JP2000138305A - Manufacture of container for semiconductor light- receiving element housing - Google Patents

Manufacture of container for semiconductor light- receiving element housing

Info

Publication number
JP2000138305A
JP2000138305A JP10309671A JP30967198A JP2000138305A JP 2000138305 A JP2000138305 A JP 2000138305A JP 10309671 A JP10309671 A JP 10309671A JP 30967198 A JP30967198 A JP 30967198A JP 2000138305 A JP2000138305 A JP 2000138305A
Authority
JP
Japan
Prior art keywords
semiconductor light
receiving element
ceramic substrate
light receiving
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10309671A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tabuchi
啓之 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10309671A priority Critical patent/JP2000138305A/en
Publication of JP2000138305A publication Critical patent/JP2000138305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily make compatible the dimensional accuracy of a semiconductor light-receiving element mounting surface and the heat dissipating property of a container for a semiconductor light-receiving element housing. SOLUTION: This manufacturing method, wherein a resin frame body which has almost the same external size as that of a rectangular-shape ceramic board 1, encircles a mounting surface 1a and at the same time, pinches a plurality of lead frames 3 on the sides of the long sides thereof, has a prescribed difference between thermal expansion coefficients and has a prescribed thickness, is bonded to the ceramic board 1, which has warpage of a prescribed accuracy in a prescribed thickness and has a mounting surface 1a on the upper surface thereof, with a bonding agent 4 consisting of an epoxy resin containing a prescribed amount of an acrylic rubber to obtain a container for semiconductor light-receiving element housing having the mounting surface 1a of planarity which is formed into a recessed form of 30 μm or smaller, in the long side direction thereof. A container for semiconductor light-receiving element housing, which has high dimensional accuracy of the mounting surface 1a and is high in reliability and also superior in heat dissipating properties can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファクシミリやイ
メージスキャナ等に使用される、長尺のラインセンサ用
CCD等の半導体受光素子を搭載収容する中空部を有す
る半導体受光素子収納用容器の製造方法に関し、特にセ
ラミック基板とリードフレームを一体化した樹脂枠体と
を接合して成る半導体受光素子収納用容器の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor light receiving element housing container having a hollow space for mounting a semiconductor light receiving element such as a CCD for a long line sensor used for a facsimile or an image scanner. More particularly, the present invention relates to a method for manufacturing a semiconductor light receiving element storage container formed by joining a ceramic substrate and a resin frame body in which a lead frame is integrated.

【0002】[0002]

【従来の技術】OA機器類のファクシミリやイメージス
キャナ等に使用されるラインセンサは、長尺のラインセ
ンサ用CCD(電荷結合素子)等の半導体受光素子を半
導体受光素子収納用容器に搭載収容することによって構
成されている。このような半導体受光素子収納用容器に
は、従来より、セラミック基板の上面に形成された凹部
に半導体受光素子の搭載部を有して成るセラミックパッ
ケージと呼ばれるものが用いられていた。そして、その
搭載部に半導体受光素子をダイボンドし、ボンディング
ワイヤ等による電気的配線を行なって、凹部の開口をガ
ラスまたはプラスチックスから成る透明窓を封着するこ
とによって、ラインセンサとして使用されていた。
2. Description of the Related Art A line sensor used for a facsimile or an image scanner of OA equipment includes a semiconductor light receiving element such as a long line sensor CCD (charge coupled device) mounted in a semiconductor light receiving element housing container. It is constituted by that. Conventionally, for such a semiconductor light receiving element storage container, a so-called ceramic package having a mounting portion for a semiconductor light receiving element in a concave portion formed on the upper surface of a ceramic substrate has been used. Then, the semiconductor light receiving element was die-bonded to the mounting portion, and electrical wiring was performed by a bonding wire or the like, and the opening of the concave portion was sealed with a transparent window made of glass or plastics, thereby being used as a line sensor. .

【0003】また、種々の仕様やコスト低減の要求に応
えるべく、透明窓を封着する代わりに透光性封止樹脂に
よるポッティングを行なうことや、セラミック基板に代
えて樹脂材料を用いたプラスチックパッケージと呼ばれ
るものを用いることが行なわれていた。
Further, in order to meet various specifications and demands for cost reduction, potting with a transparent sealing resin is performed instead of sealing a transparent window, and a plastic package using a resin material instead of a ceramic substrate is used. What was called was used.

【0004】さらに、特開平10−50970 号公報には、ガ
ラスから成るベースプレートに、リードを挟み込んだ形
状で一体成型した樹脂から成るフレームをベースプレー
トの上に搭載された電荷転送素子を囲むようにして接着
して成る固体撮像装置が提案されていた。
Further, Japanese Patent Application Laid-Open No. 10-50970 discloses that a frame made of resin integrally molded in a shape sandwiching leads is adhered to a base plate made of glass so as to surround a charge transfer element mounted on the base plate. There has been proposed a solid-state imaging device comprising:

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
セラミックパッケージでは、半導体受光素子収納用容器
を製作する際の焼成において寸法の収縮が起こるために
寸法精度を高めることが困難であり、半導体受光素子の
搭載面に例えば上に凸で50μm以上と大きな反りが発生
し、長尺の半導体受光素子を光学系に必要な精度で搭載
することが困難であるという問題点があった。また、セ
ラミック基板に複数のリードを固定するには、熱処理に
高温を有する封着用ガラスやろう材を用いるため、製造
工程において大量のエネルギーを消費することとなり、
セラミック原料が比較的高価なこととも併せてコスト低
減の要求に応えることが難しいという問題点もあった。
However, in the conventional ceramic package, it is difficult to increase the dimensional accuracy due to the shrinkage of the dimensions during firing when manufacturing the semiconductor light receiving element storage container. For example, there is a problem in that a large warpage of 50 μm or more is generated on the mounting surface, for example, upward, and it is difficult to mount a long semiconductor light receiving element to an optical system with required accuracy. Further, in order to fix a plurality of leads to a ceramic substrate, a large amount of energy is consumed in a manufacturing process because a sealing glass or a brazing material having a high temperature is used for heat treatment.
In addition to the fact that ceramic raw materials are relatively expensive, there is also a problem that it is difficult to meet the demand for cost reduction.

【0006】一方、従来のプラスチックパッケージで
は、成形の際に樹脂の収縮が発生し、この収縮量が大き
く、また収縮の状態を均一とすることが困難なため、同
様に半導体受光素子の搭載面に大きな反りが発生し、長
尺の半導体受光素子を光学系に必要な精度で搭載するこ
とが困難であるという問題点があった。また、容器を構
成する樹脂の熱伝導率が低いため、搭載された半導体受
光素子の動作時の発熱に対する熱放散が良好でなく、温
度上昇に伴って素子の特性劣化を招くという問題点もあ
った。
On the other hand, in a conventional plastic package, resin shrinks during molding, and the amount of shrinkage is large and it is difficult to make the state of shrinkage uniform. However, there is a problem that it is difficult to mount a long semiconductor light receiving element to an optical system with required accuracy. In addition, since the resin constituting the container has a low thermal conductivity, the mounted semiconductor light receiving element does not dissipate heat to the heat generated during the operation, and the characteristics of the element are deteriorated as the temperature rises. Was.

【0007】さらに、特開平10−50970 号公報に開示さ
れたガラスから成るベースプレートと、樹脂から成るフ
レームとから成る半導体受光素子収納用容器において
も、ガラスから成るベースプレートに半導体受光素子か
らの発熱が蓄積されるため、同様に温度上昇に伴って素
子の特性劣化を招くという問題点があった。
Further, in a semiconductor light receiving element storage container including a glass base plate and a resin frame disclosed in JP-A-10-50970, heat generated from the semiconductor light receiving element is generated in the glass base plate. Because of the accumulation, there is also a problem that the characteristics of the element are deteriorated as the temperature rises.

【0008】本発明はかかる従来技術の問題点に鑑み案
出されたものであり、その目的は、長尺の半導体受光素
子に対する搭載面の寸法精度が高く、しかも半導体受光
素子の発熱に対する放熱性が良好な半導体受光素子収納
用容器を得ることができる半導体受光素子収納用容器の
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to improve the dimensional accuracy of a mounting surface for a long semiconductor light receiving element and to dissipate heat generated by the semiconductor light receiving element. It is an object of the present invention to provide a method for manufacturing a semiconductor light-receiving element storage container that can obtain a semiconductor light-receiving element storage container with good performance.

【0009】[0009]

【課題を解決するための手段】本発明の半導体受光素子
収納用容器の製造方法は、長方形状のセラミック基板
と、このセラミック基板と略同じ外形寸法を有し、長辺
側に複数のリードフレームを挟持した樹脂枠体とを接着
剤により接合して成り、前記セラミック基板上面の前記
樹脂枠体に囲まれた領域に長辺方向の平坦度が30μm以
下の凹状となっている半導体受光素子の搭載面を有する
半導体受光素子収納用容器の製造方法であって、厚み
が1.5 〜3mmで、前記搭載面の長辺方向の両端間で平
坦度が20μm以下であり、かつ裏面の長辺方向の両端間
で30〜100 μmの凹状の反りを有している前記セラミッ
ク基板を準備する工程と、前記セラミック基板との熱
膨張係数差が0.3 〜0.7 ×10-5/℃であるエポキシ樹脂
により、前記セラミック基板と略同じ外形寸法を有し、
前記セラミック基板の上面に接合されて前記搭載面を囲
むとともに長辺側に複数のリードフレームを挟持した、
厚みが1〜3mmの樹脂枠体を準備する工程と、前記
セラミック基板の上面に、アクリル系ゴムを3〜36重量
%含有したエポキシ樹脂から成る接着剤により前記樹脂
枠体を接合する工程とを具備することを特徴とするもの
である。
According to the present invention, there is provided a method for manufacturing a semiconductor light-receiving element housing, comprising a rectangular ceramic substrate, a plurality of lead frames having substantially the same outer dimensions as the ceramic substrate, and a long side. The semiconductor light receiving element is formed by bonding an adhesive to a resin frame body sandwiching the resin frame, and has a flatness in a long side direction of 30 μm or less in a region surrounded by the resin frame body on the upper surface of the ceramic substrate. A method for manufacturing a semiconductor light receiving element storage container having a mounting surface, wherein the thickness is 1.5 to 3 mm, the flatness between both ends in the long side direction of the mounting surface is 20 μm or less, and the back surface has a long side direction. A step of preparing the ceramic substrate having a concave warpage of 30 to 100 μm between both ends, and an epoxy resin having a difference in thermal expansion coefficient from the ceramic substrate of 0.3 to 0.7 × 10 −5 / ° C. Approximately the same as the ceramic substrate It has outer dimensions,
A plurality of lead frames were joined to the upper surface of the ceramic substrate to surround the mounting surface and sandwich a plurality of lead frames on the long side.
A step of preparing a resin frame having a thickness of 1 to 3 mm, and a step of bonding the resin frame to an upper surface of the ceramic substrate with an adhesive made of an epoxy resin containing 3 to 36% by weight of an acrylic rubber. It is characterized by having.

【0010】本発明によれば、所定の寸法精度を有する
セラミック基板と、このセラミック基板と所定の熱膨張
係数差を有する、リードフレームを挟持して一体成形さ
れた樹脂枠体とを、アクリル系ゴムを所定量含有したエ
ポキシ樹脂から成る、適度な可撓性を有する接着剤によ
り接合することから、熱応力性に優れ、反りを低減させ
ることにより、半導体受光素子の搭載面の平坦度を30μ
m以下の凹状の良好なものとすることができ、長尺の半
導体受光素子を光学系に必要な精度で搭載することがで
きる半導体受光素子収納用容器を得ることができる。ま
た、接着剤がセラミック基板と樹脂枠体とを強固にかつ
適度な可撓性を有していることから、接合後に熱ストレ
スが印加されたとしてもセラミック基板から樹脂枠体が
剥離することはなく、信頼性の高い半導体受光素子収納
用容器となる。さらに、半導体受光素子が搭載される基
板としてセラミックスを用いることから、従来の樹脂や
ガラスによるものに比べて熱伝導率が高く熱放散性に優
れるものとすることができ、発熱による半導体受光素子
の特性劣化を抑制することができるとともに、半導体受
光素子の高集積化にも対応し得る半導体受光素子収納用
容器を得ることができる。
According to the present invention, an acryl-based ceramic substrate having a predetermined dimensional accuracy and a resin frame having a predetermined thermal expansion coefficient difference from the ceramic substrate and integrally formed by sandwiching a lead frame are provided. It is made of epoxy resin containing a predetermined amount of rubber, and is joined by an adhesive with moderate flexibility, so it has excellent thermal stress properties and reduces warpage, thereby reducing the flatness of the mounting surface of the semiconductor light receiving element by 30μ.
m or less, and a semiconductor light-receiving element storage container capable of mounting a long semiconductor light-receiving element in an optical system with required accuracy can be obtained. Further, since the adhesive has a strong and moderate flexibility between the ceramic substrate and the resin frame, even if a thermal stress is applied after joining, the resin frame does not peel off from the ceramic substrate. Thus, a highly reliable semiconductor light receiving element storage container can be obtained. Further, since ceramic is used as the substrate on which the semiconductor light receiving element is mounted, it can have high heat conductivity and excellent heat dissipation as compared with conventional ones made of resin or glass. It is possible to obtain a semiconductor light receiving element storage container that can suppress deterioration of characteristics and can cope with high integration of the semiconductor light receiving element.

【0011】また、本発明によれば、上記の製造方法に
おいて、前記樹脂枠体をその樹脂枠体が挟持した前記リ
ードフレームの上面から上側の厚みXが下側の厚みYに
対して0.8 Y≦X≦Yであるものとすることにより、搭
載面の寸法精度を30μm以下の凹状でより良好なものと
することができる。
Further, according to the present invention, in the above-mentioned manufacturing method, the thickness X of the upper side from the upper surface of the lead frame in which the resin frame is sandwiched is 0.8 Y with respect to the lower side Y. By setting ≦ X ≦ Y, the dimensional accuracy of the mounting surface can be made more favorable with a concave shape of 30 μm or less.

【0012】さらに、本発明によれば、上記の各製造方
法において、前記セラミック基板として酸化アルミニウ
ム質焼結体を用いることにより、搭載面の寸法精度が高
く、かつ封止の信頼性や熱放散性にも優れた半導体受光
素子収納用容器を得ることができる。
Further, according to the present invention, in each of the above-described manufacturing methods, by using an aluminum oxide sintered body as the ceramic substrate, the dimensional accuracy of the mounting surface is high, the sealing reliability and heat dissipation are improved. A container for housing a semiconductor light receiving element having excellent performance can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の半導体受光素子収
納用容器の製造方法について、図面を参照しつつ詳述す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a semiconductor light receiving element storage container according to the present invention will be described in detail with reference to the drawings.

【0014】図1は本発明に係る半導体受光素子収納用
容器の実施の形態の一例を示す短辺方向の断面図であ
り、図2はその斜視図である。
FIG. 1 is a cross-sectional view in the short side direction showing an example of an embodiment of a semiconductor light receiving element storage container according to the present invention, and FIG. 2 is a perspective view thereof.

【0015】図1および図2において、1は上面に長方
形状のセラミック基板、2はセラミック基板1と略同じ
外形寸法を有する樹脂枠体、3は樹脂枠体2の長辺側に
挟持された複数のリードフレーム、4はセラミック基板
1と樹脂枠体2とを接合する接着剤である。
In FIGS. 1 and 2, 1 is a ceramic substrate having a rectangular shape on the upper surface, 2 is a resin frame having substantially the same external dimensions as the ceramic substrate 1, and 3 is sandwiched between the long sides of the resin frame 2. The plurality of lead frames 4 are adhesives for joining the ceramic substrate 1 and the resin frame 2.

【0016】セラミック基板1は長方形状の板体から成
り、その上面の樹脂枠体2に囲まれた領域に長尺の半導
体受光素子(図示せず)の搭載面1aを有している。こ
の搭載面1aは、半導体受光素子収納用容器を構成した
状態で、長辺方向の平坦度が30μm以下の凹状となって
おり、これにより長尺のラインセンサ用CCD等の半導
体受光素子を光学系に対して必要な精度で搭載すること
ができ、搭載面の大きな反りから生じる光軸のずれ等の
ない正確な搭載を行なうことができる。
The ceramic substrate 1 is formed of a rectangular plate, and has a mounting surface 1a for a long semiconductor light receiving element (not shown) in a region surrounded by a resin frame 2 on the upper surface thereof. The mounting surface 1a is a concave shape having a flatness in the long side direction of 30 μm or less in a state where a semiconductor light receiving element storage container is formed, so that a long semiconductor light receiving element such as a CCD for a line sensor can be optically formed. The mounting can be performed with a required accuracy with respect to the system, and accurate mounting can be performed without any deviation of the optical axis caused by a large warpage of the mounting surface.

【0017】このセラミック基板1の長さおよび幅は、
搭載する半導体受光素子の寸法に応じて必要な搭載面1
aの面積を確保するために適宜設定されるが、通常は長
さが30〜60mm程度、幅が5〜15mm程度のものが用い
られる。そして、本発明においては、セラミック基板1
の厚みは1.5 〜3mmの範囲内のものとすることが重要
である。
The length and width of the ceramic substrate 1 are as follows:
Mounting surface 1 required according to the dimensions of the semiconductor light receiving element to be mounted
It is set as appropriate in order to secure the area of a, but usually a length of about 30 to 60 mm and a width of about 5 to 15 mm is used. In the present invention, the ceramic substrate 1
It is important that the thickness be in the range of 1.5 to 3 mm.

【0018】セラミック基板1の厚みが1.5 mm未満と
なると、セラミック基板1の強度が弱くなり過ぎて、樹
脂枠体2との接合によるクラック等の発生や半導体受光
素子を搭載した後の取扱いにおける割れの発生等の不具
合を生じやすい傾向がある。
If the thickness of the ceramic substrate 1 is less than 1.5 mm, the strength of the ceramic substrate 1 becomes too weak, causing cracks and the like due to bonding with the resin frame 2 and cracking during handling after mounting the semiconductor light receiving element. Tend to cause inconveniences such as occurrence of cracks.

【0019】一方、セラミック基板1の厚みが3mmを
超えると、セラミック基板1の強度が強くなり過ぎて、
樹脂枠体2との接合により逆方向の応力が生じ、半導体
受光素子の割れ等の不具合を生じやすい傾向がある。
On the other hand, if the thickness of the ceramic substrate 1 exceeds 3 mm, the strength of the ceramic substrate 1 becomes too strong.
The joint with the resin frame 2 generates a stress in the opposite direction, and tends to cause a problem such as cracking of the semiconductor light receiving element.

【0020】また、セラミック基板1上面の搭載面1a
の寸法は、半導体受光素子およびセラミック基板1の仕
様および寸法に応じて適宜設定されるが、通常は長さが
25〜55mm程度、幅が1〜3mm程度とされる。そし
て、半導体受光素子収納用容器における搭載面の平坦度
としては、長辺方向の平坦度が30μm以下、より好適に
は20μm以下の凹状とされる。これにより、長尺の半導
体受光素子を搭載した際に、搭載面1aの反りから生じ
る光軸のずれの問題をなくすことができ、半導体受光素
子を光学系に対して正確に配置することができる。
The mounting surface 1a on the upper surface of the ceramic substrate 1
Is set appropriately according to the specifications and dimensions of the semiconductor light receiving element and the ceramic substrate 1, but usually the length is
The width is about 25 to 55 mm and the width is about 1 to 3 mm. The flatness of the mounting surface in the semiconductor light-receiving element storage container is such that the flatness in the long side direction is 30 μm or less, more preferably 20 μm or less. Thus, when a long semiconductor light receiving element is mounted, it is possible to eliminate the problem of optical axis shift caused by warpage of the mounting surface 1a, and to accurately arrange the semiconductor light receiving element with respect to the optical system. .

【0021】このセラミック基板1は、樹脂枠体2との
接合前に、図3に長辺方向の断面図で、また図4に斜視
図で示すように、厚みtが1.5 〜3mmで、搭載面1a
の長辺方向の両端間Aで平坦度が20μm以下であり、か
つ、その裏面の長辺方向の両端間Bで30〜100 μmの凹
状の反りを有しているものとして準備する。
Before the ceramic substrate 1 is joined to the resin frame 2, the ceramic substrate 1 is mounted with a thickness t of 1.5 to 3 mm as shown in a sectional view in the long side direction in FIG. 3 and a perspective view in FIG. Surface 1a
It is prepared as having flatness of 20 μm or less between both ends A in the long side direction and having a concave warp of 30 to 100 μm between both ends B in the long side direction of the back surface.

【0022】搭載面1aの反りが長辺方向の両端間Aで
0μm以下であると、樹脂枠体2との接合後の搭載面1
aが所望の寸法範囲からはずれることとなって半導体受
光素子を良好に搭載できなくなる傾向がある。一方、長
辺方向の両端間Aで平坦度が20μmを超えると、樹脂枠
体2との接合後の搭載面1aの平坦度を30μm以下とす
ることができなくなる傾向がある。
If the warpage of the mounting surface 1 a is 0 μm or less between the both ends A in the long-side direction, the mounting surface 1 after bonding with the resin frame 2.
a deviates from the desired size range, and the semiconductor light receiving element tends to be unable to be mounted favorably. On the other hand, if the flatness between both ends A in the long side direction exceeds 20 μm, the flatness of the mounting surface 1 a after bonding with the resin frame 2 tends to be unable to be 30 μm or less.

【0023】また、セラミック基板1の裏面の反りが長
辺方向の両端間Bで30μm未満の凹状であると、樹脂枠
体2との接合後の搭載面1aの平坦度を30μm以下とす
ることができなくなる傾向がある。他方、長辺方向の両
端間Bで100 μmを超える凹状となると、セラミック基
板1の成形時にクラックの発生等の不具合が生じやすく
なる傾向がある。
When the back surface of the ceramic substrate 1 has a concave shape of less than 30 μm between both ends B in the long side direction, the flatness of the mounting surface 1 a after bonding with the resin frame 2 is set to 30 μm or less. Tend to be unable to do so. On the other hand, if a concave shape exceeding 100 μm is formed between both ends B in the long-side direction, problems such as cracks tend to easily occur during the molding of the ceramic substrate 1.

【0024】このような寸法精度のセラミック基板1
は、焼成後にセラミック基板1となる生成形体を得る際
の金型による精度の調整や研磨等により準備することが
できる。
The ceramic substrate 1 having such dimensional accuracy
Can be prepared by adjusting the precision with a mold, polishing, or the like when obtaining a formed body that becomes the ceramic substrate 1 after firing.

【0025】また、セラミック基板1のセラミックス材
料には、酸化アルミニウム質焼結体やムライト質焼結体
・窒化アルミニウム質焼結体・窒化珪素質焼結体・炭化
珪素質焼結体やガラスセラミックス等の種々のセラミッ
クス材料を用いることができ、寸法精度や強度・熱放散
性等の要求特性に応じて適宜選択すればよい。中でも、
酸化アルミニウム質焼結体を用いると、好適な熱伝導率
を有し、研磨等による加工が容易なことから、所望の寸
法精度の搭載面1aを有し、強度や信頼性・熱放散性に
優れた、良好な特性の半導体受光素子収納用容器を得る
ことができる。
The ceramic material of the ceramic substrate 1 includes aluminum oxide sintered body, mullite sintered body, aluminum nitride sintered body, silicon nitride based sintered body, silicon carbide based sintered body and glass ceramic. And various ceramic materials can be used, and may be appropriately selected according to required characteristics such as dimensional accuracy, strength, and heat dissipation. Among them,
When an aluminum oxide sintered body is used, it has a suitable thermal conductivity and is easily processed by polishing or the like. Therefore, it has a mounting surface 1a with a desired dimensional accuracy, and has strength, reliability, and heat dissipation. It is possible to obtain a semiconductor light receiving element storage container having excellent and excellent characteristics.

【0026】樹脂枠体2は、セラミック基板1の上面に
接着剤4により接合されて内側の搭載面1aを囲む領域
に半導体受光素子を収容する空間を形成し、セラミック
基板1とともに容器を構成する。この樹脂枠体2は、セ
ラミック基板1との熱膨張係数差が0.3 〜0.7 ×10-5
℃であるエポキシ樹脂により、セラミック基板1と略同
じ外形寸法を有する、搭載面1aを囲む長方形状の枠体
として形成される。また、その長辺には容器内側の半導
体受光素子と外部電気回路との電気的接続手段としての
複数のリードフレーム3を挟持して、リードフレーム3
と樹脂枠体2とが一体成形されている。さらに、樹脂枠
体2の厚みは1〜3mmとする。
The resin frame 2 is joined to the upper surface of the ceramic substrate 1 with an adhesive 4 to form a space for accommodating the semiconductor light receiving element in a region surrounding the inner mounting surface 1a, and forms a container together with the ceramic substrate 1. . This resin frame 2 has a thermal expansion coefficient difference from the ceramic substrate 1 of 0.3 to 0.7 × 10 −5 /
It is formed as a rectangular frame having the same outer dimensions as the ceramic substrate 1 and surrounding the mounting surface 1a by an epoxy resin having a temperature of ° C. Further, a plurality of lead frames 3 as electric connection means for connecting the semiconductor light receiving element inside the container and an external electric circuit are sandwiched on the long side thereof.
And the resin frame 2 are integrally formed. Further, the thickness of the resin frame 2 is set to 1 to 3 mm.

【0027】樹脂枠体2をセラミック基板1との熱膨張
係数差が0.3 〜0.7 ×10-5/℃であるものとするのは、
搭載面1aの寸法精度が高く、かつ封止の信頼性や熱放
散性にも優れた半導体受光素子収納用容器を得ることが
できるからでよる。この熱膨張係数差が0.3 ×10-5/℃
未満となると、樹脂枠体2とセラミック基板1との熱膨
張係数差に起因する応力歪みにより好適な搭載面1aの
平坦度が得られなくなる傾向がある。他方、この熱膨張
係数差が0.7 ×10-5/℃を超えると、両者の熱膨張係数
差に起因する応力歪みによりクラック等が発生しやすく
なる傾向がある。
The reason why the difference between the thermal expansion coefficient of the resin frame 2 and that of the ceramic substrate 1 is 0.3 to 0.7 × 10 -5 / ° C.
This is because a semiconductor light receiving element storage container having high dimensional accuracy of the mounting surface 1a and excellent in sealing reliability and heat dissipation can be obtained. This difference in thermal expansion coefficient is 0.3 × 10 -5 / ℃
When the value is less than the above, there is a tendency that a suitable flatness of the mounting surface 1a cannot be obtained due to stress distortion caused by a difference in thermal expansion coefficient between the resin frame 2 and the ceramic substrate 1. On the other hand, when the difference in thermal expansion coefficient exceeds 0.7 × 10 −5 / ° C., cracks and the like tend to occur easily due to stress strain caused by the difference in thermal expansion coefficient between the two.

【0028】また、樹脂枠体2の厚みが1mm未満とな
ると、樹脂枠体2の強度が弱くなり過ぎて、セラミック
基板1との接合によるクラック等が発生しやすくなる傾
向がある。他方、厚みが3mmを超えると、樹脂枠体2
の強度が強くなり過ぎて、セラミック基板1との接合に
より逆方向の応力が生じ、半導体受光素子の割れ等の不
具合を生じやすくなる傾向がある。
If the thickness of the resin frame 2 is less than 1 mm, the strength of the resin frame 2 becomes too weak, and cracks and the like due to joining with the ceramic substrate 1 tend to occur easily. On the other hand, if the thickness exceeds 3 mm, the resin frame 2
Is too strong, and a stress in the opposite direction is generated by bonding with the ceramic substrate 1, which tends to cause a problem such as cracking of the semiconductor light receiving element.

【0029】なお、樹脂枠体2としてエポキシ樹脂を用
いるのは、耐熱性・耐湿性が良好で、かつ低価格で提供
できることによる。具体的には、ビスフェノールA型エ
ポキシ樹脂やノボラック型エポキシ樹脂・グリシジアル
アミン型エポキシ樹脂等のエポキシ樹脂であって、熱硬
化性のものを用いる。
The reason why the epoxy resin is used as the resin frame 2 is that it has good heat resistance and moisture resistance and can be provided at a low price. Specifically, an epoxy resin such as a bisphenol A-type epoxy resin, a novolak-type epoxy resin, or a glycidylamine-type epoxy resin, which is thermosetting, is used.

【0030】そして、樹脂枠体2を製作するには、例え
ば射出成形法あるいはトランスファー成形法により、長
辺側に複数のリードフレーム3を所定位置にセットした
金型中に、約50〜200 kgf/cm2 の圧力・約150 〜
200 度の温度・約1〜10分といった成形条件により、樹
脂材料を注入・固化することによって製作すればよい。
In order to manufacture the resin frame 2, for example, by injection molding or transfer molding, about 50 to 200 kgf is placed in a mold in which a plurality of lead frames 3 are set at predetermined positions on the long side. / Cm 2 pressure, about 150 ~
It may be manufactured by injecting and solidifying a resin material under a molding condition of a temperature of 200 degrees and about 1 to 10 minutes.

【0031】なお、樹脂枠体2は、その挟持したリード
フレーム3の上下の厚みの比率を、図1および図2に示
すようにリードフレーム3の上面から上側の厚みをXと
し、下側の厚みをYとしたとき、0.8 Y≦X≦Yとする
ことにより、長尺の樹脂枠体2の反りが低減できるた
め、所望の寸法精度を有した半導体受光素子収納用容器
となる。
As shown in FIGS. 1 and 2, the resin frame 2 has a thickness ratio between the upper and lower thicknesses of the lead frame 3 sandwiched between the upper and lower surfaces of the lead frame 3, where X is the upper thickness. Assuming that the thickness is Y, by setting 0.8 Y ≦ X ≦ Y, the warp of the long resin frame 2 can be reduced, so that a semiconductor light receiving element storage container having desired dimensional accuracy can be obtained.

【0032】リードフレーム3は、鉄−ニッケル合金や
鉄−ニッケル−コバルト合金・銅合金等の金属材料から
成り、容器内部に収容される半導体受光素子にボンディ
ングワイヤ等の電気的接続手段により接続されるととも
に、外部電気回路に半田等を介して接続されることによ
り、両者間の導電路として機能するものである。
The lead frame 3 is made of a metal material such as an iron-nickel alloy or an iron-nickel-cobalt alloy / copper alloy, and is connected to a semiconductor light receiving element housed in the container by an electrical connection means such as a bonding wire. In addition, by being connected to an external electric circuit via solder or the like, it functions as a conductive path between them.

【0033】リードフレーム3は、例えば鉄−ニッケル
−コバルト合金から成る場合であれば、合金のインゴッ
ト(塊)に圧延加工法や打ち抜き加工法等の従来周知の
金属加工法を施すことによって、所定の形状・寸法に形
成される。また、その露出表面には、耐蝕性に優れ、か
つろう材やボンディングワイヤ等との濡れ性が良いニッ
ケルや金等の良導電性の金属メッキ膜を0.1 〜20μmの
厚みに被着させておくと、リードフレーム3の露出表面
の酸化腐食を有効に防止することができるとともに、ボ
ンディングワイヤや半田等による電気的接続を良好なも
のとすることがてきる。
When the lead frame 3 is made of, for example, an iron-nickel-cobalt alloy, a predetermined well-known metal working method such as a rolling method or a punching method is applied to an ingot of the alloy. It is formed in the shape and size of. On the exposed surface, a highly conductive metal plating film such as nickel or gold having excellent corrosion resistance and good wettability with a brazing material, a bonding wire, etc. is applied to a thickness of 0.1 to 20 μm. Thus, oxidation corrosion of the exposed surface of the lead frame 3 can be effectively prevented, and good electrical connection by bonding wires, solder, or the like can be achieved.

【0034】セラミック基板1の上面に樹脂枠体2を接
合する接着剤4は、アクリル系ゴムを3〜36重量%含有
したエポキシ樹脂から成る。このようなエポキシ樹脂か
ら成る接着剤としては、具体的にはビスフェノールA型
エポキシ樹脂やノボラック型エポキシ樹脂・グリシジア
ルアミン型エポキシ樹脂等のエポキシ樹脂にアミン系硬
化剤やイミダゾール系硬化剤・酸無水物硬化剤等の硬化
剤を添加した樹脂接着剤を用い、これにブチルアクリレ
ートゴムや架橋ポリメチルメタアクリレートゴム・エチ
ルアクリレートゴム・ウレタンアクリレートゴム等のア
クリル系ゴムを3〜36重量%含有させたものを用いる。
The adhesive 4 for joining the resin frame 2 to the upper surface of the ceramic substrate 1 is made of an epoxy resin containing 3-36% by weight of an acrylic rubber. Specific examples of the adhesive made of such an epoxy resin include an epoxy resin such as a bisphenol A type epoxy resin, a novolak type epoxy resin, a glycidylamine type epoxy resin, an amine type curing agent, an imidazole type curing agent, and an acid anhydride. A resin adhesive to which a curing agent such as a product curing agent was added was used, and an acrylic rubber such as butyl acrylate rubber or cross-linked polymethyl methacrylate rubber / ethyl acrylate rubber / urethane acrylate rubber was contained in an amount of 3 to 36% by weight. Use something.

【0035】接着剤4のエポキシ樹脂に含有するアクリ
ル系ゴムが3重量%未満となると、接着剤4の弾性率が
大きくなるとともに、接着剤4の可撓性が低いものとな
り、セラミック基板1と樹脂枠体2の接合後に両者の熱
膨張係数差に起因する熱ストレスが繰り返し印加された
場合に樹脂枠体2がセラミック基板1から剥離しやすく
なる傾向がある。他方、アクリル系ゴムの含有量が36重
量%を超えると接着剤4の流動性が悪くなり、セラミッ
ク基板1と樹脂枠体2とを良好に接合して封止すること
が困難となる傾向がある。
When the acrylic rubber contained in the epoxy resin of the adhesive 4 is less than 3% by weight, the elastic modulus of the adhesive 4 is increased, and the flexibility of the adhesive 4 is reduced. When the thermal stress caused by the difference between the thermal expansion coefficients of the two is repeatedly applied after the joining of the resin frame 2, the resin frame 2 tends to be easily separated from the ceramic substrate 1. On the other hand, when the content of the acrylic rubber exceeds 36% by weight, the fluidity of the adhesive 4 becomes poor, and it tends to be difficult to satisfactorily join and seal the ceramic substrate 1 and the resin frame 2. is there.

【0036】また、接着剤4に含有させるアクリル系ゴ
ムは、微小な粒子とすると強固な接合力と所望の可撓性
とを同時に得ることができる点で好適なものとなる。こ
のような粒子としては、形状が真球状で、粒度分布がほ
ぼ均一で、平均粒径が0.1 〜10μm、好適には0.2 〜1.
0 μmのもの、最適には0.3 ±0.1 μmのものとするこ
とが好ましい。
The acrylic rubber to be contained in the adhesive 4 is preferable because it can obtain a strong bonding force and a desired flexibility at the same time when it is made into fine particles. Such particles have a true spherical shape, a substantially uniform particle size distribution, and an average particle size of 0.1 to 10 μm, preferably 0.2 to 1.
Preferably, the thickness is 0 μm, most preferably 0.3 ± 0.1 μm.

【0037】アクリル系ゴムの粒子の平均粒径が0.1 μ
m未満となると接着剤4の可撓性が低くなって所望の可
撓性が得られなくなる傾向がある。他方、平均粒径が10
μmを超えると、接着剤4中でアクリル系ゴムを均一に
分散させることが困難となり、接着剤4の流動性が悪く
なってセラミック基板1と樹脂枠体2との良好な接合が
できなくなる傾向がある。
The average particle size of the acrylic rubber particles is 0.1 μm.
If it is less than m, the flexibility of the adhesive 4 tends to be low, and the desired flexibility cannot be obtained. On the other hand, the average particle size is 10
If it exceeds μm, it becomes difficult to uniformly disperse the acrylic rubber in the adhesive 4, and the fluidity of the adhesive 4 becomes poor, so that good bonding between the ceramic substrate 1 and the resin frame 2 tends to be impossible. There is.

【0038】そして、このような接着剤4によりセラミ
ック基板1と樹脂枠体2とを接合するには、例えば、ま
ず図3に示すようにセラミック基板1の上面のうち樹脂
枠体2と接合させる部分にスクリーン印刷法やディスペ
ンサー法等により接着剤4を枠状に印刷塗布する。次
に、樹脂枠体2を載置して、接着剤4の硬化特性に応じ
て200 〜800 gf程度の圧力を印加しつつ、120 〜180
℃程度の温度で5分〜3時間程度の加熱処理を行ない、
接着剤4を熱硬化させることによりセラミック基板1に
樹脂枠体2を接合させる。
In order to join the ceramic substrate 1 and the resin frame 2 with such an adhesive 4, for example, first, as shown in FIG. 3, the ceramic substrate 1 is joined to the resin frame 2 on the upper surface of the ceramic substrate 1. The adhesive 4 is printed and applied to the portion in a frame shape by a screen printing method, a dispenser method, or the like. Next, the resin frame 2 is placed, and while applying a pressure of about 200 to 800 gf according to the curing properties of the adhesive 4, the
Heat treatment at a temperature of about 5 ° C. for about 5 minutes to 3 hours,
The resin frame 2 is joined to the ceramic substrate 1 by thermosetting the adhesive 4.

【0039】このとき、接着剤4を用いることで、両者
の熱膨張係数の差に起因する応力の歪みを低減させるこ
とにより、接合後のセラミック基板1の搭載面1aの長
辺方向の平坦度が30μm以下の凹状となって、搭載面1
aの寸法精度が高い半導体受光素子収納用容器を得るこ
とができる。
At this time, the use of the adhesive 4 reduces the stress distortion caused by the difference between the two coefficients of thermal expansion, thereby reducing the flatness of the mounting surface 1a of the bonded ceramic substrate 1 in the long side direction. Has a concave shape of 30 μm or less.
A container for accommodating a semiconductor light receiving element having high dimensional accuracy a can be obtained.

【0040】そして、本発明の半導体受光素子収納用容
器の製造方法により得られた半導体受光素子収納用容器
の搭載部に半導体受光素子を搭載し、素子の電極とリー
ドフレーム3とをボンディングワイヤ等により電気的に
接続し、樹脂枠体2の上面にガラスやプラスチックス等
から成る透明窓を封着し、あるいは透光性封止樹脂のポ
ッティングにより半導体受光素子を封止することによ
り、ファクシミリやイメージスキャナ等に使用されるラ
インセンサ等の半導体受光装置とされる。
Then, the semiconductor light receiving element is mounted on the mounting portion of the semiconductor light receiving element housing obtained by the method for manufacturing the semiconductor light receiving element housing of the present invention, and the electrodes of the element and the lead frame 3 are bonded to each other by bonding wires or the like. By connecting a transparent window made of glass, plastics, or the like to the upper surface of the resin frame 2, or sealing the semiconductor light receiving element by potting with a light-transmitting sealing resin, thereby facilitating facsimile communication. A semiconductor light receiving device such as a line sensor used for an image scanner or the like.

【0041】なお、本発明は上述の実施の形態の一例に
限定されるものではなく、本発明の要旨を逸脱しない範
囲であれば種々の変更・改良が可能であることは言うま
でもない。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes and improvements can be made without departing from the scope of the present invention.

【0042】[0042]

【発明の効果】以上のように、本発明の半導体受光素子
収納用容器の製造方法によれば、厚みが1.5 〜3mm
で、搭載面の長辺方向の両端間で平坦度が20μm以下で
あり、かつ裏面の長辺方向の両端間で30〜100 μmの凹
状の反りを有している長方形状のセラミック基板と、こ
のセラミック基板との熱膨張係数差が0.3 〜0.7 ×10-5
/℃であるエポキシ樹脂により、セラミック基板と略同
じ外形寸法を有し、セラミック基板の上面に接合されて
搭載面を囲むとともに長辺側に複数のリードフレームを
挟持した、厚みが1〜3mmの樹脂枠体とを、アクリル
系ゴムを3〜36重量%含有したエポキシ樹脂から成る、
適度な可撓性を有する接着剤により接合することから、
熱膨張係数差に起因する熱ストレスによる剥離やクラッ
ク等を発生させることなく、強固かつ信頼性の高い半導
体受光素子収納用容器となって、半導体受光素子の搭載
面の平坦度を30μm以下の凹状の良好なものとすること
ができ、長尺の半導体受光素子を光学系に必要な精度で
搭載することができる半導体受光素子収納用容器を得る
ことができる。
As described above, according to the method for manufacturing a semiconductor light receiving element container of the present invention, the thickness is 1.5 to 3 mm.
A rectangular ceramic substrate having a flatness of 20 μm or less between both ends in the long side direction of the mounting surface and having a concave warpage of 30 to 100 μm between both ends in the long side direction of the back surface, The thermal expansion coefficient difference with this ceramic substrate is 0.3 to 0.7 × 10 -5
/ C with epoxy resin having almost the same outer dimensions as the ceramic substrate, joined to the upper surface of the ceramic substrate to surround the mounting surface and sandwich a plurality of lead frames on the long side, with a thickness of 1 to 3 mm A resin frame made of an epoxy resin containing 3-36% by weight of an acrylic rubber;
Because it is joined by an adhesive with moderate flexibility,
A solid and highly reliable container for semiconductor light-receiving elements without peeling or cracking due to thermal stress caused by the difference in thermal expansion coefficient.The flatness of the mounting surface of the semiconductor light-receiving element is 30 μm or less. And a container for housing a semiconductor light-receiving element in which a long semiconductor light-receiving element can be mounted on an optical system with required precision can be obtained.

【0043】また、接着剤がセラミック基板と樹脂枠体
とを強固にかつ適度な可撓性を有していることから、接
合後に熱ストレスが印加されたとしてもセラミック基板
から樹脂枠体が剥離することはなく、信頼性の高い半導
体受光素子収納用容器となる。さらに、半導体受光素子
が搭載される基板としてセラミックスを用いることか
ら、従来の樹脂やガラスによるものに比べて熱伝導率が
高く熱放散性に優れるものとすることができ、発熱によ
る半導体受光素子の特性劣化を抑制することができると
ともに、半導体受光素子の高集積化にも対応し得る半導
体受光素子収納用容器を得ることができる。
Also, since the adhesive has a strong and moderate flexibility between the ceramic substrate and the resin frame, the resin frame is separated from the ceramic substrate even if a thermal stress is applied after the bonding. Therefore, a highly reliable semiconductor light receiving element storage container can be obtained. Further, since ceramic is used as the substrate on which the semiconductor light receiving element is mounted, it can have high heat conductivity and excellent heat dissipation as compared with conventional ones made of resin or glass. It is possible to obtain a semiconductor light receiving element storage container that can suppress deterioration of characteristics and can cope with high integration of the semiconductor light receiving element.

【0044】さらに、本発明によれば、樹脂枠体をその
樹脂枠体が挟持したリードフレームの上面から上側の厚
みXが下側の厚みYに対して0.8 Y≦X≦Yであるもの
とすることにより、搭載面の寸法精度をより良好なもの
とすることができる。
Further, according to the present invention, the thickness X on the upper side from the upper surface of the lead frame sandwiching the resin frame with respect to the thickness Y on the lower side is 0.8 Y ≦ X ≦ Y. By doing so, the dimensional accuracy of the mounting surface can be further improved.

【0045】さらにまた、本発明によれば、セラミック
基板として酸化アルミニウム質焼結体を用いることによ
り、搭載面の寸法精度が高く、かつ封止の信頼性や熱放
散性にも優れた半導体受光素子収納用容器を得ることが
できる。
Further, according to the present invention, by using an aluminum oxide sintered body as a ceramic substrate, a semiconductor light receiving device having high dimensional accuracy of a mounting surface and excellent sealing reliability and heat dissipation is provided. An element storage container can be obtained.

【0046】以上により、本発明によれば、長尺の半導
体受光素子に対する搭載面の寸法精度が高く、しかも半
導体受光素子の発熱に対する放熱性が良好な半導体受光
素子収納用容器を得ることができる半導体受光素子収納
用容器の製造方法を提供することができた。
As described above, according to the present invention, it is possible to obtain a semiconductor light receiving element storage container which has high dimensional accuracy of a mounting surface for a long semiconductor light receiving element and has good heat radiation for heat generated by the semiconductor light receiving element. A method for manufacturing a semiconductor light receiving element storage container can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体受光素子収納用容器の実施
の形態の一例を示す短辺方向の断面図である。
FIG. 1 is a cross-sectional view in the short side direction showing an example of an embodiment of a semiconductor light receiving element storage container according to the present invention.

【図2】本発明に係る半導体受光素子収納用容器の実施
の形態の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of an embodiment of a semiconductor light receiving element storage container according to the present invention.

【図3】本発明に係る半導体受光素子収納用容器のセラ
ミック基板の例を示す長辺方向の断面図である。
FIG. 3 is a cross-sectional view in the long side direction showing an example of a ceramic substrate of the container for housing a semiconductor light receiving element according to the present invention.

【図4】本発明に係る半導体受光素子収納用容器のセラ
ミック基板の例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a ceramic substrate of the container for housing a semiconductor light receiving element according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・セラミック基板 1a・・・・搭載面 A・・・・・搭載面の長辺方向の両端間 B・・・・・裏面の長辺方向の両端間 2・・・・・樹脂枠体 3・・・・・リードフレーム 4・・・・・接着剤 1 · · · · ceramic substrate 1a · · · · mounting surface A · · · · · · · between the both ends in the long side direction of the mounting surface B · · · · · · · · between both ends in the long side direction of the back surface 2 · · · · Resin frame 3 Leadframe 4 Adhesive

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 長方形状のセラミック基板と、該セラミ
ック基板と略同じ外形寸法を有し、長辺側に複数のリー
ドフレームを挟持した樹脂枠体とを接着剤により接合し
て成り、前記セラミック基板上面の前記樹脂枠体に囲ま
れた領域に長辺方向の平坦度が30μm以下の凹状とな
っている半導体受光素子の搭載面を有する半導体受光素
子収納用容器の製造方法であって、 厚みが1.5〜3mmで、前記搭載面の長辺方向の両端
間で平坦度が20μm以下であり、かつ裏面の長辺方向
の両端間で30〜100μmの凹状の反りを有している
前記セラミック基板を準備する工程と、 前記セラミック基板との熱膨張係数差が0.3〜0.7
×10-5/℃であるエポキシ樹脂により、前記セラミッ
ク基板と略同じ外形寸法を有し、前記セラミック基板の
上面に接合されて前記搭載面を囲むとともに長辺側に複
数のリードフレームを挟持した、厚みが1〜3mmの樹
脂枠体を準備する工程と、 前記セラミック基板の上面に、アクリル系ゴムを3〜3
6重量%含有したエポキシ樹脂から成る接着剤により前
記樹脂枠体を接合する工程とを具備することを特徴とす
る半導体受光素子収納用容器の製造方法。
The ceramic ceramic substrate is formed by bonding a rectangular ceramic substrate and a resin frame having substantially the same outer dimensions as the ceramic substrate and having a plurality of lead frames sandwiched on a long side by an adhesive. A method for manufacturing a semiconductor light receiving element storage container having a semiconductor light receiving element mounting surface having a concave shape with a flatness in a long side direction of 30 μm or less in a region surrounded by the resin frame on an upper surface of a substrate, comprising: Is 1.5 to 3 mm, the flatness is 20 μm or less between both ends in the long side direction of the mounting surface, and the concave surface has a concave warpage of 30 to 100 μm between both ends in the long side direction of the back surface. A step of preparing a ceramic substrate, wherein a difference in thermal expansion coefficient between the ceramic substrate and the ceramic substrate is 0.3 to 0.7.
An epoxy resin of × 10 -5 / ° C. has substantially the same outer dimensions as the ceramic substrate, is joined to the upper surface of the ceramic substrate, surrounds the mounting surface, and holds a plurality of lead frames on the long side. Preparing a resin frame having a thickness of 1 to 3 mm, and applying an acrylic rubber on the upper surface of the ceramic substrate by 3 to 3 mm.
Bonding the resin frame with an adhesive made of epoxy resin containing 6% by weight.
【請求項2】 前記樹脂枠体は挟持した前記リードフレ
ームの上面から上側の厚みXが下側の厚みYに対して
0.8Y≦X≦Yであることを特徴とする請求項1記載
の半導体受光素子収納用容器の製造方法。
2. The resin frame according to claim 1, wherein a thickness X above the upper surface of the lead frame sandwiched between the resin frame and the lower thickness Y is 0.8Y ≦ X ≦ Y. A method for manufacturing a semiconductor light receiving element storage container.
【請求項3】 前記セラミック基板は酸化アルミニウム
質焼結体から成ることを特徴とする請求項1または請求
項2記載の半導体受光素子収納用容器の製造方法。
3. The method according to claim 1, wherein the ceramic substrate is made of an aluminum oxide sintered body.
JP10309671A 1998-10-30 1998-10-30 Manufacture of container for semiconductor light- receiving element housing Pending JP2000138305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309671A JP2000138305A (en) 1998-10-30 1998-10-30 Manufacture of container for semiconductor light- receiving element housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309671A JP2000138305A (en) 1998-10-30 1998-10-30 Manufacture of container for semiconductor light- receiving element housing

Publications (1)

Publication Number Publication Date
JP2000138305A true JP2000138305A (en) 2000-05-16

Family

ID=17995881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309671A Pending JP2000138305A (en) 1998-10-30 1998-10-30 Manufacture of container for semiconductor light- receiving element housing

Country Status (1)

Country Link
JP (1) JP2000138305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525124B2 (en) 2004-09-14 2009-04-28 Hitachi Kyowa Engineering Co., Ltd. Submount for light emitting diode and its manufacturing method
JP2010183585A (en) * 2010-02-26 2010-08-19 Ricoh Co Ltd Semiconductor device, image reader and image forming apparatus
US8008675B2 (en) 2003-12-18 2011-08-30 Hitachi, Ltd. Package for mounting an optical element and a method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008675B2 (en) 2003-12-18 2011-08-30 Hitachi, Ltd. Package for mounting an optical element and a method of manufacturing the same
US7525124B2 (en) 2004-09-14 2009-04-28 Hitachi Kyowa Engineering Co., Ltd. Submount for light emitting diode and its manufacturing method
JP2010183585A (en) * 2010-02-26 2010-08-19 Ricoh Co Ltd Semiconductor device, image reader and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100370231B1 (en) Power module package having a insulator type heat sink attached a backside of leadframe & manufacturing method thereof
KR100288385B1 (en) Semiconductor device and manufacturing method thereof
US6330158B1 (en) Semiconductor package having heat sinks and method of fabrication
US5677575A (en) Semiconductor package having semiconductor chip mounted on board in face-down relation
US5458716A (en) Methods for manufacturing a thermally enhanced molded cavity package having a parallel lid
US5602059A (en) Semiconductor device and method for manufacturing same
US4989069A (en) Semiconductor package having leads that break-away from supports
US8120128B2 (en) Optical device
US6759752B2 (en) Single unit automated assembly of flex enhanced ball grid array packages
US5583371A (en) Resin-sealed semiconductor device capable of improving in heat radiation characteristics of resin-sealed semiconductor elements
KR20020079477A (en) Multi-chip-module(mcm) type semiconductor device
JPH11150135A (en) Conductive paste of superior thermal conductivity and electronic device
KR20020095053A (en) Power module package improved heat radiating capability and method for manufacturing the same
JP2895920B2 (en) Semiconductor device and manufacturing method thereof
TWI292213B (en)
KR100366111B1 (en) Structure of Resin Sealed Semiconductor Device
JP4626445B2 (en) Manufacturing method of semiconductor package
JP2000138305A (en) Manufacture of container for semiconductor light- receiving element housing
JP2958380B2 (en) Semiconductor device
JP2002134763A (en) Container for semiconductor light receiving element
JP2004165181A (en) Storage package for semiconductor element, and semiconductor device
EP0999586A2 (en) Semiconductor device and method of producing same
JP6567934B2 (en) Imaging device
JP3894749B2 (en) Semiconductor device
KR100290785B1 (en) Method for fabricating chip size package

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210