree of deactivation of the polycondensation catalyst) varies. For example, in a deposition state in which a mountain is formed, the residence time of the chip at the top of the mountain is longer than that of the chip near the top and at the foot. As a result, oligomers (cyclic trimers) are formed with a large deviation during molding, as is clear from the examples and comparative examples described later. For example, in the continuous molding of bottles, defective products whose surface appearance is impaired due to mold contamination of oligomers are mixed in a product lot, and frequent mold cleaning is performed to prevent this. Are required, and in any case, the production stability deteriorates.

【0026】本発明において、処理槽内におけるPET
樹脂チップの堆積高さが実質的に平坦になる様にチップ
の供給を行う主旨は、処理槽内におけるチップのピスト
ンフロー(栓流)を実現して滞留時間の均一化を図り、
それにより、反応(重縮合触媒の失活反応)のバラツキ
を防止する点にある。
In the present invention, PET in the processing tank
The purpose of supplying chips so that the height of the resin chips deposited becomes substantially flat is to realize a piston flow (plug flow) of the chips in the processing tank to achieve a uniform residence time.
Thereby, variation in the reaction (deactivation reaction of the polycondensation catalyst) is prevented.

【0027】図1は、熱水処理槽にPET樹脂チップを
気力移送する際の固気比とオリゴマー類(環状三量体)
の測定値の偏差との関係を示すグラフであり、後述の実
施例および比較例(熱水処理)の結果を基にして作成し
たものである。図1に示す様に、本発明で規定する固気
比の範囲外では偏差は急激に上昇し、気力移送の際の固
気比を特定範囲に調節することにより処理槽内における
チップのピストンフロー(栓流)が実現されて滞留時間
の均一化が図られるということは驚くべきことである。
FIG. 1 shows the solid-gas ratio and oligomers (cyclic trimers) when the PET resin chips are transferred to the hot water treatment tank by power.
5 is a graph showing the relationship between the measured value and the deviation of the measured values, which was created based on the results of Examples and Comparative Examples (hydrothermal treatment) described later. As shown in FIG. 1, the deviation rapidly rises outside the solid-gas ratio defined in the present invention, and the piston-flow of the chips in the processing tank is adjusted by adjusting the solid-gas ratio at the time of power transfer to a specific range. It is surprising that (plug flow) is realized and the residence time is made uniform.

【0028】本発明における重縮合触媒の失活処理は、
回分式、連続式、半連続式の何れの方式でも行うことが
出来るが、上記の様に、滞留時間の均一化を図るために
ピストンフローを実現するとの観点から、塔型の熱水処
理槽または加熱加湿処理槽を使用し、気力移送によって
供給されたPET樹脂チップと熱水または加熱水蒸気と
を塔内において向流的に接触させる方式が最も好まし
い。
The deactivation treatment of the polycondensation catalyst in the present invention comprises
Batch, continuous, and semi-continuous methods can be used, but as described above, from the viewpoint of realizing a piston flow in order to achieve a uniform residence time, a tower-type hot water treatment tank Alternatively, a method of using a heating and humidification treatment tank and bringing the PET resin chip supplied by pneumatic transfer into contact with hot water or heated steam in a countercurrent manner in the tower is most preferred.

【0029】本発明において、上記の熱水または加熱水
蒸気による処理は、70〜130℃の温度(熱水または
加熱水蒸気の温度)において3分から24時間の時間
(滞留時間)行われる。
In the present invention, the above-mentioned treatment with hot water or heated steam is performed at a temperature of 70 to 130 ° C. (temperature of hot water or heated steam) for a period of 3 minutes to 24 hours (residence time).

【0030】一方、熱水処理槽または加熱加湿処理槽に
供給するPET樹脂チップの温度は、特に制限されない
が、5〜100℃の範囲にするのが好ましい。樹脂チッ
プの温度が5℃未満の場合は、重合触媒の失活反応の速
度が遅くなるばかりか、熱水または加熱水蒸気との温度
差が余りにも大きくなる結果、処理槽内に供給された熱
水または加熱水蒸気の流れに偏流が生じて重縮合触媒の
失活反応にバラツキが発生する傾向がある。また、樹脂
チップの温度が100℃を超える場合は、加水分解の進
行によりIVが低下する。従って、例えば冬季において
サイロ内に貯蔵されたPET樹脂チップの温度が5℃未
満となる場合は、保温手段や加温手段により、熱水処理
槽または加熱加湿処理槽に供給するPET樹脂チップの
温度を上記の範囲まで高めるのが好ましい。
On the other hand, the temperature of the PET resin chips supplied to the hot water treatment tank or the heating and humidification treatment tank is not particularly limited, but is preferably in the range of 5 to 100 ° C. When the temperature of the resin chip is lower than 5 ° C., not only the rate of the deactivation reaction of the polymerization catalyst becomes slow, but also the temperature difference between the hot water or the heated steam becomes too large, so that the heat supplied to the processing tank is reduced. There is a tendency that uneven flow occurs in the flow of water or heated steam and the deactivation reaction of the polycondensation catalyst varies. When the temperature of the resin chip exceeds 100 ° C., the IV decreases due to the progress of hydrolysis. Therefore, for example, when the temperature of the PET resin chips stored in the silo in winter is less than 5 ° C., the temperature of the PET resin chips supplied to the hot water treatment tank or the heating and humidification treatment tank by the heat retaining means or the heating means. Is preferably increased to the above range.

【0031】熱水処理槽から排出されたPET樹脂チッ
プを処理する脱水機としては、特に制限されず、例え
ば、遠心脱水機、振動ふるい型脱水機、ドライヤー型脱
水機を使用することが出来るが、気力分離型脱水機を使
用するのが好ましい。気力分離型脱水機は、基本的に
は、複数の屈曲部を有すると共に側壁に多数の通水孔を
備えた管路と当該管路の各屈曲部に配置された空気吹付
ノズルとを箱体中に収容した構造を有する。そして、管
路の一端から樹脂チップスラリーを供給し、空気流によ
って水を除去しつつ、管路の他端から脱水された樹脂チ
ップを排出させる。
The dehydrator for treating the PET resin chips discharged from the hot water treatment tank is not particularly limited, and examples thereof include a centrifugal dehydrator, a vibrating sieve dehydrator, and a dryer dehydrator. It is preferable to use a viscous separation type dehydrator. A pneumatic separation type dehydrator basically includes a pipe having a plurality of bent portions and a plurality of water holes on a side wall, and an air blowing nozzle disposed at each bent portion of the pipe. Has a structure housed inside. Then, the resin chip slurry is supplied from one end of the pipe, and the dewatered resin chips are discharged from the other end of the pipe while removing water by an air flow.

【0032】本発明において、気力分離型脱水機内の固
気比は、2〜10kg/m3の範囲に調節するのが好ま
しい。固気比が2kg/m3の未満の場合は空気が不足
し、10kg/m3を超える場合は、空気が過剰なため
にPET樹脂チップの滞留時間が短くなり、何れの場合
も脱水効率が低下する。しかも、固気比が10kg/m
3を超える場合は、樹脂チップが脱水機内の壁面や配管
などに激しく接触して搬送中にダメージを受けるため、
最終製品の透明性が劣ってしまう。脱水処理後の樹脂チ
ップの含水率は50000ppm以下とするのが好まし
い。なお、上記の固気比は、前述の気力移送における固
気比(固体Kg/気体Kg)と異なり、固体Kg/気体
3の単位で表されているが、これは、気力分離型脱水
機内における使用後の空気が水分を含んでいることを考
慮した結果である。
In the present invention, the solid-gas ratio in the pneumatic separation type dehydrator is preferably adjusted to a range of 2 to 10 kg / m 3 . When the solid-gas ratio is less than 2 kg / m 3 , the air is insufficient, and when it exceeds 10 kg / m 3 , the residence time of the PET resin chip is shortened due to excessive air, and the dehydration efficiency is reduced in any case. descend. Moreover, the solid-gas ratio is 10 kg / m
If it exceeds 3 , the resin chips will come into intense contact with the walls and pipes inside the dehydrator and will be damaged during transportation,
The transparency of the final product is inferior. The water content of the resin chips after the dehydration treatment is preferably 50,000 ppm or less. Note that solid-gas ratio described above, unlike the solid-gas ratio in the energy transfer described above (solid Kg / gas Kg), are represented in units of solid Kg / gas m 3, which is energy separation dewatering machine Is a result in consideration of the fact that air after use contains water.

【0033】熱水処理槽から脱水機への樹脂チップの移
送は、特に制限されず、例えば水流搬送装置などを適宜
使用することが出来る。一方、加熱乾燥機および冷却機
またはその後のサイロへの移送には、前述の気力移送方
法を採用するのが好ましい。冷却機としては、ホッパー
クーラー型冷却器、熱交換型クーラー冷却器などが使用
され、チップ温度は、常温まで降温されてサイロにて貯
蔵される。
The transfer of the resin chips from the hot water treatment tank to the dehydrator is not particularly limited, and for example, a water flow transfer device can be appropriately used. On the other hand, it is preferable to employ the above-described pneumatic transfer method for the transfer to the heating / drying machine and the cooler or the subsequent silo. As the cooler, a hopper cooler type cooler, a heat exchange type cooler cooler, or the like is used, and the chip temperature is lowered to room temperature and stored in a silo.

【0034】なお、PET樹脂には、酸化防止剤、紫外
線吸収剤、帯電防止剤、染料や顔料などの着色剤、ガラ
ス繊維、フレカ、マイカ、カーボンファイバー、チタン
酸カリファイバー等の強化材、粒子径0.01〜10μ
mのシリコーン樹脂などの有機微粒子、炭酸カルシウ
ム、硫酸バリウム、酸化チタン、酸化アルミニウム、シ
リカ、カオリン、クレー等の無機微粒子などのブロッキ
ング防止剤、無機系および有機系の核剤、可塑剤、難燃
剤、難燃助剤などが含有されていてもよい。
The PET resin includes an antioxidant, an ultraviolet absorber, an antistatic agent, a coloring agent such as a dye and a pigment, a reinforcing material such as glass fiber, flica, mica, carbon fiber, and potassium titanate, and a particle. Diameter 0.01-10μ
m, an organic fine particle such as a silicone resin, an antiblocking agent such as an inorganic fine particle such as calcium carbonate, barium sulfate, titanium oxide, aluminum oxide, silica, kaolin, and clay; an inorganic and organic nucleating agent; a plasticizer; and a flame retardant. , A flame retardant aid and the like.

【0035】上記の方法で得られた改質PET樹脂は、
例えば、押出成形によってフィルムやシート等に成形さ
れ、また、射出成形によってプリフォームに成形された
後、延伸ブロー成形によってボトル等に成形される。成
形条件としては、何れも、公知の条件を採用すること出
来る。押出成形は、例えば、シリンダー温度240〜3
00℃、スクリュー回転数40〜300rpm、冷却ド
ラム温度5〜60℃の条件下に行うことが出来る。射出
成形は、例えば、シリンダー温度260〜300℃、金
型温度5〜40℃、スクリュー回転数40〜300rp
m、射出圧力40〜140kg/cm2の条件下に行う
ことが出来る。また、延伸ブロー成形においては、例え
ば、延伸温度70〜120℃、縦方向延伸倍率1.5〜
3.5倍、円周方向伸倍率2〜5倍の条件で成形し、更
に、温度100〜200℃で数秒から数分間の熱固定が
なされる。
The modified PET resin obtained by the above method is
For example, it is formed into a film or a sheet by extrusion, or formed into a preform by injection molding, and then formed into a bottle or the like by stretch blow molding. As the molding conditions, any known conditions can be adopted. Extrusion molding is performed, for example, at a cylinder temperature of 240-3.
It can be carried out under the conditions of 00 ° C., screw rotation speed 40 to 300 rpm, and cooling drum temperature 5 to 60 ° C. Injection molding includes, for example, a cylinder temperature of 260 to 300 ° C., a mold temperature of 5 to 40 ° C., and a screw rotation speed of 40 to 300 rpm.
m, and an injection pressure of 40 to 140 kg / cm 2 . In the stretch blow molding, for example, a stretching temperature of 70 to 120 ° C. and a longitudinal stretching ratio of 1.5 to
The molding is performed under the conditions of 3.5 times and the elongation ratio in the circumferential direction of 2 to 5 times, and further, heat fixing is performed at a temperature of 100 to 200 ° C. for several seconds to several minutes.

【0036】本発明において上記の改質PET樹脂は、
成形体とされた後の結晶化温度を高温化ならしめ得る
が、具体的には、成形体とされた樹脂組成物の示差走査
熱量計による昇温結晶化温度が140〜195℃である
のが好ましい。なお、ここで、昇温結晶化温度とは、示
差走査熱量計にて、室温から285℃まで20℃/分の
速度で昇温させ、その途中で観察される結晶化ピークの
トップ温度を示す。また、280℃の成形温度で射出成
形した厚さ5mmの成形シートのヘーズが15%以下で
あるのが好ましい。
In the present invention, the above modified PET resin is
Although the crystallization temperature after forming the molded body can be increased, specifically, the temperature-rise crystallization temperature of the molded resin composition measured by a differential scanning calorimeter is 140 to 195 ° C. Is preferred. Here, the elevated crystallization temperature refers to the top temperature of the crystallization peak observed during the course of heating from room temperature to 285 ° C. at a rate of 20 ° C./min using a differential scanning calorimeter. . Further, it is preferable that the haze of a molded sheet having a thickness of 5 mm injection-molded at a molding temperature of 280 ° C. is 15% or less.

【0037】また、上記の改質PET樹脂は、特に、射
出成形方法によって得られたプリフォームを再加熱後に
二軸延伸するコールドパリソン法などのブロー成形法よ
ってボトルを成形するのに好適であり、例えば、炭酸飲
料、果汁飲料、アルコール飲料、茶やミネラルウォータ
ー等の飲料、醤油、ソース、みりん、ドレッシング等の
液体調味料、食用油、液体洗剤、化粧品等の容器として
好適に使用される。
The above-mentioned modified PET resin is particularly suitable for molding a bottle by a blow molding method such as a cold parison method in which a preform obtained by an injection molding method is reheated and then biaxially stretched. For example, it is suitably used as a container for carbonated drinks, fruit juice drinks, alcoholic drinks, drinks such as tea and mineral water, liquid seasonings such as soy sauce, sauces, mirin, and dressings, edible oils, liquid detergents, cosmetics, and the like.

【0038】[0038]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はその要旨を越えない限り以下の実施例
に限定されるものではない。なお、以下の諸例で採用し
た評価方法および物性測定方法は、次の通りである。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. The evaluation methods and physical property measurement methods adopted in the following examples are as follows.

【0039】(1)固有粘度(IV):フェノール/テ
トラクロロエタン(重量比1/1)の混合溶媒中で30
℃で測定した。
(1) Intrinsic viscosity (IV): 30 in a mixed solvent of phenol / tetrachloroethane (weight ratio 1/1)
Measured in ° C.

【0040】(2)環状三量体(CT)含有量:ポリエ
チレンテレフタレート樹脂試料200mgをクロロホル
ム/ヘキサフルオロイソプロパノール(容量比3/2)
混液2mlに溶解し、更にクロロホルム20mlを加え
て希釈した。これにメタノール10mlを加えて試料を
再析出させ、続いて濾過して濾液を得た。当該濾液を乾
固後、残留物をジメチルホルムアルデヒド25mlに溶
解した液について液体クロマトグラフで分析定量した。
(2) Cyclic trimer (CT) content: 200 mg of a polyethylene terephthalate resin sample was subjected to chloroform / hexafluoroisopropanol (volume ratio: 3/2).
The mixture was dissolved in 2 ml of the mixed solution, and further diluted with 20 ml of chloroform. A sample was reprecipitated by adding 10 ml of methanol thereto, followed by filtration to obtain a filtrate. After the filtrate was evaporated to dryness, a solution obtained by dissolving the residue in 25 ml of dimethylformaldehyde was analyzed and quantified by liquid chromatography.

【0041】(3)アセトアルデヒド(AA)含有量:
サンプル5.0gを計量し、10mlの蒸留水と共に内
容積50mlのミクロボンベに窒素シール下に封入し、
160℃で2時間の加熱抽出を行い、その抽出液を試料
としてガスクロマトグラフにより分析定量した。
(3) Acetaldehyde (AA) content:
A sample of 5.0 g was weighed, sealed in a 50-ml internal volume micro-bomb with 10 ml of distilled water under a nitrogen seal,
Extraction by heating at 160 ° C. for 2 hours was performed, and the extract was analyzed and quantified by gas chromatography using a sample as a sample.

【0042】(4)シートの昇温結晶化温度(Tc
1):後述の方法で得られたシートについて、示差走査
熱量計(セイコー電子社製「DSC220C」)にて、
室温から285℃まで20℃/分の速度で昇温させ、そ
の途中で観察される結晶化ピークのトップ温度(Tc1
と略記)を測定した。
(4) Heating crystallization temperature of sheet (Tc)
1): The sheet obtained by the method described below was measured by a differential scanning calorimeter ("DSC220C" manufactured by Seiko Instruments Inc.).
The temperature was raised from room temperature to 285 ° C. at a rate of 20 ° C./min, and the crystallization peak top temperature (Tc1
Abbreviation).

【0043】(5)シートのヘーズ:後述の方法で得ら
れたシートについて、ヘーズメーター(日本電色社製
「NDH−300A」)にて測定した。
(5) Haze of sheet: A sheet obtained by the method described below was measured with a haze meter ("NDH-300A" manufactured by Nippon Denshoku Co., Ltd.).

【0044】(6)ボトルの表面外観:ボトルの表面外
観を目視観察し、以下の基準で評価した。
(6) Surface appearance of the bottle: The surface appearance of the bottle was visually observed and evaluated according to the following criteria.

【0045】[0045]

【表1】 ○:表面平滑であり、異常なし。 △:表面平滑であるが、平滑性が若干劣る。 ×:表面に異物の付着が認められる。[Table 1] A: Surface is smooth and no abnormality. Δ: The surface is smooth, but the smoothness is slightly inferior. ×: Adhesion of foreign matter is observed on the surface.

【0046】実施例1 テレフタル酸13.0重量部とエチレングリコール5.
82重量部とから成るスラリーを重縮合槽に供給し、常
圧下250℃でエステル化反応を行い、エステル化反応
率95%のビス(β−ヒドロキシエチル)テレフタレー
ト及びその低重合体を調製した後、正燐酸0.0012
重量部と二酸化ゲルマニウム0.0012重量部とを加
え、1mmHgの減圧下280℃で重縮合を行った。重
縮合槽の底部に冷却水槽に直結させて設けた抜き出し口
から、生成したポリマーをストランド状に抜き出して水
冷した後、チップ状にカットした。
Example 1 13.0 parts by weight of terephthalic acid and ethylene glycol
A slurry consisting of 82 parts by weight was fed to a polycondensation tank, and an esterification reaction was carried out at 250 ° C. under normal pressure to prepare bis (β-hydroxyethyl) terephthalate and a low polymer thereof having an esterification reaction rate of 95%. , Orthophosphoric acid 0.0012
Parts by weight and 0.0012 parts by weight of germanium dioxide were added, and polycondensation was performed at 280 ° C. under a reduced pressure of 1 mmHg. The produced polymer was drawn out into a strand shape from a draw-out port provided directly at the bottom of the polycondensation bath directly connected to the cooling water bath, cooled with water, and then cut into chips.

【0047】引き続いて、得られたポリマーチップを撹
拌結晶化機(Bepex社式)に移送し、ポリマーチッ
プ表面を150℃で結晶化させた後、窒素流通下140
℃で3時間乾燥させ、続いて静置固相重合塔に移し、窒
素流通下210℃で20時間固相重合してチップ状のP
ET樹脂(IV:0.74)を製造した。
Subsequently, the obtained polymer chips were transferred to a stirring crystallization machine (Bepex), and the surface of the polymer chips was crystallized at 150 ° C .;
At 300 ° C. for 3 hours, then transferred to a stationary solid-state polymerization tower, and subjected to solid-state polymerization at 210 ° C. for 20 hours under nitrogen flow to form chip-shaped P.
An ET resin (IV: 0.74) was produced.

【0048】得られたPET樹脂チップを乾燥塔に移送
し、窒素流通下で5時間チップ温度を90℃に保持し
た。
The obtained PET resin chip was transferred to a drying tower, and the chip temperature was kept at 90 ° C. for 5 hours under a nitrogen flow.

【0049】固気比10Kg/Kgの気力移送により、
直径約2.0m、高さ約5.0mで下部に金網を取り付
けたSUS304製の塔状熱水処理装置に上記の温度調
整した樹脂チップ10重量部を投入し、下部導入口から
90℃の熱水を毎時100リットルの速度で4時間導入
して接触させ、重縮合触媒の失活処理を行った後、気力
分離型脱水機(固気比5Kg/m3)を通して改質樹脂
チップ表面の付着水を取り除いた後、60℃で24時間
乾燥させることにより、吸湿した水分を除去した。
[0049] By virtue of the air-fuel transfer at a solid-gas ratio of 10 kg / kg,
10 parts by weight of the above-mentioned temperature-adjusted resin chips were charged into a SUS304 tower-shaped hot water treatment apparatus having a diameter of about 2.0 m, a height of about 5.0 m, and a wire mesh attached to a lower portion thereof, and the temperature of 90 ° C. After hot water was introduced at a rate of 100 liters per hour for 4 hours to contact and deactivate the polycondensation catalyst, the modified resin chip surface was passed through a pneumatic separation type dehydrator (solid-gas ratio of 5 kg / m 3 ). After removing adhering water, it was dried at 60 ° C. for 24 hours to remove moisture absorbed.

【0050】真空乾燥機にて130℃で10時間チップ
を乾燥させた後、射出成形機(名機製作所社製「M−7
0A」)にて、シリンダー各部およびノズルヘッドの温
度280℃、スクリュー回転数200rpm、金型温度
10℃、サイクル73秒の条件下、厚さ5mmのシート
を連続1000回射出成形した。前記の条件で50回成
形毎に得られた成形板の環状三量体含有量の測定を実施
し、平均と偏差を算出した。
After the chips were dried in a vacuum dryer at 130 ° C. for 10 hours, an injection molding machine (“M-7” manufactured by Meiki Seisakusho) was used.
0A "), a sheet having a thickness of 5 mm was injection-molded 1000 times continuously under the conditions of a temperature of 280 ° C. of each part of the cylinder and the nozzle head, a screw rotation speed of 200 rpm, a mold temperature of 10 ° C., and a cycle of 73 seconds. The cyclic trimer content of the molded plate obtained every 50 moldings under the above conditions was measured, and the average and deviation were calculated.

【0051】一方、真空乾燥機にて130℃で10時間
チップを乾燥させた後、射出延伸ブロー成形機(日精A
SB機械(株)社製「ASB−50TH」)にて、シリ
ンダー温度280℃、スクリュー回転数120rpm、
1次圧時間1.0秒、ブロー圧力5〜30kg/c
2、金型温度160℃の条件下、外径約100mm、
高さ約300mm、胴部平均肉厚370μm、内容量
1.5L、重量約60gのボトルを成形した。そして、
前記ボトルを同一の条件で1000回成形し、その最終
回において成形されたボトルの表面外観を目視観察に供
した。
On the other hand, after the chips were dried at 130 ° C. for 10 hours using a vacuum dryer, an injection stretch blow molding machine (Nissei A
With SB Machine Co., Ltd. “ASB-50TH”), cylinder temperature 280 ° C., screw rotation speed 120 rpm,
Primary pressure time 1.0 second, blow pressure 5-30kg / c
m 2 , a mold temperature of 160 ° C., an outer diameter of about 100 mm,
A bottle having a height of about 300 mm, an average wall thickness of 370 μm, an internal capacity of 1.5 L, and a weight of about 60 g was formed. And
The bottle was molded 1,000 times under the same conditions, and the surface appearance of the bottle molded in the final round was subjected to visual observation.

【0052】上記の方法で得られた改質PET樹脂チッ
プ、シート及びポトルの物性測定および評価結果を表2
〜6に示す。
Table 2 shows the measurement and evaluation results of the physical properties of the modified PET resin chip, sheet and potl obtained by the above method.
To # 6.

【0053】実施例2〜15及び比較例1〜10 実施例1において、固気比とチップとを表2〜6に示す
様に変更した以外は、実施例1と同様に改質PET樹脂
チップを製造し、物性測定を行った。結果を表2〜6に
示す。
Examples 2 to 15 and Comparative Examples 1 to 10 Modified PET resin chips in the same manner as in Example 1 except that the solid-gas ratio and the chips were changed as shown in Tables 2 to 6. Was manufactured and physical properties were measured. The results are shown in Tables 2 to 6.

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【表6】 [Table 6]

【0059】実施例16〜30及び比較例11〜20 前記各実施例において、熱水処理槽の代わりに加熱加湿
処理槽を使用して加熱水蒸気処理を行った以外は、同様
にして改質PET樹脂を製造し、物性測定を行った。結
果を表7〜11に示す。
Examples 16 to 30 and Comparative Examples 11 to 20 In each of the above Examples, the modified PET was treated in the same manner except that the heating steam treatment was performed using a heating humidification treatment tank instead of the hot water treatment tank. A resin was manufactured and physical properties were measured. The results are shown in Tables 7 to 11.

【0060】[0060]

【表7】 [Table 7]

【0061】[0061]

【表8】 [Table 8]

【0062】[0062]

【表9】 [Table 9]

【0063】[0063]

【表10】 [Table 10]

【0064】[0064]

【表11】 [Table 11]

【0065】比較例21 実施例1において、熱水処理槽ヘのPET樹脂チップの
移送を気力移送に代えてスクリューコンベヤーにて行っ
た以外は、実施例1と同様にして改質PET樹脂を製造
し、物性測定を行った。結果を表12に示す。
Comparative Example 21 A modified PET resin was produced in the same manner as in Example 1 except that the transfer of the PET resin chips to the hot water treatment tank was carried out by a screw conveyor instead of the power transfer. Then, physical properties were measured. Table 12 shows the results.

【0066】[0066]

【表12】 [Table 12]

【0067】[0067]

【発明の効果】以上説明した本発明によれば、成形時の
金型汚染をなくして表面外観に優れた成形体が得られる
と共に、生産安定性を向上できる改質ポリエチレンテレ
フタレート樹脂の製造方法を提供することが可能であ
る。
According to the present invention described above, there is provided a method for producing a modified polyethylene terephthalate resin capable of obtaining a molded article having excellent surface appearance while eliminating mold contamination during molding and improving production stability. It is possible to provide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱水処理槽にPET樹脂チップを気力移送する
際の固気比とオリゴマー類(環状三量体)の測定値の偏
差との関係を示すグラフ
FIG. 1 is a graph showing the relationship between the solid-gas ratio and the deviation of measured values of oligomers (cyclic trimers) when a PET resin chip is transferred to a hot water treatment tank by power.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重縮合触媒を失活しない状態で含有する
ポリエチレンテレフタレート樹脂を熱水処理槽または加
熱加湿処理槽に供給して重縮合触媒を失活させることに
より改質ポリエチレンテレフタレート樹脂を製造するに
当たり、熱水処理槽または加熱加湿処理槽へのポリエチ
レンテレフタレート樹脂の供給を気力移送によって行い
且つ当該気力移送の固気比を10〜30kg/kgの範
囲に調節することを特徴とする改質ポリエチレンテレフ
タレート樹脂の製造方法。
1. A modified polyethylene terephthalate resin is produced by supplying a polyethylene terephthalate resin containing a polycondensation catalyst without deactivating the polycondensation catalyst to a hot water treatment tank or a heating and humidification treatment tank to deactivate the polycondensation catalyst. Wherein the supply of the polyethylene terephthalate resin to the hot water treatment tank or the heat humidification treatment tank is performed by power transfer, and the solid-gas ratio of the power transfer is adjusted to a range of 10 to 30 kg / kg. A method for producing a terephthalate resin.
【請求項2】 塔型の熱水処理槽または加熱加湿処理槽
を使用し、気力移送によって供給されたポリエチレンテ
レフタレート樹脂と熱水または加熱水蒸気と塔内におい
て向流的に接触させること請求項1に記載の製造方法。
2. A tower type hot water treatment tank or heating humidification treatment tank is used, and polyethylene terephthalate resin supplied by pneumatic transfer is brought into countercurrent contact with hot water or heated steam in the tower. The production method described in 1.
【請求項3】 熱水処理槽または加熱加湿処理槽に供給
するポリエチレンテレフタレート樹脂の温度を5〜10
0℃の範囲に調節する請求項1又は2に記載の製造方
法。
3. The temperature of the polyethylene terephthalate resin supplied to the hot water treatment tank or the heating and humidification treatment tank is 5-10.
The method according to claim 1, wherein the temperature is adjusted to a range of 0 ° C. 4.
JP31469598A 1998-11-05 1998-11-05 Method for producing modified polyethylene terephthalate resin Expired - Fee Related JP3566110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31469598A JP3566110B2 (en) 1998-11-05 1998-11-05 Method for producing modified polyethylene terephthalate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31469598A JP3566110B2 (en) 1998-11-05 1998-11-05 Method for producing modified polyethylene terephthalate resin

Publications (2)

Publication Number Publication Date
JP2000143791A true JP2000143791A (en) 2000-05-26
JP3566110B2 JP3566110B2 (en) 2004-09-15

Family

ID=18056447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31469598A Expired - Fee Related JP3566110B2 (en) 1998-11-05 1998-11-05 Method for producing modified polyethylene terephthalate resin

Country Status (1)

Country Link
JP (1) JP3566110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192545B2 (en) 2003-10-10 2007-03-20 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329723B2 (en) 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
US7674877B2 (en) 2003-09-18 2010-03-09 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
US7192545B2 (en) 2003-10-10 2007-03-20 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US8039581B2 (en) 2003-10-10 2011-10-18 Grupo Petrotemex, S.A. De C.V. Thermal crystallization of a molten polyester polymer in a fluid
US8309683B2 (en) 2003-10-10 2012-11-13 Grupo Petrotemex, S.A. De C.V. Thermal crystallization of a molten polyester polymer in a fluid
US7875184B2 (en) 2005-09-22 2011-01-25 Eastman Chemical Company Crystallized pellet/liquid separator

Also Published As

Publication number Publication date
JP3566110B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US9399700B2 (en) Ultra-high IV polyester for extrusion blow molding and method for its production
JP3254836B2 (en) Method for producing polyethylene terephthalate
US7977448B2 (en) Method for producing highly condensed solid-phase polyesters
JPH0714997B2 (en) Method for producing polyethylene terephthalate
JP3566110B2 (en) Method for producing modified polyethylene terephthalate resin
JPH08253563A (en) Method for treating polyethylene terephthalate
JPH05148349A (en) Copolyester and molding made therefrom
JPH0764920B2 (en) polyethylene terephthalate
JPH09249744A (en) Method for treatment of polyester resin
JPH06234834A (en) Production of polyethylene terephthalate
JP2001348425A (en) Method for drying polyester
JP2003212983A (en) Method for treating polyester resin
JP4624590B2 (en) Method for producing metal compound-containing polyester resin composition, preform for hollow molded article, and method for producing hollow molded article
JPH10114819A (en) Polyethylene terephthalate
JPH06184286A (en) Polyethylene terephthalate and hollow vessel and drawn film composed of the resin
JPH0737515B2 (en) Treatment method of polyethylene terephthalate
JP2006188676A (en) Polyester composition and polyester molded product composed of the same
JP2005350507A (en) Polyester prepolymer, method for producing the same, and polyester resin
JP2001302778A (en) Method for manufacturing polyester
JP3042530B1 (en) Polyester resin composition
JP3436167B2 (en) Polyester resin composition
JP2000095845A (en) Polyester resin and its production
JP2003212984A (en) Polyester resin
JP3685303B2 (en) Polyester resin
JP2001011198A (en) Molding product of polyethylene terephthalate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees