JP2000141076A - Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength - Google Patents

Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength

Info

Publication number
JP2000141076A
JP2000141076A JP10312851A JP31285198A JP2000141076A JP 2000141076 A JP2000141076 A JP 2000141076A JP 10312851 A JP10312851 A JP 10312851A JP 31285198 A JP31285198 A JP 31285198A JP 2000141076 A JP2000141076 A JP 2000141076A
Authority
JP
Japan
Prior art keywords
aluminum alloy
brazing
corrosion resistance
content
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10312851A
Other languages
Japanese (ja)
Inventor
Yoshifusa Shoji
美房 正路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10312851A priority Critical patent/JP2000141076A/en
Publication of JP2000141076A publication Critical patent/JP2000141076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy clad material for heat exchanger excellent in corrosion resistance, brazablity and high strength property after brazing as well as in forming workability before brazing. SOLUTION: In an aluminum alloy clad material composed of cladding of brazing material on one-side surface or both-side surfaces of a core material, the core material is composed of an Al alloy containing >0.6 and <=1.2% Cu, <0.25% Si, <=0.3% Fe, 0.06-0.35% Ti, and the balance Al with inevitable impurities, and the brazing cladding on one-side surface or both-side surfaces of the core material is composed of Al-Si aluminum alloy; thereby reducing the thickness of working fluid passage material becomes available and getting a lighter weight and a longer life of heat exchanger such as radiator and condenser is achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性および強度
に優れた熱交換器用アルミニウム合金クラッド材、詳し
くはカーエアコンのエバポレータあるいはラジエータ
等、ろう付けにより接合する熱交換器の作動流体通路の
構成材料として用いられ、特に耐食性に優れ、ろう付け
前の成形加工性に優れると共にろう付け後の強度も高い
熱交換器用アルミニウム合金クラッド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy clad material for a heat exchanger having excellent corrosion resistance and strength, and more particularly to a material for a working fluid passage of a heat exchanger joined by brazing, such as an evaporator or a radiator of a car air conditioner. The present invention relates to an aluminum alloy clad material for a heat exchanger which is particularly excellent in corrosion resistance, has excellent moldability before brazing, and has high strength after brazing.

【0002】[0002]

【従来の技術】アルミニウム合金製熱交換器は、自動車
のラジエータ、オイルクーラ、インタークーラ、ヒータ
及びエアコンのエバポレータやコンデンサあるいは油圧
機器や産業機械のオイルクーラ等の熱交換器として広く
使用されている。アルミニウム合金製熱交換器には種々
の型式のものがあるが、軽量化の観点から、アルミニウ
ム合金クラッド材を成形加工したものを重ね合わせて作
動流体通路を構成し、その作動流体通路の間にコルゲー
ト加工したアルミニウム合金製フィンを組み合わせ、ろ
う付けにより一体化して製作した積層型熱交換器(ドロ
ンカップ型熱交換器)が注目されている。
2. Description of the Related Art Aluminum alloy heat exchangers are widely used as radiators, oil coolers, intercoolers, evaporators and condensers for heaters and air conditioners of automobiles, and heat exchangers for oil coolers of hydraulic equipment and industrial machines. . There are various types of aluminum alloy heat exchangers, but from the viewpoint of weight reduction, a working fluid passage is formed by superimposing aluminum alloy clad materials and forming a working fluid passage between them. Attention has been paid to a laminated heat exchanger (Drone cup type heat exchanger) manufactured by combining corrugated aluminum alloy fins and integrating them by brazing.

【0003】例えば、ドロンカップ型エバポレータ1
は、図1、2に示すように、プレス成形加工したアルミ
ニウム合金クラッド材よりなるコアプレート2及び3と
コルゲート加工したアルミニウム合金製フィン4(以
下、単にフィンという)とを積層し、ろう付けによりコ
アプレート2及び3のろう材を溶融してコアプレート2
及び3とフィン4とを接合し、コアプレート2と3との
間に冷媒等の作動流体通路5を形成してなる。
For example, a drone cup type evaporator 1
As shown in FIGS. 1 and 2, core plates 2 and 3 made of press-formed aluminum alloy clad material and aluminum alloy fins 4 (hereinafter simply referred to as fins) processed by corrugation are laminated and brazed. Melting the brazing material of the core plates 2 and 3
And 3 and the fin 4 are joined to form a working fluid passage 5 such as a refrigerant between the core plates 2 and 3.

【0004】コアプレート2及び3としては、その芯材
にAl−Mn系、Al−Mn−Cu系、Al−Mn−M
g系、Al−Mn−Cu−Mg系等、Mnを含有するア
ルミニウム合金、例えば、JIS A3003合金、同
3005合金等が使用され、ろう材にAl−Si系、A
l−Si−Mg系、Al−Si−Mg−Bi系、Al−
Si−Mg−Be系、Al−Si−Bi系、Al−Si
−Be系、Al−Si−Bi−Be系等のAl−Si系
合金等が使用され、上記の芯材の片面又は両面に上記の
ろう材をクラッドしてなるアルミニウム合金クラッド材
が用いられている。
The core plates 2 and 3 are made of Al-Mn, Al-Mn-Cu, Al-Mn-M
g-based, Al-Mn-Cu-Mg-based aluminum alloys containing Mn, such as JIS A3003 alloy and 3005 alloy, are used as brazing filler metals.
l-Si-Mg system, Al-Si-Mg-Bi system, Al-
Si-Mg-Be system, Al-Si-Bi system, Al-Si
-Be-based, Al-Si-based alloys such as Al-Si-Bi-Be-based and the like are used, and an aluminum alloy clad material obtained by cladding the brazing material on one or both surfaces of the core material is used. I have.

【0005】また、フィン4としては、Al−Mn系合
金にCu、Mg、Zn、Sn、In等が添加されたアル
ミニウム合金が使用され、フィン4とコアプレート2及
び3とのろう付け法としては、一般的には真空ろう付け
が適用されるが、塩化物系フラックスやフッ化物系フラ
ックスを用いるフラックスろう付け法も適用されてい
る。
As the fin 4, an aluminum alloy obtained by adding Cu, Mg, Zn, Sn, In or the like to an Al-Mn alloy is used. As a method of brazing the fin 4 and the core plates 2 and 3, In general, vacuum brazing is applied, but a flux brazing method using a chloride-based flux or a fluoride-based flux is also applied.

【0006】近年、熱交換器の軽量化、コスト低減が強
く要求され、この要求を達成するために、作動流体通路
等の熱交換器構成材料をさらに薄肉化することが必要と
なっているが、例えば作動流体通路を構成するアルミニ
ウム合金クラッド材を薄肉化するために強度を高める
と、伸びが低下して成形加工性を低下させ、また耐食性
も劣化して、熱交換器の製造作業性、耐久性の問題が生
じることから、伸び(成形性)、ろう付け後の強度およ
び耐食性をさらに改善したクラッド材の開発が要望され
ている。
In recent years, weight reduction and cost reduction of heat exchangers have been strongly demanded, and in order to achieve these demands, it is necessary to further reduce the thickness of the heat exchanger constituent materials such as working fluid passages. For example, if the strength is increased in order to reduce the thickness of the aluminum alloy clad material constituting the working fluid passage, the elongation is reduced, the formability is reduced, and the corrosion resistance is also deteriorated. Because of the problem of durability, there is a demand for the development of a clad material having further improved elongation (formability), strength after brazing, and corrosion resistance.

【0007】従来、ドロンカップ型エバポレータ1のコ
アプレート2及び3として使用されてきたアルミニウム
合金クラッド材は、前記のように、Mnを含有するアル
ミニウム合金を芯材とするもので、耐孔食性が充分とは
言えず、例えば、冷媒の作動流体通路材に適用した場
合、しばしば孔食による貫通漏洩事故が生じることが経
験されている。
The aluminum alloy clad material conventionally used as the core plates 2 and 3 of the drone cup type evaporator 1 has a core material of an aluminum alloy containing Mn as described above, and has a pitting corrosion resistance. It is not enough. For example, when applied to a working fluid passage material of a refrigerant, it has been experienced that a penetration leakage accident often occurs due to pitting.

【0008】上記の作動流体通路材の耐孔食性を向上さ
せるために、フィン4として、作動流体通路材より電位
の卑な材料、例えば、Al−Mn−Zn系、Al−Mn
−Sn系、Al−Mn−In系合金等を適用し、これら
の材質で構成されるフィン4の犠牲陽極効果を利用し
て、作動流体通路材を防食することが考えられるが、こ
の防食方法は、フィン4との接合部近傍の作動流体通路
材にのみ効果があり、フィン4から離れた位置の作動流
体通路材ではフィン14の犠牲陽極効果が届かず、孔食
の発生が避けられない。
In order to improve the pitting resistance of the working fluid passage material, the fin 4 is made of a material having a potential lower than that of the working fluid passage material, for example, Al-Mn-Zn, Al-Mn.
It is conceivable to use a Sn-based or Al-Mn-In-based alloy or the like to protect the working fluid passage material by utilizing the sacrificial anode effect of the fins 4 made of these materials. Has an effect only on the working fluid passage material in the vicinity of the joint with the fin 4, and the sacrifice anode effect of the fin 14 does not reach with the working fluid passage material at a position away from the fin 4, and pitting is inevitable. .

【0009】また、上記アルミニウム合金クラッド材
は、Mnを含有するアルミニウム合金を芯材としている
から、その芯材中に微細なMn系化合物が発生すること
は不可避であり、このため、特にろう付け前のプレス加
工の度合いが低い場合には、芯材中の微細なMn系化合
物により、ろう付け時に芯材の再結晶が抑制され、ろう
材が芯材中へ拡散して、ろう付け性が不充分となること
が生じる。
Further, since the aluminum alloy clad material has an aluminum alloy containing Mn as a core material, it is inevitable that a fine Mn-based compound is generated in the core material. When the degree of the previous press working is low, the recrystallization of the core material during brazing is suppressed by the fine Mn-based compound in the core material, and the brazing material diffuses into the core material, and the brazing property is reduced. Insufficiency may occur.

【0010】作動流体通路用アルミニウム合金クラッド
材の耐食性を向上させるために、その芯材中にCuや
TiあるいはCrやZrを添加したクラッド材(特公平
6−41621号公報、特開昭63−241133号公
報、特開昭64−83396号公報、特開平2−258
945公報参照)、芯材成分のうちカソードとなる化
合物を構成して耐食性を劣化させるFeの含有量を0.
2%以下に限定したクラッド材(特開昭64−8339
6号公報参照)、あるいは、芯材中のFe及びSiの
含有量をそれぞれ限定して耐粒界腐食性を改善したクラ
ッド材(特公平6−41621号公報、特開昭63−2
41133号公報参照)も提案されているが、上記に提
案されたアルミニウム合金クラッド材は、耐食性につい
ては改善がみられるものの、成形加工性及びろう付け後
の強度特性については改善の目的を十分に達成すること
ができない。
In order to improve the corrosion resistance of an aluminum alloy clad material for a working fluid passage, a clad material in which Cu, Ti, Cr or Zr is added to its core material (Japanese Patent Publication No. 6-41621, Japanese Patent Application Laid-Open No. 63-41663) JP-A-241133, JP-A-64-83396, JP-A-2-258
945), and the content of Fe, which constitutes the cathode compound among the core components and deteriorates the corrosion resistance, is set to 0.
Cladding material limited to 2% or less (JP-A-64-8339)
No. 6) or a clad material in which the contents of Fe and Si in the core material are each limited to improve intergranular corrosion resistance (Japanese Patent Publication No. 6-41621, Japanese Patent Application Laid-Open No.
Although the aluminum alloy clad material proposed above has an improvement in corrosion resistance, the purpose of the improvement in the formability and the strength characteristics after brazing is sufficient. Cannot be achieved.

【0011】ろう付け性の改善のために、芯材の均質化
処理温度を580°C〜620°Cの範囲で行い、0.
1μm以下の微細なMn系化合物を35%以下に制御す
る方法(特開平2−258945公報参照)が提案され
ており、ある程度の改善効果は得られるが、芯材として
Al−Mn系合金を使用する場合、微細なMn系化合物
の析出を避けることができないから、改善には限界があ
る。
In order to improve the brazing property, the temperature of the core material is homogenized within a range of 580 ° C. to 620 ° C.
There has been proposed a method of controlling a fine Mn-based compound of 1 μm or less to 35% or less (see Japanese Patent Application Laid-Open No. 2-258945). Although some improvement effect can be obtained, an Al—Mn-based alloy is used as a core material. In this case, the precipitation of fine Mn-based compounds cannot be avoided, and there is a limit to the improvement.

【0012】[0012]

【発明が解決しようとする課題】本発明は、特に作動流
体通路材における上記従来の問題点を解消するととも
に、作動流体通路材の薄肉化の要求をも満足させるアル
ミニウム合金クラッド材を得るために、成形加工性、ろ
う付け性、ろう付け後の強度特性及び耐食性に対する芯
材の組成、その両面にクラッドするろう材の組成及びそ
れらの組合わせの効果について、多角的に実験、検討を
行った結果としてなされたものであり、その目的は、特
に耐食性が良好で、ろう付け前の成形加工性に優れると
共に、ろう付けが容易で且つろう付け後の強度特性が改
善された熱交換器用アルミニウム合金クラッド材を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems particularly in the working fluid passage material and to obtain an aluminum alloy clad material which satisfies the demand for thinning the working fluid passage material. Experiments and examinations were conducted on various aspects of the composition of the core material, the composition of the brazing material clad on both sides, and the effects of these combinations on the formability, formability, brazing properties, strength characteristics after brazing and corrosion resistance. The purpose of the present invention is to provide an aluminum alloy for a heat exchanger having particularly good corrosion resistance, excellent moldability before brazing, easy brazing, and improved strength characteristics after brazing. An object of the present invention is to provide a clad material.

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の耐食性および強度に優れた熱交換器用アル
ミニウム合金クラッド材は、芯材の片面または両面にろ
う材をクラッドしたアルミニウム合金クラッド材であっ
て、前記芯材は、Cu:0.6%を越え1.2 %以下、Si:
0.2%以下、Fe:0.3%以下、Ti:0.06 %〜0.35%を
含有し、残部Al及び不純物からなるアルミニウム合金
で構成され、前記ろう材は、Al−Si系アルミニウム
合金から構成されていることを第1の特徴とする。
In order to achieve the above-mentioned object, an aluminum alloy clad material for a heat exchanger according to the present invention, which has excellent corrosion resistance and strength, comprises an aluminum alloy clad material in which a brazing material is clad on one or both surfaces of a core material. A core material comprising: Cu: more than 0.6% and 1.2% or less;
0.2% or less, Fe: 0.3% or less, Ti: 0.06% to 0.35%, the balance is made of an aluminum alloy containing Al and impurities, and the brazing material is made of an Al-Si-based aluminum alloy Is a first feature.

【0014】また、上記のクラッド材において、ろう材
が、Cu:0.06 %〜1.0 %を含有し、且つ芯材のCu含
有量(γ1 %)からろう材のCu含有量(γ2 %)を差
し引いた値が0.2 %以下(γ1 −γ2 ≧0.2 %)である
ことを第2の特徴とし、ろう材が、更にZn:0.3%〜4.
0 %、In:0.005%〜0.1 %及びSn:0.01 %〜0.1%
のうち、少なくとも1種類以上含有しているAl−Si
系アルミニウム合金から構成されていることを第3の特
徴とする。
In the above clad material, the brazing material contains Cu: 0.06% to 1.0%, and the Cu content of the brazing material (γ 2 %) is calculated from the Cu content of the core material (γ 1 %). The second characteristic is that the value obtained by subtracting the above is 0.2% or less (γ 1 −γ 2 ≧ 0.2%).
0%, In: 0.005% to 0.1% and Sn: 0.01% to 0.1%
Of at least one or more Al-Si
A third feature is that it is made of a series aluminum alloy.

【0015】本発明の耐食性および強度に優れた熱交換
器用アルミニウム合金クラッド材は、更に、芯材の片面
または両面にろう材をクラッドしたアルミニウム合金ク
ラッド材であって、前記芯材は、Cu:0.6%を越え1.2
%以下、Si:0.2%以下、Fe:0.3%以下、Ti:0.06
%〜0.35%、Mg:0.06 %〜0.5 %を含有し、残部Al
及び不純物からなるアルミニウム合金で構成され、前記
ろう材は、Al−Si系アルミニウム合金から構成され
ていることを第4の特徴とする。
[0015] The aluminum alloy clad material for a heat exchanger of the present invention, which is excellent in corrosion resistance and strength, is further an aluminum alloy clad material in which a brazing material is clad on one or both sides of a core material, wherein the core material is Cu: Over 0.6% 1.2
% Or less, Si: 0.2% or less, Fe: 0.3% or less, Ti: 0.06
% To 0.35%, Mg: 0.06% to 0.5%, with the balance being Al
A fourth feature is that the brazing material is made of an Al-Si-based aluminum alloy.

【0016】上記のクラッド材において、ろう材が、C
u:0.06 %〜1.0 %を含有し、且つ芯材のCu含有量
(γ1 %)からろう材のCu含有量(γ2 %)を差し引
いた値が0.2 %以上(γ1 −γ2 ≧0.2 %)であるこ
と、および、ろう材が、更にZn:0.3%〜4.0 %、I
n:0.005%〜0.1 %及びSn:0.01 %〜0.1 %のうち、
少なくとも1種類以上含有しているAl−Si系アルミ
ニウム合金から構成されていることを、それぞれ本発明
の第5および第6の特徴とする。
In the above clad material, the brazing material is C
u: 0.06% to 1.0%, and the value obtained by subtracting the Cu content (γ 2 %) of the brazing material from the Cu content (γ 1 %) of the core material is 0.2% or more (γ 1 −γ 2 ≧ 0.2%), and the brazing material further contains Zn: 0.3% to 4.0%,
n: 0.005% to 0.1% and Sn: 0.01% to 0.1%
Fifth and sixth features of the present invention are constituted by an Al-Si-based aluminum alloy containing at least one or more kinds.

【0017】[0017]

【発明の実施の形態】本発明の耐食性に優れた熱交換器
用高強度アルミニウム合金クラッド材(以下単にアルミ
合金クラッド材という。)における合金成分の意義およ
びその限定理由について説明する。 (1)芯材の成分 芯材中のCuは、芯材の強度を向上させると共に、芯材
の電位を貴にし、犠牲陽極層として作用するろう材層と
の電位差を大きくして、防食効果を高めるように機能す
る。更に、芯材中のCuは、ろう付け加熱時にろう材中
に拡散して、連続的な濃度勾配を形成する。その結果、
芯材側の電位は貴となり、ろう材の表面側の電位は卑と
なって、ろう材中に連続的な電位勾配が形成され、腐食
形態を横拡がりの全面腐食型にし、外側からの腐食に対
して防食作用を付与する。Cuの好ましい含有範囲は、
0.6 %を越え1.2 %以下であり、0.6 %以下ではその効
果が小さく、1.2 %を越えて含有すると、伸びが少なく
成形加工性が不充分となり、ろう付け時に芯材の溶融が
生じるおそれがあり、加えて芯材自体の耐食性も悪くな
る。Cuのより好ましい含有範囲は、0.8 %を越え1.2
%以下である。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of the alloy components in the high-strength aluminum alloy clad material for heat exchangers (hereinafter simply referred to as aluminum alloy clad material) having excellent corrosion resistance according to the present invention and the reasons for limiting the same will be described. (1) Components of core material Cu in the core material enhances the strength of the core material, makes the potential of the core material noble, and increases the potential difference with the brazing material layer acting as a sacrificial anode layer, thereby preventing corrosion. Function to enhance. Further, Cu in the core material diffuses into the brazing material at the time of heating by brazing to form a continuous concentration gradient. as a result,
The potential on the core material side is noble, the potential on the surface side of the brazing material is low, a continuous potential gradient is formed in the brazing material, the corrosion form is a horizontal spread general corrosion type, corrosion from the outside Imparts anticorrosive action to A preferred content range of Cu is:
When the content exceeds 0.6%, the effect is small, and when the content exceeds 1.2%, the elongation is small and the formability is insufficient, and the core material may be melted during brazing. In addition, the corrosion resistance of the core material itself deteriorates. A more preferred content range of Cu is more than 0.8% and 1.2%.
% Or less.

【0018】芯材中のSi及びFeは、いずれもカソー
ドとなる化合物を構成して、耐食性を低下させる。従っ
て、Siは0.2 %以下、Feは0.3 %以下に規制すべき
である。しかしながら、Si及びFeの含有量が少ない
高純度のアルミニウム地金はコスト高となるから、耐蝕
性とコストの点から、Siの含有量は0.01%以上0.1%
未満、Feの含有量は0.01%以上0.1 %0.3 %以下の範
囲が好ましい。
Both Si and Fe in the core material constitute a compound serving as a cathode and reduce the corrosion resistance. Therefore, Si should be restricted to 0.2% or less and Fe to 0.3% or less. However, since high-purity aluminum ingots with low contents of Si and Fe are costly, the content of Si is 0.01% or more and 0.1% or more in terms of corrosion resistance and cost.
And the content of Fe is preferably in the range of 0.01% to 0.1% and 0.3% or less.

【0019】芯材中のTiは、芯材の耐食性をより一層
向上させる効果を有する。すなわち、芯材中のTiは濃
度の高い領域と濃度の低い領域とに分かれて凝固し、そ
れらが圧延されると板厚方向に交互に層状に分布し、T
i濃度の低い領域はTi濃度の高い領域に比べて優先的
に腐食するため、腐食形態を層状にして、芯材の板厚方
向への腐食の進行状態を妨げて耐孔食性を向上させる。
Tiの好ましい含有範囲は0.06%〜0.35%であり、0.06
%未満ではその効果が充分でなく、0.35%を越えるとア
ルミ合金クラッド材の鋳造時に粗大な化合物が生成し、
圧延加工性が阻害される。Tiのより好ましい含有範囲
は0.1 %〜0.35%である。
The Ti in the core has the effect of further improving the corrosion resistance of the core. That is, Ti in the core material is divided into a high-concentration region and a low-concentration region and solidifies. When they are rolled, they are distributed alternately in a layered manner in the thickness direction, and T
Since the region having a low i concentration corrodes preferentially as compared with the region having a high Ti concentration, the corroded form is layered to prevent the progress of corrosion of the core material in the thickness direction, thereby improving pitting corrosion resistance.
The preferable content range of Ti is 0.06% to 0.35%, and 0.06% to 0.35%.
%, The effect is not sufficient. If it exceeds 0.35%, a coarse compound is formed during casting of aluminum alloy clad material,
Rolling workability is impaired. The more preferable content range of Ti is 0.1% to 0.35%.

【0020】芯材中のMgは、Siと共にMg2 Siを
形成して芯材の強度を向上させる効果を有する。Mgの
好ましい含有範囲は0.06%〜0.5 %であり、0.06%未満
ではその効果が小さく、0.5 %を越えて含有すると、伸
びが低下して成形加工性が不充分となり、ろう付け時に
芯材の溶融が生じるおそれもあり、加えて芯材自体の耐
食性も悪くなる。更に、フッ化物系フラックスを使用す
るろう付けの場合、フラックス成分のフッ素(F)と合
金中のMgとが反応してMgF2 等の化合物が生成する
ため、フラックスの絶対量が不足してろう付け不良を起
こし易い。
Mg in the core material has an effect of forming Mg 2 Si together with Si and improving the strength of the core material. The preferred range of Mg content is 0.06% to 0.5%. If the content is less than 0.06%, the effect is small. If the content is more than 0.5%, the elongation is reduced and the formability is insufficient. Melting may occur, and in addition, the corrosion resistance of the core material itself deteriorates. Furthermore, in the case of brazing using a fluoride-based flux, since the fluorine (F) of the flux component reacts with Mg in the alloy to generate a compound such as MgF 2 , the absolute amount of the flux will be insufficient. It is easy to cause poor mounting.

【0021】その他、不純物として含まれるZn、M
n、Cr、Zr等は、本発明の効果を損なわない範囲で
芯材中に含有しても良い。但し、Znは芯材の電位を卑
にし、犠牲陽極層としたフィン材との電位差を小さくし
て耐食性を害するので、0.2 %以下にする必要がある。
また、Mn、Cr、Zrは、芯材の再結晶を抑制してろ
う材が芯材中に拡散し易くなり、ろう付け性が低下する
から、それぞれ0.05%未満にするのが望ましい。
In addition, Zn and M contained as impurities
n, Cr, Zr, etc. may be contained in the core material within a range that does not impair the effects of the present invention. However, since Zn makes the potential of the core material low and reduces the potential difference from the fin material used as the sacrificial anode layer and impairs the corrosion resistance, it must be 0.2% or less.
Further, Mn, Cr, and Zr are each desirably less than 0.05% because recrystallization of the core material is suppressed, the brazing material is easily diffused into the core material, and the brazing property is reduced.

【0022】(2)ろう材の成分 ろう材は、ろう付け方法により異なるが、通常Siを含
むAl合金が使用される。真空ろう付けを適用する場合
には、Al−Si−Mg系合金ろう材(JIS400
4、4005、4N04等)や、Al−Si−Mg−B
i系合金ろう材(JIS 4104等)等が使用され
る。フッ化物系フラックスろう付けを適用する場合に
は、Al−Si系合金ろう材(JIS 4343、40
45、4047等)が使用される。
(2) Components of brazing filler metal The brazing filler metal differs depending on the brazing method, but an Al alloy containing Si is usually used. When vacuum brazing is applied, an Al-Si-Mg alloy brazing material (JIS400
4, 4005, 4N04, etc.), Al-Si-Mg-B
An i-type alloy brazing material (JIS 4104 or the like) or the like is used. When applying the fluoride flux brazing, an Al-Si alloy brazing material (JIS 4343, 40
45, 4047).

【0023】ろう材中のCuは、ろう材に添加すること
により、アルミ合金クラッド材の強度を高める効果を有
する。Cuの好ましい含有範囲は0.06%〜1.0 %であ
り、0.06%未満ではその効果が小さく、1.0 %を越えて
含有すると、伸びが少なくなり圧延が困難となり、アル
ミ合金クラッド材の製造が難しくなる。なお、Cuのよ
り好ましい含有範囲は0.3 %を越え1.0 %以下である。
Cu in the brazing material has an effect of increasing the strength of the aluminum alloy clad material by being added to the brazing material. The preferred content range of Cu is 0.06% to 1.0%. If the content is less than 0.06%, the effect is small. If the content exceeds 1.0%, elongation is reduced and rolling becomes difficult, and production of an aluminum alloy clad material becomes difficult. The more preferable content range of Cu is more than 0.3% and 1.0% or less.

【0024】また、芯材中のCu含有量がろう材中のC
u含有量より多い場合は、芯材がろう材に比べて電位が
貴となるため、アルミ合金クラッド材表面のろう材層が
芯材に対して犠牲陽極効果を示し、アルミ合金クラッド
材の耐食性を向上させる。芯材中のCu含有量とろう材
中のCu含有量との差が大きいほど、電位差も大きくな
りアルミ合金クラッド材の耐食性が向上する。芯材のC
u含有量(γ1 %)からろう材のCu含有量(γ2 %)
を差し引いた値を0.2 %以上(γ1 −γ2 ≧0.2 %)と
することにより充分な耐食性が達成できる。
The Cu content in the core material is determined by the C content in the brazing material.
When the content is higher than the u content, the potential of the core material is more noble than that of the brazing material, so the brazing material layer on the surface of the aluminum alloy cladding material exhibits a sacrificial anode effect on the core material, and the corrosion resistance of the aluminum alloy cladding material Improve. The greater the difference between the Cu content in the core material and the Cu content in the brazing material, the greater the potential difference and the better the corrosion resistance of the aluminum alloy clad material. Core material C
From the u content (γ 1 %) to the Cu content of the brazing material (γ 2 %)
By setting the value obtained by subtracting the above value to 0.2% or more (γ 1 −γ 2 ≧ 0.2%), sufficient corrosion resistance can be achieved.

【0025】ろう材中のZnは、ろう材中に添加するこ
とにより、ろう材の電位を卑にし、芯材に対してろう材
に犠牲陽極効果を与え、アルミ合金クラッド材の耐食性
を向上させる。Znの好ましい含有範囲は、0.3 %〜4.
0 %であり、0.3 %未満ではその効果が小さく、4.0 %
を越えて含有すると、アルミ合金クラッド材のろう材部
の腐食消耗が著しく、ろう材部の犠牲陽極効果が長期に
持続されず、加えてろう付け接合部の自己耐食性が劣化
する。
By adding Zn in the brazing material to the brazing material, it lowers the potential of the brazing material, gives a sacrificial anode effect to the brazing material with respect to the core material, and improves the corrosion resistance of the aluminum alloy clad material. . The preferred range of Zn is 0.3% to 4.
0%, the effect is small at less than 0.3%, 4.0%
If the content exceeds the above range, the brazing portion of the aluminum alloy clad material is significantly corroded and consumed, the sacrificial anode effect of the brazing portion is not maintained for a long time, and the self-corrosion resistance of the brazed joint is deteriorated.

【0026】ろう材中のIn及びSnは、ろう材中に添
加することにより、ろう材の電位を卑にし、芯材に対し
てろう材に犠牲陽極効果を与え、アルミ合金クラッド材
の耐食性を向上させる。In及びSnの好ましい含有範
囲は、0.005 %〜0.1 %及び0.01%〜0.1 %であり、い
ずれもその下限値未満ではその効果が小さく、それぞれ
の上限値を越えて含有すると、アルミ合金クラッド材の
ろう材部の腐食消耗が著しく、ろう材部の犠牲陽極効果
が長期に持続されず、加えてろう付け接合部の自己耐食
性が劣化する。
By adding In and Sn in the brazing material, the potential of the brazing material is made low by adding the brazing material, a sacrificial anode effect is given to the brazing material with respect to the core material, and the corrosion resistance of the aluminum alloy clad material is improved. Improve. The preferred content ranges of In and Sn are 0.005% to 0.1% and 0.01% to 0.1%. The effect is small when the content is less than the lower limit, and when the content exceeds the respective upper limit, the content of the aluminum alloy clad material is reduced. Corrosion wear of the brazing material is remarkable, so that the sacrificial anode effect of the brazing material is not maintained for a long period of time, and in addition, the self-corrosion resistance of the brazing joint deteriorates.

【0027】なお、ろう材中の他の元素として、ろう付
け性を改善するために、例えば、0.1 %以下のBe、S
r、Li、Naのうち1種あるいは2種以上を含有させ
ても良い。また、Mn、Ti、Cr、Zr、Ni等の元
素は、ろう材の強度を向上させる目的で、本発明の効果
を損なわない範囲でろう材中に少量含有させることがで
きる。但し、これらの元素の含有量が多くなると、ろう
材の自己耐食性が低下するから、これらの含有元素の総
量は1%以下に抑えるのが良い。
In addition, as another element in the brazing material, for example, 0.1% or less of Be, S
One, two or more of r, Li and Na may be contained. In addition, elements such as Mn, Ti, Cr, Zr, and Ni can be contained in a small amount in the brazing material within a range that does not impair the effects of the present invention, for the purpose of improving the strength of the brazing material. However, if the content of these elements increases, the self-corrosion resistance of the brazing filler metal decreases, so the total content of these elements is preferably suppressed to 1% or less.

【0028】本発明の耐食性および強度に優れた熱交換
器用アルミニウム合金クラッド材は、芯材およびろう材
を構成するアルミニウム合金を、例えば、連続鋳造によ
り造塊し、均質化処理し、または均質化処理した後、所
定厚さまで熱間圧延し、ついで、各材料を組合わせ、常
法に従って、熱間圧延によりクラッド材とし、最終的に
所定厚さまで冷間圧延した後、最終的に焼鈍を行う工程
を経て、製造される。
The aluminum alloy clad material for a heat exchanger according to the present invention, which is excellent in corrosion resistance and strength, is obtained by subjecting an aluminum alloy constituting a core material and a brazing material to, for example, ingot by continuous casting, homogenizing treatment, or homogenizing. After the treatment, hot-rolled to a predetermined thickness, then combine the materials, according to a conventional method, hot-rolled into a clad material, finally cold-rolled to a predetermined thickness, and finally annealing It is manufactured through a process.

【0029】本発明のアルミ合金クラッド材を、例えば
ドロンカップ型エバポレータの構成部材として使用する
には、図1、2に示すように、アルミ合金クラッド材を
プレス成形してコアプレート2、3を得てこれらを積層
して、コアプレート2、3の外側にアルミニウム合金製
フィン4をろう付け接合してドロンカップ型エバポレー
タ1を組立てる。ラジエータ、コンデンサなどのタンク
材とするには、アルミ合金クラッド材をタンク形状にプ
レス成形し、ろう付け接合する。双方のろう付け接合に
は、フッ化物系のフラックスを用いる不活性ガス雰囲気
ろう付け、または真空ろう付けを適用するのが好まし
い。
In order to use the aluminum alloy clad material of the present invention as a constituent member of, for example, a drone cup type evaporator, as shown in FIGS. Then, these are laminated, and a fin 4 made of aluminum alloy is brazed to the outside of the core plates 2 and 3 to assemble the drone cup type evaporator 1. To form a tank material such as a radiator or a capacitor, an aluminum alloy clad material is press-formed into a tank shape and brazed. It is preferable to apply an inert gas atmosphere brazing using a fluoride-based flux or a vacuum brazing to both brazing joints.

【0030】[0030]

【実施例】実施例1 連続鋳造により、表1に示す組成(芯材No.1〜6に
示す組成)を有する芯材用アルミニウム合金、及び表2
に示す組成(ろう材No.A、B、C、D、E、F、G
に示す組成)を有するろう材用アルミニウム合金を造塊
し、芯材用アルミニウム合金については均質化処理後、
厚さ21mmに面削して芯材用素材とし、ろう材用アル
ミニウム合金については面削後熱間圧延して厚さ4.5
mmのろう材とした後、芯材の両面にろう材を重ね合わ
せ、熱間圧延を行って厚さ3mmのアルミ合金クラッド
材を得た。その後冷間圧延を行い、最終焼鈍を行って厚
さ0.6mmのアルミ合金クラッド材の軟質板(調質
0)を作製した(クラッド材No.1〜16)。なお、
ろう材AはJIS 4N04相当品、ろう材EはJIS
4045相当品である。
Example 1 An aluminum alloy for a core material having a composition shown in Table 1 (compositions shown in core materials Nos. 1 to 6) by continuous casting, and Table 2
(Braze No. A, B, C, D, E, F, G
The aluminum alloy for the brazing material having the composition shown in the following) is ingoted, and the aluminum alloy for the core material is homogenized,
The material for the core material was cut to a thickness of 21 mm, and the aluminum alloy for the brazing material was hot-rolled after the surface cutting to a thickness of 4.5.
After a brazing material having a thickness of 3 mm, the brazing material was superimposed on both sides of the core material and hot-rolled to obtain an aluminum alloy clad material having a thickness of 3 mm. Thereafter, cold rolling was performed and final annealing was performed to produce a 0.6 mm-thick aluminum alloy clad soft plate (temper 0) (cladding materials Nos. 1 to 16). In addition,
Brazing material A is JIS 4N04 equivalent, brazing material E is JIS
It is equivalent to 4045.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】上記により得られたアルミ合金クラッド材
(クラッド材No.1〜16)について、以下の方法に
従って、(1)成形加工性、(2)ろう付け後の強度、
(3)耐食性、(4)ろう付け性を評価した。評価結果
を表3に示す。 (1)成形加工性 上記アルミ合金クラッド材について引張試験を行い伸び
率(%)を測定した。この試験で伸び率20%以下を成
形加工性が不充分と評価した。すなわち、通常のドロン
カップ型エバポレータ用のコアプレート材のプレス成形
加工では素材の伸び率が20%以下の場合に加工時の割
れが生じ易いためである。
With respect to the aluminum alloy clad material (cladded materials No. 1 to 16) obtained as described above, (1) formability, (2) strength after brazing,
(3) Corrosion resistance and (4) Brazing property were evaluated. Table 3 shows the evaluation results. (1) Formability The aluminum alloy clad material was subjected to a tensile test to measure the elongation (%). In this test, an elongation of 20% or less was evaluated as insufficient moldability. That is, in the normal press forming of a core plate material for a drone cup type evaporator, when the elongation of the material is 20% or less, cracks are likely to occur during the processing.

【0034】(2)ろう付け後の強度 アルミ合金クラッド材についてろう付け条件と同じ条件
で加熱した後、冷却し、引張試験を行った。すなわち、
真空ろう付け加熱処理法(VB)については、真空中
(5×10-5Torr以下)で600℃(材料温度)で3分
間加熱し、また、フッ化物系フラックスろう付け加熱処
理法(NB)については、アルミ合金クラッド材にフッ
化物系フラックス(濃度3%)を塗布し、窒素ガス雰囲
気中において600℃(材料温度)で3分間加熱した
後、冷却し、それぞれの試験材について引張試験を行
い、引張強さ(MPa )を測定した。
(2) Strength after brazing The aluminum alloy clad material was heated under the same conditions as the brazing conditions, cooled, and then subjected to a tensile test. That is,
Regarding the vacuum brazing heat treatment method (VB), it is heated at 600 ° C. (material temperature) for 3 minutes in a vacuum (5 × 10 −5 Torr or less), and the fluoride flux brazing heat treatment method (NB) As for the method, a fluoride-based flux (concentration: 3%) is applied to an aluminum alloy clad material, heated at 600 ° C. (material temperature) in a nitrogen gas atmosphere for 3 minutes, cooled, and subjected to a tensile test for each test material. Then, the tensile strength (MPa) was measured.

【0035】(3)耐食性 VB法及びNB法でそれぞれ得られたアルミ合金クラッ
ド材について、CASS試験をJIS H8681に基
づいて1か月間実施し、アルミ合金クラッド材の最大腐
食深さ(mm)を測定した。
(3) Corrosion resistance A CASS test was performed for one month based on JIS H8681 for the aluminum alloy clad material obtained by the VB method and the NB method, respectively, and the maximum corrosion depth (mm) of the aluminum alloy clad material was determined. It was measured.

【0036】(4)ろう付け性 ろう付け性の評価は、目視により、局部溶融が見られ
ず、ろう付け性が良好なものを○とし、局部溶融が発生
し、ろう付け性が不良なものを×とした。
(4) Brazing properties The brazing properties were evaluated as follows: o, no local melting was observed by visual inspection and brazing properties were good, and local melting occurred and brazing properties were poor. Is indicated by x.

【0037】[0037]

【表3】 [Table 3]

【0038】表3にみられるように、本発明の条件を満
たす実施例(クラッド材No.1〜16)は、いずれも
伸び率が23〜27%と大きく、成形加工性が良好であ
ることを示す。ろう付け後の強度は、いずれも125〜
175MPa の優れた強度を示した。耐食性は、CAS
S試験後の最大腐食深さが0.14〜0.28mmであ
り、良好な耐食性を示した。ろう付けにおいても局部溶
融が認められず、良好なろう付け性を示した。また、こ
の実施例の試験材はいずれも、製造上問題が生じること
なく製造性が優れていた。
As can be seen from Table 3, the examples satisfying the conditions of the present invention (cladding materials Nos. 1 to 16) all have a large elongation of 23 to 27% and good moldability. Is shown. The strength after brazing is 125-
It exhibited excellent strength of 175 MPa. Corrosion resistance is CAS
The maximum corrosion depth after the S test was 0.14 to 0.28 mm, indicating good corrosion resistance. No local melting was observed during brazing, indicating good brazing properties. In addition, all of the test materials of this example were excellent in manufacturability without causing a problem in manufacturing.

【0039】比較例1 連続鋳造により、表1に示す組成(芯材No.7〜14
に示す組成)を有する芯材用アルミニウム合金、及び表
2に示す組成(ろう材No.X、Y)に示す組成)を有
するろう材用アルミニウム合金を造塊し、上記実施例1
と同一工程により厚さ0.6mmのアルミ合金クラッド
材の軟質板(調質0)を作製した(クラッド材No.1
7〜28)。なお、芯材14はJIS A3003相当
品である。
Comparative Example 1 The compositions (core materials Nos. 7-14) shown in Table 1 were obtained by continuous casting.
An aluminum alloy for a core material having the composition shown in Table 2) and an aluminum alloy for a brazing material having the composition shown in Table 2 (composition shown in the brazing material Nos. X and Y) were ingots.
A soft plate of aluminum alloy clad material (temper 0) having a thickness of 0.6 mm was produced by the same process as that of (clad material No. 1).
7-28). The core 14 is equivalent to JIS A3003.

【0040】得られたアルミ合金クラッド材(クラッド
材No.17〜28)について、上記実施例1と全く同
じ方法に従って、(1)成形加工性、(2)ろう付け後
の強度、(3)耐食性、(4)ろう付け性を測定し、評
価した。評価結果を表4に示す。
The obtained aluminum alloy clad material (cladding materials Nos. 17 to 28) was used in exactly the same manner as in Example 1 to (1) formability, (2) strength after brazing, and (3) Corrosion resistance and (4) brazing properties were measured and evaluated. Table 4 shows the evaluation results.

【0041】[0041]

【表4】 [Table 4]

【0042】表4に示すように、本発明の条件を満たさ
ない比較例1(クラッド材No17〜28)は、いずれ
もアルミ合金クラッド材として必要な性能を有していな
い。すなわち、クラッド材No.17は、芯材のCuの
含有量が少ないため、引張強さが低く、CASS試験後
の最大腐食深さが深く耐食性が劣る。クラッド材No.
18は、芯材のCuの含有量が多いため、伸びが少なく
成形加工性が不充分で、ろう付け時の加熱で局部溶融が
生じた。
As shown in Table 4, Comparative Example 1 (cladding materials Nos. 17 to 28), which does not satisfy the conditions of the present invention, does not have the required performance as an aluminum alloy cladding material. That is, the clad material No. In No. 17, the Cu content of the core material is small, so the tensile strength is low, the maximum corrosion depth after the CASS test is large, and the corrosion resistance is poor. Cladding material No.
Sample No. 18 had a low elongation due to a high Cu content in the core material, resulting in insufficient moldability, and caused local melting by heating during brazing.

【0043】クラッド材No.19及び20は、芯材の
Si及びFeの含有量が多いため、耐食性に劣り、CA
SS試験で貫通孔が生じた。クラッド材No.21は、
芯材のTiの含有量が少ないため、耐食性に劣り、CA
SS試験で貫通孔が生じた。クラッド材No.22は、
芯材のTiの含有量が多いため、圧延が困難となり製造
が難しい。クラッド材No.23は、芯材のMgの含有
量が多いため、伸びが少なく成形加工性が不充分で、ろ
う付け時の加熱で局部溶融が生じた。
Clad material No. 19 and 20 are inferior in corrosion resistance due to high content of Si and Fe in the core material, and CA
A through hole was formed in the SS test. Cladding material No. 21 is
Poor corrosion resistance due to low content of Ti in core material, CA
A through hole was formed in the SS test. Cladding material No. 22 is
Since the content of Ti in the core material is large, rolling is difficult and manufacturing is difficult. Cladding material No. In No. 23, since the content of Mg in the core material was large, the elongation was small and the moldability was insufficient, and local melting occurred by heating during brazing.

【0044】クラッド材No.24は、芯材がJIS
A3003合金材に相当し、芯材のCuの含有量が少な
いため、引張強さが低く、また、芯材のTiの含有量が
少なく、更に芯材のSi及びFeの含有量が多いため、
耐食性に劣り、CASS試験で貫通孔が生じた。クラッ
ド材No.25及び27は、それぞれの芯材のCuの含
有率と、ろう材のCuの含有率との差が0.07%と小
さいため、アルミ合金クラッド材としての耐食性が劣
り、CASS試験で貫通孔が生じた。クラッド材No.
26及び28は、それぞれの芯材のCuの含有量が多い
ため、圧延が困難となり製造が難しい。
Clad material No. 24 is JIS core
Corresponding to A3003 alloy material, the core material has a low Cu content, so the tensile strength is low, the core material has a low Ti content, and the core material has a high Si and Fe content.
Poor corrosion resistance, and a through hole was formed in the CASS test. Cladding material No. In Nos. 25 and 27, since the difference between the Cu content of the core material and the Cu content of the brazing material was as small as 0.07%, the corrosion resistance as an aluminum alloy clad material was inferior. Occurred. Cladding material No.
In Nos. 26 and 28, since the content of Cu in each core material is large, rolling is difficult and manufacturing is difficult.

【0045】実施例2 連続鋳造により、表5に示す組成(芯材No.1〜6に
示す組成)を有する芯材用アルミニウム合金、及び表6
に示す組成(ろう材No.A、B、C、D、E、F、
G、Hに示す組成)を有するろう材用アルミニウム合金
をそれぞれ造塊し、芯材用アルミニウム合金については
均質化処理を行い、表面切削して厚さ21mmの芯材と
し、ろう材用アルミニウム合金については熱間圧延して
厚さ4.5mmのろう材とした後、芯材の両面にろう材
を重ね合わせ、熱間圧延を行って厚さ3mmのアルミ合
金クラッド材を得た。その後冷間圧延を行い、最終焼鈍
を行って厚さ0.5mmのアルミ合金クラッド材の軟質
板(調質0)を作製した(クラッド材No.1〜2
0)。
Example 2 By continuous casting, an aluminum alloy for a core having the composition shown in Table 5 (the composition shown in Core Nos. 1 to 6), and
(Braze material No. A, B, C, D, E, F,
Aluminum alloys for brazing alloys having the compositions shown in Tables G and H) were respectively ingoted, and the aluminum alloy for the core material was homogenized, and the surface was cut into a core material having a thickness of 21 mm. Was hot-rolled to obtain a brazing material having a thickness of 4.5 mm, and then the brazing material was superimposed on both sides of the core material and hot-rolled to obtain an aluminum alloy clad material having a thickness of 3 mm. Thereafter, cold rolling was performed and final annealing was performed to prepare a 0.5 mm thick aluminum alloy clad soft plate (temper 0) (cladding materials Nos. 1 and 2).
0).

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【表6】 [Table 6]

【0048】上記により得られたアルミ合金クラッド材
(クラッド材No.1〜20)について、実施例1と同
じ方法に従って、(1)成形加工性、(2)ろう付け後
の強度、(3)耐食性、(4)ろう付け性を評価した。
評価結果を表7に示す。
The aluminum alloy clad materials (cladding materials Nos. 1 to 20) obtained as described above were prepared according to the same method as in Example 1, (1) formability, (2) strength after brazing, and (3) The corrosion resistance and (4) brazing properties were evaluated.
Table 7 shows the evaluation results.

【0049】[0049]

【表7】 [Table 7]

【0050】表7にみられるように、本発明の条件を満
たす実施例2(クラッド材No.1〜20)は、いずれ
も伸び率が25%以上と大きく、成形加工性が良好であ
ることを示す。ろう付け後の強度は、いずれも125M
Pa 以上の優れた強度を示した。耐食性は、CASS試
験後の最大腐食深さが0.10mm〜0.16mmと浅
く、優れていることを示した。ろう付けにおいては、い
ずれも局部溶融が見られず、ろう付け性が良好であっ
た。また、実施例2では、いずれの素材も製造性は良好
で、製造上問題が生じることはなかった。
As can be seen from Table 7, Examples 2 (cladding materials Nos. 1 to 20) satisfying the conditions of the present invention have a large elongation of 25% or more and good moldability. Is shown. The strength after brazing is 125M
It exhibited excellent strength of Pa or more. As for the corrosion resistance, the maximum corrosion depth after the CASS test was as shallow as 0.10 mm to 0.16 mm, indicating that it was excellent. In the brazing, no local melting was observed, and the brazing properties were good. Further, in Example 2, all the materials had good manufacturability, and there was no problem in manufacturing.

【0051】比較例2 連続鋳造により、表5に示す組成(芯材No.7〜14
に示す組成)を有する芯材用アルミニウム合金及び、表
6に示す組成〔ろう材No.S、T、U、V、X、Yに
示す組成〕を有するろう材用アルミニウム合金を造塊
し、上記実施例2と同一工程により厚さ0.5mmのア
ルミ合金クラッド材の軟質板(調質0)を作製した(ク
ラッド材No.21〜34)。なお、芯材14はJIS
A3003相当品、ろう材SはJIS 4N04相当
品、ろう材TはJIS 4045相当品である。
Comparative Example 2 The compositions (core materials Nos. 7-14) shown in Table 5 were obtained by continuous casting.
And a composition shown in Table 6 [brazing material No. S, T, U, V, X, and Y) were ingoted into an aluminum alloy for brazing material, and the same process as in Example 2 was performed to form a 0.5 mm-thick aluminum alloy clad soft plate (not shown). Quality 0) was produced (cladding materials Nos. 21 to 34). The core 14 is made of JIS
A3003 equivalent product, brazing material S is JIS 4N04 equivalent product, and brazing material T is JIS 4045 equivalent product.

【0052】得られたアルミ合金クラッド材(クラッド
材No.21〜34)について、上記実施例2と全く同
じ方法に従って、(1)成形加工性、(2)ろう付け後
の強度、(3)耐食性、(4)ろう付け性を測定し、評
価した。評価結果を表8に示す。
The obtained aluminum alloy clad material (clad material Nos. 21 to 34) was subjected to exactly the same method as in Example 2 above, (1) formability, (2) strength after brazing, and (3) Corrosion resistance and (4) brazing properties were measured and evaluated. Table 8 shows the evaluation results.

【0053】[0053]

【表8】 注 #印は、ろう材の腐食消耗が大であることを示す。[Table 8] Note: The # mark indicates that the corrosion consumption of the brazing material is large.

【0054】表8に示すように、本発明の条件を満たさ
ない比較例2(クラッド材No21〜34)は、いずれ
もアルミ合金クラッド材として必要な性能を有していな
い。すなわち、クラッド材No.21は、芯材のCuの
含有量が少ないため、引張強さが低く、CASS試験後
の最大腐食深さが深く耐食性が劣る。クラッド材No.
22は、芯材のCuの含有量が多いため、伸びが少なく
成形加工性が不充分で、ろう付け時の加熱で局部溶融が
生じた。クラッド材No.23及び24は、それぞれの
芯材のSi及びFeの含有量が多いため、耐食性に劣
り、CASS試験で貫通孔が生じた。
As shown in Table 8, Comparative Example 2 which does not satisfy the conditions of the present invention (cladding materials Nos. 21 to 34) does not have the required performance as an aluminum alloy cladding material. That is, the clad material No. Sample No. 21 has a low tensile strength due to a low content of Cu in the core material, has a large maximum corrosion depth after the CASS test, and is inferior in corrosion resistance. Cladding material No.
Sample No. 22 had a high Cu content in the core material, and therefore had low elongation and poor moldability, and caused local melting by heating during brazing. Cladding material No. Samples Nos. 23 and 24 were inferior in corrosion resistance due to the high content of Si and Fe in their respective core materials, and formed through holes in the CASS test.

【0055】クラッド材No.25は、芯材のTiの含
有量が少ないため、耐食性に劣り、CASS試験で貫通
孔が生じた。クラッド材No.26は、芯材のTiの含
有量が多いため、圧延が困難となり製造が難しい。クラ
ッド材No.27は、芯材のMgの含有量が多いため、
伸びが少なく成形加工性が不充分で、ろう付け時の加熱
で局部溶融が生じた。クラッド材No.28は、芯材が
JIS A3003合金材に相当し、芯材のCuの含有
量が少ないため、引張強さが低く、また、芯材のTiの
含有量が少なく、更に芯材のSi及びFeの含有量が多
いため、耐食性に劣り、CASS試験で貫通孔が生じ
た。
Clad material No. In No. 25, since the content of Ti in the core material was small, the corrosion resistance was poor, and a through hole was formed in the CASS test. Cladding material No. In No. 26, since the core material contains a large amount of Ti, rolling is difficult and manufacturing is difficult. Cladding material No. 27 has a high Mg content in the core material,
Elongation was small and molding workability was insufficient, and local melting occurred by heating during brazing. Cladding material No. In No. 28, the core material corresponds to the JIS A3003 alloy material, and since the Cu content of the core material is small, the tensile strength is low, the Ti content of the core material is small, and the Si and Fe of the core material are further reduced. , The corrosion resistance was poor, and a through hole was formed in the CASS test.

【0056】クラッド材No.29及び32は、ろう材
にZn、In、Snの含有量が少ないため、ろう材部分
の犠牲陽極効果が不充分となり、CASS試験後の最大
腐食深さが実施例2に比べて深く、耐食性が劣る。クラ
ッド材No.30、31、33及び34は、それぞれの
ろう材のZn、In、Snの含有量が多いため、クラッ
ド材のろう材部分の腐食消耗が著しく、ろう材部分の犠
牲陽極効果が長期に持続出来ず、CASS試験後の最大
腐食深さが実施例2に比べて深く、耐食性が劣る。
Clad material No. In Nos. 29 and 32, since the content of Zn, In, and Sn in the brazing material was small, the sacrificial anode effect of the brazing material portion was insufficient, the maximum corrosion depth after the CASS test was deeper than that in Example 2, and the corrosion resistance was low. Is inferior. Cladding material No. In Nos. 30, 31, 33 and 34, each of the brazing materials has a large content of Zn, In, and Sn, so that the brazing material portion of the clad material is significantly corroded and consumed, and the sacrificial anode effect of the brazing material portion can be maintained for a long time. However, the maximum corrosion depth after the CASS test was deeper than in Example 2, and the corrosion resistance was poor.

【0057】[0057]

【発明の効果】本発明によれば、Cu、Mgの含有量の
組み合わせを調整をすることにり、ろう付け前の素材の
伸びを大きくして、成形加工性を確保すると共に、ろう
付け後の強度特性を高め、Si、Feの含有を制限し、
Tiを含有させて芯材の自己耐食性を向上させ、更に、
ろう材へのZn、In、Snの添加量を調整することに
より、ろう材に犠牲陽極効果を充分に発揮させて、クラ
ッド材の耐食性を向上させ、特に耐食性及びろう付け性
に優れ、ろう付け前の成形加工性にすぐれかつろう付け
後の強度が高い、耐食性および強度に優れた熱交換器用
アルミニウム合金クラッド材が提供される。当該熱交換
器用アルミニウム合金クラッド材を使用することによ
り、作動流体通路材の薄肉化が可能となり、エバポレー
タ、ラジエータ、コンデンサ等、アルミニウム製熱交換
器の軽量化、長寿命化が達成される。
According to the present invention, by adjusting the combination of the contents of Cu and Mg, the elongation of the material before brazing is increased, and the formability is ensured. To improve the strength characteristics of the steel, restrict the content of Si and Fe,
The inclusion of Ti improves the self-corrosion resistance of the core material.
By adjusting the amount of Zn, In, and Sn added to the brazing material, the sacrificial anode effect is sufficiently exerted on the brazing material, and the corrosion resistance of the clad material is improved. In particular, the brazing material has excellent corrosion resistance and brazing properties. Provided is an aluminum alloy clad material for a heat exchanger, which has excellent formability before forming, has high strength after brazing, and has excellent corrosion resistance and strength. By using the aluminum alloy clad material for a heat exchanger, the thickness of the working fluid passage material can be reduced, and the weight and the life of an aluminum heat exchanger such as an evaporator, a radiator, and a condenser can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の熱交換器用アルミニウム合
金クラッド材を適用出来るドロンカップ型エバポレータ
の斜視図である。
FIG. 1 is a perspective view of a drone cup type evaporator to which an aluminum alloy clad material for a heat exchanger according to an embodiment of the present invention can be applied.

【図2】図1の正面図である。FIG. 2 is a front view of FIG.

【符号の説明】[Explanation of symbols]

1 ドロンカップ型エバポレータ 2、3 コアプレート 4 アルミニウム合金製フィン 5 作動流体通路 DESCRIPTION OF SYMBOLS 1 Drone cup type evaporator 2, 3 Core plate 4 Aluminum alloy fin 5 Working fluid passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 21/00 C22C 21/00 D F28F 21/08 F28F 21/08 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 21/00 C22C 21/00 D F28F 21/08 F28F 21/08 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 芯材の片面または両面にろう材をクラッ
ドしたアルミニウム合金クラッド材であって、前記芯材
は、Cu:0.6%(重量%、以下同じ)を越え1.2 %以
下、Si:0.2%以下、Fe:0.3%以下、Ti:0.06 %〜
0.35%を含有し、残部Al及び不純物からなるアルミニ
ウム合金で構成され、前記ろう材は、Al−Si系アル
ミニウム合金から構成されていることを特徴とする耐食
性および強度に優れた熱交換器用アルミニウム合金クラ
ッド材。
1. An aluminum alloy clad material in which a brazing material is clad on one or both surfaces of a core material, wherein the core material has a Cu content of more than 0.6% (weight%, the same applies hereinafter), a content of 1.2% or less, and a Si content of 0.2% or less. % Or less, Fe: 0.3% or less, Ti: 0.06% or more
An aluminum alloy for a heat exchanger having excellent corrosion resistance and strength, characterized by comprising an aluminum alloy containing 0.35% and the balance being Al and impurities, wherein the brazing material is constituted by an Al-Si-based aluminum alloy. Clad material.
【請求項2】 ろう材が、Cu:0.06 %〜1.0 %を含有
し、且つ芯材のCu含有量(γ1 %)からろう材のCu
含有量(γ2 %)を差し引いた値が0.2 %以上(γ1
γ2 ≧0.2 %)であるAl−Si系アルミニウム合金か
ら構成されていることを特徴とする請求項1記載の耐食
性および強度に優れた熱交換器用アルミニウム合金クラ
ッド材。
2. The brazing filler metal contains Cu: 0.06% to 1.0%, and the Cu content of the brazing filler metal (γ 1 %)
The value obtained by subtracting the content (γ 2 %) is 0.2% or more (γ 1
2. The aluminum alloy clad material for a heat exchanger according to claim 1, wherein the aluminum alloy clad material is made of an Al-Si-based aluminum alloy satisfying? 2 ? 0.2%).
【請求項3】 ろう材が、さらにZn:0.3%〜4.0 %、
In:0.005%〜0.1%及びSn:0.01 %〜0.1 %のう
ち、少なくとも1種類以上含有しているAl−Si系ア
ルミニウム合金から構成されていることを特徴とする請
求項1記載の耐食性および強度に優れた熱交換器用アル
ミニウム合金クラッド材。
3. The brazing material further comprises Zn: 0.3% to 4.0%,
2. The corrosion resistance and strength according to claim 1, wherein the alloy is made of an Al-Si-based aluminum alloy containing at least one of In: 0.005% to 0.1% and Sn: 0.01% to 0.1%. Excellent aluminum alloy clad material for heat exchangers.
【請求項4】 芯材の片面または両面にろう材をクラッ
ドしたアルミニウム合金クラッド材であって、前記芯材
は、Cu:0.6%を越え1.2 %以下、Si:0.2%以下、F
e:0.3%以下、Ti:0.06 %〜0.35%、Mg:0.06 %〜
0.5 %を含有し、残部Al及び不純物からなるアルミニ
ウム合金で構成され、前記ろう材は、Al−Si系アル
ミニウム合金から構成されていることを特徴とする耐食
性および強度に優れた熱交換器用アルミニウム合金クラ
ッド材。
4. An aluminum alloy clad material in which a brazing material is clad on one or both surfaces of a core material, wherein the core material has a Cu content of more than 0.6% to 1.2% or less, a Si content of 0.2% or less,
e: 0.3% or less, Ti: 0.06% to 0.35%, Mg: 0.06% to
An aluminum alloy for a heat exchanger having an excellent corrosion resistance and strength, characterized by being composed of an aluminum alloy containing 0.5% and the balance being Al and impurities, wherein the brazing material is composed of an Al-Si-based aluminum alloy. Clad material.
【請求項5】 ろう材が、Cu:0.06 %〜1.0 %を含有
し、且つ芯材のCu含有量(γ1 %)からろう材のCu
含有量(γ2 %)を差し引いた値が0.2 %以上(γ1
γ2 ≧0.2 %)であるAl−Si系アルミニウム合金か
ら構成されていることを特徴とする請求項4記載の耐食
性および強度に優れた熱交換器用アルミニウム合金クラ
ッド材。
5. The brazing material contains Cu: 0.06% to 1.0%, and the Cu content of the core material (γ 1 %)
The value obtained by subtracting the content (γ 2 %) is 0.2% or more (γ 1
The aluminum alloy clad material for a heat exchanger having excellent corrosion resistance and strength according to claim 4, wherein the aluminum alloy clad material is made of an Al-Si based aluminum alloy satisfying? 2 ? 0.2%).
【請求項6】 ろう材が、さらにZn:0.3%〜4.0 %、
In:0.005%〜0.1%及びSn:0.01 %〜0.1 %のう
ち、少なくとも1種類以上含有しているAl−Si系ア
ルミニウム合金から構成されていることを特徴とする請
求項4記載の耐食性および強度に優れた熱交換器用高強
度アルミニウム合金クラッド材。
6. The brazing material further comprises Zn: 0.3% to 4.0%,
The corrosion resistance and strength according to claim 4, characterized in that it is made of an Al-Si-based aluminum alloy containing at least one of In: 0.005% to 0.1% and Sn: 0.01% to 0.1%. High-strength aluminum alloy clad material for heat exchangers with excellent performance.
JP10312851A 1998-11-04 1998-11-04 Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength Pending JP2000141076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10312851A JP2000141076A (en) 1998-11-04 1998-11-04 Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10312851A JP2000141076A (en) 1998-11-04 1998-11-04 Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength

Publications (1)

Publication Number Publication Date
JP2000141076A true JP2000141076A (en) 2000-05-23

Family

ID=18034202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10312851A Pending JP2000141076A (en) 1998-11-04 1998-11-04 Aluminum alloy clad material for heat exchanger excellent in corrosion resistance and strength

Country Status (1)

Country Link
JP (1) JP2000141076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115570294A (en) * 2022-10-28 2023-01-06 沈阳大学 Welding wire for welding 7XXX aluminum alloy and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115570294A (en) * 2022-10-28 2023-01-06 沈阳大学 Welding wire for welding 7XXX aluminum alloy and preparation process thereof

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
CN109072357B (en) Heat exchanger comprising rolled aluminium alloy
JP5079198B2 (en) Aluminum brazing alloy
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
WO2015141193A1 (en) Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JPH11293372A (en) Aluminum alloy clad material for heat exchanger, having high strength and high corrosion resistance
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
CN110997958B (en) Aluminum alloy brazing sheet for heat exchanger
JP2000167688A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP5302114B2 (en) Aluminum alloy brazing sheet for vacuum brazing
US6361882B1 (en) High-strength aluminum alloy clad material for heat exchangers exhibiting excellent corrosion resistance
JP3222768B2 (en) Aluminum alloy clad material excellent in brazing property and method for producing the same
JP5184112B2 (en) Aluminum alloy clad material
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2004225061A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with built-in clad tube material
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JPH11264042A (en) Aluminum alloy brazing filler sheet for fluid passage
JP2017172025A (en) Aluminum alloy clad material for heat exchanger