JP2000129373A - Production of vacuum valve contact material - Google Patents

Production of vacuum valve contact material

Info

Publication number
JP2000129373A
JP2000129373A JP11149308A JP14930899A JP2000129373A JP 2000129373 A JP2000129373 A JP 2000129373A JP 11149308 A JP11149308 A JP 11149308A JP 14930899 A JP14930899 A JP 14930899A JP 2000129373 A JP2000129373 A JP 2000129373A
Authority
JP
Japan
Prior art keywords
contact material
vacuum valve
powder
molded body
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11149308A
Other languages
Japanese (ja)
Other versions
JP3859393B2 (en
Inventor
Isao Okutomi
功 奥富
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Keisei Seki
経世 関
Makoto Kataoka
誠 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP14930899A priority Critical patent/JP3859393B2/en
Priority to KR1019990034332A priority patent/KR100332513B1/en
Priority to CN99118067A priority patent/CN1084034C/en
Priority to US09/379,362 priority patent/US6303076B1/en
Priority to EP99116171A priority patent/EP0982744B1/en
Priority to DE69931116T priority patent/DE69931116T2/en
Publication of JP2000129373A publication Critical patent/JP2000129373A/en
Application granted granted Critical
Publication of JP3859393B2 publication Critical patent/JP3859393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of cracks in a molded body even if being molded by using a pattern by arc resistant componental powder with specified grain size to be mixed to a contact material having a specified compsn. of Cu and TiC or VC with a specified ratio of powdery Cu and paraffine in succession. SOLUTION: A contact material for a vacuum valve composed of 40 to 55 vol.% electrically conductive components essentially consisting of Cu and 45 to 60 vol.% arc resistant components essentially consisting of TiC or VC is mixed with powder of 0.3 to 3 μm grain size essentially consisting of arc resistant componental powder to form into a skeleton molded formed body, which is heat-treated to infiltrate the electrically conductive components into the formed body. The arc resistant components to be mixed to the contact material is blended with 16 to 43 vol.% powdery Cu of <=100 μm grain size, and the mixed powder is preferably added with 5 to 30 vol.% paraffin as well. The contact material for a vacuum valve combining low cutting characteristics, large current breaking characteristics and large current conducting characteristics can inexpensively be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低裁断特性、大電
流遮断特性および大電流通電特性を兼備し、かつ安価な
真空バルブ用接点の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inexpensive device for manufacturing a vacuum valve contact which has both low cutting characteristics, large current breaking characteristics and large current carrying characteristics.

【0002】[0002]

【従来の技術】真空中でのアーク拡散性を利用して高真
空中で電流遮断を行わせる真空バルブの大電流遮断特性
は、一般に接点材料と電極構造によって決まる。接点材
料は、その用途に応じて多種多様なものがあるが、大電
流遮断特性に優れた接点材料としては、Cu−Cr接点
が最も広く用いられている。一方、低サージ性と、ある
程度の大電流遮断特性を兼備する真空バルブ用では、A
g−WC系の接点材料が一般的である。近年、Cu−T
iCといった優れた遮断特性と低サージ性を兼備する接
点材料が発明(特願平9―169039号)されてい
る。
2. Description of the Related Art A large current interrupting characteristic of a vacuum valve for interrupting a current in a high vacuum utilizing arc diffusivity in a vacuum is generally determined by a contact material and an electrode structure. There are a variety of contact materials depending on the application, but a Cu-Cr contact is most widely used as a contact material having excellent large current interruption characteristics. On the other hand, in the case of a vacuum valve that has both low surge characteristics and a certain
A g-WC contact material is generally used. Recently, Cu-T
A contact material having both excellent breaking characteristics such as iC and low surge characteristics has been invented (Japanese Patent Application No. 9-169039).

【0003】これらの焼桔系接点材料は、一般に固相焼
結法あるいは仮焼結溶浸法のいずれかの方法で製造され
る、固相焼結法の場合は、導電成分と耐弧成分の粉末の
混合、粉末の成形、および成形体の焼結の各工程を経て
接点形状に加工される。また、仮焼結溶浸法の場合に
は、耐弧成分粉末を主成分とする粉末の成形、成形体の
仮焼結、および焼結体への導電成分の溶浸の工程を経て
接点形状に加工される。
[0003] These sintering contact materials are generally produced by either the solid phase sintering method or the pre-sintering infiltration method. In the case of the solid phase sintering method, the conductive component and the arc-resistant component are used. Through the respective steps of powder mixing, powder compaction, and sintering of the compact. In the case of the temporary sintering infiltration method, the contact shape is formed through steps of forming a powder mainly composed of the arc-resistant component powder, temporarily sintering the formed body, and infiltrating the sintered body with the conductive component. Processed into

【0004】[0004]

【発明が解決しようとする課題】低サージ性と大電流遮
断特性を兼備するCu−TiCおよびこれに類するCu
−VCはTiCやVC粉耐弧成分粉末をCu粉と混合し
成形されるが、接点などの円盤状の成形体の成形に通常
用いられる抜き型を金型として成形した場合、成形する
混合粉中のTiC粉末の割合が高いと、金型から抜き出
す際に成形体にクラックを生じやすい。このようなクラ
ックを防止するために、前途の特願平9―169039
号では、成形後金型が分割できる割型を用いて成形して
いるが、この方法では量産は非常に困難である。
DISCLOSURE OF THE INVENTION Cu-TiC and Cu similar thereto having both low surge characteristics and large current interruption characteristics
-VC is formed by mixing TiC or VC powder arc-resistant component powder with Cu powder, and when a punching die usually used for forming a disk-shaped molded body such as a contact is molded as a die, the mixed powder to be molded is formed. If the ratio of the TiC powder in the inside is high, cracks tend to occur in the molded body when the molded body is extracted from the mold. In order to prevent such cracks, Japanese Patent Application No. 9-169039, which is incorporated herein by reference.
In No., molding is performed using a split mold that can be divided after molding, but mass production is very difficult with this method.

【0005】本発明は、上記問題点に鑑みてなされたも
ので、優れた大電流遮断特性、裁断特性、大電流通電特
性を兼備し、かつ安価な真空バルブ用接点材料の製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a method for manufacturing a low-cost vacuum valve contact material having excellent large current cutoff characteristics, cutting characteristics, and large current conduction characteristics. The purpose is to:

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の真空バルブ用接点材料の製造方法
は、主成分がCuからなる40〜55vol%の導電成
分と、主成分がTiCまたはVCからなる45〜60v
ol%の耐弧成分とで構成される真空バルブ用接点材料
を、粒径が0.3〜3μmの耐弧成分粉末を主体とする
粉末を混合する混合工程、混合された粉末をスケルトン
状の成形体に成形する成形工程、およびスケルトン状の
成形体へ導電成分を溶浸工程を、この順で実施し、製造
する方法において、混合工程で、耐弧成分粉末に粉末状
のCuを16〜43vol%配合し、さらにこの混合さ
れた粉末に対してパラフィンを5〜30vol%添加す
ることを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a contact material for a vacuum valve according to the present invention is characterized in that a conductive component of 40 to 55 vol%, whose main component is Cu, and a main component of which are Cu. 45-60v made of TiC or VC
ol% of the arc-resistant component is mixed with a powder mainly composed of an arc-resistant component powder having a particle size of 0.3 to 3 μm, and the mixed powder is skeletonized. A molding step of molding into a molded body, and a step of infiltrating a conductive component into a skeleton-shaped molded body are performed in this order, and in the manufacturing method, in the mixing step, powdery Cu is added to the arc-resistant component powder by 16 to 43 vol%, and 5 to 30 vol% of paraffin is added to the mixed powder.

【0007】このパラフィンの添加によりTiC粉また
はVC粉の成形性が改善され、成形体にクラックが生じ
なくなり、安定した製造が可能となる。請求項2記載の
真空バルブ用接点材料の製造方法は、混合工程におい
て、配合する前記粉末状のCuの粒径が100μm以下
であることを特徴とする。
[0007] The addition of this paraffin improves the moldability of the TiC powder or VC powder, prevents cracks in the compact, and enables stable production. The method of manufacturing a contact material for a vacuum valve according to claim 2 is characterized in that, in the mixing step, the particle size of the powdered Cu to be blended is 100 μm or less.

【0008】成形体中のCu粉の粉末が細かいほど成形
体の空隙を低減でき、溶浸されるCu量が低減され、接
点のCu量を少なくできるが、これを100μm以下と
することで、Cu量を所定の裁断特性を確保するための
上限値以下とすることができる。
[0008] The finer the powder of Cu in the compact, the smaller the voids in the compact, the smaller the amount of Cu infiltrated, and the smaller the amount of Cu in the contacts, but by reducing this to 100 µm or less, The amount of Cu can be set to be equal to or less than an upper limit value for securing predetermined cutting characteristics.

【0009】混合工程で添加したパラフィンは、その後
の工程で除去する必要があるが、通常脱パラフィンは炉
の保全上から1気圧にて行われる。この処理を水素雰囲
気で行うとTi炭化物の一部がTi水素化物に換わるた
め接点中に水素が含有され、遮断性能に重大な悪影響を
及ぼす。
The paraffin added in the mixing step needs to be removed in a subsequent step, but the deparaffinization is usually performed at 1 atm from the viewpoint of furnace maintenance. When this treatment is performed in a hydrogen atmosphere, a part of the Ti carbide is replaced by Ti hydride, so that hydrogen is contained in the contact, which has a serious adverse effect on the breaking performance.

【0010】そこで請求項3記載の真空バルブ用接点材
料の製造方法は、成形工程で成形された成形体へ導電成
分を溶浸する溶浸工程の前に、300〜500℃におい
て窒素中で10分以上保持し、パラフィンを蒸発させて
成形体から除去する脱パラフィン工程を追加するととも
に、溶浸工程において、真空雰囲気中で1100〜12
00℃においてCuを主成分とする導電成分を溶浸する
ことを特徴とする。
Therefore, the method for producing a contact material for a vacuum valve according to claim 3 is characterized in that, prior to the infiltration step of infiltrating the conductive component into the molded article formed in the molding step, 10 to 300 ° C. in nitrogen at 300 to 500 ° C. Min., And adding a deparaffinization step of evaporating paraffin and removing it from the molded body. In the infiltration step, 1100 to 12
It is characterized by infiltrating a conductive component mainly composed of Cu at 00 ° C.

【0011】また、水素中で脱パラフィンし、接点の水
素含有量が高まっても、その後の工程でこの水素を除去
することも可能である。請求項4記載の真空バルブ用接
点材料の製造方法は、成形工程で成形された成形体への
導電成分を溶浸する溶浸工程の前に、300℃以上でか
つ溶浸する導電成分の融点以下の温度において、水素中
で10分以上保持し、パラフィンを蒸発させて成形体か
ら除去する脱パラフィン工程、および真空雰囲気中で9
00℃以上かつ溶浸材の融点温度以下で30分以上保持
して脱水素する工程を追加するとともに、溶浸工程で、
1100〜1200℃においてCuを主成分とする導電
成分を溶浸することを特徴とする。
Further, even if deparaffinization is performed in hydrogen to increase the hydrogen content of the contact, it is possible to remove the hydrogen in a subsequent step. The method for producing a contact material for a vacuum valve according to claim 4, wherein the melting point of the conductive component to be infiltrated at 300 ° C. or higher before the infiltration step of infiltrating the conductive component into the molded article formed in the molding step. A deparaffinization step in which the paraffin is evaporated and removed from the compact at a temperature of not more than 10 minutes by holding in hydrogen, and 9 minutes in a vacuum atmosphere
In addition to adding a step of dehydrating by holding at a temperature of not less than 00 ° C. and a melting point of the infiltrant for 30 minutes or more, in the infiltration step,
It is characterized by infiltrating a conductive component containing Cu as a main component at 1100 to 1200 ° C.

【0012】パラフィン除去の方法には、上記のような
熱的な方法の他に、化学的な方法もある。請求項5記載
の真空バルブ用接点材料の製造方法は、成形工程で成形
された成形体へ導電成分を溶浸する溶浸工程の前に、沸
点が50〜200℃の炭水化物系洗浄液に浸漬し、40
℃以上かつ洗浄液の沸点以下の温度で保持しパラフィン
を洗浄液中に溶解抽出させて成形体から除去する脱パラ
フィン工程を追加するとともに、溶浸工程において、真
空雰囲気中で1100〜1200℃においてCuを主成
分とする導電成分を溶浸することを特徴とする。
As a method for removing paraffin, there is a chemical method in addition to the above-mentioned thermal method. In the method for producing a contact material for a vacuum valve according to claim 5, before the infiltration step of infiltrating the conductive component into the molded product formed in the molding process, the contact material is immersed in a carbohydrate-based cleaning liquid having a boiling point of 50 to 200 ° C. , 40
C. and at the temperature not higher than the boiling point of the washing liquid, and a paraffin removal step of dissolving and extracting paraffin in the washing liquid to remove from the molded body is added. It is characterized by infiltrating a conductive component as a main component.

【0013】沸点が50〜200℃の炭化水素系洗浄
液、例えばn―ヘキサンのパラフィン抽出速度は、ヘキ
サン中のパラフィン濃度に依存するので、抽出速度を高
めるには、パラフィン濃度が低くなるように留意するこ
とが肝要である。
Since the paraffin extraction rate of a hydrocarbon-based cleaning liquid having a boiling point of 50 to 200 ° C., for example, n-hexane, depends on the paraffin concentration in hexane, it is necessary to lower the paraffin concentration in order to increase the extraction rate. It is important to do it.

【0014】そこで請求項6記載の真空バルブ用接点材
料の製造方法は、脱パラフィン工程において、浸漬する
洗浄液をパラフィン濃度の低い液に少なくとも1回以上
入れ替えるかあるいは成形体を移し替えることを特徴と
する。
Therefore, a method of manufacturing a contact material for a vacuum valve according to claim 6 is characterized in that, in the deparaffinization step, the washing liquid to be immersed is replaced at least once with a liquid having a low paraffin concentration or the molded body is transferred. I do.

【0015】前述のようにCu粒径を微細化することに
よりCuが溶浸される空隙量を低減することが可能であ
るが、焼結により空隙量を抑制することも可能である。
焼結により成形体を収縮させるには、焼結助材の添加が
必要であるが、Co、Fe、Ni、Crといった焼結助
材はいずれもCuに固溶しCuの導電性を低下させて通
電性能に悪影響を及ぼすため、添加は必要最小限にとど
めなければならない。
As described above, it is possible to reduce the amount of voids into which Cu is infiltrated by reducing the particle size of Cu, but it is also possible to suppress the amount of voids by sintering.
In order to shrink the compact by sintering, it is necessary to add a sintering aid. However, sintering aids such as Co, Fe, Ni, and Cr form a solid solution in Cu and reduce the conductivity of Cu. Therefore, the addition must be kept to the minimum necessary.

【0016】そこで請求項7記載の真空バルブ用接点材
料の製造方法は、混合工程において、0.1wt%以下
のCo、または0.1wt%以下のFe、または0.3
wt%以下のNi、または3wt%以下のCrを添加す
ることを特徴とする。
According to a seventh aspect of the present invention, in the method of manufacturing a contact material for a vacuum valve, the mixing step includes the step of:
It is characterized by adding Ni of not more than wt% or Cr of not more than 3 wt%.

【0017】溶浸工程では、成形体の空隙に溶浸材を充
填するが、溶浸材の量が必要以上に多いと余剰の溶浸材
が成形体の周囲で凝固し、凝固時の収縮により成形体に
クラックが生ずる場合がある。
In the infiltration step, voids in the compact are filled with an infiltrant. If the amount of the infiltrant is larger than necessary, excess infiltrant solidifies around the compact and shrinks during solidification. This may cause cracks in the molded body.

【0018】そこで請求項8記載の真空バルブ用接点材
料の製造方法は、溶浸工程において、前記成形体に溶浸
する溶浸材の量が成形体の空隙を埋めるのに必要な量の
100〜110%であることを特徴とする。
Therefore, in the method of manufacturing a contact material for a vacuum valve according to the present invention, in the infiltration step, the amount of the infiltrating material infiltrating the molded body is 100, which is an amount necessary to fill the void of the molded body. 110110%.

【0019】成形体に発生するクラックは、成形圧力の
除荷時に金型側面から押し戻されることによって発生す
ると考えられる。このような力を緩和するには、金型の
両端の内径に差異を設け、片側を広くし、軸方向に内径
が連続的に変わるようにするとよい。
It is considered that the cracks generated in the molded body are generated by being pushed back from the side of the mold at the time of unloading the molding pressure. In order to alleviate such a force, it is preferable to provide a difference in the inner diameter at both ends of the mold, widen one side, and continuously change the inner diameter in the axial direction.

【0020】そこで請求項9記載の真空バルブ用接点材
料の製造方法は、成形工程において、前記粉末を成形す
る金型が、円盤状の成形体を成形後抜き出して金型から
取り出す構造であり、成形体を抜き出す側の金型の内径
がもう一方の内径より大きいことを特徴とする。
According to a ninth aspect of the present invention, in the method of manufacturing a contact material for a vacuum valve, in the molding step, a mold for molding the powder is formed by extracting a disk-shaped molded body after molding, and removing the molded body from the mold. It is characterized in that the inner diameter of the mold from which the molded body is extracted is larger than the other inner diameter.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態について詳細に説明する。なお、以下の図におい
て、同符号は同一の部分または対応部分を示す。まず、
図1および図2を用いて、本発明の実施形態に係る真空
バルブ用接点材料の製造方法が適用される真空バルブの
構成例を説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the following drawings, the same reference numerals indicate the same or corresponding parts. First,
A configuration example of a vacuum valve to which a method for manufacturing a contact material for a vacuum valve according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

【0022】図1において、1は遮断室であり、遮断室
1は、絶縁材料によりほぼ円筒状に形成された絶縁容器
2と、その両端に封止金属3a、3bを介して設けた金
属製の蓋体4a、4bとで真空気密に構成されている。
遮断室1内には、電極棒5、6の対向する端部に取り付
けられた電極7、8が配設され、図面上部の電極7は固
定電極、下部の電極8は可動電極となっている。可動電
極8と電極棒6との間にはベローズ9が取り付けられ、
遮断室1内を気密に保持しながら、電極棒6を軸方向に
移動可能としている。
In FIG. 1, reference numeral 1 denotes a shut-off chamber. The shut-off chamber 1 is made of an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and a metal member provided at both ends thereof with sealing metals 3a and 3b. And the lids 4a and 4b are airtight.
Electrodes 7 and 8 attached to opposing ends of the electrode rods 5 and 6 are disposed in the shut-off chamber 1, and the upper electrode 7 in the drawing is a fixed electrode and the lower electrode 8 is a movable electrode. . A bellows 9 is attached between the movable electrode 8 and the electrode rod 6,
The electrode rod 6 can be moved in the axial direction while keeping the inside of the cutoff chamber 1 airtight.

【0023】ベローズ9の上部には、金属製のアークシ
ールド10が設けられ、アーク生成物の蒸着膜等がベロ
ーズ9に付着するのを防止している。また、遮断室1内
には、固定電極7および可動電極8を覆うように、アー
クシールド11が設けられ、アーク生成物の蒸着膜等が
絶縁容器2に付着するのを防止している。電極7、8の
接触部には、接点13a、13bとして、本発明により
製造される接点材料が配設されている。
An upper part of the bellows 9 is provided with a metal arc shield 10 for preventing a deposited film of an arc product from adhering to the bellows 9. Further, an arc shield 11 is provided in the cut-off chamber 1 so as to cover the fixed electrode 7 and the movable electrode 8, thereby preventing a deposition film of an arc product from adhering to the insulating container 2. Contact materials manufactured according to the present invention are disposed at the contact portions of the electrodes 7 and 8 as the contacts 13a and 13b.

【0024】図2に示すように、可動電極8は電極棒6
に、ロウ付け部12においてロウ付けされることにより
接続されている。(あるいはかしめにより接続されてい
てもよい)。また、接点13bは可動電極8にロウ付け
部14においてロウ付けされている。
As shown in FIG. 2, the movable electrode 8 is
Are connected by brazing at the brazing section 12. (Or may be connected by caulking). The contact 13b is brazed to the movable electrode 8 at a brazing portion 14.

【0025】次に本発明の実施形態に係る真空バルブ用
接点材料の製造方法を順に説明する。表1から表6を用
いて本発明の実施例を説明する。
Next, a method of manufacturing a contact material for a vacuum valve according to an embodiment of the present invention will be described in order. Examples of the present invention will be described with reference to Tables 1 to 6.

【0026】表1から表3には各実施例および比較例の
製造方法と製造時のクラックの有無について示す。平均
粒径1.5μmのTiCと平均粒径40μmのCuとを
体積比84対16の混合比で混ぜ、混合粉にパラフィン
を15vol%添加して(混合工程)、抜き出し側とも
う一方の側の内径比が1.1の抜き型を用い、4ton
で成形し(成形工程)、窒素中で300℃において2時
間の脱パラフィン処理を1回行なった(脱パラフィン工
程)後、真空雰囲気において、1150℃で30分間の
熱処理で成形体の空隙の1.05倍の体積のCuを溶か
して溶浸する(溶浸工程)製造プロセスを本実施例の基
本プロセスとする。
Tables 1 to 3 show the production methods of the examples and comparative examples and the presence or absence of cracks during production. TiC having an average particle size of 1.5 μm and Cu having an average particle size of 40 μm are mixed at a mixing ratio of 84 to 16 by volume, and 15 vol% of paraffin is added to the mixed powder (mixing step), and the extraction side and the other side are added. Using a punching die with an inner diameter ratio of 1.1
After performing a deparaffinization treatment once in nitrogen at 300 ° C. for 2 hours (deparaffinization step), a heat treatment at 1150 ° C. for 30 minutes in a vacuum atmosphere is performed to remove one of the voids of the molded body. A manufacturing process in which 0.05 volume of Cu is melted and infiltrated (infiltration step) is defined as a basic process of this embodiment.

【0027】なお、成形に使用する金型は、その断面を
図3に示すように、金型の内径比が、即ち抜き出し側の
内径Daともう一方の側の内径Dbとの比(Da/D
b)を1.1とし、金型内部の成形体が接する部分の高
さHaの80〜100%の部分Hbで、金型の軸方向に
内径が連続的に変化するように構成するのがよい。ま
た、基本プロセスでは、溶浸工程での熱処理温度を11
50℃としたが、1100〜1200℃の範囲でよい。
溶浸材量とは、溶浸材の体積Vaと成形体の空隙体積V
bの比(Va/Vb)のことである。
As shown in FIG. 3, a cross section of the mold used for molding has a ratio of the inner diameter of the mold, that is, the ratio (Da / D / D) of the inner diameter Da on the extraction side to the inner diameter Db on the other side. D
b) is set to 1.1, and the inner diameter of the mold is continuously changed in the axial direction of the mold at a portion Hb of 80 to 100% of the height Ha of the portion where the molded body contacts the inside of the mold. Good. In the basic process, the heat treatment temperature in the infiltration step is set to 11
Although it was set to 50 ° C., it may be in the range of 1100 to 1200 ° C.
The amount of the infiltrant is defined as the volume Va of the infiltrant and the void volume V of the compact.
b (Va / Vb).

【0028】この基本プロセスの製造パラメータを変化
させて、クラックの生成の有無を調べ、クラックが生じ
なかったものについては、さらに、材料組成、導電率、
ガス含有量を調べ、前述の方法に従い、遮断特性および
裁断特性を評価した。パラフィンを添加したものについ
ては、脱パラフィン工程後のパラフィン除去率について
も調べた。
The production parameters of the basic process were changed to check for the presence or absence of cracks. If no cracks were formed, the material composition, conductivity,
The gas content was examined, and the cutoff characteristics and the cutting characteristics were evaluated according to the above-described method. With respect to the case where paraffin was added, the paraffin removal rate after the deparaffinization step was also examined.

【0029】表4から表6に示す各実施例で製造した接
点材料の材料的特性および電気的特性のデータを得た方
法および評価条件について述べる。本発明の製造方法で
製造される接点材料は、大電流遮断特性、裁断特性およ
び大電流通電特性の兼備を目的としているので、これら
のうち大電流遮断特性、裁断特性を下記に示す電気的特
性評価により行なった。また、通電特性については接点
材料の導電率を渦電流測定法式の導電率計により測定し
評価した。
The method and evaluation conditions for obtaining data on the material properties and electrical properties of the contact materials manufactured in the examples shown in Tables 4 to 6 will be described. Since the contact material manufactured by the manufacturing method of the present invention is intended to have both a large current interrupting property, a cutting property and a large current carrying property, the electrical properties of the large current interrupting property and the cutting property are shown below. The evaluation was performed. In addition, the current-carrying characteristics were evaluated by measuring the conductivity of the contact material by using an eddy current measurement type conductivity meter.

【0030】1)大電流遮断特性:遮断試験をJEC規
格の5号試験により行い、これにより遮断特性を評価
し、合格、不合格を表4から表6に示した。 2)電流裁断特性:各接点を取り付けて10-5Pa以下
に排気した組み立て式バルブを作成し、この装置を0.
8m/秒の開極速度で開極させ小電流を遮断したときの
裁断電流値を測定した。遮断電流値は20A(実効
値)、50Hzとした。開極位相はランダムに行い、5
00回遮断したときの裁断電流値を電極数3組につき測
定し、その最大値を表1から表3に示した。なお、数値
は実施例1の裁断電流の最大値を1.0としたときの相
対値で示した。
1) Large current breaking characteristics: The breaking test was performed by JEC standard No. 5 test, and the breaking characteristics were evaluated. Passes and rejects are shown in Tables 4 to 6. 2) Current cutting characteristics: An assembled valve evacuated to 10-5 Pa or less with each contact attached was prepared.
The cutting current value when the electrode was opened at an opening speed of 8 m / sec and a small current was interrupted was measured. The breaking current value was 20 A (effective value) and 50 Hz. The opening phase is random, and 5
The cutting current value at the time of interruption of 00 times was measured for three sets of electrodes, and the maximum value was shown in Tables 1 to 3. The numerical values are shown as relative values when the maximum value of the cutting current in Example 1 is set to 1.0.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[実施例1〜6および比較例1〜9]基本
プロセスのCu配合量を16〜43vol%の範囲で、
またパラフィン添加量を0〜50vol%の範囲でそれ
ぞれ変化させて調べた(表1および表4参照)。
[Examples 1 to 6 and Comparative Examples 1 to 9] The amount of Cu in the basic process was set in the range of 16 to 43% by volume.
In addition, the amount of paraffin added was changed in the range of 0 to 50 vol% and examined (see Tables 1 and 4).

【0038】パラフィン無添加の比較例1、4、7およ
び添加量が3vol%の比較例2、5、8では、成形体
にクラックが生じたが、添加量が5〜30vol%の実
施例1〜6ではクラックが全く発生せず、製造後の導電
率も良好で、遮断性能および通電性能も良好である。
In Comparative Examples 1, 4, and 7 in which paraffin was not added and Comparative Examples 2, 5, and 8 in which the addition amount was 3 vol%, cracks occurred in the molded product, but Example 1 in which the addition amount was 5 to 30 vol%. In Nos. 6 to 6, no cracks were generated, the conductivity after the production was good, and the breaking performance and the conduction performance were also good.

【0039】しかし、パラフィン添加量が50vol%
の比較例3、6、9では、Cu量が55vol%を超え
てしまい、裁断特性が不十分となっている。これは、成
形体中において脱パラフィン前にパラフィン占有してい
た領域にCuが溶浸されるため、パラフィン量が過剰に
なるとCu量が増大してしまうためである。
However, when the amount of paraffin added was 50 vol%
In Comparative Examples 3, 6, and 9, the Cu content exceeded 55 vol%, and the cutting characteristics were insufficient. This is because Cu is infiltrated into a region of the molded body that was occupied by paraffin before deparaffinization, and therefore, if the amount of paraffin becomes excessive, the amount of Cu increases.

【0040】[実施例7〜8および比較例10〜11]
基本プロセスのTiC粒径を0.2〜5μmの範囲で変
化させて調べた(表1および表4参照)。
Examples 7 to 8 and Comparative Examples 10 to 11
The investigation was performed by changing the TiC particle size in the basic process in the range of 0.2 to 5 μm (see Tables 1 and 4).

【0041】TiC粒径が0.2μmの比較例10で
は、成形体にクラックが生じたが、TiC粒径が0.3
〜3μmの実施例7〜8ではクラックが全く発生せず、
製造後の導電率も良好で、遮断性能および通電性能も良
好である。しかし、TiC粒径が5μmの比較例11で
は、遮断特性が不十分となっている。
In Comparative Example 10 in which the TiC particle size was 0.2 μm, cracks occurred in the compact, but the TiC particle size was 0.3 μm.
In Examples 7 to 8 having a thickness of 33 μm, no crack was generated,
The conductivity after production is also good, and the breaking performance and energizing performance are also good. However, in Comparative Example 11 in which the TiC particle size was 5 μm, the blocking characteristics were insufficient.

【0042】[実施例9〜10および比較例12]基本
プロセスのCu粒径を5〜150μmの範囲で変化させ
て調べた(表1および表4参照)。
Examples 9 to 10 and Comparative Example 12 Investigations were performed by changing the Cu particle size in the basic process in the range of 5 to 150 μm (see Tables 1 and 4).

【0043】Cu粒径が150μmの比較例12では、
成形体にクラックが生じたが、Cu粒径が100μm以
下の実施例9〜10ではクラックが全く発生せず、製造
後の導電率も良好で、遮断性能および通電性能も良好で
ある。
In Comparative Example 12 having a Cu particle size of 150 μm,
Although cracks occurred in the molded product, cracks did not occur at all in Examples 9 to 10 in which the Cu particle size was 100 μm or less, the electrical conductivity after production was good, and the breaking performance and electric conduction performance were also good.

【0044】[実施例11〜12および比較例13〜1
8]基本プロセスの脱パラフィン雰囲気を窒素の他水素
について試み、脱パラフィン処理温度を200〜600
℃の範囲で変化させて調べた(表2および表5参照)。
[Examples 11 to 12 and Comparative Examples 13 to 1]
8] The deparaffinization atmosphere of the basic process was tried for nitrogen and hydrogen, and the deparaffinization treatment temperature was set to 200 to 600.
The temperature was changed in the range of ° C. (see Tables 2 and 5).

【0045】脱パラフィン温度が200℃の比較例13
および15では、いずれもパラフィン除去が不十分なた
め、その後の工程が実施不可能となった。脱パラフィン
の雰囲気が窒素で温度が300〜500℃の実施例11
および12では、良好な材料が製造でき、遮断特性、裁
断特性、および通電特性も良好であるが、同様に窒素雰
囲気で600℃で処理した比較例14では、材料中の酸
素含有量が高くなり、遮断特性が不合格となっている。
これは、窒素中に含まれる酸素による酸化が起こったた
めである。
Comparative Example 13 in which the deparaffinization temperature was 200 ° C.
In the cases of Nos. 15 and 15, the paraffin removal was insufficient, so that the subsequent steps could not be performed. Example 11 where the atmosphere for deparaffinization was nitrogen and the temperature was 300 to 500 ° C
In Comparative Examples 14 and 12, a good material can be produced, and the cutoff characteristics, cutting characteristics, and current-carrying characteristics are also good. However, in Comparative Example 14 similarly treated at 600 ° C. in a nitrogen atmosphere, the oxygen content in the material increases. , The cutoff characteristics are rejected.
This is because oxidation by oxygen contained in nitrogen occurred.

【0046】水素雰囲気で処理した比較例16〜18の
材料は、いずれも水素含有量が高く、遮断特性が不合格
となってしまっている。 [実施例13〜16および比較例19〜20]基本プロ
セスの脱パラフィン雰囲気を水素とし、脱パラフィン処
理温度後、800〜1000℃の範囲で、0.2〜1.
0時間脱水素処理を真空中で行なって調べた(表2およ
び表5参照)。
The materials of Comparative Examples 16 to 18 which were treated in a hydrogen atmosphere all had a high hydrogen content, and the cutoff characteristics were rejected. [Examples 13 to 16 and Comparative Examples 19 to 20] The deparaffinization atmosphere in the basic process was hydrogen, and after the deparaffinization treatment temperature, the temperature was changed to 0.2 to 1.
A 0-hour dehydrogenation treatment was performed in vacuum (see Tables 2 and 5).

【0047】脱水素温度が800℃、1時間の比較例1
9および1000℃、0.2時間の比較例20では、い
ずれも水素除去が不十分で、遮断特性が不合格となった
が、900℃以上の温度で0.5時間以上処理した実施
例13〜16では、水素含有量の十分低い良好な材料が
製造でき、遮断特性、裁断特性および通電特性も良好で
ある。
Comparative Example 1 in which the dehydrogenation temperature was 800 ° C. for 1 hour
In Comparative Examples 20 at 9 and 1000 ° C. for 0.2 hours, the removal of hydrogen was insufficient and the cutoff characteristics were unacceptable, but Example 13 in which the treatment was performed at a temperature of 900 ° C. or more for 0.5 hour or more. In the case of No. to No. 16, a good material having a sufficiently low hydrogen content can be produced, and the cutoff characteristics, the cutting characteristics, and the current-carrying characteristics are also good.

【0048】[実施例17〜18および比較例21〜2
2]基本プロセスの脱パラフィン雰囲気を水素とし、脱
パラフィン処理温度を200〜1100℃の範囲で行な
った後、1000℃で1.0時間脱水素処理を真空中で
行なって調べた(表2および表5参照)。
[Examples 17 and 18 and Comparative Examples 21 and 2]
2] The deparaffinization atmosphere of the basic process was hydrogen, the deparaffinization treatment temperature was in the range of 200 to 1100 ° C., and the dehydrogenation treatment was performed in vacuum at 1000 ° C. for 1.0 hour (Table 2 and Table 2). See Table 5).

【0049】脱パラフィン温度が200℃の比較例21
では、パラフィン除去が不十分なため、その後の工程が
実施不可能となったが、300℃以上で導電成分の融点
である1083℃以下の温度範囲で処理した実施例17
〜18では、水素含有量の十分低い良好な材料が製造で
き、遮断特性、裁断特性および通電特性も良好である。
一方脱パラフィン温度が1100℃の比較例21は、水
素除去が不十分なため、遮断特性が不十分であったが、
これは、導電成分の融点を超えた温度で処理したため、
パラフィン中の水素が溶融した導電成分に溶解してしま
ったことによる。
Comparative Example 21 having a deparaffinization temperature of 200 ° C.
Then, the subsequent steps became impossible due to insufficient paraffin removal. However, Example 17 was performed in a temperature range of 300 ° C. or more and 1083 ° C. or less, which is the melting point of the conductive component.
In the case of No. 18 to 18, a good material having a sufficiently low hydrogen content can be produced, and the cutoff characteristics, the cutting characteristics, and the current-carrying characteristics are also good.
On the other hand, Comparative Example 21, in which the deparaffinization temperature was 1100 ° C., was insufficient in the removal of hydrogen, and thus had insufficient barrier properties.
Because this was processed at a temperature above the melting point of the conductive component,
This is because the hydrogen in the paraffin has been dissolved in the molten conductive component.

【0050】[実施例19〜22および比較例23〜2
4]基本プロセスの脱パラフィンを、30〜68℃のn
―ヘキサン中で行なった。また、n―ヘキサンをパラフ
ィン濃度の低い液に取り替える回数についても最大2回
まで試み調べた(表2および表5参照)。
[Examples 19 to 22 and Comparative Examples 23 to 2]
4] Deparaffinization of the basic process is performed at 30-68 ° C.
-Performed in hexane. Also, the number of times n-hexane was replaced with a solution having a low paraffin concentration was tried up to two times (see Tables 2 and 5).

【0051】脱パラフィン温度が30℃で1回液を変え
た比較例23および脱パラフィン温度が68℃で液を変
えなかった比較例24では、いずれもパラフィン除去が
不十分なため、その後の工程が実施不能となった。n―
ヘキサンの温度が40〜68℃で一度以上液を入れ替え
た実施例19〜22では、良好な材料が製造でき、遮断
特性、裁断特性および通電特性も良好である。
In Comparative Example 23 in which the liquid was changed once at a deparaffinization temperature of 30 ° C. and in Comparative Example 24 in which the liquid was not changed at a deparaffinization temperature of 68 ° C., the removal of the paraffin was insufficient. Became inoperable. n-
In Examples 19 to 22 in which the liquid was exchanged at least once at a hexane temperature of 40 to 68 ° C, a good material could be manufactured, and the cut-off characteristics, cutting characteristics, and current-carrying characteristics were also good.

【0052】[実施例23〜30および比較例25〜2
8]基本プロセスの混合工程において、TiCとCuの
混合粉末に焼結助材であるCo、Fe、NiおよびCr
をそれぞれ微量添加して脱パラフィン後、1150℃に
おいて真空雰囲気で2時間焼結した(表3および表6参
照)。
[Examples 23 to 30 and Comparative Examples 25 to 2]
8] In the mixing step of the basic process, Co, Fe, Ni and Cr as sintering aids are added to a mixed powder of TiC and Cu.
After deparaffinization by adding a small amount of each, sintering was performed at 1150 ° C. in a vacuum atmosphere for 2 hours (see Tables 3 and 6).

【0053】Co、Fe、NiおよびCrがそれぞれ
0.1wt%、0.1wt%、0.3wt%および3w
t%より多い比較例25〜28では、いずれも材料の導
電率が20IACS%以下で不良である。一方これらの
限界値より低い実施例23〜30では、良好な材料が製
造でき、遮断特性、裁断特性および通電特性も許容範囲
内である。
Co, Fe, Ni and Cr are 0.1 wt%, 0.1 wt%, 0.3 wt% and 3 w
In Comparative Examples 25 to 28 in which the content is larger than t%, the conductivity of the material is 20 IACS% or less, which is poor. On the other hand, in Examples 23 to 30 lower than these limit values, a good material can be manufactured, and the cutoff characteristics, the cutting characteristics, and the conduction characteristics are also within the allowable range.

【0054】[実施例31〜32および比較例29〜3
0]基本プロセスの混合工程において、成形体の空隙に
溶浸する溶浸材の量を空隙の体積の90〜120vol
%の範囲で変化させて調べた(表3および表6参照)。
Examples 31 to 32 and Comparative Examples 29 to 3
0] In the mixing step of the basic process, the amount of the infiltrating material infiltrating into the voids of the molded body is set to 90 to 120 vol.
% (See Tables 3 and 6).

【0055】溶浸材量が空隙の体積の90vol%の比
較例29では、材料内部に空孔が多いため材料中の酸素
含有量が極めて多く、また導電率も低いため遮断特性が
不合格となっている。
In Comparative Example 29 in which the amount of the infiltrating material was 90 vol% of the volume of the voids, the oxygen content in the material was extremely large due to the large number of pores inside the material, and the cutoff characteristics were unacceptable due to the low conductivity. Has become.

【0056】溶浸材料が空隙の100〜110vol%
の実施例31〜32では、内部に空孔の少なくクラック
の無い良好な材料が製造でき、遮断特性、裁断特性およ
び通電特性も良好である。
The infiltration material is 100 to 110% by volume of the void.
In Examples 31 to 32, a good material having few voids inside and no cracks can be manufactured, and the cut-off characteristics, cutting characteristics, and current-carrying characteristics are also good.

【0057】一方溶浸材量が空隙の体積の120vol
%の比較例30では、材料内部にクラックが見られ不良
である。これは、余剰の溶浸材が凝固する際の収縮でク
ラックを形成したものと考えられる。
On the other hand, the amount of the infiltration material is 120 vol.
In Comparative Example 30 of%, cracks were observed inside the material, which was poor. This is considered to be due to the formation of cracks due to shrinkage of the excess infiltrant during solidification.

【0058】[実施例33〜35および比較例31]基
本プロセス工程において、抜き出し側ともう一方の側の
内径比(Da/Db)が1.0〜2.0の抜き型を用
い、パラフィン無添加で成形して調べた(表3および表
6参照)。
[Examples 33 to 35 and Comparative Example 31] In a basic process step, a punching die having an inner diameter ratio (Da / Db) of 1.0 to 2.0 on the extraction side and the other side was used, and no paraffin was used. It was molded by addition and examined (see Tables 3 and 6).

【0059】内径比が1.0の比較例31では、成形に
クラックが発生し、成形不能であったが、内径比が1.
1以上の実施例33〜35では、クラックの無い良好な
材料が製造でき、遮断特性、裁断特性および通電特性も
良好である。
In Comparative Example 31 in which the inner diameter ratio was 1.0, cracks occurred in molding and molding was impossible, but the inner diameter ratio was 1.0.
In one or more of Examples 33 to 35, a good material without cracks can be manufactured, and the cutoff characteristics, the cutting characteristics, and the current-carrying characteristics are also good.

【0060】[他の実施例]以上の実施例では、Cu−
TiC接点の製造方法について述べてきたが、Cu−V
C接点についても同様に、本発明の製造方法は有効であ
る。
[Other Embodiments] In the above embodiments, Cu-
Although the method of manufacturing the TiC contact has been described, the Cu-V
Similarly, the manufacturing method of the present invention is effective for the C contact.

【0061】また、上記実施例では、脱パラフィンに用
いる炭化水素系洗浄液にn―ヘキサンを用いたが、沸点
が50℃以上の他の第一石油類あるいは第二石油類の炭
化水素系洗浄剤、例えば、石油ナフサ、ナフテン系炭化
水素、またはその混合物を用いても同様な効果が得られ
ることは明白である。
In the above embodiment, n-hexane was used as the hydrocarbon-based cleaning liquid used for deparaffinization. However, other hydrocarbon-based cleaning agents of the first petroleum or second petroleum having a boiling point of 50 ° C. or more were used. For example, it is obvious that similar effects can be obtained by using petroleum naphtha, naphthenic hydrocarbons, or a mixture thereof.

【0062】[0062]

【発明の効果】以上説明したように、請求項1記載の真
空バルブ用接点材料の製造方法によれば、耐弧成分粉末
を主体とする成形粉末に5〜30vol%のパラフィン
が添加されているため、抜き型を成形しても成形体にク
ラックを生ずることなく安価で量産に適し、大電流遮断
特性、裁断特性、大電流通電特性を兼備した接点材料の
製造が可能となる。
As described above, according to the method for producing a contact material for a vacuum valve according to the first aspect, 5 to 30 vol% of paraffin is added to the molding powder mainly composed of the arc-resistant component powder. Therefore, even if the punching die is formed, it is possible to produce a contact material which is inexpensive and suitable for mass production without causing cracks in the formed body, and has a large current interrupting property, a cutting property, and a large current carrying property.

【0063】請求項2記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする成形粉末に
配合されるCu粉末の粒径を100μm以下にしている
ので、接点のCu含有量を50vol%以下にすること
が可能となり、優れた裁断特性を発揮させることを可能
としている。
According to the method for manufacturing a contact material for a vacuum valve according to the second aspect, the particle size of the Cu powder mixed with the molding powder mainly composed of the arc-resistant component powder is set to 100 μm or less. The content can be reduced to 50 vol% or less, and it is possible to exhibit excellent cutting characteristics.

【0064】請求項3記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末の成形
体を溶浸工程の前に300〜500℃において窒素中で
10分以上保持し、パラフィンを蒸発させて成形体から
除去しているので、水素のような遮断特性に悪影響を及
ぼすガスを接点中に吸収することがなく、優れた遮断特
性を発揮できる。
According to the method for producing a contact material for a vacuum valve according to the third aspect, before the infiltration step, the compact of the powder mainly composed of the arc-resistant component powder is heated at 300 to 500 ° C. in nitrogen for 10 minutes or more. Since it is retained and the paraffin is evaporated and removed from the molded body, a gas such as hydrogen, which adversely affects the shut-off characteristics, is not absorbed into the contacts, and excellent shut-off characteristics can be exhibited.

【0065】請求項4記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末の成形
体を溶浸工程の前に300℃以上溶浸材の融点以下の温
度において水素中で10分以上保持し、パラフィンを蒸
発させて成形体から除去した後、真空雰囲気中で100
0℃で30分以上保持して脱水素した後、1100〜1
200℃においてCuを主成分とする導電成分を溶浸し
ているので、水素ガス含有量が少なく、優れた遮断特性
を発揮できる。
According to the method for manufacturing a contact material for a vacuum valve according to the fourth aspect, before the infiltration step, the temperature of the molded body of the powder mainly composed of the arc-resistant component powder is set to a temperature not lower than 300 ° C. and not higher than the melting point of the infiltrant. After holding in hydrogen for 10 minutes or more and evaporating paraffin to remove it from the compact,
After dehydration by holding at 0 ° C. for 30 minutes or more, 1100-1
Since the conductive component containing Cu as a main component is infiltrated at 200 ° C., the content of hydrogen gas is small, and excellent blocking characteristics can be exhibited.

【0066】請求項5記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末の成形
体を溶浸工程の前に沸点が50〜200℃の炭水化物系
洗浄液に浸漬し、40℃以上かつ洗浄液の沸点以下の温
度で保持しパラフィンを洗浄液中に溶解抽出させて成形
体から除去しているので、水素のような遮断特性に悪影
響を及ぼすガスを接点中に吸収することがなく、優れた
遮断特性を発揮できる。
According to the method for manufacturing a contact material for a vacuum valve according to the fifth aspect, before the infiltration step, the formed body of the powder mainly composed of the arc-resistant component powder is converted into a carbohydrate cleaning liquid having a boiling point of 50 to 200 ° C. It is immersed and maintained at a temperature of 40 ° C or higher and lower than the boiling point of the cleaning liquid, and paraffin is dissolved and extracted in the cleaning liquid and removed from the molded body. And excellent blocking characteristics can be exhibited.

【0067】請求項6記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末の成形
体を溶浸工程の前に沸点が50〜200℃の炭水化物系
洗浄液に浸漬し、40℃以上かつ洗浄液の沸点以下の温
度で保持しパラフィンを洗浄液中に溶解抽出させて成形
体から除去する際に、浸漬する洗浄液をパラフィン濃度
の低い液に少なくとも1回以上入れ替えるかあるいは成
形体を移し替えているので、より短時間でパラフィンの
除去が可能となり、安価な接点材料の製造が可能とな
る。
According to the method of manufacturing a contact material for a vacuum valve according to the sixth aspect, before the infiltration step, the compact of the powder mainly composed of the arc-resistant component powder is converted into a carbohydrate cleaning liquid having a boiling point of 50 to 200 ° C. When immersing, holding at a temperature of 40 ° C. or higher and lower than the boiling point of the washing liquid and dissolving and extracting paraffin in the washing liquid and removing it from the molded body, the washing liquid to be immersed is replaced with a liquid having a low paraffin concentration at least once or Since the molded body is transferred, the paraffin can be removed in a shorter time, and an inexpensive contact material can be manufactured.

【0068】請求項7記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末混合時
に0.1wt%以下のCoまたは0.1wt%以下のF
eまたは0.3wt%以下のNiまたは3wt%以下の
Crを添加しているので、接点のCu含有量を50vo
l%以下にすることが可能となり、優れた裁断特性を発
揮させることを可能としている。
According to the method for manufacturing a contact material for a vacuum valve according to the present invention, when the powder mainly composed of the arc-resistant component powder is mixed, 0.1 wt% or less of Co or 0.1 wt% or less of F is mixed.
e or 0.3 wt% or less of Ni or 3 wt% or less of Cr, so that the Cu content of the contact is reduced to 50 vol.
1% or less, and it is possible to exhibit excellent cutting characteristics.

【0069】請求項8記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末の成形
体に溶浸する溶浸材の量が成形体の空隙を埋めるのに必
要な量の100〜110%であるので、溶浸材の凝固時
に成形体にクラックを生ずることがなく、安定した接点
材料の製造化可能となる。
According to the method for manufacturing a contact material for a vacuum valve according to the eighth aspect, the amount of the infiltrating material infiltrating into the compact of the powder mainly composed of the arc-resistant component powder can fill the voids of the compact. Since the required amount is 100 to 110%, cracks do not occur in the compact during solidification of the infiltration material, and stable production of the contact material can be achieved.

【0070】請求項9記載の真空バルブ用接点材料の製
造方法によれば、耐弧成分粉末を主体とする粉末を成形
する金型が、円盤状の成形体を成形後抜き出して金型か
ら取り出す構造であり、成形体を抜き出す側の金型の内
径がもう一方の内径より大きいので、成形圧力の除荷時
に金型から成形体にかかる力が緩和され、成形体にクラ
ックが入るのを抑制でき、安定した接点材料の製造が可
能となる。
According to the method for manufacturing a contact material for a vacuum valve according to the ninth aspect, the mold for molding the powder mainly composed of the arc-resistant component powder is formed by extracting a disk-shaped molded body, and extracting the molded body from the mold. Since the inner diameter of the mold on the side from which the molded body is extracted is larger than the other, the force applied to the molded body by the mold during unloading of the molding pressure is reduced, and cracks in the molded body are suppressed. As a result, stable production of contact materials becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る真空バルブ用接点材
料の製造方法が適用される真空バルブの一例を示す縦断
面図。
FIG. 1 is a longitudinal sectional view showing an example of a vacuum valve to which a method for manufacturing a contact material for a vacuum valve according to an embodiment of the present invention is applied.

【図2】図1に示す真空バルブの接点部の拡大断面図。FIG. 2 is an enlarged sectional view of a contact portion of the vacuum valve shown in FIG.

【図3】本発明の実施形態における成形工程で使用する
金型の断面図。
FIG. 3 is a sectional view of a mold used in a molding step according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…遮断室 2…絶縁容器 3a、3b…封止金具 4a、4b…蓋体 5、6…導電棒 7、8…電極 9…ベローズ 10、11…アークシールド 13a、13b…接点 DESCRIPTION OF SYMBOLS 1 ... Interruption chamber 2 ... Insulating container 3a, 3b ... Sealing fitting 4a, 4b ... Lid 5, 6 ... Conductive rod 7, 8 ... Electrode 9 ... Bellows 10, 11 ... Arc shield 13a, 13b ... Contact

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01H 11/04 B22F 3/02 M 33/66 3/10 C (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 関 経世 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 片岡 誠 東京都府中市東芝町1番地 株式会社東芝 府中工場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01H 11/04 B22F 3/02 M 33/66 3/10 C (72) Inventor Atsushi Yamamoto Fuchu-shi, Tokyo 1 in Toshiba-cho, Fuchu Plant, Toshiba Corporation (72) Inventor Takashi Kusano 1 in Toshiba-cho, Fuchu-shi, Tokyo, Tokyo Inside the factory (72) Inventor Makoto Kataoka 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】主成分がCuからなる40〜55vol%
の導電成分と、主成分がTiCまたはVCからなる45
〜60vol%の耐弧成分とで構成される真空バルブ用
接点材料を、粒径が0.3〜3μmの耐弧成分粉末を主
体とする粉末を混合する混合工程、混合された粉末をス
ケルトン状の成形体に成形する成形工程、およびスケル
トン状の成形体へ導電成分を溶浸工程を、この順で実施
し、製造する方法において、前記混合工程で、耐弧成分
粉末に粉末状のCuを16〜43vol%配合し、さら
にこの混合された粉末に対してパラフィンを5〜30v
ol%添加することを特徴とする真空バルブ用接点材料
の製造方法。
1. A composition comprising 40 to 55% by volume of Cu as a main component.
And the main component is TiC or VC 45
A mixing step of mixing a contact material for a vacuum valve composed of up to 60% by volume of an arc resistant component with a powder mainly composed of an arc resistant component powder having a particle size of 0.3 to 3 μm; The molding step of molding into a molded body of, and the step of infiltrating the conductive component into the skeleton-shaped molded body, in this order, in the method of manufacturing, in the mixing step, powdered Cu to the arc resistant component powder 16 to 43 vol%, and 5 to 30 v of paraffin with respect to the mixed powder.
A method for producing a contact material for a vacuum valve, characterized by adding ol%.
【請求項2】前記混合工程において、配合する前記粉末
状のCuの粒径が100μm以下であることを特徴とす
る請求項1に記載の真空バルブ用接点材料の製造方法。
2. The method for producing a contact material for a vacuum valve according to claim 1, wherein in the mixing step, the particle size of the powdered Cu to be blended is 100 μm or less.
【請求項3】前記成形工程で成形された成形体へ導電成
分を溶浸する前記溶浸工程の前に、300〜500℃に
おいて窒素中で10分以上保持し、パラフィンを蒸発さ
せて成形体から除去する脱パラフィン工程を追加すると
ともに、前記溶浸工程において、真空雰囲気中で110
0〜1200℃においてCuを主成分とする導電成分を
溶浸することを特徴とする請求項1または請求項2に記
載の真空バルブ用接点材料の製造方法。
3. A molded product obtained by holding at 300 to 500 ° C. in nitrogen for 10 minutes or more at 300 to 500 ° C. to evaporate paraffin before the infiltration step of infiltrating a conductive component into the molded product molded in the molding process. And a deparaffinization step for removing from the infiltration step.
The method for producing a contact material for a vacuum valve according to claim 1 or 2, wherein a conductive component containing Cu as a main component is infiltrated at 0 to 1200 ° C.
【請求項4】前記成形工程で成形された成形体への導電
成分を溶浸する前記溶浸工程の前に、300℃以上でか
つ溶浸する導電成分の融点以下の温度において、水素中
で10分以上保持し、パラフィンを蒸発させて成形体か
ら除去する脱パラフィン工程、および真空雰囲気中で9
00℃以上かつ溶浸材の融点温度以下で30分以上保持
して脱水素する工程を追加するとともに、前記溶浸工程
で、1100〜1200℃においてCuを主成分とする
導電成分を溶浸することを特徴とする請求項1または請
求項2に記載の真空バルブ用接点材料の製造方法。
4. Prior to the infiltration step of infiltrating the conductive component into the molded article formed in the forming step, hydrogen is applied at a temperature not lower than 300 ° C. and not higher than the melting point of the conductive component to be infiltrated. Holding for 10 minutes or more, removing paraffin from the molded body by evaporating paraffin, and 9 minutes in a vacuum atmosphere
A dehydrogenation step is added by holding at a temperature of not less than 00 ° C. and not more than the melting point of the infiltration material for not less than 30 minutes, and in the infiltration step, a conductive component mainly composed of Cu is infiltrated at 1100 to 1200 ° C. The method for producing a contact material for a vacuum valve according to claim 1 or 2, wherein:
【請求項5】前記成形工程で成形された成形体へ導電成
分を溶浸する前記溶浸工程の前に、沸点が50〜200
℃の炭水化物系洗浄液に浸漬し、40℃以上かつ洗浄液
の沸点以下の温度で保持しパラフィンを洗浄液中に溶解
抽出させて成形体から除去する脱パラフィン工程を追加
するとともに、前記溶浸工程において、真空雰囲気中で
1100〜1200℃においてCuを主成分とする導電
成分を溶浸することを特徴とする請求項1または請求項
2に記載の真空バルブ用接点材料の製造方法。
5. The method according to claim 1, wherein a boiling point is 50 to 200 before the infiltration step of infiltrating the conductive component into the molded article formed in the molding step.
Immersion in a carbohydrate-based cleaning solution at a temperature of 40 ° C. or higher, and holding at a temperature of 40 ° C. or higher and lower than the boiling point of the cleaning solution, dissolving and extracting paraffin in the cleaning solution, and adding a deparaffinization step of removing from the molded body. The method for producing a contact material for a vacuum valve according to claim 1, wherein a conductive component containing Cu as a main component is infiltrated at 1100 to 1200 ° C. in a vacuum atmosphere.
【請求項6】前記脱パラフィン工程において、浸漬する
洗浄液をパラフィン濃度の低い液に少なくとも1回以上
入れ替えるかあるいは成形体を移し替えることを特徴と
する請求項1または請求項2に記載の真空バルブ用接点
材料の製造方法。
6. The vacuum valve according to claim 1, wherein, in the deparaffinization step, the cleaning liquid to be immersed is replaced at least once or more with a liquid having a low paraffin concentration or the molded body is transferred. Method of manufacturing contact materials for use.
【請求項7】前記混合工程において、0.1wt%以下
のCo、または0.1wt%以下のFe、または0.3
wt%以下のNi、または3wt%以下のCrを添加す
ることを特徴とする請求項1乃至請求項6のいずれかに
記載の真空バルブ用接点材料の製造方法。
7. In the mixing step, 0.1 wt% or less Co, 0.1 wt% or less Fe, or 0.3 wt% or less.
The method for producing a contact material for a vacuum valve according to any one of claims 1 to 6, wherein Ni is added in an amount of not more than wt% or Cr is added in an amount of not more than 3 wt%.
【請求項8】前記溶浸工程において、前記成形体に溶浸
する溶浸材の量が成形体の空隙を埋めるのに必要な量の
100〜110%であることを特徴とする請求項1乃至
請求項7のいずれかに記載の真空バルブ用接点材料の製
造方法。
8. The method according to claim 1, wherein in the infiltration step, the amount of the infiltrating material infiltrating the molded body is 100 to 110% of the amount required to fill the voids in the molded body. A method for producing a contact material for a vacuum valve according to claim 7.
【請求項9】前記成形工程において、前記粉末を成形す
る金型が、円盤状の成形体を成形後抜き出して金型から
取り出す構造であり、成形体を抜き出す側の金型の内径
がもう一方の内径より大きいことを特徴とする請求項1
乃至請求項8のいずれかに記載の真空バルブ用接点材料
の製造方法。
9. In the molding step, the mold for molding the powder has a structure in which a disk-shaped molded body is extracted after molding, and is taken out from the mold. 2. The method according to claim 1, wherein the inner diameter is larger than the inner diameter of
A method for manufacturing a contact material for a vacuum valve according to claim 8.
JP14930899A 1998-08-21 1999-05-28 Method for manufacturing vacuum valve contact material Expired - Fee Related JP3859393B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14930899A JP3859393B2 (en) 1998-08-21 1999-05-28 Method for manufacturing vacuum valve contact material
KR1019990034332A KR100332513B1 (en) 1998-08-21 1999-08-19 Contact material for vacuum valve and method for fabricating the same
CN99118067A CN1084034C (en) 1998-08-21 1999-08-23 Contact material for vacuum tube and its production method
US09/379,362 US6303076B1 (en) 1998-08-21 1999-08-23 Contact material for contacts for vacuum interrupter and method of manufacturing the contact
EP99116171A EP0982744B1 (en) 1998-08-21 1999-08-23 Contact material for contacts for vacuum interrupter and method of manufacturing the contact
DE69931116T DE69931116T2 (en) 1998-08-21 1999-08-23 Vacuum switch contact material and manufacturing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23505298 1998-08-21
JP10-235052 1998-08-21
JP14930899A JP3859393B2 (en) 1998-08-21 1999-05-28 Method for manufacturing vacuum valve contact material

Publications (2)

Publication Number Publication Date
JP2000129373A true JP2000129373A (en) 2000-05-09
JP3859393B2 JP3859393B2 (en) 2006-12-20

Family

ID=26479239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14930899A Expired - Fee Related JP3859393B2 (en) 1998-08-21 1999-05-28 Method for manufacturing vacuum valve contact material

Country Status (1)

Country Link
JP (1) JP3859393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209578A (en) * 2004-01-26 2005-08-04 Neis Co Ltd Vacuum circuit breaker and wax material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209578A (en) * 2004-01-26 2005-08-04 Neis Co Ltd Vacuum circuit breaker and wax material
JP4643149B2 (en) * 2004-01-26 2011-03-02 芝府エンジニアリング株式会社 Brazing material

Also Published As

Publication number Publication date
JP3859393B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JPH056780B2 (en)
US4503010A (en) Process of producing a compound material of chromium and copper
KR100332513B1 (en) Contact material for vacuum valve and method for fabricating the same
JPS6359217B2 (en)
KR0170052B1 (en) Contact material for vacuum valve &amp; method of manufacturing the same
JP2000129373A (en) Production of vacuum valve contact material
JPH0554208B2 (en)
KR960004315B1 (en) Vacuum switch contact materials and the manufacturing method
JP2006233298A (en) Contact material for vacuum valve and its production method
JP3790055B2 (en) Contact material for vacuum valves
JP2005150032A (en) Manufacturing method for contact for vacuum bulb
JP2006032036A (en) Contact material for vacuum valve
JP3810955B2 (en) Manufacturing method of contact material for vacuum valve
JPH0458130B2 (en)
KR0171607B1 (en) Vacuum circuit breaker and contact
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JPS63183102A (en) Production of electrode material
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
KR100283915B1 (en) Manufacturing method of contact material for vacuum breaker
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
JP2000173416A (en) Contact material for vacuum valve and its manufacture
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JP2001222933A (en) Contact material for vacuum valve and method of manufacturing the same
JPH0877855A (en) Contact material for vacuum bulb
JPS61121218A (en) Vacuum breaker

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees