JP2000128647A - Production of hexagonal boron nitride sintered body - Google Patents
Production of hexagonal boron nitride sintered bodyInfo
- Publication number
- JP2000128647A JP2000128647A JP10307103A JP30710398A JP2000128647A JP 2000128647 A JP2000128647 A JP 2000128647A JP 10307103 A JP10307103 A JP 10307103A JP 30710398 A JP30710398 A JP 30710398A JP 2000128647 A JP2000128647 A JP 2000128647A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- hexagonal boron
- powder
- raw material
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、六方晶窒化ほう素
焼結体の製造方法に関する。詳しくは、嵌合・ねじ止め
等の接合構造を有しない大型セラミックス焼成用セッタ
ーを製作するのに好適な、最大長450mm以上の大型
形状品を容易に製造することのできる六方晶窒化ほう素
焼結体の製造方法に関する。[0001] The present invention relates to a method for producing a hexagonal boron nitride sintered body. For details, hexagonal boron nitride sintering that can easily manufacture large-sized products with a maximum length of 450 mm or more, suitable for manufacturing large ceramics setters without joining structures such as fitting and screwing It relates to a method for producing a body.
【0002】[0002]
【従来の技術】六方晶窒化ほう素は、黒鉛類似の層状構
造を有し、熱伝導性、電気絶縁性、化学的安定性、固体
潤滑性、耐熱衝撃性などの特性に優れる。またその焼結
体は、耐食性、被切削性、耐熱性、低誘電性、低誘電損
失性などに優れているので、さまざまな分野で広範に用
いられている。特に、最近では、大形状なセラミックス
製品を製造するためのセラミックス焼成用セッターとし
ての需要が増えてきており、例えば最大長400mmを
こえ1000mm程度までのセッターが使用されるよう
になっている。ここでいう最大長とは、例えば四角形状
であれば対角線、円形状であれば直径、楕円形状であれ
ば長径の長さを指すものである。2. Description of the Related Art Hexagonal boron nitride has a layered structure similar to graphite, and is excellent in properties such as thermal conductivity, electrical insulation, chemical stability, solid lubricity, and thermal shock resistance. Further, since the sintered body is excellent in corrosion resistance, machinability, heat resistance, low dielectric property, low dielectric loss property and the like, it is widely used in various fields. In particular, recently, there has been an increasing demand as a ceramic firing setter for producing large-sized ceramic products. For example, a setter having a maximum length of more than 400 mm and up to about 1000 mm has been used. The maximum length here refers to, for example, a diagonal line for a square shape, a diameter for a circular shape, and a length of a major axis for an elliptical shape.
【0003】従来、このような大型セッターは、ホット
プレス法、常圧焼結法等で製造された小形状六方晶窒化
ほう素焼結体を嵌合・ねじ止め等の物理的手段により組
み立てて製作されていたので、実用上、次のような問題
があった。Conventionally, such a large-sized setter is manufactured by assembling a small-sized hexagonal boron nitride sintered body manufactured by a hot press method, a normal pressure sintering method or the like by physical means such as fitting and screwing. In practice, the following problems have been encountered.
【0004】セッターに被焼成物を載置して脱バインダ
ーを行う際、セッターの組み立て部分と非組み立て部分
とではバインダーの抜け方が異なるため、均質なセラミ
ックスを製造するにはかなりの時間と労力が必要であっ
た。脱バインダー処理を充分に行わないで焼成すると、
セッターの組み立て部分と接触していた被焼成物の部分
にバインダーが残留しやすくなり、繰り返しの使用によ
ってその部分から反りやクラックが発生し寿命が短くな
った。このような短寿命は、被焼成物からの荷重負荷に
よって、その組み立て部分に応力が集中することも原因
となっている。また、セッターの組み立て部分からの通
気等によって、その部分と接触していた被焼成物の部分
が変色したり、セッターの組み立て部分に生じてくる若
干の段差等によって被焼成物の寸法が狂ったりするの
で、セッターの各構成部材を同質なものを厳選使用しな
ければならないなど、セッターの組み立てには充分な配
慮が必要であった。[0004] When a material to be fired is placed on a setter and debinding is performed, the way of removing the binder is different between an assembled part and a non-assembled part of the setter. Was needed. If sintering is not performed enough for binder removal,
The binder easily remained in the portion of the object to be fired that had been in contact with the setter assembly portion, and warping and cracks were generated from that portion by repeated use, resulting in a shorter life. Such a short life is also caused by the fact that stress is concentrated on the assembled portion due to the load applied from the object to be fired. Also, due to the ventilation from the setter assembling part, the part of the object to be fired that was in contact with that part may be discolored, or the dimensions of the object to be fired may be out of order due to slight steps or the like generated in the setter assembling part Therefore, it was necessary to carefully select and use the same components for the setters, so that sufficient consideration was required for assembling the setters.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は大型セラミックス焼
成用セッター材として好適な最大長450mm以上の大
型形状の六方晶窒化ほう素焼結体を容易に製造すること
である。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has as its object to provide a large-sized hexagonal boron nitride sintered body having a maximum length of 450 mm or more suitable as a setter material for firing large-sized ceramics. Is to be easily manufactured.
【0006】[0006]
【課題を解決するための手段】すなわち、本発明は、
(面積平均径Da)/(50%体積累積粒度Dp50)比
(以下、「B値」という。)が0.6以上でDp50が1
5μm以上である高充填性六方晶窒化ほう素粉末80重
量%以下と、Dp50が1.5μm以下の六方晶窒化ほう
素粉末20重量%以上とを含む原料粉末を成形・焼成す
ることを特徴とする六方晶窒化ほう素焼結体の製造方法
である。That is, the present invention provides:
(Area average diameter D a ) / (50% volume cumulative particle size D p50 ) ratio (hereinafter referred to as “B value”) is 0.6 or more and D p50 is 1
Features and 80 wt% or less high packing property hexagonal boron nitride powder is not less than 5 [mu] m, that D p50 is molding and firing the raw material powder containing the following hexagonal boron nitride powder 20 wt% or more 1.5μm Is a method for producing a hexagonal boron nitride sintered body.
【0007】[0007]
【発明の実施の形態】以下、さらに詳しく本発明につい
て説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0008】本発明は、六方晶窒化ほう素原料粉末を、
ほう酸カルシウム、酸化カルシウム等の焼結助剤とアク
リル、パラフィン、ワックス、メチルセルロース等の有
機バインダとを必要に応じて用いて成形し、有機バイン
ダを用いた場合は脱脂し、それを非酸化性雰囲気下で焼
成する方法において、上記六方晶窒化ほう素原料粉末と
して、B値が0.6以上でDp50が15μm以上である
高充填性六方晶窒化ほう素粉末80重量%以下と、D
p50が1.5μm以下である六方晶窒化ほう素粉末20
重量%以上との混合粉末を用いるものである。According to the present invention, a hexagonal boron nitride raw material powder is
Mold using sintering aids such as calcium borate and calcium oxide and organic binders such as acryl, paraffin, wax, and methylcellulose as required. If an organic binder is used, degrease it and use a non-oxidizing atmosphere. In the method of firing under the following conditions, the hexagonal boron nitride raw material powder is a highly-fillable hexagonal boron nitride powder having a B value of 0.6 or more and a D p50 of 15 μm or more;
Hexagonal boron nitride powder 20 having a p50 of 1.5 μm or less
In this case, a powder mixture of at least 1% by weight is used.
【0009】本発明で使用される上記原料粉末は、充填
性、保形性、成形性に優れているので、大型形状の成形
体の成形が可能となり、最大長450mm以上の大型六
方晶窒化ほう素焼結体の製造が容易となる。The raw material powder used in the present invention is excellent in fillability, shape retention, and moldability, so that a large-sized molded body can be formed, and a large hexagonal nitride having a maximum length of 450 mm or more can be formed. The manufacture of the sintered element becomes easy.
【0010】すなわち、高充填性六方晶窒化ほう素粉末
のB値が0.6未満であるか、もしくは高充填性六方晶
窒化ほう素粉末のDp50が15μm未満であると、原料
粉末の成形時の流動性が損なわれ、成形時のクラックや
ラミネーション発生の原因となる。一方、これと配合さ
れる六方晶窒化ほう素粉末のDp50が1.5μmをこえ
ると、成形時の充填性が悪化し、同様に成形時のクラッ
クやラミネーションの原因となる。更には、両粉末の粒
径特性が適切であっても、両者の配合割合が不適切であ
ると、これまた、充填性が悪くなる。すなわち、高充填
性窒化ほう素粉末の割合が80重量%をこえるとクラッ
クやラミネーションの原因となる。[0010] That is, if B values of the high filling properties hexagonal boron nitride powder is less than 0.6, or when D p50 high filling ability hexagonal boron nitride powder is smaller than 15 [mu] m, the molding of the raw material powder The fluidity at the time is impaired, which causes cracks and lamination during molding. On the other hand, if D p50 of hexagonal boron nitride powder to be blended therewith exceeds 1.5 [mu] m, the filling property of deteriorated during molding, causing cracking and lamination during molding as well. Furthermore, even if the particle size characteristics of the two powders are appropriate, if the mixing ratio of the two powders is inappropriate, the filling property is also deteriorated. That is, if the proportion of the highly-fillable boron nitride powder exceeds 80% by weight, it causes cracks and lamination.
【0011】六方晶窒化ほう素原料粉末の酸素量は、
0.4〜1.7重量%であることが望ましく、これによ
ってセッター使用中に寸法変化の少ない、より高強度な
六方晶窒化ほう素焼結体を製造することができる。The oxygen content of the hexagonal boron nitride raw material powder is
It is desirable that the content be 0.4 to 1.7% by weight, whereby a high-strength hexagonal boron nitride sintered body having less dimensional change during use of the setter can be manufactured.
【0012】原料粉末の成形方法については、金型プレ
ス法、静水圧プレス法、泥漿鋳込み成形法、押し出し成
形法、射出成形法などの一般的な方法を採用することが
できる。また、これらを組み合わせることもできる。但
し、有機バインダを用いた場合には、焼成前にこれを脱
脂する必要がある。特に高強度で、セッター使用中の寸
法変化の少ない六方晶窒化ほう素焼結体を得るために
は、焼成前に0.5トン/cm2以上の静水圧プレスを
加えることが望ましい。As a method for molding the raw material powder, a general method such as a mold pressing method, an isostatic pressing method, a slurry casting method, an extrusion molding method, and an injection molding method can be employed. These can also be combined. However, when an organic binder is used, it is necessary to degrease it before firing. In particular, in order to obtain a hexagonal boron nitride sintered body having a high strength and a small dimensional change during use of the setter, it is desirable to apply an isostatic press of 0.5 ton / cm 2 or more before firing.
【0013】焼成は、窒素、アンモニア、水素、炭酸ガ
ス、一酸化炭素ガス、アルゴン、ヘリウム等の非酸化性
雰囲気下、温度1700℃以上で行われる。The calcination is performed at a temperature of 1700 ° C. or more in a non-oxidizing atmosphere such as nitrogen, ammonia, hydrogen, carbon dioxide, carbon monoxide, argon, and helium.
【0014】本発明によって製造された六方晶窒化ほう
素焼結体からセッターを製作するには、切断・切り出し
・研磨等の機械加工が行われる。このようなセッターに
よれば、上記した従来の組み立て構造の問題点を解消す
ることができ、長寿命を達成することができる。In order to manufacture a setter from the hexagonal boron nitride sintered body manufactured according to the present invention, machining such as cutting, cutting, and polishing is performed. According to such a setter, the above-mentioned problems of the conventional assembly structure can be solved, and a long life can be achieved.
【0015】[0015]
【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。The present invention will be described more specifically with reference to examples and comparative examples.
【0016】六方晶窒化ほう素原料粉末の成形性・保形
性を評価するため、先ず、B値がそれぞれ0.83、
0.72、0.55でDp50が16μmである六方晶窒
化ほう素粉末50重量%と、Dp50が0.9μmの六方
晶窒化ほう素粉末50重量%との混合原料(それぞれ、
混合原料a、混合原料b、混合原料cとする)、B値が
0.72でDp50が13μmである六方晶窒化ほう素粉
末50重量%と、Dp50が0.9μmの六方晶窒化ほう
素粉末50重量%との混合原料(これを混合原料dとす
る)、及びB値が0.72でDp50が16μmである六
方晶窒化ほう素粉末50重量%と、Dp50が1.8μm
の六方晶窒化ほう素粉末50重量%との混合原料(これ
を混合原料eとする)を用い、CIP圧力1000kg
f/cm2で成形した。In order to evaluate the formability and shape retention of the hexagonal boron nitride raw material powder, first, the B value was 0.83,
Hexagonal and 50 wt% boron nitride powder is D p50 is 16μm in 0.72,0.55, D p50 mixed material (each of the 50 wt% hexagonal boron nitride powder 0.9 .mu.m,
Mixed raw material a, mixed raw material b, and mixed raw material c), a hexagonal boron nitride powder having a B value of 0.72 and a D p50 of 13 μm, and a hexagonal boron nitride powder having a D p50 of 0.9 μm. A raw material mixed with 50% by weight of elemental powder (this is referred to as a mixed raw material d); 50% by weight of hexagonal boron nitride powder having a B value of 0.72 and D p50 of 16 μm; and D p50 of 1.8 μm.
And a CIP pressure of 1000 kg using a mixed raw material (hereinafter referred to as mixed raw material e) with 50% by weight of hexagonal boron nitride powder of
Molded at f / cm 2 .
【0017】その結果、混合原料a及び混合原料bを用
いたときは成形性・保形性が共に良好であったが、混合
原料c、混合原料d、混合原料eの場合はクラックが入
り成形体とすることができなかった。As a result, when the mixed raw material a and the mixed raw material b were used, both the moldability and the shape retention were good, but when the mixed raw material c, the mixed raw material d, and the mixed raw material e were cracked, I couldn't be with my body.
【0018】そこで、次に、B値が0.83でDp50が
16μmである高充填性六方晶窒化ほう素粉末0〜10
0重量%と、Dp50が0.9μmである六方晶窒化ほう
素粉末を0〜100重量%と種々変化させた混合粉末を
用い、同様にして成形性・保形性を評価した。その条件
と結果を表1に示す。Therefore, next, a high-filling hexagonal boron nitride powder having a B value of 0.83 and a D p50 of 16 μm is used.
Moldability and shape retention were evaluated in the same manner using a mixed powder in which 0 wt% and a hexagonal boron nitride powder having a Dp50 of 0.9 μm were variously changed from 0 to 100 wt%. Table 1 shows the conditions and results.
【0019】[0019]
【表1】 [Table 1]
【0020】実施例1 B値が0.83でDp50が16μmである高充填性六方
晶窒化ほう素70重量%と、Dp50が0.9μmの六方
晶窒化ほう素粉末30重量%との原料粉末(酸素量2.
0重量%)をCIP圧力1000kgf/cm2で成形
した後、アルゴン雰囲気下、常圧にて1800℃で10
時間焼成して窒化ほう素焼結体を製造した。得られた窒
化ほう素焼結体を用い、500×125×8mm形状の
一体物のセッターを製作した。Example 1 70% by weight of highly-filled hexagonal boron nitride having a B value of 0.83 and D p50 of 16 μm, and 30% by weight of hexagonal boron nitride powder having a D p50 of 0.9 μm Raw material powder (oxygen content 2.
After 0 wt%) was molded by CIP pressure 1000 kgf / cm 2, under an argon atmosphere at 1800 ° C. under atmospheric pressure of 10
By firing for a time, a boron nitride sintered body was manufactured. Using the obtained boron nitride sintered body, an integrated setter having a shape of 500 × 125 × 8 mm was manufactured.
【0021】次いで、このセッター上に、押し出し成形
された窒化けい素グリーンシートの10枚を積層・載置
し、大気中、500℃で脱脂した後、窒素雰囲気中、1
750℃で焼結を行った。この操作を同一セッター上で
繰り返し行い、焼結後のセッターの様子と最下段の窒化
けい素シートの様子を逐次観察した。Next, ten extruded silicon nitride green sheets are stacked and placed on the setter, degreased at 500 ° C. in the air, and then dried in a nitrogen atmosphere.
Sintering was performed at 750 ° C. This operation was repeated on the same setter, and the state of the setter after sintering and the state of the lowermost silicon nitride sheet were sequentially observed.
【0022】比較例1、2 実施例1で製造された窒化ほう素焼結体から、125×
125×8mm形状の焼結体を切り出した。それらを嵌
合(比較例1)又はねじ止め(比較例2)によって組み
合わせて実施例1と同サイズのセッターを製作し、実施
例1と同様な焼結試験を行った。この際、窒化けい素グ
リーンシートは、セッターの接合部分の上にかかるよう
に載置した。Comparative Examples 1 and 2 From the boron nitride sintered body produced in Example 1, 125 ×
A 125 × 8 mm sintered body was cut out. These were combined by fitting (Comparative Example 1) or screwing (Comparative Example 2) to produce a setter of the same size as in Example 1, and the same sintering test as in Example 1 was performed. At this time, the silicon nitride green sheet was placed so as to cover the bonding portion of the setter.
【0023】以上の結果を表2、表3に示す。The above results are shown in Tables 2 and 3.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】[0026]
【発明の効果】本発明によれば、最大長450mm以上
の大型形状の六方晶窒化ほう素焼結体でも容易に製造す
ることができる。本発明によって製造された六方晶窒化
ほう素焼結体は、嵌合・ねじ止め等の接合構造を有しな
い大型セラミックス焼成用セッターの製作に好適であ
る。According to the present invention, even a large hexagonal boron nitride sintered body having a maximum length of 450 mm or more can be easily manufactured. The hexagonal boron nitride sintered body manufactured by the present invention is suitable for manufacturing a large-sized ceramic firing setter having no joining structure such as fitting and screwing.
Claims (1)
粒度Dp50)比が0.6以上でDp50が15μm以上であ
る高充填性六方晶窒化ほう素粉末80重量%以下と、D
p50が1.5μm以下の六方晶窒化ほう素粉末20重量
%以上とを含む原料粉末を成形・焼成することを特徴と
する六方晶窒化ほう素焼結体の製造方法。1. A highly-fillable hexagonal boron nitride powder having a ratio of (area average diameter D a ) / (50% volume cumulative particle diameter D p50 ) of 0.6 or more and D p50 of 15 μm or more is 80% by weight or less. , D
A method for producing a hexagonal boron nitride sintered body, comprising molding and firing a raw material powder containing 20% by weight or more of hexagonal boron nitride powder having a p50 of 1.5 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30710398A JP3942288B2 (en) | 1998-10-28 | 1998-10-28 | Method for producing setter material for firing ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30710398A JP3942288B2 (en) | 1998-10-28 | 1998-10-28 | Method for producing setter material for firing ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000128647A true JP2000128647A (en) | 2000-05-09 |
JP3942288B2 JP3942288B2 (en) | 2007-07-11 |
Family
ID=17965076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30710398A Expired - Lifetime JP3942288B2 (en) | 1998-10-28 | 1998-10-28 | Method for producing setter material for firing ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3942288B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006240940A (en) * | 2005-03-04 | 2006-09-14 | Mizushima Ferroalloy Co Ltd | Graphite-hexagonal boron nitride composite sintered compact and method of manufacturing the same |
JP2008050221A (en) * | 2006-08-25 | 2008-03-06 | Denki Kagaku Kogyo Kk | Boron nitride sintered compact, method for producing the same and its application |
JPWO2022210555A1 (en) * | 2021-03-31 | 2022-10-06 |
-
1998
- 1998-10-28 JP JP30710398A patent/JP3942288B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006240940A (en) * | 2005-03-04 | 2006-09-14 | Mizushima Ferroalloy Co Ltd | Graphite-hexagonal boron nitride composite sintered compact and method of manufacturing the same |
JP4673644B2 (en) * | 2005-03-04 | 2011-04-20 | 水島合金鉄株式会社 | Graphite-hexagonal boron nitride composite sintered body |
JP2008050221A (en) * | 2006-08-25 | 2008-03-06 | Denki Kagaku Kogyo Kk | Boron nitride sintered compact, method for producing the same and its application |
JPWO2022210555A1 (en) * | 2021-03-31 | 2022-10-06 | ||
WO2022210555A1 (en) * | 2021-03-31 | 2022-10-06 | デンカ株式会社 | Setter for ceramic firing |
Also Published As
Publication number | Publication date |
---|---|
JP3942288B2 (en) | 2007-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101751531B1 (en) | Method for producing silicon nitride substrate | |
JP3100871B2 (en) | Aluminum nitride sintered body | |
EP1728774B1 (en) | Oxide-bonded silicon carbide material | |
JP2829229B2 (en) | Silicon nitride ceramic sintered body | |
JP2000128647A (en) | Production of hexagonal boron nitride sintered body | |
JPH07172921A (en) | Aluminum nitride sintered material and its production | |
KR20210097643A (en) | Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device | |
JPH05279121A (en) | Sintered compact of tungsten carbide-alumina and its production | |
JPH06329474A (en) | Sintered aluminum nitride and its production | |
JP2535139B2 (en) | Heat dissipation board | |
JP4702978B2 (en) | Aluminum nitride sintered body | |
JPS62123070A (en) | Manufacture of boron nitride base sintered body | |
JPS6021945B2 (en) | Silicon nitride sintered body | |
JP5712142B2 (en) | Porous ceramic sintered body and method for producing porous ceramic sintered body | |
JP4967739B2 (en) | Ceramic electronic parts (hereinafter referred to as electronic parts) firing tool materials | |
JPH0627038B2 (en) | Ceramics sintered body and manufacturing method thereof | |
JPH08157262A (en) | Aluminum nitride sintered compact and its production | |
JPH1112039A (en) | Production of aluminum nitride-based sintered material for high heat-irradiating lid | |
JPH05238829A (en) | Sintered silicone nitride ceramic | |
JP2005225744A (en) | Method for manufacturing silicon nitride sintered compact | |
JPH0585506B2 (en) | ||
JP2012184493A (en) | Metal-ceramic composite material and method for producing the same | |
JPH0568428B2 (en) | ||
JPS5978972A (en) | Manufacture of alumina sintered body | |
JP2002201083A (en) | Ceramic porous compact and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070403 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |