JP2000137010A - Fluorescence x-ray spectrometer - Google Patents

Fluorescence x-ray spectrometer

Info

Publication number
JP2000137010A
JP2000137010A JP10310057A JP31005798A JP2000137010A JP 2000137010 A JP2000137010 A JP 2000137010A JP 10310057 A JP10310057 A JP 10310057A JP 31005798 A JP31005798 A JP 31005798A JP 2000137010 A JP2000137010 A JP 2000137010A
Authority
JP
Japan
Prior art keywords
vacuum pump
vacuum
sample
chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10310057A
Other languages
Japanese (ja)
Other versions
JP3584279B2 (en
Inventor
Takeshi Fujita
剛 藤田
Hiroshi Sumii
弘諮 住居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP31005798A priority Critical patent/JP3584279B2/en
Publication of JP2000137010A publication Critical patent/JP2000137010A/en
Application granted granted Critical
Publication of JP3584279B2 publication Critical patent/JP3584279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure stability for a degree of vacuum, and to enhance precision for light element analysis, by controlling pressure to shorten a convergence time for a set degree of vacuum in an analytical chamber. SOLUTION: An inverter device 10, in which an operation for changing the revolution number of a vacuum pump 3 to increase and decrease an evacuation capacity is conducted to make a pressure-detected value by a pressure sensor 11 consistent with a set vacuum value, is controlled to regulate the evacuation capacity. Responsiveness for evacuation by the pump 3 is enhanced thereby, and a covergence time for a set degree of vacuum is shortened, so as to secure stability for vacuum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光X線分析装置
において試料を分析する分析室の真空度を一定に保持す
る圧力制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pressure control for maintaining a constant vacuum in an analysis chamber for analyzing a sample in a fluorescent X-ray analyzer.

【0002】[0002]

【従来の技術】従来から、真空ポンプにより真空引きさ
れた分析室内の試料にX線を照射し、試料から発生する
蛍光X線の強度を測定して試料を分析する蛍光X線分析
装置が知られている。この一例として、真空ポンプによ
る一定量の排気を維持した状態で、圧力センサによって
検出した分析室内の圧力検出値と所定の真空設定値とを
合致させるように、コントロールバルブを開閉して流入
空気の流量を変化させ、分析室内の真空度を一定に保持
する制御を行うものがある(特開昭62−280645
号)。
2. Description of the Related Art Conventionally, there is known a fluorescent X-ray analyzer which irradiates a sample in an analysis chamber evacuated by a vacuum pump with X-rays, measures the intensity of fluorescent X-rays generated from the sample, and analyzes the sample. Have been. As an example of this, while maintaining a constant amount of evacuation by the vacuum pump, the control valve is opened and closed by opening and closing the control valve so that the pressure detection value in the analysis chamber detected by the pressure sensor matches a predetermined vacuum set value. There is one that performs control to change the flow rate and keep the degree of vacuum in the analysis chamber constant (Japanese Patent Application Laid-Open No. 62-280645).
issue).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来装
置のように、分析室内に流入させる空気の流量を変化さ
せる制御を行う場合、真空度の制御条件は、真空ポンプ
の能力(排気容量)、気体圧力、圧力センサの能力、分
析室の容積、配管径及び配管長等のパラメータに左右さ
れるので、このパラメータの変化に応じて分析室内の真
空度を一定に保持する制御を行うことが困難であるとい
う問題があった。分析室内の真空度が一定でない場合、
B(ホウ素),C(炭素)等の軽元素は気体による吸収
の影響を受けて、分析精度が低下する。
However, when controlling to change the flow rate of the air flowing into the analysis chamber as in the above-described conventional apparatus, the control condition of the degree of vacuum is determined by the capacity (evacuation capacity) of the vacuum pump. It depends on parameters such as gas pressure, capacity of pressure sensor, capacity of analysis chamber, pipe diameter and pipe length, and it is possible to control to keep the degree of vacuum in the analysis chamber constant according to the change of these parameters. There was a problem that it was difficult. If the vacuum in the analysis chamber is not constant,
Light elements such as B (boron) and C (carbon) are affected by absorption by gas, and the analysis accuracy is reduced.

【0004】また、従来装置に圧力センサとして用いら
れるピラニーゲージは、気体の種類による表示真空度の
違いから誤差要因となる場合があり、分析室内の真空度
を圧力制御する際に応答の遅れから設定した真空度の収
束時間が大きくなる場合もある。
A Pirani gauge used as a pressure sensor in a conventional apparatus may cause an error due to a difference in a displayed vacuum degree depending on a kind of gas, and may cause a response delay when controlling a vacuum degree in an analysis chamber. The convergence time of the set degree of vacuum may be long.

【0005】本発明は、上記の問題点を解決して、分析
室の設定した真空度の収束時間が短くなるように圧力制
御して、真空度の安定性の確保と軽元素分析精度の向上
を図ることができる蛍光X線分析装置を提供することを
目的としている。
The present invention solves the above problems and controls the pressure so as to shorten the convergence time of the degree of vacuum set in the analysis chamber, thereby ensuring the stability of the degree of vacuum and improving the accuracy of light element analysis. It is an object of the present invention to provide an X-ray fluorescence analyzer that can achieve the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、真空ポンプにより真空引きした
分析室内の試料を蛍光X線分析する蛍光X線分析装置で
あって、前記真空ポンプへの供給電力の周波数を変化さ
せることにより、真空ポンプの回転数を変化させて排気
能力を増減させる動作を行うインバータ装置と、前記分
析室内の圧力を検出する圧力センサと、前記圧力センサ
による圧力検出値と真空設定値とが合致するように、前
記インバータ装置を制御して、前記真空ポンプの排気能
力を調整する圧力制御手段とを備えている。
According to one aspect of the present invention, there is provided an X-ray fluorescence analyzer for performing X-ray fluorescence analysis of a sample in an analysis chamber evacuated by a vacuum pump. An inverter device that changes the frequency of power supplied to the vacuum pump to change the number of revolutions of the vacuum pump to increase or decrease the exhaust capacity, a pressure sensor that detects the pressure in the analysis chamber, and the pressure sensor And a pressure control means for controlling the inverter device so as to adjust the evacuation capacity of the vacuum pump so that the detected pressure value of the vacuum pump and the vacuum set value match.

【0007】請求項1の構成によれば、圧力センサによ
る圧力検出値と真空設定値とが合致するように、真空ポ
ンプの回転数を変化させて排気能力を増減させる動作を
行うインバータ装置を制御して、その排気能力を調整す
る。したがって、真空ポンプによる排気の応答性が向上
し、設定した真空度の収束時間を短くするので、真空度
の安定性を確保できる。
According to the configuration of the first aspect, the inverter device that performs the operation of changing the number of revolutions of the vacuum pump to increase or decrease the exhaust capacity so that the detected pressure value of the pressure sensor matches the set vacuum value is controlled. And adjust its exhaust capacity. Therefore, the responsiveness of the evacuation by the vacuum pump is improved, and the convergence time of the set vacuum degree is shortened, so that the stability of the vacuum degree can be ensured.

【0008】請求項2の発明は、請求項1において、前
記圧力制御手段は、圧力検出値と真空設定値との偏差に
比例した出力を出すP動作、偏差の積分に比例した出力
を出すI動作および偏差の微分に比例した出力を出すD
動作によるPID制御を行うPID制御手段を有してい
る。したがって、圧力制御をPID制御で行うので、真
空ポンプによる排気の応答性がさらに向上し、設定した
真空度の収束時間を一層短くするので、真空度の安定性
を一層確保できる。
According to a second aspect of the present invention, in the first aspect, the pressure control means includes a P operation for producing an output proportional to a deviation between the detected pressure value and the vacuum set value, and an I operation for producing an output proportional to the integral of the deviation. D that produces an output proportional to the derivative of the motion and deviation
PID control means for performing PID control by operation is provided. Therefore, since the pressure control is performed by the PID control, the responsiveness of the evacuation by the vacuum pump is further improved, and the convergence time of the set vacuum degree is further shortened, so that the stability of the vacuum degree can be further secured.

【0009】請求項3の発明は、請求項2において、さ
らに、前記PID制御におけるPID定数を自動設定す
るオートチューニング手段を備えている。したがって、
容易に最適なPID定数を設定できる。
A third aspect of the present invention, in the second aspect, further comprises an auto-tuning means for automatically setting a PID constant in the PID control. Therefore,
An optimum PID constant can be easily set.

【0010】請求項4の発明は、分析室内および分析室
に隣接して試料を外部から搬入する試料室内を真空ポン
プにより排気し、この真空引きした分析室内の試料を蛍
光X線分析する蛍光X線分析装置であって、試料を外部
から搬入したのち前記試料室内を真空引きする真空立ち
上げ時に、前記試料室内を排気する真空ポンプへの供給
電力の周波数を変化させることにより、真空ポンプの回
転数を変化させて排気能力を増減させる動作を行うイン
バータ装置を備えている。
According to a fourth aspect of the present invention, a vacuum pump is used to evacuate the analysis chamber and a sample chamber adjacent to the analysis chamber into which a sample is to be carried in from outside, and to perform a fluorescent X-ray analysis on the evacuated sample in the analysis chamber. A line analyzer, wherein the frequency of power supplied to a vacuum pump that exhausts the sample chamber is changed at the time of vacuum startup for evacuating the sample chamber after loading the sample from the outside, thereby rotating the vacuum pump. An inverter device that performs an operation of changing the number to increase or decrease the exhaust capacity is provided.

【0011】請求項4の構成によれば、試料室における
真空立ち上げ時に、インバータ装置により真空ポンプの
回転数を変化させて排気能力を増減させるので、真空排
気速度を緩やかに変化させることができ、試料が粉末状
試料や揮発性試料の場合に、試料室内の粉末状試料の飛
散や揮発性試料の揮散を防止することができる。
According to the fourth aspect of the invention, at the time of starting the vacuum in the sample chamber, the rotation speed of the vacuum pump is changed by the inverter device to increase or decrease the pumping capacity, so that the vacuum pumping speed can be gradually changed. When the sample is a powdery sample or a volatile sample, the scattering of the powdery sample in the sample chamber and the volatilization of the volatile sample can be prevented.

【0012】請求項5の発明は、分析室内および分析室
に隣接して試料を外部から搬入する試料室内の気体を排
気する第1の真空ポンプを備え、この第1の真空ポンプ
により真空引きした前記分析室内の試料を蛍光X線分析
する蛍光X線分析装置であって、前記第1の真空ポンプ
よりも大きな排気能力を有し、試料を外部から搬入した
のち前記試料室内を真空引きする真空立ち上げ時に、第
1の真空ポンプとともに、または単独で、前記試料室内
を排気する第2の真空ポンプと、前記分析室内の圧力を
検出する圧力センサと、前記圧力センサによる圧力検出
値と真空設定値とが合致するように、前記インバータ装
置を制御して、前記第1の真空ポンプの排気能力を調整
する圧力制御手段とを備えている。
According to a fifth aspect of the present invention, there is provided a first vacuum pump for evacuating a gas in the sample chamber for carrying a sample from outside in the analysis chamber and adjacent to the analysis chamber, and the first vacuum pump evacuates the vacuum. What is claimed is: 1. An X-ray fluorescence analyzer for performing X-ray fluorescence analysis of a sample in said analysis chamber, said apparatus having a larger exhaust capacity than said first vacuum pump, and vacuuming said sample chamber after loading a sample from outside. At the time of startup, a second vacuum pump for evacuating the sample chamber together with the first vacuum pump or alone, a pressure sensor for detecting a pressure in the analysis chamber, a pressure detection value by the pressure sensor, and vacuum setting. Pressure control means for controlling the inverter device to adjust the exhaust capacity of the first vacuum pump so that the values coincide with each other.

【0013】請求項5の構成によれば、試料室における
真空立ち上げ時に、第1の真空ポンプより大きな排気能
力を有する第2の真空ポンプで試料室内を排気するの
で、試料室の真空到達時間を短縮できる。分析室内にお
いては、圧力センサによる圧力検出値と真空設定値とが
合致するように、真空ポンプの回転数を変化させて排気
能力を増減させる動作を行うインバータ装置を制御し
て、その排気能力を調整するので、第1の真空ポンプに
よる排気の応答性が向上する。したがって、試料室およ
び分析室の設定した真空度の収束時間を短くするので、
真空度の安定性を確保できる。
According to the fifth aspect of the present invention, when the sample chamber is started up in vacuum, the sample chamber is evacuated by the second vacuum pump having a larger exhaust capacity than the first vacuum pump. Can be shortened. In the analysis chamber, an inverter device that performs an operation of changing the number of revolutions of the vacuum pump to increase or decrease the exhaust capacity is controlled so that the pressure detection value obtained by the pressure sensor matches the vacuum set value, and the exhaust capacity is controlled. Since the adjustment is performed, the responsiveness of the exhaust by the first vacuum pump is improved. Therefore, since the convergence time of the degree of vacuum set in the sample chamber and the analysis chamber is shortened,
The stability of the degree of vacuum can be secured.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の第1実施形態に係
る蛍光X線分析装置の要部の構成図を示す。本装置は、
真空引きされた分析室2内の試料Sを蛍光X線分析する
ものであり、分析室2内を排気するスクロールポンプの
ような真空ポンプ3と、分析室2に隣接して外部から試
料Sを搬入する試料室4内を予備排気するドライポンプ
のような真空ポンプ3Aと、両室2,4と真空ポンプ
3,3A間の配管路T1,T2をそれぞれ開閉する開閉
バルブ5,6と、両室2,4へ大気を導入し、真空を破
壊するためのリークバルブ7,8とを有している。開閉
バルブおよびリークバルブには例えば電磁弁が用いられ
る。分析室2と試料室4間、外部と試料室4間にはシャ
ッター18,19が設けられており、試料Sを両室2,
4間、外部と試料室4間で搬入・搬出する際に開閉され
る。分析室2には、図示しないX線源,分光器および検
出器が設けられ、X線源により分析室2内の試料SにX
線を照射し、試料Sから発生する蛍光X線を分光器で分
光して、分光した蛍光X線の強度を検出器で測定して試
料Sを分析する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a main part of an X-ray fluorescence spectrometer according to the first embodiment of the present invention. This device is
The sample S in the analysis chamber 2 that has been evacuated is subjected to fluorescent X-ray analysis. The vacuum pump 3 such as a scroll pump for exhausting the inside of the analysis chamber 2 and the sample S from the outside adjacent to the analysis chamber 2 are supplied. A vacuum pump 3A such as a dry pump for preliminarily evacuating the sample chamber 4 to be carried in; open / close valves 5 and 6 for opening / closing pipelines T1 and T2 between the chambers 2 and 4 and the vacuum pumps 3 / 3A; It has leak valves 7 and 8 for introducing the atmosphere into the chambers 2 and 4 to break the vacuum. For example, an electromagnetic valve is used for the opening / closing valve and the leak valve. Shutters 18 and 19 are provided between the analysis chamber 2 and the sample chamber 4 and between the outside and the sample chamber 4, respectively.
It is opened and closed when carrying in and out between the sample room 4 and the outside and between the sample room 4. The analysis room 2 is provided with an X-ray source, a spectroscope and a detector (not shown).
The sample S is analyzed by irradiating the sample with a spectroscope to separate the fluorescent X-rays generated from the sample S and measuring the intensity of the separated fluorescent X-rays with a detector.

【0015】本装置は、上記真空ポンプ3への供給電力
の周波数を変化させることにより、真空ポンプ3の回転
数を変化させて排気能力を増減させる動作を行うインバ
ータ装置10を備えている。上記真空ポンプ3の回転数
は供給電力の周波数に比例し、上記インバータ装置10
によりこの周波数を高くすれば、回転数が増加して、排
気速度および到達真空度(達成される最高の真空度)が
上がり、分析室2内の真空度が上がる。逆に周波数を低
くすれば分析室2内の真空度が下がる。つまり、真空ポ
ンプ3の周波数−排気特性を利用してインバータ装置1
0による周波数制御により分析室2内の真空度を変化さ
せる。
The present apparatus is provided with an inverter device 10 that changes the frequency of the power supplied to the vacuum pump 3 to change the rotation speed of the vacuum pump 3 to increase or decrease the exhaust capacity. The rotation speed of the vacuum pump 3 is proportional to the frequency of the supplied power,
If the frequency is increased, the number of revolutions increases, the evacuation speed and the ultimate vacuum (the highest degree of vacuum achieved) increase, and the degree of vacuum in the analysis chamber 2 increases. Conversely, lowering the frequency lowers the degree of vacuum in the analysis chamber 2. In other words, the inverter device 1 utilizes the frequency-evacuation characteristics of the vacuum pump 3.
The degree of vacuum in the analysis chamber 2 is changed by frequency control using 0.

【0016】本装置は、また、上記分析室2内の圧力を
検出する絶対圧型トランスデューサのような圧力センサ
11、および上記試料室4内の圧力を検出するピラニー
ゲージのような圧力センサ12を備えている。絶対圧型
トランスデューサは、真空度の絶対圧そのものを測定す
るので、ピラニーゲージに比較して応答性が良く真空精
度が良い。この絶対圧型トランスデューサとして、例え
ば気体分子がたたく圧力を電圧に変換して真空度を検出
するバラトロン(商品名)が好ましく用いられる。
The present apparatus further includes a pressure sensor 11 such as an absolute pressure type transducer for detecting the pressure in the analysis chamber 2 and a pressure sensor 12 such as a Pirani gauge for detecting the pressure in the sample chamber 4. ing. Since the absolute pressure transducer measures the absolute pressure itself of the degree of vacuum, it has better responsiveness and better vacuum accuracy than a Pirani gauge. As the absolute pressure type transducer, for example, a Baratron (trade name) that detects a degree of vacuum by converting a pressure struck by gas molecules into a voltage is preferably used.

【0017】本装置は、さらに、上記圧力センサ11に
よる圧力検出値と真空設定値とが合致するように、上記
インバータ装置10を制御して、上記真空ポンプ3への
供給電力の周波数を変化させることによりその排気能力
を調整する圧力制御手段14を備えている。この圧力制
御手段14は、上記圧力検出値と真空設定値との偏差に
比例した出力を出すP(比例)動作、偏差の積分に比例
した出力を出すI(積分)動作および偏差の微分に比例
した出力を出すD(微分)動作によるPID制御を行う
PID制御手段16を有している。
The apparatus further controls the inverter 10 to change the frequency of the power supplied to the vacuum pump 3 so that the pressure detected by the pressure sensor 11 and the vacuum setting value match. Pressure control means 14 for adjusting the exhaust capacity. The pressure control means 14 performs a P (proportional) operation for outputting an output proportional to the deviation between the pressure detection value and the vacuum set value, an I (integral) operation for outputting an output proportional to an integral of the deviation, and a derivative of the deviation. And a PID control means 16 for performing PID control by a D (differential) operation for outputting the output.

【0018】本発明でPID制御を行っているのは、上
記真空ポンプ3の周波数−排気特性は、真空ポンプ3の
構造、真空ポンプ排気容量(速度)、配管径及び配管
長、分析室2の容積等の要因により大きく変化するの
で、この変化に対して、過渡的に変化に迅速に応答し
て、安定した圧力制御を得るためである。PID制御で
は、PID定数の最適化が必要であるが、本装置は、こ
のPID定数を自動設定するオートチューニング手段1
7を備えている。
The PID control is performed in the present invention because the frequency-evacuation characteristics of the vacuum pump 3 are based on the structure of the vacuum pump 3, the vacuum pump exhaust capacity (speed), the pipe diameter and the pipe length, and the The reason is that the pressure largely changes due to factors such as the volume, so that the pressure can be transiently and promptly responded to this change to obtain stable pressure control. In the PID control, optimization of the PID constant is necessary. However, the present apparatus employs an auto tuning means 1 for automatically setting the PID constant.
7 is provided.

【0019】上記構成の装置の動作を説明する。まず、
図1の試料室4のシャッター19が開かれ、試料Sが外
部から試料室4内に搬入されると、シャッター19が閉
じられ、リークバルブ8が閉じられる。真空ポンプ3A
は一定量の気体を排気する運転状態にあり、この状態の
下で開閉バルブ6が開かれて、試料室4内の予備排気が
行われる。この間、分析室2と試料室4間のシャッター
18は閉じられている。
The operation of the apparatus having the above configuration will be described. First,
When the shutter 19 of the sample chamber 4 of FIG. 1 is opened and the sample S is carried into the sample chamber 4 from the outside, the shutter 19 is closed and the leak valve 8 is closed. Vacuum pump 3A
Is in an operation state of exhausting a certain amount of gas. Under this state, the opening / closing valve 6 is opened, and preliminary exhaust of the sample chamber 4 is performed. During this time, the shutter 18 between the analysis chamber 2 and the sample chamber 4 is closed.

【0020】つぎに、分析室2と試料室4間のシャッタ
ー18が開けられ、試料Sは試料室4から分析室2へ搬
入される。試料Sが搬入されるとシャッター18が閉じ
られる。真空ポンプ3は運転状態にあり、開閉バルブ5
が開かれる。分析室2が真空状態の場合、リークバルブ
7は常時閉じられている。
Next, the shutter 18 between the analysis room 2 and the sample room 4 is opened, and the sample S is carried into the analysis room 2 from the sample room 4. When the sample S is loaded, the shutter 18 is closed. The vacuum pump 3 is in operation, and the open / close valve 5
Is opened. When the analysis chamber 2 is in a vacuum state, the leak valve 7 is always closed.

【0021】そして、分析室2内において、圧力制御手
段14による圧力制御が開始される。図2に、本装置の
動作を表す特性図を示す。縦軸は検出された真空度(圧
力)および供給電力の周波数(真空ポンプ3の回転数)
を、横軸は時間を表す。縦軸上方向に供給電力の周波数
は高く、縦軸下方向に真空度は高くなっている。図2に
おいて、試料Sの試料室4から分析室2への搬入時に、
高い周波数に設定した真空ポンプ3への供給電力の周波
数を低い周波数に変化させている(図示41)。
Then, in the analysis chamber 2, pressure control by the pressure control means 14 is started. FIG. 2 is a characteristic diagram showing the operation of the present apparatus. The vertical axis indicates the detected degree of vacuum (pressure) and the frequency of the supplied power (the number of rotations of the vacuum pump 3).
, And the horizontal axis represents time. The frequency of the supplied power is higher in the upper direction of the vertical axis, and the degree of vacuum is higher in the lower direction of the vertical axis. In FIG. 2, when the sample S is transferred from the sample chamber 4 to the analysis chamber 2,
The frequency of the power supplied to the vacuum pump 3 set to a high frequency is changed to a low frequency (FIG. 41).

【0022】まず、図1のオートチューニング手段17
により、真空ポンプ3の出力(周波数)をインバータ装
置10により強制的に変化させて真空度の変化を測定
し、周波数−真空特性を求めることで、最適なPID定
数に自動設定する。
First, the auto tuning means 17 shown in FIG.
Thus, the output (frequency) of the vacuum pump 3 is forcibly changed by the inverter device 10, the change in the degree of vacuum is measured, and the frequency-vacuum characteristic is obtained, thereby automatically setting the optimum PID constant.

【0023】すなわち、稼働前に、真空ポンプ3により
分析室2が真空引きされた状態で、オートチューニング
手段17のスタートボタン17aが押されると、オート
チューニングが開始され、真空ポンプ3の周波数を変化
させつつ、絶対圧型トランスデューサ(圧力センサ)1
1から検出された真空度(圧力)を電圧に変換した値
と、真空設定値を電圧に変換した値とのずれが許容範囲
内であって、その収束が速くなるように、PID定数が
自動設定される。なお、上記オートチューニングを複数
回繰り返してPID定数の微調整を行ってもよいし、稼
働中にスタートボタン17aを押すことで、短時間にわ
たりPID制御を中断して、上記オートチューニングを
行ってもよい。
That is, when the start button 17a of the auto tuning means 17 is pressed in a state where the analysis chamber 2 is evacuated by the vacuum pump 3 before the operation, the auto tuning is started and the frequency of the vacuum pump 3 is changed. Absolute pressure type transducer (pressure sensor) 1
The PID constant is automatically adjusted so that the difference between the value obtained by converting the degree of vacuum (pressure) detected from 1 into a voltage and the value obtained by converting the vacuum set value into a voltage is within an allowable range, and the convergence is fast. Is set. The PID constant may be finely adjusted by repeating the auto-tuning a plurality of times, or the PID control may be interrupted for a short time by pressing the start button 17a during operation to perform the auto-tuning. Good.

【0024】つぎに、PID制御手段16により、絶対
圧型トランスデューサ11による圧力検出値と真空設定
値とが合致するように、上記PID定数を組み入れた制
御系の演算を行って、インバータ装置10を制御し、真
空ポンプ3への供給電力の周波数を変化させることによ
りその排気能力を調整する。このPID制御により、過
渡的に変化に迅速に応答でき、安定した圧力制御を行う
ことができる。
Next, the PID control means 16 controls the inverter system 10 by calculating a control system incorporating the above PID constants so that the pressure detected by the absolute pressure type transducer 11 and the vacuum set value match. Then, by changing the frequency of the electric power supplied to the vacuum pump 3, the exhaust capacity is adjusted. By this PID control, it is possible to promptly respond to a transient change, and to perform stable pressure control.

【0025】このように、応答性の良い絶対圧型トラン
スデューサ11を用い、圧力制御手段14により、真空
ポンプ3の排気能力を増減させるインバータ装置10を
PID制御して真空ポンプ3の排気能力を調整するの
で、第1の真空ポンプ3による排気の応答性が向上し
(図2の図示42)、分析室2の設定した真空度の収束
時間を短くするから、分析室2は安定した真空度に保持
される(図2の図示43)。安定した真空度に保持され
た分析室2内で試料Sは蛍光X線分析され、その後、試
料Sは上記と逆の動作で分析室2から試料室4を介して
外部へ搬出される。
As described above, the absolute pressure type transducer 11 having good responsiveness is used, and the pressure control means 14 controls the inverter device 10 for increasing / decreasing the evacuation capability of the vacuum pump 3 to adjust the evacuation capability of the vacuum pump 3. Therefore, the response of the first vacuum pump 3 to the evacuation is improved (42 in FIG. 2), and the convergence time of the degree of vacuum set in the analysis chamber 2 is shortened, so that the analysis chamber 2 is maintained at a stable degree of vacuum. (See 43 in FIG. 2). The sample S is subjected to the fluorescent X-ray analysis in the analysis chamber 2 maintained at a stable vacuum degree, and thereafter, the sample S is carried out from the analysis chamber 2 to the outside via the sample chamber 4 by the reverse operation.

【0026】こうして、本装置は、分析室2内の真空度
の安定性を十分に確保できるので、B(ホウ素),C
(炭素)等の軽元素の分析精度を向上することができ
る。
In this way, the present apparatus can sufficiently secure the stability of the degree of vacuum in the analysis chamber 2, so that B (boron), C
The analysis accuracy of light elements such as (carbon) can be improved.

【0027】この実施形態では、圧力制御手段14はP
ID制御を行っているが、真空度の安定性を確保できる
場合にはPID制御を行わなくてもよい。
In this embodiment, the pressure control means 14
Although the ID control is performed, the PID control need not be performed if the stability of the degree of vacuum can be ensured.

【0028】なお、この実施形態では、分析室2内と試
料室4内をそれぞれ真空引きする真空ポンプ3,3Aを
設けているが、両室2,4内を真空ポンプ3単独で真空
引きするようにしてもよい。
In this embodiment, the vacuum pumps 3 and 3A for evacuating the inside of the analysis chamber 2 and the inside of the sample chamber 4 are provided, but the inside of both chambers 2 and 4 is evacuated by the vacuum pump 3 alone. You may do so.

【0029】つぎに、第2実施形態の説明に移る。図3
は第2実施形態の蛍光X線装置の要部を示す。本装置
は、分析室2内および分析室2に隣接して試料Sを外部
から搬入する試料室4内を真空ポンプ3の1台で排気す
るものであり、試料Sを外部から搬入したのち、試料室
4内を大気状態から真空引きする真空立ち上げ時に、試
料室4内の真空排気速度を緩やかに変化させるものであ
る。その他の構成は、図1と同様である。
Next, the description will proceed to the second embodiment. FIG.
Indicates a main part of the fluorescent X-ray apparatus according to the second embodiment. This apparatus exhausts the inside of the analysis chamber 2 and the sample chamber 4 adjacent to the analysis chamber 2 into which the sample S is loaded from the outside by using one of the vacuum pumps 3. The vacuum evacuation speed in the sample chamber 4 is gently changed at the time of vacuum startup for evacuating the sample chamber 4 from the atmospheric state. Other configurations are the same as those in FIG.

【0030】本装置は、試料室4における真空立ち上げ
時に、シャッター18を閉じて試料室4内を真空ポンプ
3で真空引きした状態で、圧力制御手段14によってイ
ンバータ装置10を制御して、真空ポンプ3への供給電
力の周波数を変化させることにより、試料室4内を予備
排気する真空ポンプ3の回転数を変化させて排気能力を
増減させる。したがって、真空立ち上げ時に、真空ポン
プ3の回転数は時間とともに連続的に上昇するので、試
料室4内の真空排気速度は緩やかに増大する。これによ
り、真空ポンプ3による真空立ち上げ時に、試料Sに対
して急激な排気による影響を与えることがなく、例え
ば、試料Sが粉末状試料や揮発性試料の場合に、粉末状
試料の飛散や揮発性試料の揮散を防止することができ
る。
In the present apparatus, when the vacuum in the sample chamber 4 is started, the shutter 18 is closed and the inside of the sample chamber 4 is evacuated by the vacuum pump 3, and the inverter 10 is controlled by the pressure control means 14 to evacuate the vacuum. By changing the frequency of the power supplied to the pump 3, the number of revolutions of the vacuum pump 3 for pre-evacuating the inside of the sample chamber 4 is changed to increase or decrease the evacuation capacity. Therefore, when the vacuum is started, the number of revolutions of the vacuum pump 3 continuously increases with time, so that the evacuation speed in the sample chamber 4 gradually increases. This prevents the sample S from being affected by abrupt evacuation when the vacuum is started by the vacuum pump 3. For example, when the sample S is a powdery sample or a volatile sample, Volatilization of the volatile sample can be prevented.

【0031】なお、この実施形態では、分析室2および
試料室4内を1台の真空ポンプ3で排気させ、この真空
ポンプ3による真空排気速度を緩やかに変化させている
が、分析室2内と試料室4内とをそれぞれ排気させる2
台の真空ポンプを設け、試料室4内を排気する真空ポン
プによる真空排気速度を緩やかに変化させるようにして
もよい。
In this embodiment, the inside of the analysis chamber 2 and the sample chamber 4 is evacuated by one vacuum pump 3 and the vacuum evacuation speed by the vacuum pump 3 is gradually changed. And the inside of the sample chamber 4 are evacuated 2
A vacuum pump may be provided to gradually change the vacuum pumping speed of the vacuum pump for pumping the sample chamber 4.

【0032】つぎに、第3実施形態の説明に移る。第3
実施形態の装置は、試料室の予備排気を高速化するため
に大排気量の真空ポンプを用いて対応した場合、圧力制
御を行う際に大排気量の真空ポンプは小排気量のものよ
り応答性が低いため、適切な圧力制御が困難となること
に鑑みて構成されたものである。図4は第3実施形態の
蛍光X線装置の要部を示す。
Next, the description will proceed to the third embodiment. Third
When the apparatus of the embodiment responds by using a large-displacement vacuum pump in order to speed up the preliminary evacuation of the sample chamber, the large-displacement vacuum pump responds better than the small-displacement one when performing pressure control. It is configured in view of the difficulty of appropriate pressure control due to low performance. FIG. 4 shows a main part of a fluorescent X-ray apparatus according to the third embodiment.

【0033】本装置は、図3の構成に加えて、上記第1
の真空ポンプ3と並列に配置された第2の真空ポンプ3
Bを備えており、この第2の真空ポンプ3Bは配管路T
2から分岐した配管路T3により試料室4に接続されて
おり、この配管路T3に、試料室4と第2の真空ポンプ
3B間の当該配管路T3を開閉する開閉バルブ9と、リ
ークバルブ13とが設けられている。第2の真空ポンプ
3Bは、第1の真空ポンプ3よりも大きな排気能力を有
し、一定回転で真空引きを行う。試料Sを外部から搬入
したのち試料室4内を真空引きする真空立ち上げ時に、
インバータ装置10により圧力制御された第1の真空ポ
ンプ3と、第2の真空ポンプ3Bの両方で試料室4内を
排気する。なお、第2の真空ポンプ3Bをインバータ制
御してもよい。
The present apparatus is similar to the apparatus of FIG.
Second vacuum pump 3 arranged in parallel with the vacuum pump 3
B, and the second vacuum pump 3B
The pipe T3 is connected to the sample chamber 4 by a pipe T3. The pipe T3 is provided with an opening / closing valve 9 for opening and closing the pipe T3 between the sample chamber 4 and the second vacuum pump 3B, and a leak valve 13. Are provided. The second vacuum pump 3B has a larger evacuation capacity than the first vacuum pump 3, and evacuates at a constant rotation. After the sample S is loaded from the outside, when the vacuum is started to evacuate the sample chamber 4,
The inside of the sample chamber 4 is evacuated by both the first vacuum pump 3 whose pressure is controlled by the inverter device 10 and the second vacuum pump 3B. Note that the second vacuum pump 3B may be controlled by an inverter.

【0034】図5に、本装置の動作を表す特性図を示
す。同図において、第1および第2の真空ポンプ3,3
Bへの供給電力の周波数と、試料室4の真空度とを実線
で、第1の真空ポンプ3への供給電力の周波数と、分析
室2の真空度とを点線で示す。
FIG. 5 is a characteristic diagram showing the operation of the present apparatus. In the figure, first and second vacuum pumps 3, 3
The frequency of the power supplied to B and the degree of vacuum in the sample chamber 4 are indicated by solid lines, and the frequency of the power supplied to the first vacuum pump 3 and the degree of vacuum in the analysis chamber 2 are indicated by dotted lines.

【0035】まず、図4の試料Sを外部から試料室4へ
搬入したのち、試料室4を大気状態から真空引きする真
空立ち上げ時に、両真空ポンプ3,3Bの開閉バルブ
6,9を開けた状態で、圧力制御手段14により第1の
真空ポンプ3の回転数をインバータ装置10で制御し
て、試料室4を排気する真空排気速度を連続的に変化さ
せる(図5の図示51)。このとき、第1の真空ポンプ
3と大きな排気能力を有する第2の真空ポンプ3Bを同
時に作動させるので、試料室4の真空到達時間を短くで
きる。
First, after the sample S of FIG. 4 is carried into the sample chamber 4 from the outside, the opening and closing valves 6, 9 of the vacuum pumps 3, 3B are opened when the vacuum is started to evacuate the sample chamber 4 from the atmospheric state. In this state, the rotation speed of the first vacuum pump 3 is controlled by the inverter device 10 by the pressure control means 14 to continuously change the evacuation speed at which the sample chamber 4 is evacuated (illustration 51 in FIG. 5). At this time, since the first vacuum pump 3 and the second vacuum pump 3B having a large evacuation capacity are simultaneously operated, the time required for the sample chamber 4 to reach the vacuum can be shortened.

【0036】つぎに、試料室4が所定の真空度になると
(図5のP1位置)、シャッター18を開けて、試料S
を試料室4から分析室2に搬入する。このとき、試料室
4内では既に高い真空度を得ているので(図5の図示5
2)、第2の真空ポンプ3Bの開閉バルブ9を閉じて第
2の真空ポンプ3Bによる排気を行わずに、試料室4お
よび分析室2内において、第1の真空ポンプ3に対して
上記のような圧力制御手段14によるインバータ制御を
行う(図5の図示53)。このインバータ制御により、
第1の真空ポンプ3の排気能力を調整するので、第1の
真空ポンプ3による排気の応答性が向上する(図5の図
示54)。したがって、試料室4および分析室2の真空
度の変動も抑制され、真空度が一定に保持される(図5
の図示55)。
Next, when the sample chamber 4 reaches a predetermined degree of vacuum (P1 position in FIG. 5), the shutter 18 is opened and the sample S
From the sample chamber 4 to the analysis chamber 2. At this time, since a high degree of vacuum has already been obtained in the sample chamber 4 (see FIG.
2) In the sample chamber 4 and the analysis chamber 2, the first vacuum pump 3 is closed in the sample chamber 4 and the analysis chamber 2 without closing the open / close valve 9 of the second vacuum pump 3B and evacuating the second vacuum pump 3B. Inverter control is performed by such pressure control means 14 (illustration 53 in FIG. 5). With this inverter control,
Since the evacuation capacity of the first vacuum pump 3 is adjusted, the response of the evacuation by the first vacuum pump 3 is improved (illustration 54 in FIG. 5). Therefore, fluctuations in the degree of vacuum in the sample chamber 4 and the analysis chamber 2 are also suppressed, and the degree of vacuum is kept constant (FIG. 5).
55).

【0037】なお、この実施形態では、試料室4の真空
立ち上げ時に、試料室4内を第1の真空ポンプ3と大き
な排気能力を有する第2の真空ポンプ3Bを同時に作動
させているが、第2の真空ポンプ3Bだけで十分に短い
真空到達時間が得られれば、第2の真空ポンプ3Bだけ
を作動させるようにしてもよい。
In this embodiment, the first vacuum pump 3 and the second vacuum pump 3B having a large evacuation capacity are simultaneously operated in the sample chamber 4 when the sample chamber 4 is started to vacuum. If a sufficiently short vacuum arrival time can be obtained only by the second vacuum pump 3B, only the second vacuum pump 3B may be operated.

【0038】このように、試料室4における真空立ち上
げ時に、大排気量の第2の真空ポンプ3Bを用いて、試
料室4の真空到達時間を短縮し、分析室2内において
は、応答性の良い小排気量の第1の真空ポンプ3を用い
て、これをインバータ制御して、その排気能力を調整す
るので、第1の真空ポンプ3による排気の応答性が向上
する。したがって、試料室4および分析室2の設定した
真空度の収束時間を短くして、真空度の安定性を確保で
きる。
As described above, when the vacuum in the sample chamber 4 is started, the second vacuum pump 3B having a large displacement is used to shorten the time to reach the vacuum in the sample chamber 4, and the response in the analysis chamber 2 is reduced. Since the first vacuum pump 3 having a small displacement and a good displacement is inverter-controlled to adjust the pumping capacity, the response of the first vacuum pump 3 to the pumping is improved. Therefore, the convergence time of the degree of vacuum set in the sample chamber 4 and the analysis chamber 2 can be shortened, and the stability of the degree of vacuum can be secured.

【0039】[0039]

【発明の効果】以上のように、本発明の一構成によれ
ば、圧力センサによる圧力検出値と真空設定値とが合致
するように、真空ポンプの回転数を変化させて排気能力
を増減させる動作を行うインバータ装置を制御して、そ
の排気能力を調整する。したがって、真空ポンプによる
排気の応答性が向上し、設定した真空度の収束時間を短
くするので、真空度の安定性を確保できる。
As described above, according to one aspect of the present invention, the exhaust speed is increased or decreased by changing the number of revolutions of the vacuum pump so that the pressure detected by the pressure sensor matches the vacuum set value. The exhaust device is adjusted by controlling the inverter device that operates. Therefore, the responsiveness of the evacuation by the vacuum pump is improved, and the convergence time of the set vacuum degree is shortened, so that the stability of the vacuum degree can be ensured.

【0040】本発明の他の構成によれば、試料室におけ
る真空立ち上げ時に、インバータ装置により真空ポンプ
の回転数を変化させて排気能力を増減させるので、真空
排気速度を緩やかに変化させることができ、試料が粉末
状試料や揮発性試料の場合に、試料室内の粉末状試料の
飛散や揮発性試料の揮散を防止することができる。
According to another configuration of the present invention, the evacuation capacity is increased or decreased by changing the number of revolutions of the vacuum pump by the inverter device when starting up the vacuum in the sample chamber, so that the evacuation speed can be gradually changed. When the sample is a powdery sample or a volatile sample, scattering of the powdery sample in the sample chamber and volatilization of the volatile sample can be prevented.

【0041】本発明のさらに他の構成によれば、試料室
における真空立ち上げ時に、第1の真空ポンプよりも大
きな排気能力を有する第2の真空ポンプで試料室内を排
気するので、試料室の真空到達時間を短縮できる。分析
室内においては、圧力センサによる圧力検出値と真空設
定値とが合致するように、真空ポンプの回転数を変化さ
せて排気能力を増減させる動作を行うインバータ装置を
制御して、その排気能力を調整するので、第1の真空ポ
ンプによる排気の応答性が向上する。したがって、試料
室および分析室の設定した真空度の収束時間を短くする
ので、真空度の安定性を確保できる。
According to still another configuration of the present invention, when the vacuum in the sample chamber is started, the sample chamber is evacuated by the second vacuum pump having a larger exhaust capacity than the first vacuum pump. Vacuum arrival time can be shortened. In the analysis chamber, an inverter device that performs an operation of changing the number of revolutions of the vacuum pump to increase or decrease the exhaust capacity is controlled so that the pressure detection value obtained by the pressure sensor matches the vacuum set value, and the exhaust capacity is controlled. Since the adjustment is performed, the responsiveness of the exhaust by the first vacuum pump is improved. Therefore, the convergence time of the degree of vacuum set in the sample chamber and the analysis chamber is shortened, so that the stability of the degree of vacuum can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る蛍光X線分析装置
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an X-ray fluorescence analyzer according to a first embodiment of the present invention.

【図2】第1実施形態の装置の動作を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing an operation of the device of the first embodiment.

【図3】第2実施形態に係る蛍光X線分析装置を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram illustrating a fluorescent X-ray analyzer according to a second embodiment.

【図4】第3実施形態に係る蛍光X線分析装置を示す概
略構成図である。
FIG. 4 is a schematic configuration diagram illustrating a fluorescent X-ray analyzer according to a third embodiment.

【図5】第3実施形態の装置の動作を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing an operation of the device of the third embodiment.

【符号の説明】[Explanation of symbols]

2…分析室、4…試料室、10…インバータ装置、11
…圧力センサ、14…圧力制御手段、16…PID制御
手段、17…オートチューニング手段、3…真空ポンプ
(第1の真空ポンプ)、3B…第2の真空ポンプ、S…
試料。
2 ... analysis room, 4 ... sample room, 10 ... inverter device, 11
... pressure sensor, 14 ... pressure control means, 16 ... PID control means, 17 ... automatic tuning means, 3 ... vacuum pump (first vacuum pump), 3B ... second vacuum pump, S ...
sample.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 BA04 CA01 GA16 JA11 JA14 JA20 KA01 MA02 MA04 NA03 NA16 PA02 PA07 PA11 3H076 AA16 AA21 AA39 BB34 CC07 CC51 CC94 CC98 CC99  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G001 AA01 BA04 CA01 GA16 JA11 JA14 JA20 KA01 MA02 MA04 NA03 NA16 PA02 PA07 PA11 3H076 AA16 AA21 AA39 BB34 CC07 CC51 CC94 CC98 CC99

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 真空ポンプにより真空引きした分析室内
の試料を蛍光X線分析する蛍光X線分析装置であって、 前記真空ポンプへの供給電力の周波数を変化させること
により、真空ポンプの回転数を変化させて排気能力を増
減させる動作を行うインバータ装置と、 前記分析室内の圧力を検出する圧力センサと、 前記圧力センサによる圧力検出値と、真空設定値とが合
致するように、前記インバータ装置を制御して、前記真
空ポンプの排気能力を調整する圧力制御手段とを備えた
蛍光X線分析装置。
1. An X-ray fluorescence analyzer for X-ray fluorescence analysis of a sample in an analysis chamber evacuated by a vacuum pump, wherein the number of rotations of the vacuum pump is changed by changing the frequency of power supplied to the vacuum pump. An inverter device that performs an operation of increasing or decreasing the exhaust capacity by changing the pressure, a pressure sensor that detects the pressure in the analysis chamber, a pressure detection value by the pressure sensor, and a vacuum set value so that the vacuum setting value matches. X-ray fluorescence analyzer comprising: a pressure control means for controlling the vacuum pump to control the evacuation capacity of the vacuum pump.
【請求項2】 請求項1において、 前記圧力制御手段は、圧力検出値と真空設定値との偏差
に比例した出力を出すP動作、偏差の積分に比例した出
力を出すI動作および偏差の微分に比例した出力を出す
D動作によるPID制御を行うPID制御手段を有して
いる蛍光X線分析装置。
2. The pressure control means according to claim 1, wherein said pressure control means outputs an output proportional to a deviation between the detected pressure value and the vacuum set value, an I operation outputs an output proportional to the integral of the deviation, and a differential operation of the deviation. X-ray fluorescence analyzer having PID control means for performing PID control by a D operation that outputs an output proportional to the X-ray fluorescence.
【請求項3】 請求項2において、さらに、 前記PID制御におけるPID定数を自動設定するオー
トチューニング手段を備えた蛍光X線分析装置。
3. The X-ray fluorescence analyzer according to claim 2, further comprising an auto-tuning means for automatically setting a PID constant in said PID control.
【請求項4】 分析室内および分析室に隣接して試料を
外部から搬入する試料室内を真空ポンプにより排気し、
この真空引きした分析室内の試料にX線を照射し、試料
から発生する蛍光X線の強度を測定して試料を分析する
蛍光X線分析装置であって、 試料を外部から搬入したのち前記試料室内を真空引きす
る真空立ち上げ時に、前記試料室内を排気する真空ポン
プへの供給電力の周波数を変化させることにより、真空
ポンプの回転数を変化させて排気能力を増減させる動作
を行うインバータ装置を備えた蛍光X線分析装置。
4. A vacuum pump evacuates a sample chamber for carrying a sample from the outside adjacent to the analysis chamber and the analysis chamber,
An X-ray fluorescence spectrometer for irradiating a sample in the evacuated analysis chamber with X-rays, measuring the intensity of X-ray fluorescence generated from the sample, and analyzing the sample. An inverter device that changes the frequency of power supplied to a vacuum pump that evacuates the sample chamber when the vacuum is started to evacuate the chamber, thereby changing the number of revolutions of the vacuum pump to increase or decrease the exhaust capacity. X-ray fluorescence analyzer provided.
【請求項5】 分析室内および分析室に隣接して試料を
外部から搬入する試料室内を排気する第1の真空ポンプ
を有し、この第1の真空ポンプにより真空引きした前記
分析室内の試料を蛍光X線分析する蛍光X線分析装置で
あって、 前記第1の真空ポンプよりも大きな排気能力を有し、試
料を外部から搬入したのち前記試料室内を真空引きする
真空立ち上げ時に、第1の真空ポンプとともに、または
単独で、前記試料室内を排気する第2の真空ポンプと、 前記第1の真空ポンプへの供給電力の周波数を変化させ
ることにより、第1の真空ポンプの回転数を変化させて
排気能力を増減させる動作を行うインバータ装置と、 前記分析室内の圧力を検出する圧力センサと、 前記圧力センサによる圧力検出値と、真空設定値とが合
致するように、前記インバータ装置を制御して、前記第
1の真空ポンプの排気能力を調整する圧力制御手段とを
備えた蛍光X線分析装置。
5. A first vacuum pump for evacuating the analysis chamber and a sample chamber adjacent to the analysis chamber for carrying a sample from the outside, and evacuating the sample in the analysis chamber by the first vacuum pump. An X-ray fluorescence analyzer for performing X-ray fluorescence analysis, wherein the X-ray fluorescence analyzer has a larger exhaust capacity than the first vacuum pump, and performs a first vacuum pumping operation for evacuating the sample chamber after loading a sample from outside. A second vacuum pump for evacuating the sample chamber together with or independently of the vacuum pump, and changing the frequency of power supplied to the first vacuum pump to change the rotation speed of the first vacuum pump. An inverter device that performs an operation of increasing or decreasing the exhaust capacity, a pressure sensor that detects a pressure in the analysis chamber, and a pressure detection value obtained by the pressure sensor and a vacuum setting value that match each other. And controls the inverter device, the fluorescent X-ray analysis apparatus provided with a pressure control means for adjusting the exhaust capability of the first vacuum pump.
JP31005798A 1998-10-30 1998-10-30 X-ray fluorescence analyzer Expired - Fee Related JP3584279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31005798A JP3584279B2 (en) 1998-10-30 1998-10-30 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31005798A JP3584279B2 (en) 1998-10-30 1998-10-30 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2000137010A true JP2000137010A (en) 2000-05-16
JP3584279B2 JP3584279B2 (en) 2004-11-04

Family

ID=18000655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31005798A Expired - Fee Related JP3584279B2 (en) 1998-10-30 1998-10-30 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3584279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207908A (en) * 2004-01-23 2005-08-04 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2014512488A (en) * 2011-04-29 2014-05-22 アルバイラー・ゲーエムベーハー Pump system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235840A (en) * 1988-03-17 1989-09-20 Toshiba Corp Surface analyzer
JPH0344545A (en) * 1989-07-13 1991-02-26 Fujitsu Ltd Fluorescent x-ray measuring apparatus
JPH04358531A (en) * 1991-06-05 1992-12-11 Tokyo Electron Ltd Evacuation of vacuum container
JPH06331574A (en) * 1993-05-18 1994-12-02 Sony Corp Analyzer
JPH07153692A (en) * 1993-11-30 1995-06-16 Toshiba Corp Method and equipment for making thin film grow on semiconductor substrate
JPH08179805A (en) * 1994-12-22 1996-07-12 Daikin Ind Ltd Parameter setting method for robust controller
JPH09221381A (en) * 1996-02-08 1997-08-26 Komatsu Electron Metals Co Ltd Evacuating device for device for pulling up single crystal
JPH09317641A (en) * 1996-05-30 1997-12-09 Daikin Ind Ltd Vacuum exhauster

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235840A (en) * 1988-03-17 1989-09-20 Toshiba Corp Surface analyzer
JPH0344545A (en) * 1989-07-13 1991-02-26 Fujitsu Ltd Fluorescent x-ray measuring apparatus
JPH04358531A (en) * 1991-06-05 1992-12-11 Tokyo Electron Ltd Evacuation of vacuum container
JPH06331574A (en) * 1993-05-18 1994-12-02 Sony Corp Analyzer
JPH07153692A (en) * 1993-11-30 1995-06-16 Toshiba Corp Method and equipment for making thin film grow on semiconductor substrate
JPH08179805A (en) * 1994-12-22 1996-07-12 Daikin Ind Ltd Parameter setting method for robust controller
JPH09221381A (en) * 1996-02-08 1997-08-26 Komatsu Electron Metals Co Ltd Evacuating device for device for pulling up single crystal
JPH09317641A (en) * 1996-05-30 1997-12-09 Daikin Ind Ltd Vacuum exhauster

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207908A (en) * 2004-01-23 2005-08-04 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2014512488A (en) * 2011-04-29 2014-05-22 アルバイラー・ゲーエムベーハー Pump system
JP2018066375A (en) * 2011-04-29 2018-04-26 アルバイラー・ゲーエムベーハー Pump system
US9995297B2 (en) 2011-04-29 2018-06-12 Allweiler Gmbh Pump system

Also Published As

Publication number Publication date
JP3584279B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US7793685B2 (en) Controlling gas partial pressures for process optimization
US5561240A (en) Leak detecting apparatus using compound turbo-molecular pump
US5900537A (en) Test gas leakage detector
EP0218458B1 (en) Method and apparatus for gross leak detection
JP3887291B2 (en) Substrate processing equipment
JP3877157B2 (en) Substrate processing equipment
JP3186262B2 (en) Method for manufacturing semiconductor device
EP1631806B1 (en) Methods and apparatus for detection of large leaks in sealed articles
JP2005330967A (en) Vacuum pump system for light gas
JP2006210728A5 (en)
JP4164030B2 (en) Test gas leak detector
JP2000137010A (en) Fluorescence x-ray spectrometer
CN109742010B (en) Vacuum sample feeding and changing method for vacuum instrument
JPH0267472A (en) Pressure control method for vacuum equipment
JPH05231381A (en) Method and device for controlling vacuum exhaust capacity of dry vacuum pump and dry vacuum pump and semiconductor manufacturing vacuum processor
JP2007500352A (en) Leak detector
JP3291263B2 (en) X-ray fluorescence analyzer
US5172183A (en) Glow discharge atomic emission spectroscopy and apparatus thereof
JP2760331B2 (en) Vacuum exhaust device
JP2007107398A (en) Evacuating device and evacuating method
JPH018714Y2 (en)
JP4079997B2 (en) Arrangement for connecting low-pressure inputs of gas analyzers
JPS59119234A (en) Apparatus for leak test
JPH01239751A (en) Exhaust system in vacuum device
JP3569716B2 (en) High frequency glow discharge emission spectroscopy method and apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees