JPH09249744A - Method for treatment of polyester resin - Google Patents

Method for treatment of polyester resin

Info

Publication number
JPH09249744A
JPH09249744A JP8746596A JP8746596A JPH09249744A JP H09249744 A JPH09249744 A JP H09249744A JP 8746596 A JP8746596 A JP 8746596A JP 8746596 A JP8746596 A JP 8746596A JP H09249744 A JPH09249744 A JP H09249744A
Authority
JP
Japan
Prior art keywords
polyester resin
phase polymerization
solid phase
heat treatment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8746596A
Other languages
Japanese (ja)
Inventor
Junichi Kono
順一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP8746596A priority Critical patent/JPH09249744A/en
Publication of JPH09249744A publication Critical patent/JPH09249744A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a polyethylene terephthalate or a polyester resin mainly comprising the same, which is usable for bottles, films, sheets, fibers and foams and which is capable of decreasing a stain of a mold during the molding. SOLUTION: In the production of a polyethylene terephthalate having a limiting viscosity of 0.6 to 1.2 or a polyester resin mainly comprising the same through the liquid-phase polycondensation step and solid-phase polymerization step, a wet heat treatment is conducted at a temp. of 150 deg.C to the melting point of the polyester resin minus 10 deg.C for at least 1hr while flowing 1×10<-3> to 1×10<-1> l/hr, per gram of the polyester resin, of an inert gas having a water content of 5×10<2> to 1×10<4> ppm before, after or in the solid-phase polymerization step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボトル、フィル
ム、シート、繊維、発泡体等に好適に利用でき、成形時
の金型汚染を少なくすることができるポリエチレンテレ
フタレート(PET)又はこれを主体とするポリエステ
ル樹脂の処理方法に関するものである。
TECHNICAL FIELD [0001] The present invention is suitable for bottles, films, sheets, fibers, foams, etc., and is mainly composed of polyethylene terephthalate (PET), which can reduce mold contamination during molding. The present invention relates to a method for treating a polyester resin.

【0002】[0002]

【従来の技術】PET樹脂は、機械的強度、化学的安定
性、耐熱性、透明性、ガスバリヤー性等に優れており、
また軽量、安価であるため、ボトル、フィルム、シー
ト、繊維、発泡体等に幅広く用いられ、特に、炭酸飲
料、果汁飲料、液体調味料、食用油、酒、ワイン等、飲
食料品の充填用容器の素材として好適である。
2. Description of the Related Art PET resin is excellent in mechanical strength, chemical stability, heat resistance, transparency, gas barrier property, etc.
Since it is lightweight and inexpensive, it is widely used in bottles, films, sheets, fibers, foams, etc., especially for filling carbonated drinks, fruit juice drinks, liquid seasonings, edible oil, liquor, wine, etc. It is suitable as a material for containers.

【0003】このようなPET樹脂は、テレフタル酸成
分とエチレングリコール成分とをエステル化した後、重
縮合触媒の存在下で液相重縮合し、次いで固相重合して
得ることができる。
Such a PET resin can be obtained by esterification of a terephthalic acid component and an ethylene glycol component, liquid phase polycondensation in the presence of a polycondensation catalyst, and then solid phase polymerization.

【0004】そしてこのPET樹脂を、射出成形機等の
成形機に供給してボトル用プリフォームを成形し、この
プリフォームを所定形状の金型に挿入して延伸ブロー成
形したり、さらに熱処理(ヒートセット)して、ボトル
に成形するのが一般的な方法である。
Then, the PET resin is supplied to a molding machine such as an injection molding machine to mold a bottle preform, and the preform is inserted into a mold having a predetermined shape to perform stretch blow molding or further heat treatment ( It is a general method to heat-set) and mold into a bottle.

【0005】しかし、上記した方法に用いられるPET
樹脂には、エチレンテレフタレート環状三量体(CTE
T)等のオリゴマーが少なからず含まれており、このオ
リゴマーが延伸ブロー成形時に金型のガス排気口、排気
管等に付着するため、金型汚染が発生しやすかった。ま
た、このような金型汚染は、得られるボトルの表面荒れ
や白化の原因となるため、金型を頻繁に洗浄する必要が
あり、生産性が著しく低下するという問題があった。
However, the PET used in the above method
The resin includes ethylene terephthalate cyclic trimer (CTE
The oligomer such as T) is contained in a considerable amount, and this oligomer adheres to the gas exhaust port of the mold, the exhaust pipe, etc. during stretch blow molding, so that mold contamination is likely to occur. Further, since such mold contamination causes the surface roughness and whitening of the obtained bottle, it is necessary to wash the mold frequently, and there is a problem that productivity is significantly reduced.

【0006】さらに、延伸ブロー成形法によるボトルの
成形以外にも、上記のPET樹脂を用いてフィルム化す
ると、フィルムの白化やドロップアウト等が発生しやす
かった。したがって、成形時にCTET等のオリゴマー
が生成しにくく、その含有量の少ないPET樹脂が望ま
れていた。
Furthermore, when the above PET resin is used to form a film other than the bottle molding by the stretch blow molding method, whitening and dropout of the film are likely to occur. Therefore, it is difficult to produce oligomers such as CTET during molding, and a PET resin having a small content thereof has been desired.

【0007】従来より、再溶融してもCTET等のオリ
ゴマーが発生しにくいPET樹脂について幾つかの提案
がなされている。例えば、特開昭56−118420号公報に
は、液相重縮合工程を経て製造されたPET樹脂を水の
共存下で加熱し、PET樹脂中に含まれているオリゴマ
ーを加水分解する方法が提案されている。しかし、この
方法では加水分解された直鎖状のオリゴマーやモノマー
等が成形時に金型に多量に付着するという問題があっ
た。
Some proposals have hitherto been made on PET resins in which oligomers such as CTET are hardly generated even when remelted. For example, JP-A-56-118420 proposes a method in which a PET resin produced through a liquid phase polycondensation step is heated in the presence of water to hydrolyze an oligomer contained in the PET resin. Has been done. However, this method has a problem that a large amount of hydrolyzed linear oligomers and monomers adhere to the mold during molding.

【0008】また、液相重縮合工程及び固相重合工程を
経てPET樹脂を製造するに際し、固相重合工程後に熱
水又は水蒸気処理を行い、PET樹脂中に含まれている
重縮合触媒を失活させることによって、成形時にCTE
T等のオリゴマーの発生を抑制する方法が提案されてい
る(特開平3−174441号公報、特公平7− 37515号公
報)。しかし、これらの方法では、重縮合触媒を失活さ
せるために、固相重合装置の他に熱水処理装置や水蒸気
処理装置を必要とし、コスト高になるという問題があっ
た。
Further, in producing a PET resin through a liquid phase polycondensation step and a solid phase polymerization step, hot water or steam treatment is carried out after the solid phase polymerization step to lose the polycondensation catalyst contained in the PET resin. CTE at the time of molding by activating
A method for suppressing the generation of oligomers such as T has been proposed (JP-A-3-174441 and JP-B-7-37515). However, these methods require a hydrothermal treatment device or a steam treatment device in addition to the solid-state polymerization device in order to deactivate the polycondensation catalyst, and have a problem that the cost is increased.

【0009】[0009]

【発明が解決しようとする課題】本発明は、成形時にC
TET等のオリゴマーによる金型汚染を少なくすること
ができるPET又はこれを主体とするポリエステル樹脂
の処理方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION According to the present invention, C
An object of the present invention is to provide a method for treating PET or a polyester resin containing PET as a main component, which can reduce mold contamination by oligomers such as TET.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、PET又はこれを
主体とするポリエステル樹脂を、特定の水分量の不活性
ガスを特定の流量で流しながら高温下で湿熱処理するこ
とにより、この目的が達成されることを見出し、本発明
に到達した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that PET or a polyester resin mainly composed of PET is mixed with an inert gas having a specific water content at a specific flow rate. We have found that this object can be achieved by carrying out a moist heat treatment at a high temperature while flowing under the conditions described above, and have reached the present invention.

【0011】すなわち、本発明の要旨は次の通りであ
る。液相重縮合工程及び固相重合工程を経て極限粘度が
0.6〜1.2のPET又はこれを主体とするポリエステル樹
脂を製造するに際し、固相重合工程前又は固相重合工程
後もしくは固相重合工程と同時に、水分量が5×102
1×104ppmの不活性ガスを、ポリエステル樹脂1gに対
して1×10-3〜1×10-1 l/hrの流量で流しながら、 1
50℃〜(ポリエステル樹脂の融点−10℃)の温度で1時
間以上湿熱処理を行うことを特徴とするポリエステル樹
脂の処理方法。
That is, the gist of the present invention is as follows. After the liquid phase polycondensation process and the solid phase polymerization process, the intrinsic viscosity is
When producing PET of 0.6 to 1.2 or a polyester resin mainly composed of PET, the water content is 5 × 10 2 to before the solid phase polymerization step, after the solid phase polymerization step, or at the same time as the solid phase polymerization step.
While flowing 1 × 10 4 ppm of inert gas at a flow rate of 1 × 10 −3 to 1 × 10 −1 l / hr per 1 g of polyester resin, 1
A method for treating a polyester resin, which comprises performing a moist heat treatment at a temperature of 50 ° C to (melting point of polyester resin-10 ° C) for 1 hour or more.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0013】本発明におけるPET又はこれを主体とす
るポリエステル樹脂は、テレフタル酸成分とエチレング
リコール成分とを主成分として製造されるものである。
The PET or the polyester resin mainly composed of PET according to the present invention is produced mainly with a terephthalic acid component and an ethylene glycol component.

【0014】ポリエステル樹脂の極限粘度は 0.6〜 1.2
であることが必要であり、0.7〜1.1であることが特に好
ましい。極限粘度が 0.6未満では成形体の機械的特性が
低下するので好ましくなく、極限粘度が 1.2を超えると
成形温度を高くする必要があるので好ましくない。
The intrinsic viscosity of polyester resin is 0.6 to 1.2.
And 0.7 to 1.1 is particularly preferable. When the intrinsic viscosity is less than 0.6, the mechanical properties of the molded article will be deteriorated, which is not preferable, and when the intrinsic viscosity exceeds 1.2, the molding temperature needs to be increased, which is not preferable.

【0015】ポリエステル樹脂には、上記成分の他に、
フタル酸、イソフタル酸、5−ナトリウムスルホイソフ
タル酸、 2,6−ナフタレンジカルボン酸、4,4'−ジフェ
ニルジカルボン酸、ジフェニルスルホンジカルボン酸等
の芳香族ジカルボン酸成分、トリメリット酸、ピロメリ
ット酸等の芳香族多価カルボン酸及びその酸無水物、シ
ュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライ
ン酸、デカンジカルボン酸等の脂肪族ジカルボン酸成
分、プロピレングリコール、 1,2−プロパンジオール、
1,3−プロパンジオール、 1,2−ブタンジオール、 1,3
−ブタンジオール、 1,4−ブタンジオール、 2,3−ブタ
ンジオール、ジエチレングリコール、 1,5−ペンタンジ
オール、ネオペンチルグリコール、トリエチレングリコ
ール、ポリエチレングリコール等の脂肪族ジオール成
分、トリメチロールプロパン、ペンタエリスリトール等
の脂肪族多価アルコール成分、 1,4−シクロヘキサンジ
メタノール、 1,4−シクロヘキサンジエタノール等の脂
環族ジオール成分、ビスフェノールAやビスフェノール
Sのエチレンオキシド付加体等の芳香族ジオール成分、
4−ヒドロキシ安息香酸、ε−カプロラクトン等のヒド
ロキシカルボン酸成分等の共重合成分がPET樹脂の特
性を損なわない範囲で含有されていてもよい。
In the polyester resin, in addition to the above components,
Aromatic dicarboxylic acid components such as phthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, diphenylsulfonedicarboxylic acid, trimellitic acid, pyromellitic acid, etc. An aromatic polycarboxylic acid and its acid anhydride, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, aliphatic dicarboxylic acid components such as decanedicarboxylic acid, propylene glycol, 1,2-propanediol,
1,3-propanediol, 1,2-butanediol, 1,3
-Butanediol, 1,4-butanediol, 2,3-butanediol, diethylene glycol, 1,5-pentanediol, neopentyl glycol, triethylene glycol, polyethylene glycol, and other aliphatic diol components, trimethylolpropane, pentaerythritol And other aliphatic polyhydric alcohol components, alicyclic diol components such as 1,4-cyclohexanedimethanol and 1,4-cyclohexanediethanol, aromatic diol components such as ethylene oxide adducts of bisphenol A and bisphenol S,
A copolymerization component such as a hydroxycarboxylic acid component such as 4-hydroxybenzoic acid or ε-caprolactone may be contained within a range that does not impair the characteristics of the PET resin.

【0016】次に、液相重縮合工程によりポリエステル
樹脂を製造する方法について説明する。
Next, a method for producing a polyester resin by the liquid phase polycondensation step will be described.

【0017】例えば、エステル交換法で製造する方法と
しては、テレフタル酸ジメチルとエチレングリコールと
を用い、窒素ガス下、 160〜 280℃の温度でエステル交
換反応を行い、得られたエステル交換反応生成物を重縮
合反応させる方法がある。また、直接エステル化法で製
造する方法としては、テレフタル酸とエチレングリコー
ルとを用い、窒素ガス下又は加圧下、 160〜 280℃の温
度でエステル化反応を行い、得られたエステル化反応生
成物を重縮合反応させる方法がある。さらに、テレフタ
ル酸とエチレングリコールとのエステル化反応により得
られるビス−(β−ヒドロキシエチル)テレフタレート
及びその低重合体に、テレフタル酸とエチレングリコー
ルとを添加して、窒素ガス下、 160〜 280℃の温度でエ
ステル化反応を行い、得られたエステル化反応生成物を
重縮合反応させる方法等がある。
For example, as a method for producing by a transesterification method, dimethyl terephthalate and ethylene glycol are used, and the transesterification reaction is carried out at a temperature of 160 to 280 ° C. under nitrogen gas to obtain the transesterification reaction product. There is a method of causing a polycondensation reaction. Further, as a method for producing by the direct esterification method, terephthalic acid and ethylene glycol are used, and the esterification reaction is performed at a temperature of 160 to 280 ° C. under nitrogen gas or under pressure, and the obtained esterification reaction product is obtained. There is a method of causing a polycondensation reaction. Furthermore, terephthalic acid and ethylene glycol were added to bis- (β-hydroxyethyl) terephthalate and its low polymer obtained by the esterification reaction of terephthalic acid and ethylene glycol, and the mixture was added at 160 to 280 ° C under nitrogen gas. There is a method in which the esterification reaction is carried out at the temperature of 1, and the obtained esterification reaction product is subjected to a polycondensation reaction.

【0018】重縮合反応は、重縮合触媒の存在下、通常
0.01〜13.3 hPa程度の減圧下で 260〜 310℃、好ましく
は 275〜 290℃の温度で行う。重縮合触媒としては、ア
ンチモン、ゲルマニウム、スズ、チタン、亜鉛、アルミ
ニウム、マグネシウム、カルシウム、マンガン、コバル
ト等の金属の化合物や5−スルホサリチル酸、o−スル
ホ安息香酸無水物等の有機スルホン酸化合物が好適に用
いられる。触媒の添加量は、ポリエステルを構成する酸
成分1モルに対して1×10-5〜1×10-2モルが好まし
く、5×10-5〜5×10-3モルがより好ましく、1×10-4
〜3×10-3モルが特に好ましい。
The polycondensation reaction is usually conducted in the presence of a polycondensation catalyst.
It is carried out at a temperature of 260 to 310 ° C, preferably 275 to 290 ° C under a reduced pressure of about 0.01 to 13.3 hPa. Examples of the polycondensation catalyst include compounds of metals such as antimony, germanium, tin, titanium, zinc, aluminum, magnesium, calcium, manganese, and cobalt, and organic sulfonic acid compounds such as 5-sulfosalicylic acid and o-sulfobenzoic anhydride. It is preferably used. The addition amount of the catalyst is preferably 1 × 10 −5 to 1 × 10 −2 mol, more preferably 5 × 10 −5 to 5 × 10 −3 mol, and more preferably 1 ×, to 1 mol of the acid component constituting the polyester. 10 -4
It is particularly preferably about 3 × 10 -3 mol.

【0019】なお、ポリエステル樹脂の製造に際し、ト
リメチルホスフェート、トリエチルホスフェート、トリ
フェニルホスファイト、ジブチルホスフェート、リン
酸、ポリリン酸等の熱安定剤、ヒンダードフェノール化
合物のような酸化防止剤、コバルト化合物のような色調
改良剤の他、紫外線吸収剤や光安定剤等の添加物を含有
させてもよい。
In the production of polyester resin, heat stabilizers such as trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dibutyl phosphate, phosphoric acid and polyphosphoric acid, antioxidants such as hindered phenol compounds and cobalt compounds are used. In addition to such a color tone improving agent, additives such as an ultraviolet absorber and a light stabilizer may be contained.

【0020】上記の液相重縮合工程で得られたポリエス
テル樹脂は、重縮合反応が完結した段階で重縮合反応器
から粒状(チップ状)に払出される。このチップは、通
常は平均長2〜5mm、平均径1〜4mmを有することが望
ましい。
The polyester resin obtained in the above liquid phase polycondensation step is discharged in a granular form (chip form) from the polycondensation reactor when the polycondensation reaction is completed. It is usually desirable that the chips have an average length of 2 to 5 mm and an average diameter of 1 to 4 mm.

【0021】本発明においては、このようにして得られ
たチップを次の固相重合工程に供給する。
In the present invention, the chips thus obtained are supplied to the next solid phase polymerization step.

【0022】固相重合は、不活性ガス流通下又は減圧下
で、融点未満の温度で10時間以上行うことが好ましい。
この際、重合温度は融点よりも10℃以上低く、かつ 180
℃以上とすることがより好ましい。温度が 180℃未満で
はCTET等のオリゴマーの減少速度が遅く、長時間の
固相重合時間を要するので好ましくない。また、融点付
近の温度では当然ながらチップが融着するので好ましく
ない。
The solid phase polymerization is preferably carried out for 10 hours or more at a temperature below the melting point under an inert gas flow or under reduced pressure.
At this time, the polymerization temperature is 10 ° C or more lower than the melting point, and
It is more preferable that the temperature is not lower than ° C. If the temperature is lower than 180 ° C., the rate of decrease of oligomers such as CTET is slow and a long solid phase polymerization time is required, which is not preferable. Further, at a temperature near the melting point, the chips are naturally fused, which is not preferable.

【0023】なお、不活性ガスとは、ポリエステル樹脂
の固相重合において樹脂性能の劣化を生じることのない
気体を意味し、一般的には安価な窒素ガスが用いられ
る。不活性ガス中の水分量は、固相重合中にポリエステ
ル樹脂の極限粘度が低下しない範囲であれば任意に選ぶ
ことができるが、通常は5×102ppm未満であることが好
ましい。また、減圧下で固相重合する場合には、その減
圧度は67 hPa以下であることが好ましい。
The inert gas means a gas which does not cause deterioration of resin performance in solid-state polymerization of polyester resin, and generally inexpensive nitrogen gas is used. The water content in the inert gas can be arbitrarily selected as long as the intrinsic viscosity of the polyester resin does not decrease during solid phase polymerization, but it is usually preferably less than 5 × 10 2 ppm. In the case of solid-state polymerization under reduced pressure, the degree of reduced pressure is preferably 67 hPa or less.

【0024】上記した液相重縮合工程及び固相重合工程
を経て製造されたポリエステル樹脂は、通常はCTET
含有量が0.60重量%以下のものであるが、樹脂中に重縮
合触媒が残留されているため、成形時に再溶融するとC
TETが増加して、金型汚染を引き起こす。
The polyester resin produced through the above liquid phase polycondensation step and solid phase polymerization step is usually CTET.
The content is 0.60% by weight or less, but since the polycondensation catalyst remains in the resin, if it is remelted during molding, C
TET increases, causing mold contamination.

【0025】したがって、本発明においては、ポリエス
テル樹脂を、固相重合工程前又は固相重合工程後もしく
は固相重合工程と同時に湿熱処理を行うことが必要であ
る。なお、固相重合工程と同時に湿熱処理を行うとは、
ポリエステル樹脂の極限粘度が低下しない程度の水分量
の不活性ガスを特定の流量で流しながら、湿熱処理と固
相重合とを同時に行うことであり、この処理により樹脂
中のCTET等のオリゴマーと残留する重縮合触媒とを
除去することができる。
Therefore, in the present invention, it is necessary to heat-treat the polyester resin before or after the solid phase polymerization step or at the same time as the solid phase polymerization step. In addition, performing wet heat treatment at the same time as the solid-state polymerization step means
The wet heat treatment and the solid-phase polymerization are simultaneously performed while an inert gas having a water content such that the intrinsic viscosity of the polyester resin does not decrease is caused to flow at a specific flow rate. By this treatment, oligomers such as CTET and residuals in the resin remain. It is possible to remove the polycondensation catalyst.

【0026】本発明における湿熱処理は、不活性ガスを
流しながら行う必要があり、不活性ガスとしては、固相
重合で使用する気体と同じ気体を使用することが好まし
く、通常は窒素ガスが用いられる。不活性ガス中の水分
量は5×102 〜1×104ppmとする必要があり、1×103
〜1×104ppmとするのが好ましく、3×103〜8×103pp
mとするのがより好ましい。水分量が5×102ppm未満で
は、重縮合触媒の失活が不十分で、ボトルやフィルムの
成形時に金型汚染を引き起こすので好ましくない。また
逆に、水分量が1×104ppmを超えると、ポリエステル樹
脂の加水分解が生じて極限粘度が低下するので好ましく
ない。
The moist heat treatment in the present invention needs to be carried out while flowing an inert gas. As the inert gas, it is preferable to use the same gas as that used in the solid phase polymerization, and nitrogen gas is usually used. To be The water content in the inert gas must be 5 × 10 2 to 1 × 10 4 ppm, and 1 × 10 3
〜1 × 10 4 ppm is preferable, 3 × 10 3 〜8 × 10 3 pp
More preferably m. If the water content is less than 5 × 10 2 ppm, the deactivation of the polycondensation catalyst is insufficient, which causes mold contamination during molding of bottles and films, which is not preferable. On the other hand, if the water content exceeds 1 × 10 4 ppm, hydrolysis of the polyester resin occurs and the intrinsic viscosity decreases, which is not preferable.

【0027】また、不活性ガスの流量は、ポリエステル
樹脂1gに対して1×10-3〜1×10-1 l/hrとする必要
がある。流量が1×10-3 l/hr未満でも、流量が1×10
-1 l/hrを超えても、CTET含有量の小さいポリエス
テル樹脂が得られないので好ましくない。
The flow rate of the inert gas should be 1 × 10 -3 to 1 × 10 -1 l / hr for 1 g of the polyester resin. Even if the flow rate is less than 1 x 10 -3 l / hr, the flow rate is 1 x 10
Even if it exceeds -1 l / hr, a polyester resin having a small CTET content cannot be obtained, which is not preferable.

【0028】さらに、湿熱処理の温度と時間は、 150℃
〜(ポリエステル樹脂の融点−10℃)の温度で1時間以
上とする必要があり、 160℃〜(ポリエステル樹脂の融
点−20℃)の温度で2時間以上とするのが好ましい。湿
熱処理の温度が 150℃未満では、ボトルやフィルムの成
形時に金型汚染を引き起こすので好ましくない。また逆
に、湿熱処理の温度が(ポリエステル樹脂の融点−10
℃)を超えると、湿熱処理時にポリエステル樹脂が融着
するので好ましくない。さらに、湿熱処理の時間が1時
間未満では、ボトルやフィルムの成形時に金型汚染を引
き起こすので好ましくない。
Further, the temperature and time of the wet heat treatment are 150 ° C.
It is necessary to set the temperature at 1 to 60 ° C (melting point of polyester resin -10 ° C) for 1 hour or more, and preferably at 2 hours or more at 160 ° C to 20 ° C (melting point of polyester resin). If the temperature of the moist heat treatment is lower than 150 ° C, it causes mold contamination during molding of bottles and films, which is not preferable. On the contrary, the temperature of the moist heat treatment is (melting point of polyester resin −10
If it exceeds (° C.), the polyester resin will be fused during heat treatment, which is not preferable. Further, if the time of the wet heat treatment is less than 1 hour, it causes mold contamination during molding of bottles and films, which is not preferable.

【0029】湿熱処理を行う装置としては、回転型固相
重合装置、回転型乾燥器、流動床型乾燥器、種々の撹拌
翼を有する乾燥器等、ポリエステル樹脂のチップを均一
に加熱できるものなら任意のものが使用できるが、固相
重合と湿熱処理とを同一の装置を用いて行うことが好ま
しい。すなわち、上記のいずれかの装置を使用して、不
活性ガス中の水分量と流量とを調節すれば、ポリエステ
ル樹脂を別々の装置に仕込み直すことなく、固相重合と
湿熱処理とを同時に行うことができる。
As the apparatus for performing the wet heat treatment, a rotary solid-state polymerization apparatus, a rotary dryer, a fluidized bed dryer, a dryer having various stirring blades, or the like can be used as long as the polyester resin chips can be uniformly heated. Although any one can be used, it is preferable to carry out the solid phase polymerization and the wet heat treatment using the same apparatus. That is, by using any of the above devices, by adjusting the amount of water in the inert gas and the flow rate, the solid phase polymerization and the wet heat treatment are simultaneously performed without recharging the polyester resin in a separate device. be able to.

【0030】本発明の処理方法により得られたポリエス
テル樹脂は、通常は、CTET含有量が0.60重量%以下
であり、これを成形してボトルやフィルムとすることが
できる。
The polyester resin obtained by the treatment method of the present invention usually has a CTET content of 0.60% by weight or less, and can be molded into a bottle or a film.

【0031】例えば、ボトルを得るには、まず初めに、
PET樹脂のブロー成形で用いられている装置をそのま
ま使用して、射出成形もしくは押出し成形によりプリフ
ォームを成形する。次いで、このプリフォームをインジ
ェクションブロー法、ホットパリソン法あるいはコール
ドパリソン法等の二軸延伸ブロー成形法を適用してボト
ルにする。
For example, to obtain a bottle, first,
The preform is molded by injection molding or extrusion molding using the same equipment used for blow molding of PET resin. Then, this preform is made into a bottle by applying a biaxial stretch blow molding method such as an injection blow method, a hot parison method or a cold parison method.

【0032】また、フィルムを得るには、ポリエステル
樹脂に滑剤等を添加し、溶融押出しによりフィルム状に
成形する。次いで、このフィルムを二軸延伸及び熱固定
することにより二軸延伸フィルムとする。
To obtain a film, a lubricant or the like is added to the polyester resin, and the film is formed by melt extrusion. Then, this film is biaxially stretched and heat set to obtain a biaxially stretched film.

【0033】さらに、ボトルやフィルム以外にも、本発
明の処理方法により得られたポリエステル樹脂を用い
て、シート、繊維、発泡体等にすることができる。
In addition to bottles and films, the polyester resin obtained by the treatment method of the present invention can be used to make sheets, fibers, foams and the like.

【0034】[0034]

【作用】通常、PET又はこれを主体とするポリエステ
ル樹脂から析出するオリゴマーは、CTETを主成分と
するものである。CTET等のオリゴマーは、液相重縮
合工程で生成し、ポリエステル樹脂中に2重量%程度含
有されている。このオリゴマーを除去するには、得られ
たポリエステル樹脂を少なくとも 150℃〜(ポリエステ
ル樹脂の融点−10℃)の温度で熱処理することが好まし
い。この範囲の温度にポリエステル樹脂を曝せば、減圧
度や不活性ガス中の水分量、不活性ガスの流量によら
ず、ポリエステル樹脂中のオリゴマー含有量を低減させ
ることができる。これは、CTET等の環状オリゴマー
は、固体中でも環鎖平衡反応を行っており、溶融温度以
下でも、環状オリゴマーが開環して鎖状オリゴマーとな
りポリエステル樹脂から除去されるためである。
In general, the oligomer precipitated from PET or a polyester resin containing PET as a main component has CTET as a main component. The oligomer such as CTET is produced in the liquid phase polycondensation step and is contained in the polyester resin in an amount of about 2% by weight. In order to remove this oligomer, it is preferable to heat-treat the obtained polyester resin at a temperature of at least 150 ° C to (melting point of polyester resin-10 ° C). By exposing the polyester resin to a temperature in this range, the oligomer content in the polyester resin can be reduced regardless of the degree of pressure reduction, the amount of water in the inert gas, and the flow rate of the inert gas. This is because a cyclic oligomer such as CTET undergoes a ring chain equilibrium reaction even in a solid state, and even at a melting temperature or lower, the cyclic oligomer is opened to form a chain oligomer and is removed from the polyester resin.

【0035】しかし、上記の熱処理工程でポリエステル
樹脂中のCTET等の環状オリゴマーを低減しても、ポ
リエステル樹脂を再溶融すると、OH末端基等の作用に
より再びCTET等の環状オリゴマーがかなり生成する
ため、成形時に金型にそれらが析出してしまう。ところ
が、本発明の処理方法のように、水分を適量含んだ不活
性ガスを特定の流量で流しながら、 150℃〜(ポリエス
テル樹脂の融点−10℃)の温度で湿熱処理すれば、重縮
合触媒が失活されるため、ポリエステル樹脂を再溶融し
ても、CTET等の環状オリゴマー生成速度が遅くな
り、成形時に金型汚染が引き起こされることがない。
However, even if the cyclic oligomer such as CTET in the polyester resin is reduced in the above heat treatment step, when the polyester resin is remelted, a considerable amount of cyclic oligomer such as CTET is again formed by the action of the OH end group. However, they are deposited in the mold during molding. However, as in the treatment method of the present invention, a polycondensation catalyst can be obtained by performing a wet heat treatment at a temperature of 150 ° C. to (melting point of polyester resin −10 ° C.) while flowing an inert gas containing an appropriate amount of water at a specific flow rate. Therefore, even if the polyester resin is re-melted, the cyclic oligomer generation rate such as CTET becomes slow, and the mold is not contaminated during molding.

【0036】[0036]

【実施例】次に、実施例により本発明を具体的に説明す
る。なお、実施例において特性値は次のようにして測定
した。 (a) 極限粘度〔η〕 フェノールと四塩化エタンとの等重量混合物を溶媒とし
て、温度20℃で測定し、dl/g単位で表した。 (b) CTET含有量 ポリエステル樹脂のチップ又はボトルの一部をヘキサフ
ルオロイソプロパノール/クロロホルム(1/1、体積
比)の混合溶媒に溶解した後、アセトニトリル中に投入
してポリマーを沈澱させ、メンブランフィルターで濾過
した濾液中のCTETを、高速液体クロマトグラフ(ウ
ォーターズ社製、600E)で定量することにより求めた。
EXAMPLES Next, the present invention will be described in detail with reference to examples. In the examples, the characteristic values were measured as follows. (a) Intrinsic viscosity [η] Using an equal weight mixture of phenol and ethane tetrachloride as a solvent, it was measured at a temperature of 20 ° C and expressed in dl / g. (b) CTET content After dissolving a part of a polyester resin chip or bottle in a mixed solvent of hexafluoroisopropanol / chloroform (1/1, volume ratio), it is poured into acetonitrile to precipitate the polymer, and a membrane filter is used. The CTET in the filtrate filtered by 1. was determined by quantifying with a high performance liquid chromatograph (600E, manufactured by Waters).

【0037】実施例1 ビス(β−ヒドロキシエチル)テレフタレート及びその
低重合体の存在するエステル化反応缶に、テレフタル酸
とエチレングリコールとのモル比1/1.6 のスラリーを連
続的に供給し、温度 250℃、圧力50 hPaGの条件で反応
させ、滞留時間8時間としてエステル化反応率95%の反
応物を連続的に得た。この反応物60kgを重縮合反応器に
移送し、テレフタル酸成分1モルに対して3×10-4モル
の二酸化ゲルマニウムを加えた後、重縮合反応器中を徐
々に減圧にして、最終的に圧力0.67 hPa、温度 280℃で
5時間、液相重縮合反応を行った。重縮合反応が完結し
た時点で、重縮合反応器からポリエステル樹脂を払出し
て、平均長4mm、平均径2mmのポリエステル樹脂のチッ
プを得た。このポリエステル樹脂の〔η〕は0.65であっ
た。次いで、このチップを回転型固相重合装置に仕込
み、水分量10 ppmの窒素ガスを、ポリエステル樹脂1g
に対して2×10-2 l/hrの流量で流しながら、70℃で2
時間予備乾燥した後、 130℃で4時間加熱して結晶化さ
せた。続いて、水分量5×103ppmの窒素ガスを、ポリエ
ステル樹脂1gに対して2×10-2 l/hrの流量で流しな
がら、 210℃で8時間湿熱処理を行った。最後に、湿熱
処理されたポリエステル樹脂のチップを、水分量4×10
2ppmの窒素ガスを、ポリエステル樹脂1gに対して4×
102ppm l/hrの流量で流しながら、 210℃で4時間固相
重合を行った。この固相重合後のポリエステル樹脂の
〔η〕は0.70、CTET含有量は0.40重量%であった。
上記の方法により得られたポリエステル樹脂のチップを
使用し、シリンダー各部及びノズル温度 280℃、スクリ
ュー回転数100rpm、射出時間10秒、金型冷却水温度20℃
に設定した射出成形機(日精エーエスビー社製、ABS-50
HT型)を用いてプリフォームを成形した。次いで、この
プリフォームを予熱炉90℃、ブロー圧2MPa、成形サイ
クル10秒で延伸ブロー成形し、胴部平均肉厚 300μm、
内容積1リットルのボトルを作製し、 160℃に設定した
金型内で圧縮緊張処理した後、10秒間ヒートセットし
た。得られたボトル中のCTET含有量は0.51重量%で
あった。さらに、上記の条件で2000本のボトルを連続成
形したが、射出成形、延伸ブロー成形及びヒートセット
のいずれにおいても金型汚染は認められなかった。得ら
れたポリエステル樹脂及びボトルの特性値を表1に示
す。
Example 1 A slurry of terephthalic acid and ethylene glycol in a molar ratio of 1 / 1.6 was continuously fed to an esterification reaction vessel containing bis (β-hydroxyethyl) terephthalate and its low polymer, and the temperature was raised. The reaction was carried out under the conditions of 250 ° C. and a pressure of 50 hPaG, and the residence time was 8 hours to continuously obtain a reaction product having an esterification reaction rate of 95%. After transferring 60 kg of this reaction product to a polycondensation reactor and adding 3 × 10 −4 mol of germanium dioxide to 1 mol of a terephthalic acid component, the pressure inside the polycondensation reactor was gradually reduced to finally Liquid phase polycondensation reaction was carried out at a pressure of 0.67 hPa and a temperature of 280 ° C. for 5 hours. When the polycondensation reaction was completed, the polyester resin was discharged from the polycondensation reactor to obtain polyester resin chips having an average length of 4 mm and an average diameter of 2 mm. The [η] of this polyester resin was 0.65. Next, this chip was placed in a rotary solid-state polymerization apparatus, and nitrogen gas with a water content of 10 ppm was added to 1 g of polyester resin.
Flow rate of 2 × 10 -2 l / hr against 70 ° C.
After predrying for an hour, it was heated at 130 ° C. for 4 hours for crystallization. Then, a wet heat treatment was carried out at 210 ° C. for 8 hours while flowing a nitrogen gas having a water content of 5 × 10 3 ppm at a flow rate of 2 × 10 −2 l / hr with respect to 1 g of the polyester resin. Finally, wet the moisture-heat treated polyester resin chips with a water content of 4 x 10
2 ppm of nitrogen gas is added to 4 x for 1 g of polyester resin.
Solid phase polymerization was carried out at 210 ° C. for 4 hours while flowing at a flow rate of 10 2 ppm l / hr. The [η] of the polyester resin after the solid phase polymerization was 0.70, and the CTET content was 0.40% by weight.
Using polyester resin chips obtained by the above method, each cylinder part and nozzle temperature 280 ℃, screw rotation speed 100 rpm, injection time 10 seconds, mold cooling water temperature 20 ℃
Injection molding machine set to (Abs-50 manufactured by Nissei ASB Co., Ltd.
HT type) was used to mold a preform. Then, this preform was stretch blow-molded in a preheating furnace at 90 ° C., a blow pressure of 2 MPa, and a molding cycle of 10 seconds, and an average wall thickness of the body was 300 μm.
A bottle having an internal volume of 1 liter was produced, compression-tensioned in a mold set at 160 ° C., and then heat set for 10 seconds. The CTET content in the obtained bottle was 0.51% by weight. Further, 2000 bottles were continuously molded under the above conditions, but no mold contamination was observed in any of injection molding, stretch blow molding and heat setting. Table 1 shows characteristic values of the obtained polyester resin and bottle.

【0038】実施例2〜5 液相重縮合工程後のポリエステル樹脂の〔η〕、湿熱処
理条件及び固相重合条件を表1に示したように変えた以
外は、実施例1と同様にしてポリエステル樹脂を製造
し、これを用いてボトルを作製した。得られたポリエス
テル樹脂及びボトルの特性値を表1に示す。
Examples 2 to 5 The same as Example 1 except that [η], wet heat treatment conditions and solid phase polymerization conditions of the polyester resin after the liquid phase polycondensation step were changed as shown in Table 1. A polyester resin was produced and used to make a bottle. Table 1 shows characteristic values of the obtained polyester resin and bottle.

【0039】実施例6 まず初めに、実施例1と同様にして液相重縮合反応を行
い、重縮合反応が完結した時点で、重縮合反応器からポ
リエステル樹脂を払出して、平均長4mm、平均径2mmの
ポリエステル樹脂のチップを得た。次いで、このチップ
を回転型固相重合装置に仕込み、水分量10 ppmの窒素ガ
スを、ポリエステル樹脂1gに対して2×10-2 l/hrの
流量で流しながら、70℃で2時間予備乾燥した後、 130
℃で4時間加熱して結晶化させた。続いて、水分量2×
102ppmの窒素ガスを、ポリエステル樹脂1gに対して2
×10-2 l/hrの流量で流しながら、 210℃で10時間固相
重合を行った。最後に、固相重合されたポリエステル樹
脂のチップを、水分量5×103ppmの窒素ガスを、ポリエ
ステル樹脂1gに対して2×10-2 l/hrの流量で流しな
がら、210℃で8時間湿熱処理を行った。上記の方法に
より得られたポリエステル樹脂のチップを、0.67 hPaの
減圧下、130℃で8時間乾燥させた後、実施例1と同様
にしてボトルを作製した。得られたポリエステル樹脂及
びボトルの特性値を表1に示す。
Example 6 First, a liquid-phase polycondensation reaction was carried out in the same manner as in Example 1, and when the polycondensation reaction was completed, the polyester resin was discharged from the polycondensation reactor, and the average length was 4 mm and the average length was 4 mm. A polyester resin chip having a diameter of 2 mm was obtained. Then, this chip was placed in a rotary solid-state polymerization apparatus, and nitrogen gas having a water content of 10 ppm was flown at a flow rate of 2 × 10 -2 l / hr with respect to 1 g of polyester resin, and pre-dried at 70 ° C. for 2 hours. After doing 130
Crystallization was carried out by heating at ℃ for 4 hours. Next, the water content 2 x
Nitrogen gas of 10 2 ppm is 2 for 1 g of polyester resin.
Solid phase polymerization was carried out at 210 ° C. for 10 hours while flowing at a flow rate of × 10 -2 l / hr. Finally, the solid-phase polymerized polyester resin chips were heated at 210 ° C. for 8 hours while flowing nitrogen gas having a water content of 5 × 10 3 ppm at a flow rate of 2 × 10 −2 l / hr per 1 g of the polyester resin. The wet heat treatment was performed for an hour. The polyester resin chips obtained by the above method were dried at 130 ° C. for 8 hours under a reduced pressure of 0.67 hPa, and then a bottle was prepared in the same manner as in Example 1. Table 1 shows characteristic values of the obtained polyester resin and bottle.

【0040】実施例7 まず初めに、実施例1と同様にして液相重縮合反応を行
い、重縮合反応が完結した時点で、重縮合反応器からポ
リエステル樹脂を払出して、平均長4mm、平均径2mmの
ポリエステル樹脂のチップを得た。次いで、このチップ
を回転型固相重合装置に仕込み、水分量10 ppmの窒素ガ
スを、ポリエステル樹脂1gに対して2×10-2 l/hrの
流量で流しながら、70℃で2時間予備乾燥した後、 130
℃で4時間加熱して結晶化させた。続いて、水分量1×
103ppmの窒素ガスを、ポリエステル樹脂1gに対して2
×10-2 l/hrの流量で流しながら、 210℃で18時間加熱
して、固相重合と同時に湿熱処理を行った。上記の方法
により得られたポリエステル樹脂のチップを、0.67 hPa
の減圧下、130℃で8時間乾燥させた後、実施例1と同
様にしてボトルを作製した。得られたポリエステル樹脂
及びボトルの特性値を表1に示す。
Example 7 First, a liquid phase polycondensation reaction was carried out in the same manner as in Example 1, and when the polycondensation reaction was completed, the polyester resin was discharged from the polycondensation reactor to obtain an average length of 4 mm and an average length. A polyester resin chip having a diameter of 2 mm was obtained. Then, this chip was placed in a rotary solid-state polymerization apparatus, and nitrogen gas having a water content of 10 ppm was flown at a flow rate of 2 × 10 -2 l / hr with respect to 1 g of polyester resin, and pre-dried at 70 ° C. for 2 hours. After doing 130
Crystallization was carried out by heating at ℃ for 4 hours. Then, the water content 1 ×
Nitrogen gas of 10 3 ppm is 2 for 1 g of polyester resin.
The mixture was heated at 210 ° C. for 18 hours while flowing at a flow rate of × 10 -2 l / hr to perform wet heat treatment simultaneously with solid-phase polymerization. A polyester resin chip obtained by the above method was added to 0.67 hPa
After drying under reduced pressure at 130 ° C. for 8 hours, a bottle was prepared in the same manner as in Example 1. Table 1 shows characteristic values of the obtained polyester resin and bottle.

【0041】比較例1〜5 液相重縮合工程後のポリエステル樹脂の〔η〕、湿熱処
理条件及び固相重合条件を表1に示したように変えた以
外は、実施例1と同様にしてポリエステル樹脂を製造
し、これを用いてボトルを作製した。なお、比較例1
は、湿熱処理後の〔η〕が0.50まで低下し、その後、固
相重合を行ったが、〔η〕が十分に上がらず、実用に供
することのできるボトルが得られなかった。比較例2
は、湿熱処理に用いた窒素ガスの水分量が少なくて重縮
合触媒が十分に失活されず、成形時に金型が汚染され
た。比較例3及び比較例4は、窒素ガスの流量が適当で
なく、湿熱処理によりポリマーやオリゴマーの一部が加
水分解され、その後、固相重合を行ったが、分解生成物
が低減できず、成形時に金型が汚染された。比較例5
は、湿熱処理の温度が低くて重縮合触媒が十分に失活さ
れず、成形時に金型が汚染された。得られたポリエステ
ル樹脂及びボトルの特性値を表1に示す。
Comparative Examples 1 to 5 In the same manner as in Example 1 except that the [η] of the polyester resin after the liquid phase polycondensation step, the wet heat treatment conditions and the solid phase polymerization conditions were changed as shown in Table 1. A polyester resin was produced and used to make a bottle. Comparative Example 1
The [η] after wet heat treatment decreased to 0.50, and then solid phase polymerization was carried out, but [η] did not rise sufficiently and a bottle that could be put to practical use could not be obtained. Comparative Example 2
In, the polycondensation catalyst was not sufficiently deactivated due to the small amount of nitrogen gas used for the wet heat treatment, and the mold was contaminated during molding. In Comparative Example 3 and Comparative Example 4, the flow rate of nitrogen gas was not appropriate, a part of the polymer or oligomer was hydrolyzed by wet heat treatment, and then solid phase polymerization was carried out, but decomposition products could not be reduced, The mold was contaminated during molding. Comparative Example 5
Since the temperature of the wet heat treatment was low, the polycondensation catalyst was not sufficiently deactivated, and the mold was contaminated during molding. Table 1 shows characteristic values of the obtained polyester resin and bottle.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明によれば、ボトル、フィルム、シ
ート、繊維、発泡体等に好適に利用でき、成形時の金型
汚染を少なくすることができるPET又はこれを主体と
するポリエステル樹脂を得ることができる。
INDUSTRIAL APPLICABILITY According to the present invention, PET or a polyester resin mainly composed of PET, which can be suitably used for bottles, films, sheets, fibers, foams and the like, and which can reduce mold contamination during molding. Obtainable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液相重縮合工程及び固相重合工程を経て
極限粘度が0.6〜1.2のポリエチレンテレフタレート又は
これを主体とするポリエステル樹脂を製造するに際し、
固相重合工程前又は固相重合工程後もしくは固相重合工
程と同時に、水分量が5×102 〜1×104ppmの不活性ガ
スを、ポリエステル樹脂1gに対して1×10-3〜1×10
-1 l/hrの流量で流しながら、 150℃〜(ポリエステル
樹脂の融点−10℃)の温度で1時間以上湿熱処理を行う
ことを特徴とするポリエステル樹脂の処理方法。
1. When producing a polyethylene terephthalate having an intrinsic viscosity of 0.6 to 1.2 or a polyester resin mainly containing the same through a liquid phase polycondensation step and a solid phase polymerization step,
Before the solid phase polymerization step or after the solid phase polymerization step or at the same time as the solid phase polymerization step, an inert gas having a water content of 5 × 10 2 to 1 × 10 4 ppm is added to 1 g of the polyester resin at 1 × 10 -3 〜. 1 x 10
A method for treating a polyester resin, which comprises subjecting a wet heat treatment to a temperature of 150 ° C to (melting point of polyester resin-10 ° C) for 1 hour or more while flowing at a flow rate of -1 l / hr.
JP8746596A 1996-03-14 1996-03-14 Method for treatment of polyester resin Pending JPH09249744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8746596A JPH09249744A (en) 1996-03-14 1996-03-14 Method for treatment of polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8746596A JPH09249744A (en) 1996-03-14 1996-03-14 Method for treatment of polyester resin

Publications (1)

Publication Number Publication Date
JPH09249744A true JPH09249744A (en) 1997-09-22

Family

ID=13915650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8746596A Pending JPH09249744A (en) 1996-03-14 1996-03-14 Method for treatment of polyester resin

Country Status (1)

Country Link
JP (1) JPH09249744A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081167A (en) * 1999-07-09 2001-03-27 Mitsui Chemicals Inc Method for producing aliphatic polyester
WO2007022994A1 (en) 2005-08-26 2007-03-01 Lurgi Zimmer Gmbh Method and device for reducing acetaldehyde content in polyester granulate
US7262263B2 (en) 2001-11-30 2007-08-28 Brigitta Otto Method and apparatus for producing solid-state polycondensed polyesters
US7977448B2 (en) 2004-03-04 2011-07-12 Lurgi Zimmer Gmbh Method for producing highly condensed solid-phase polyesters
US8063176B2 (en) 2006-03-16 2011-11-22 Lurgi Zimmer Gmbh Method and device for the crystallization of polyester material
WO2012081372A1 (en) * 2010-12-15 2012-06-21 富士フイルム株式会社 Process for producing polyester resin, polyester film, process for producing polyester film, back sheet for solar cell, and solar-cell module
EP2743287A1 (en) 2004-05-31 2014-06-18 Toray Industries, Inc. Polyester resin composition, process for producing the same, and polyester film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081167A (en) * 1999-07-09 2001-03-27 Mitsui Chemicals Inc Method for producing aliphatic polyester
US7262263B2 (en) 2001-11-30 2007-08-28 Brigitta Otto Method and apparatus for producing solid-state polycondensed polyesters
US7977448B2 (en) 2004-03-04 2011-07-12 Lurgi Zimmer Gmbh Method for producing highly condensed solid-phase polyesters
EP2743287A1 (en) 2004-05-31 2014-06-18 Toray Industries, Inc. Polyester resin composition, process for producing the same, and polyester film
WO2007022994A1 (en) 2005-08-26 2007-03-01 Lurgi Zimmer Gmbh Method and device for reducing acetaldehyde content in polyester granulate
US7521522B2 (en) 2005-08-26 2009-04-21 Lurgi Zimmer Gmbh Method and device to reduce the acetaldehyde content of polyester granulate
US8063176B2 (en) 2006-03-16 2011-11-22 Lurgi Zimmer Gmbh Method and device for the crystallization of polyester material
WO2012081372A1 (en) * 2010-12-15 2012-06-21 富士フイルム株式会社 Process for producing polyester resin, polyester film, process for producing polyester film, back sheet for solar cell, and solar-cell module

Similar Documents

Publication Publication Date Title
JPH08283394A (en) Production of polyethylene terephthalate
JP2002226568A (en) Method for producing copolyester for polyethylene terephthalate(pet) bottle having low acetaldehyde content
AU726456B2 (en) Polyethylene-2, 6-naphthalene dicarboxylate resin and preform and bottle molded thereof
JPH09249744A (en) Method for treatment of polyester resin
JPH09221540A (en) Polyethylene terephthalate, hollow container, and oriented film
JPH10110026A (en) Polyester resin and hollow container
JPH0764920B2 (en) polyethylene terephthalate
JPH0940853A (en) Polyester resin composition
JP2007002240A (en) Stretch blow molded polyester article and method for producing the same
JP2003212983A (en) Method for treating polyester resin
JPH06184286A (en) Polyethylene terephthalate and hollow vessel and drawn film composed of the resin
JP3136767B2 (en) Copolyester and hollow container and stretched film comprising the same
JP3459431B2 (en) Copolyester and hollow container and stretched film made thereof
JPH09296029A (en) Polyester and hollow vessel prepared therefrom
JP4624590B2 (en) Method for producing metal compound-containing polyester resin composition, preform for hollow molded article, and method for producing hollow molded article
JPH0737515B2 (en) Treatment method of polyethylene terephthalate
JP2006188676A (en) Polyester composition and polyester molded product composed of the same
JP3195340B2 (en) Polyethylene terephthalate molding
JP3042530B1 (en) Polyester resin composition
JP2000007767A (en) Polyester prepolymer and molding polyester resin obtained by solid phase polymerization of the prepolymer and article molded from the resin
JP2000226445A (en) Polyester resin
JP3685303B2 (en) Polyester resin
JPH0977858A (en) Polyester-made hollow container
JP3685896B2 (en) Drying method of polyester resin
JP2003212984A (en) Polyester resin