JP2000129474A - Method for buffering hydrogen absorbing embrittlement of titanium clad steel - Google Patents

Method for buffering hydrogen absorbing embrittlement of titanium clad steel

Info

Publication number
JP2000129474A
JP2000129474A JP10301851A JP30185198A JP2000129474A JP 2000129474 A JP2000129474 A JP 2000129474A JP 10301851 A JP10301851 A JP 10301851A JP 30185198 A JP30185198 A JP 30185198A JP 2000129474 A JP2000129474 A JP 2000129474A
Authority
JP
Japan
Prior art keywords
steel
titanium clad
pipe pile
clad steel
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10301851A
Other languages
Japanese (ja)
Other versions
JP3413515B2 (en
Inventor
Yoshiaki Shimizu
義明 清水
Sakae Fujita
栄 藤田
Yasushi Tanaka
靖 田中
Toshio Takano
俊夫 高野
Takeshi Karasawa
武 柄澤
Kenji Kono
健二 河野
Kan Hanayama
莞 花山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP30185198A priority Critical patent/JP3413515B2/en
Publication of JP2000129474A publication Critical patent/JP2000129474A/en
Application granted granted Critical
Publication of JP3413515B2 publication Critical patent/JP3413515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the excessive convertion of the electric potential of titanium clad steel into the baser one, to buffer the hydrogen absorbing embrittlement therein and to maintain its durability by providing titanium clad steel joined to a steel structure in which the submerged part is subjected to electric corrosion prevention with a metallic material having a natural electric potential baser than that of the steel and joining it with the steel. SOLUTION: The submerged part 2 in seawater of the steel pipe pile 1 of a landing bridge 7 is, e.g. fitted with a voltaic anode 3, which is subjected to electric corrosion prevention. Moreover, titanium clad steel 5 having high corrosion resistance is coiled directly below a droplet zone and a tide zone 4 severe in corrosive environments in the steel pipe pile 1, and its corrosion resistance is moreover increased. In this steel structure, from the tide seawater face of the titanium clad steel 5 to below about 1 m, a metallic material 8 with a planar, helical or netty shape or the like of copper, a copper alloy, stainless steel, cupro, a nickel base alloy or the like having a natural electric potential baser than that of the steel is coiled, and, moreover, this metallic material 8 is welded and joined to the steel pipe pile 1. In this way, protective current is flowed on the metallic material, and it is made hard to flow on the titanium clad steel to prevent hydrogen absorption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、没水部で電気防食が施
されている鋼構造物、例えば汽水中、海水中で電気防食
が施されている橋脚や港湾鋼構造物の飛沫帯及び干満帯
における鋼材の外面あるいは海上空港に代表されるよう
な大型浮体からなる海洋鋼構造物の喫水部から大気中部
にかけて接合されるチタンクラッド鋼の水素吸収脆化を
緩衝させる工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel structure provided with a cathodic protection in a submerged part, for example, a pier or a harbor steel structure provided with a cathodic protection in brackish water or seawater. The present invention relates to a method for buffering hydrogen absorption embrittlement of titanium clad steel joined from a draft portion to an atmospheric portion of a marine steel structure composed of a large floating body typified by an outer surface of a steel material or a marine airport in a tidal zone.

【0002】[0002]

【従来の技術】一般に港湾鋼構造物に使用される鋼管
杭、橋脚や浮体からなる海洋鋼構造物等では、没水部は
電気防食や塗装あるいはこれらの併用が標準的に施され
ている。一方、飛沫帯及び干満帯直下(HWL+1mか
らLWL−1m)あるいは喫水部は非金属被覆や塗装が
標準的に施されているものの、他の部分と比べると腐食
環境が過酷で腐食の進行が大きいために、最近ではステ
ンレス鋼板やチタン等の高耐食性金属で被覆し、耐食性
をさらに強化することが行われている。
2. Description of the Related Art In steel pipe piles, piers, floating bodies, and other marine steel structures generally used for harbor steel structures, submerged portions are typically subjected to electrolytic protection, painting, or a combination thereof. On the other hand, although the non-metallic coating and painting are applied to the splash zone and the tidal zone immediately below (HWL + 1m to LWL-1m) or the draft part, the corrosion environment is severer than other parts and the progress of corrosion is large. For this reason, it has recently been practiced to coat with a highly corrosion-resistant metal such as a stainless steel plate or titanium to further enhance the corrosion resistance.

【0003】例えば、図9に示すように桟橋7の鋼管杭
1の没水部2には、電気防食法のうち流電陽極方式で用
いられる流電陽極3が図示していないが溶接等で鋼管杭
1と電気的に導通するように取り付けられ、飛沫帯及び
干満帯4には全周にわたってチタンクラッド鋼5が接合
されている。あるいは図10に示すように桟橋7の鋼管
杭1の没水部2には、電気防食法のうち外部電源方式で
用いられる難溶性電極20が鋼管杭1と電気的に絶縁さ
れるように取り付けられると共に直流電源装置21のプ
ラス側に電線22を介して難溶性電極20が、直流電源
装置21のマイナス側に電線22を介して鋼管杭1がそ
れぞれ接続され、飛沫帯及び干満帯4には全周にわたっ
てチタンクラッド鋼5が接合されている。
For example, as shown in FIG. 9, a submerged portion 2 of a steel pipe pile 1 of a pier 7 is provided with a galvanic anode 3 used in a galvanic anode system of the cathodic protection method by welding or the like. Attached to the steel pipe pile 1 so as to be electrically conductive, a titanium clad steel 5 is joined to the splash zone and the tidal zone 4 all around. Alternatively, as shown in FIG. 10, a hardly soluble electrode 20 used in the external power supply method of the cathodic protection method is attached to the submerged portion 2 of the steel pipe pile 1 of the pier 7 so as to be electrically insulated from the steel pipe pile 1. At the same time, the hardly soluble electrode 20 is connected to the plus side of the DC power supply 21 via an electric wire 22, and the steel pipe pile 1 is connected to the minus side of the DC power supply 21 via the electric wire 22. The titanium clad steel 5 is joined all around.

【0004】[0004]

【発明が解決しようとする課題】しかし、図9に示すよ
うに鋼管杭1の没水部2に取り付けられている流電陽極
3あるいは図10に示すように鋼管杭1の没水部2に取
り付けられている難溶性電極20からの防食電流6がチ
タンクラッド鋼5にも流入するため没水部2の鋼管杭1
と同様な電位(−900〜−1050mVvs海水塩化
銀照合電極、以下同じ)となり、チタンの水素吸収が始
まるといわれている約−700mVよりかなり卑となる
ために、これによるチタンの脆化が懸念され、チタンク
ラッド鋼5の長期間にわたる耐久性が維持できない可能
性があり、構造物としての所定の寿命が確保できないこ
とにつながる。
However, the galvanic anode 3 attached to the submerged part 2 of the steel pipe pile 1 as shown in FIG. 9 or the submerged part 2 of the steel pipe pile 1 as shown in FIG. Since the anticorrosion current 6 from the attached poorly soluble electrode 20 also flows into the titanium clad steel 5, the steel pipe pile 1 of the submerged portion 2
(-900 to -1050 mV vs seawater silver chloride reference electrode, the same applies hereinafter), which is considerably lower than about -700 mV, which is said to start hydrogen absorption of titanium. Therefore, there is a possibility that the long-term durability of the titanium clad steel 5 cannot be maintained, which leads to a failure in securing a predetermined life as a structure.

【0005】本発明は、叙上の事情に鑑みなされたもの
で、その目的とするところは、チタンクラッド鋼の電位
の過度な卑化を抑制して長期間にわたる耐久性を維持す
るとともに構造物としての所定の寿命を確保させること
のできるチタンクラッド鋼の水素吸収脆化緩衝工法を提
供せんとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress the potential of titanium clad steel from becoming excessively low, maintain durability over a long period of time, and improve the structure. It is intended to provide a hydrogen absorbing embrittlement buffering method for titanium clad steel which can ensure a predetermined life as the above.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明工法は、没水部の鋼材に電気防食が施され、か
つ該鋼材の一部にチタンクラッド鋼が接合されている鋼
構造物において、該チタンクラッド鋼の全面又は一部に
該鋼材より自然電位が貴である金属材を設け、該金属材
を該鋼材に接合するものである。
In order to achieve the above object, the method of the present invention provides a steel structure in which a steel material in a submerged portion is subjected to electrolytic protection and a titanium clad steel is joined to a part of the steel material. In the object, a metal material having a higher natural potential than the steel material is provided on the entire surface or a part of the titanium clad steel, and the metal material is joined to the steel material.

【0007】該金属材としては、銅、銅合金、ステンレ
ス鋼、キュプロ又はニッケル基合金のいづれか一つを用
いるものである。さらに該金属材の形状としては、板
状、螺旋状あるいは網状のものが良く、螺旋状のものと
しては帯形や線形が適しており、網状のものとしては線
形が適している。
As the metal material, any one of copper, copper alloy, stainless steel, cupro or nickel-based alloy is used. Further, as the shape of the metal material, a plate shape, a spiral shape, or a net shape is preferable, and a band shape or a linear shape is suitable for the spiral shape, and a linear shape is suitable for the mesh shape.

【0008】[0008]

【作用】没水部の鋼材に電気防食が施されており、該鋼
材の一部にチタンクラッド鋼が接合されている鋼構造物
において、チタンクラッド鋼の全面又は一部に鋼材より
自然電位が貴である金属材を設けると共に当該金属材を
該鋼材に接合することによって、防食電流が金属材に流
入して鋼材を通って流電陽極あるいは直流電源装置のマ
イナス側に帰流するようになるため、チタンクラッド鋼
には流入しにくくなり、チタンクラッド鋼が約−700
mVより卑になることは殆どなくなる。さらに、チタン
クラッド鋼に防食電流をより流入しにくくするために
は、金属材と鋼材との自然電位差が大きいほど良い。つ
まり、一般的に没水中で電気防食されている鋼の電位
は、−900〜−1050mV程度であり、自然電位
(−500〜−600mV)より400mV程度陰分極
されている。従って、該金属材が400mV程度陰分極
されても−700mV程度の電位となれば、チタンクラ
ッド鋼には水素吸収脆化が起こる可能性が極めて低くな
る。そのためには、自然電位が鋼材より貴な金属材が有
利であり、施工性、コスト、耐食性等を考慮すると、
銅、銅合金、ステンレス鋼、キュプロ、ニッケル基合金
のいづれか一つの金属材を接合することが好ましい。
In a steel structure in which a steel material in a submerged portion is subjected to electrolytic protection and a titanium clad steel is joined to a part of the steel material, a natural potential is applied to the whole or part of the titanium clad steel from the steel material. By providing the noble metal material and joining the metal material to the steel material, the anticorrosion current flows into the metal material and returns to the negative electrode of the galvanic anode or the DC power supply device through the steel material. Therefore, it is difficult for the titanium clad steel to flow into the titanium clad steel.
It hardly goes below mV. Further, in order to make it more difficult for the anticorrosion current to flow into the titanium clad steel, the larger the natural potential difference between the metal material and the steel material, the better. That is, the electric potential of the steel which is generally subjected to electrolytic protection in submerged water is about -900 to -1050 mV, and is negatively polarized by about 400 mV from the natural potential (-500 to -600 mV). Therefore, if the potential of the metal material is about -700 mV even when the metal material is negatively polarized by about 400 mV, the possibility of hydrogen absorption embrittlement in the titanium clad steel is extremely low. For that purpose, a metal material whose natural potential is more noble than steel is advantageous, and in consideration of workability, cost, corrosion resistance, etc.,
It is preferable to join any one of copper, copper alloy, stainless steel, cupro, and nickel-based alloy.

【0009】一方、金属材の形状としては施工性やコス
トを考慮すると、厚さが0.5〜5mm、好ましくは、
1〜3mmの板状のものをチタンクラッド鋼の全面又は
一部の全周に巻き付け、これを鋼材と溶接しても良い
し、鋼材にボルトを立設してナットで締め付け固定して
も良い。また螺旋状にした幅10〜20mm程度の帯形
のものや直径3〜7mm程度の線形のものを前述と同様
な位置と方法で固定できる。さらに上記金属材の材質に
より適宜選定できるが通常では直径1〜3mm程度の線
形のものを5〜10メッシュ程度の網状にしたものを前
述と同様な位置と方法で固定できる。網目の形状は正方
形、長方形、ひし形等、織りは平織、綾織、畳織等を適
宜用いれば良い。
On the other hand, considering the workability and cost, the thickness of the metal material is 0.5 to 5 mm, preferably
A 1 to 3 mm plate may be wound around the entire surface or a part of the circumference of the titanium clad steel, and this may be welded to the steel material, or a bolt may be erected on the steel material and fixed with a nut. . A spiral band having a width of about 10 to 20 mm or a linear one having a diameter of about 3 to 7 mm can be fixed by the same position and method as described above. Further, it can be appropriately selected according to the material of the above-mentioned metal material. Usually, a linear material having a diameter of about 1 to 3 mm and a mesh of about 5 to 10 mesh can be fixed by the same position and method as described above. The shape of the mesh may be a square, a rectangle, a rhombus, or the like, and the weave may be a plain weave, a twill weave, a tatami weave, or the like.

【0010】なお、本発明はチタンの種類に関係なく全
てのチタンクラッド鋼に適用できる。本発明の「没水
部」とは、海水環境のみならず、汽水環境や淡水環境を
も含むものである。
The present invention can be applied to all titanium clad steels regardless of the type of titanium. The “submerged portion” of the present invention includes not only a seawater environment but also a brackish water environment and a freshwater environment.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図1〜図8
に基づいて説明する。図1は、桟橋7の鋼管杭1におい
て、没水部2には電気防食用の流電陽極3が取り付けら
れ、飛沫帯及び干満帯直下4にはチタンクラッド鋼5が
巻き付けられており、チタンクラッド鋼5の干潮時の海
水面から1m程度下にかけて全周にわたり銅からなる板
状金属材8を巻き付け、鋼管杭1と板状金属材8を溶接
で取り付けたものである。
1 to 8 show an embodiment of the present invention.
It will be described based on. FIG. 1 shows a steel pipe pile 1 of a pier 7 in which a submerged portion 2 is provided with a galvanic anode 3 for cathodic protection, and a titanium clad steel 5 is wound immediately below a splash zone and a tidal zone 4. A plate-like metal material 8 made of copper is wound around the entire circumference about 1 m below the sea level of the clad steel 5 at low tide, and the steel pipe pile 1 and the plate-like metal material 8 are attached by welding.

【0012】図2は、図1と同様な鋼管杭1において、
没水部2には流電陽極3に代えて難溶性電極20が取り
付けられると共に電線22を介して直流電極装置21の
プラス側に難溶性電極20を、マイナス側に鋼管杭1を
接続し、銅からなる板状金属材8に代えてステンレス鋼
からなる板状金属材9をチタンクラッド鋼5の全面に巻
き付けて図示していないが鋼管杭1に立設したボルトに
ナットで取り付けたものである。
FIG. 2 shows a steel pipe pile 1 similar to FIG.
A submersible electrode 20 is attached to the submerged part 2 in place of the galvanic anode 3, and a hardly soluble electrode 20 is connected to the positive side of the direct current electrode device 21 and a steel pipe pile 1 is connected to the negative side via an electric wire 22. Instead of the plate-shaped metal material 8 made of copper, a plate-shaped metal material 9 made of stainless steel is wound around the entire surface of the titanium clad steel 5 and attached to a bolt (not shown) installed on the steel pipe pile 1 with a nut. is there.

【0013】図3は、図1と同様な鋼管杭1において、
チタンクラッド鋼5の干潮時の海水面から1m程度下に
かけて全周にわたり銅からなる板状金属材8に代えて銅
合金からなる帯状のものを螺旋状にした金属材10を巻
き付け、鋼管杭1に溶接したものである。図4は、図3
のチタンクラッド鋼5の干潮時の海水面から1m程度下
にかけて全周にわたり銅合金からなる帯状のものを螺旋
状にした金属材10に代えて、チタンクラッド鋼5の全
面に銅からなる線状のものを螺旋状にした金属材11を
巻き付け、鋼管杭1に溶接したものである。
FIG. 3 shows a steel pipe pile 1 similar to FIG.
In place of the plate-like metal material 8 made of copper, a metal material 10 in which a strip made of a copper alloy is spirally wound instead of the plate-shaped metal material 8 made of copper over the entire circumference about 1 m below the sea level at the time of low tide of the titanium clad steel 5 is wound. It is what was welded to. FIG. 4 shows FIG.
The entire surface of the titanium-clad steel 5 is made of a copper-based wire made of copper instead of a spiral-shaped metal material 10 over the entire circumference about 1 m below the sea level at low tide. A spirally wound metal material 11 is wound and welded to the steel pipe pile 1.

【0014】図5は、図1に銅からなる板状金属材8に
代えてキュプルからなる板状金属材12を巻き付け、鋼
管杭1に溶接で取り付けたものである。図6は、図2の
ステンレス鋼からなる板状金属材9に代えてニッケル基
合金からなる板状金属材13を巻き付け、鋼管杭1に溶
接で取り付けたものである。図7は、図1の銅からなる
板状金属材8に代えて銅からなる網状金属材14を巻き
付け、鋼管杭1に溶接で取り付けたものである。
FIG. 5 shows an example in which a plate-like metal material 12 made of cuple is wound in place of the plate-shaped metal material 8 made of copper in FIG. 1 and attached to the steel pipe pile 1 by welding. FIG. 6 is a diagram in which a plate-shaped metal material 13 made of a nickel-based alloy is wound around the plate-shaped metal material 9 made of stainless steel in FIG. 2 and attached to the steel pipe pile 1 by welding. FIG. 7 shows a structure in which a net-like metal material 14 made of copper is wound in place of the plate-shaped metal material 8 made of copper in FIG. 1 and attached to the steel pipe pile 1 by welding.

【0015】図8は、浮体からなる海洋鋼構造物15の
喫水部16から大気中部17にかけての全面にチタンク
ラッド鋼5が接合されており、没水部2には流電陽極3
が取り付けられているもので、喫水部16から大気中部
17にかけての一部の全周に銅合金からなる板状金属材
18を取り付け、構造物の鋼材部19に溶接したもので
ある。
FIG. 8 shows that a titanium clad steel 5 is joined to the entire surface of a marine steel structure 15 composed of a floating body from a draft portion 16 to an atmospheric portion 17, and a submerged portion 2 has a galvanic anode 3.
A plate-shaped metal material 18 made of a copper alloy is attached to a part of the entire circumference from a draft portion 16 to an atmospheric portion 17 and is welded to a steel material portion 19 of a structure.

【0016】なお、一般的に鋼管杭1では、飛沫帯及び
干満帯直下4にチタンクラッド鋼5が設けられており、
没水部としては1m程度であるが、例えば没水部が4〜
5mと大きくなっても、本発明は適用できる。
In general, the steel pipe pile 1 is provided with titanium clad steel 5 immediately below the splash zone and the tidal zone 4.
The length of the submerged part is about 1 m.
The present invention can be applied even if it is as large as 5 m.

【0017】[0017]

【実施例】実施例1 直径700mmの鋼管杭に対して、図1に示すような方
法で通電試験を行い、1ヶ月後に金属材部及び没水部の
鋼管杭の電位を測定した結果、金属材部の電位は−65
0〜−710mVであり、没水部の鋼管杭は−800〜
−1050mVであった。この結果より、没水部の鋼管
杭は防食電位を維持しており、金属材部はほぼ−700
mVより貴な電位を示しており、チタンクラッド鋼の水
素吸収脆化の可能性が極めて低くなることがわかった。
EXAMPLE 1 A steel pipe pile having a diameter of 700 mm was subjected to an electric current test by the method shown in FIG. 1, and after one month, the potentials of the metal pipe part and the submerged part were measured. The potential of the material part is -65
0 to -710 mV, and the steel pipe pile in the submerged part is -800 to
It was -1050 mV. From this result, the steel pipe pile in the submerged part maintains the anticorrosion potential, and the metal part is almost -700.
It shows a potential nobler than mV, indicating that the possibility of hydrogen absorption embrittlement of titanium clad steel is extremely low.

【0018】実施例2 直径700mmの鋼管杭に対して、図2に示すような方
法で通電試験を行い、1ヶ月後に金属材部及び没水部の
鋼管杭の電位を測定した結果、金属材部の電位は−68
0〜−730mVであり、没水部の鋼管杭は−810〜
−1050mVであった。この結果より、没水部の鋼管
杭は防食電位を維持しており、金属材部はほぼ−700
mV前後の電位を示しており、チタンクラッド鋼の水素
吸収脆化の可能性が極めて低くなることがわかった。
Example 2 A steel pipe pile having a diameter of 700 mm was subjected to an electricity test by the method shown in FIG. 2, and after one month, the potentials of the metal pipe part and the submerged part were measured. Part potential is -68
0 to -730 mV, and the submerged steel pipe pile is -810 to
It was -1050 mV. From this result, the steel pipe pile in the submerged part maintains the anticorrosion potential, and the metal part is almost -700.
It shows a potential of around mV, which indicates that the possibility of hydrogen absorption embrittlement of titanium clad steel is extremely low.

【0019】実施例3 直径800mmの鋼管杭に対して、図3に示すような方
法で通電試験を行い、1ヶ月後に金属材部及び没水部の
鋼管杭の電位を測定した結果、金属材部の電位は−66
0〜−720mVであり、没水部の鋼管杭は−800〜
−1050mVであった。この結果より、没水部の鋼管
杭は防食電位を維持しており、金属材部はほぼ−700
mVより貴な電位を示しており、チタンクラッド鋼の水
素吸収脆化の可能性が極めて低くなることがわかった。
Example 3 An electric current test was performed on a steel pipe pile having a diameter of 800 mm by a method as shown in FIG. 3, and after one month, the potentials of the metal pipe part and the submerged part were measured. The potential of the part is -66
0 to -720 mV, and the steel pipe pile in the submerged part is -800 to
It was -1050 mV. From this result, the steel pipe pile in the submerged part maintains the anticorrosion potential, and the metal part is almost -700.
It shows a potential nobler than mV, indicating that the possibility of hydrogen absorption embrittlement of titanium clad steel is extremely low.

【0020】[0020]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。チ
タンクラッド鋼の電位の過度な卑化を抑制してチタンク
ラッド鋼の水素吸収脆化を緩衝するので、チタンクラッ
ド鋼の長期間にわたる耐久性を維持するとともに構造物
としての所定の寿命を十分確保できる。
Since the present invention is configured as described above, it has the following effects. Suppresses the excessive lowering of the potential of titanium clad steel and buffers the hydrogen absorption embrittlement of titanium clad steel, maintaining the long-term durability of titanium clad steel and ensuring the required life as a structure it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による銅からなる板状金属材を鋼管杭の
チタンクラッド鋼の一部に接合した状態を示す要部平断
図付きの図である。
FIG. 1 is a diagram with a main part plan view showing a state in which a sheet metal material made of copper according to the present invention is joined to a part of titanium clad steel of a steel pipe pile.

【図2】本発明によるステンレス鋼からなる板状金属材
を鋼管杭のチタンクラッド鋼の全面に接合した状態を示
す要部平断図付きの図である。
FIG. 2 is a diagram with a main part plan view showing a state in which a sheet metal material made of stainless steel according to the present invention is joined to the entire surface of titanium clad steel of a steel pipe pile.

【図3】本発明による銅合金からなる帯形の螺旋状金属
材を鋼管杭のチタンクラッド鋼の一部に接合した状態を
示す要部平断図付きの図である。
FIG. 3 is a diagram with a main part plan view showing a state in which a strip-shaped spiral metal material made of a copper alloy according to the present invention is joined to a part of titanium clad steel of a steel pipe pile.

【図4】本発明による銅からなる線形の螺旋状金属材を
鋼管杭のチタンクラッド鋼の全面に接合した状態を示す
要部平断図付きの図である。
FIG. 4 is a diagram with a main part plan view showing a state where a linear spiral metal material made of copper according to the present invention is joined to the entire surface of a titanium clad steel of a steel pipe pile.

【図5】本発明によるキュプロからなる板状金属材を鋼
管杭のチタンクラッド鋼の一部に接合した状態を示す要
部平断図付きの図である。
FIG. 5 is a diagram with a main part plan view showing a state where a plate-shaped metal material made of cupro according to the present invention is joined to a part of titanium clad steel of a steel pipe pile.

【図6】本発明によるニッケル基合金からなる板状金属
材を鋼管杭のチタンクラッド鋼の全面に接合した状態を
示す要部平断図付きの図である。
FIG. 6 is a diagram with a main part plan view showing a state in which a plate-shaped metal material made of a nickel-based alloy according to the present invention is joined to the entire surface of a titanium clad steel of a steel pipe pile.

【図7】本発明による銅からなる網状金属材を鋼管杭の
チタンクラッド鋼の一部に接合した状態を示す要部平断
図付きの図である。
FIG. 7 is a diagram with a main part plan view showing a state in which a reticulated metal material made of copper according to the present invention is joined to a part of titanium clad steel of a steel pipe pile.

【図8】本発明による銅合金からなる板状金属材を浮体
からなる海洋鋼構造物のチタンクラッド鋼の一部に接合
した状態を示す図である。
FIG. 8 is a view showing a state in which a plate-like metal material made of a copper alloy according to the present invention is joined to a part of titanium clad steel of a marine steel structure made of a floating body.

【図9】一部にチタンクラッド鋼が接合されている鋼管
杭の従来より行われている流電陽極方式による電気防食
状態を示す要部平断図付きの図である。
FIG. 9 is a plan view of a steel pipe pile partially joined to titanium clad steel, showing a main part in a state of cathodic protection by a galvanic anode method with a cross section of a main part.

【図10】一部チタンクラッド鋼が接合されている鋼管
杭の従来より行われている外部電源方式による電気防食
状態を示す要部平断図付きの図である。
FIG. 10 is a diagram with a main part plan view showing a state of cathodic protection by a conventional external power supply method for a steel pipe pile partially joined with titanium clad steel.

【符号の説明】[Explanation of symbols]

1 鋼管杭 2 没水部 3 流電陽極 4 飛沫帯及び干満帯 5 チタンクラッド鋼 6 防食電流 7 桟橋 8 銅からなる板状金属材 9 ステンレス鋼からなる板状金属材 10 銅合金からなる帯状の螺旋状金属材 11 銅からなる線状の螺旋状金属材 12 キュプロからなる板状金属材 13 ニッケル基合金からなる板状金属材 14 銅からなる網状金属材 15 浮体からなる海洋鋼構造物 16 喫水部 17 大気中部 18 銅合金からなる板状金属材 19 鋼材部 20 難溶性電極 21 直流電源装置 22 電線 REFERENCE SIGNS LIST 1 steel pipe pile 2 submerged part 3 galvanic anode 4 splash zone and tidal zone 5 titanium clad steel 6 anticorrosion current 7 pier 8 plate metal material made of copper 9 plate metal material made of stainless steel 10 strip made of copper alloy Spiral metal material 11 Linear spiral metal material made of copper 12 Plate metal material made of cupro 13 Plate metal material made of nickel-based alloy 14 Net metal material made of copper 15 Marine steel structure made of floating body 16 Draft Part 17 Atmospheric part 18 Plate metal material made of copper alloy 19 Steel part 20 Refractory electrode 21 DC power supply 22 Electric wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E02D 31/06 E02D 31/06 D (72)発明者 藤田 栄 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 高野 俊夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 柄澤 武 東京都大田区南蒲田1丁目21番12号 日本 防蝕工業株式会社内 (72)発明者 河野 健二 東京都大田区南蒲田1丁目21番12号 日本 防蝕工業株式会社内 (72)発明者 花山 莞 東京都大田区南蒲田1丁目21番12号 日本 防蝕工業株式会社内 Fターム(参考) 4E001 AA03 BB01 CC03 4E081 YQ02 4K060 AA02 AA03 AA10 BA19 BA47 EA01 EB01 EB06 FA03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) E02D 31/06 E02D 31/06 D (72) Inventor Sakae Fujita 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Yasushi Tanaka, Inventor 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Toshio Takano 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside Steel Pipe Co., Ltd. (72) Inventor Takeshi Karasawa 1-21-12 Minami Kamata, Ota-ku, Tokyo Japan Inside Corrosion Protection Industry Co., Ltd. (72) Inventor Kenji Kono 1-12-112 Minami Kamata, Ota-ku, Tokyo Japan Corrosion Protection Within Industrial Co., Ltd. (72) Inventor Guan Hanayama 1-21-12 Minami Kamata, Ota-ku, Tokyo Japan F Corrosion Protection Industrial Co., Ltd. F-term (reference) 4E001 AA03 BB01 CC03 4E081 YQ02 4K 060 AA02 AA03 AA10 BA19 BA47 EA01 EB01 EB06 FA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 没水部の鋼材に電気防食が施され、かつ
該鋼材の一部にチタンクラッド鋼が接合されている鋼構
造物において、該チタンクラッド鋼の全面又は一部に該
鋼材より自然電位が貴である金属材を設け、該金属材を
該鋼材と接合することを特徴とするチタンクラッド鋼の
水素吸収脆化緩衝工法。
1. In a steel structure in which a steel material in a submerged portion is subjected to electrolytic corrosion protection and a titanium clad steel is joined to a part of the steel material, the steel material is applied to the entire surface or a part of the titanium clad steel. A method of buffering hydrogen absorption embrittlement of titanium clad steel, comprising providing a metal material having a noble natural potential and bonding the metal material to the steel material.
【請求項2】 前記金属材が銅、銅合金、ステンレス
鋼、キュプロ又はニッケル基合金のいづれか一つからな
ることを特徴とする請求項1記載のチタンクラッド鋼の
水素吸収脆化緩衝工法。
2. The method according to claim 1, wherein the metal material is made of any one of copper, copper alloy, stainless steel, cupro, and nickel-based alloy.
【請求項3】 前記金属材が板状、螺旋状又は網状であ
ることを特徴とする請求項1又は請求項2記載のチタン
クラッド鋼の水素吸収脆化緩衝工法。
3. The method according to claim 1, wherein the metal material has a plate shape, a spiral shape, or a net shape.
JP30185198A 1998-10-23 1998-10-23 Hydrogen absorption embrittlement buffering method for titanium clad steel Expired - Fee Related JP3413515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30185198A JP3413515B2 (en) 1998-10-23 1998-10-23 Hydrogen absorption embrittlement buffering method for titanium clad steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30185198A JP3413515B2 (en) 1998-10-23 1998-10-23 Hydrogen absorption embrittlement buffering method for titanium clad steel

Publications (2)

Publication Number Publication Date
JP2000129474A true JP2000129474A (en) 2000-05-09
JP3413515B2 JP3413515B2 (en) 2003-06-03

Family

ID=17901932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30185198A Expired - Fee Related JP3413515B2 (en) 1998-10-23 1998-10-23 Hydrogen absorption embrittlement buffering method for titanium clad steel

Country Status (1)

Country Link
JP (1) JP3413515B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204399A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumikin Engineering Co Ltd Construction method of piled marine structure and piled marine structure
JP2015120954A (en) * 2013-12-24 2015-07-02 日本電信電話株式会社 Hydrogen intrusion prevention method
JP2017106300A (en) * 2015-12-07 2017-06-15 Jfeエンジニアリング株式会社 Self-lift type water area platform and gripping tool for use in the same as well as construction method of water area structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204399A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumikin Engineering Co Ltd Construction method of piled marine structure and piled marine structure
JP2015120954A (en) * 2013-12-24 2015-07-02 日本電信電話株式会社 Hydrogen intrusion prevention method
JP2017106300A (en) * 2015-12-07 2017-06-15 Jfeエンジニアリング株式会社 Self-lift type water area platform and gripping tool for use in the same as well as construction method of water area structure

Also Published As

Publication number Publication date
JP3413515B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US10494723B2 (en) System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave
US9045834B2 (en) Sacrificial anode
US4381981A (en) Sacrificial cathodic protection system
US20110300395A1 (en) Corrosion Protection System for Offshore Steel Structures and a Method for its Application
JP3139938B2 (en) Cathodic protection current monitor and monitoring system using the same
JP2000129474A (en) Method for buffering hydrogen absorbing embrittlement of titanium clad steel
US3421990A (en) Sacrificial anode
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
JP3881417B2 (en) Marine steel structures with excellent long-term durability
JP2006029065A (en) Oceanic steel structure
JP3386898B2 (en) Corrosion protection structure of the material to be protected
JP2005113167A (en) Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure
US20190226095A1 (en) Autonomous impressed current cathodic protection device on metal surfaces with a spiral magnesium anode
Carson Zinc as a self-regulating galvanic anode for ship hulls
AU2006235903B2 (en) Alloy for use in galvanic protection
JP5678504B2 (en) Corrosion protection method for offshore steel structures in tidal currents.
JPH0423406Y2 (en)
JPH0454752B2 (en)
Leheta et al. Cathodic Protection design procedure for steel offshore structures
JP2002047588A (en) Method for protecting corrosion of marine structure and marine structure
JPH07300833A (en) Method of fixing electrode plate into underwater structure
TW302413B (en) Construction method for the corrosion prevention of steel plate piles or steel pipe piles by external electric current
JPH0752167Y2 (en) Replaceable energizing antifouling cover for offshore structures
JP2001064788A (en) Corrosion-protective method of metal surface in contact with flowing water of water film
KR810002026B1 (en) Aluminium marine anode assembly with low resistance surface mountings

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees