JP2000126780A - Chlorine-sterilization system - Google Patents

Chlorine-sterilization system

Info

Publication number
JP2000126780A
JP2000126780A JP30366898A JP30366898A JP2000126780A JP 2000126780 A JP2000126780 A JP 2000126780A JP 30366898 A JP30366898 A JP 30366898A JP 30366898 A JP30366898 A JP 30366898A JP 2000126780 A JP2000126780 A JP 2000126780A
Authority
JP
Japan
Prior art keywords
water
chlorine
salt
electrolysis
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30366898A
Other languages
Japanese (ja)
Inventor
Takashi Goto
高志 後藤
Akihiko Okada
昭彦 岡田
Masamitsu Nakazawa
正光 中沢
Masayuki Yamashita
正幸 山下
Shigeo Shiono
繁男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30366898A priority Critical patent/JP2000126780A/en
Publication of JP2000126780A publication Critical patent/JP2000126780A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost by extending a maintenance period by reducing the adhesion and growth of scale on an electrode material and to sterilize a subject process economically by preparing salt water by a pure water means and a produced salt which passed through a pure water apparatus for raw water and generating NaClO in an electrolytic cell. SOLUTION: Water from a river is led to a flocculation-precipitation basin 1 and after being mixed with a flocculant 1a, passed through a filtration basin 2, a contact basin 5, and an active carbon basin 5 to improve water quality. When hydrogen discharged from an electrolytic cell 15 and a hypo-salt tank 16 is led to the inlet side of a water removing unit MS, since it is converted into water, produced water taken up from the bottom side of the unit MS is supplied as raw water to a pure water apparatus 12 through an injection valve 12d. Purified salt 11a and water from the injection valve 12a of the pure water apparatus 12 are mixed in a salt water tank 11 to prepare salt water. The salt water is introduced into the electrolytic cell 15 through a mixer 14 by a salt water pump 13. In the electrolytic cell 15, pure water from the pure water apparatus 12 is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境衛生上の対策
から水処理プロセスで塩素殺菌する、いわゆる塩素混和
池に関し、特に上下水道プロセスの塩素殺菌すシステム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called chlorine mixing pond for disinfecting chlorine in a water treatment process from the viewpoint of environmental health, and more particularly to a chlorine disinfection system for a water supply and sewerage process.

【0002】[0002]

【従来の技術】上下水道では、河川からの取水をろ過処
理して配水池に貯水して送水しているが、配水池には塩
素殺菌して病原菌をなくして送水することが義務付けら
れている。例えば、水道法施行規則により給水栓で保持
すべき残留塩素を0.1ppm以上として浄水場側で塩
素注入制御することとしている。また、下水道でも汚水
処理した後に河川へ放流する為に、同じく塩素殺菌する
ことが義務付けられている。
2. Description of the Related Art In water supply and sewerage systems, water intake from rivers is filtered, stored in a distribution reservoir, and then transmitted. However, the distribution reservoir is required to disinfect with chlorine to eliminate pathogenic bacteria and transmit water. . For example, pursuant to the Water Supply Law, the residual water to be retained by the water tap is set to 0.1 ppm or more, and the water injection plant controls chlorine injection. Also, sewage is required to be chlorinated in order to be discharged into rivers after sewage treatment.

【0003】従来、その塩素殺菌のために塩素ガス(C
l)、あるいは次亜塩素酸ナトリウム(NaClO)を
用いていた。これらの上下水道の処理水は24時間連続
運転されるのが基本であり、塩素殺菌も同じく、水中の
有機物やアンモニア性窒素などによって消費されるの
で、貯蔵設備が必要となり連続運転となる。ところが、
塩素は毒性が強いので、特別の安全、保安管理が施され
ている。液化塩素を使う場合は施設規模と内容により監
督官庁への届出又は許可が必要である。それ以外の消毒
剤の使用の場合はこの限りでない。
[0003] Conventionally, chlorine gas (C
1) or sodium hypochlorite (NaClO). The treated water of these water and sewage systems is basically operated continuously for 24 hours, and chlorine sterilization is also consumed by organic matter and ammonia nitrogen in the water, so that storage equipment is required and continuous operation is required. However,
Chlorine is highly toxic and has special safety and security controls. When using liquefied chlorine, it is necessary to notify or obtain permission from the competent authority depending on the facility size and content. This shall not apply to the use of other disinfectants.

【0004】そこで、近年、消毒剤としてNaClO
(次亜塩と以下略す)を貯蔵して使う場合が増えてい
る。設置場所で次亜塩を生成して使う方法が経済的であ
ると認識されだしている。生成次亜塩とは、原料として
水と食塩とを混合して塩水をつくり、これを電気分解し
てNaClOを生成する方法で、特開平6−20039
3号公報を挙げることができる。
Therefore, in recent years, NaClO has been used as a disinfectant.
There is an increasing number of cases of storing and using (hypochlorite). It has been recognized that producing and using hyposalt at the installation site is economical. The produced hyposalt is a method in which water and salt are mixed as raw materials to produce salt water, which is electrolyzed to produce NaClO.
No. 3 publication can be mentioned.

【0005】一方、浄水プロセスにおいて、オゾン接触
池を設けてオゾンガスと被処理水とを混合して、水中の
臭気物質やトリハロメタン除去など有毒物質を除去する
高度浄水処理も実用化されているが、大腸菌などの殺菌
は塩素混和池を設けて塩素殺菌処理の実施を義務付けら
れている。
On the other hand, in the water purification process, an advanced water purification treatment for removing odorous substances and toxic substances such as trihalomethane in water by providing an ozone contact pond and mixing ozone gas and water to be treated has been put to practical use. For sterilization of Escherichia coli and the like, it is obliged to establish a chlorine mixing pond and perform the chlorine sterilization treatment.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、次亜塩
は有効塩素濃度が5〜12%程度の深黄色の液体でアル
カリ性が強いので、貯蔵タンクはチタンとFRPとの円
筒立型床置式の屋内槽として容量10m3/基を複数基
設けて、約10日毎に運搬車で再充填して連続消費に対
応している。有効塩素成分のNaClOが濃度が高い
程、不安定で貯蔵中に有効塩素成分が減少し、NaCl
3などに変質するので、タンク貯蔵量は少ない程有利
であるが、運搬車での再充填が多くなり経費がかかって
不利となる。
However, since hypochlorite is a deep yellow liquid having an effective chlorine concentration of about 5 to 12% and is highly alkaline, the storage tank is a cylindrical vertical floor-standing indoor type made of titanium and FRP. A plurality of tanks each having a capacity of 10 m 3 / unit are provided, and are refilled by a transportation vehicle approximately every 10 days to cope with continuous consumption. The higher the concentration of the available chlorine component NaClO, the more unstable the available chlorine component during storage and the lower the NaClO concentration.
Since it is transformed into O 3 and the like, the smaller the tank storage amount is, the more advantageous it is. However, it is disadvantageous because refilling with a transport vehicle increases and costs are increased.

【0007】一方、生成次亜塩は原料として、水と塩と
を混合させた塩水を電気分解させてNaClOを生成さ
せるが、水中の不純物が電気分解の+極(Pt材)と−
極(Ti材)との表面にスケール(CaやMg成分)と
して付着生成する為、ファラデーの法則による実生成量
の電流効率が低下する欠点があり、定期的に停止して塩
酸を流して除去する保守作業が必要であった。
[0007] On the other hand, the generated hypochlorite is used as a raw material to generate NaClO by electrolyzing salt water in which water and salt are mixed, and impurities in the water are converted to a positive electrode (Pt material) and −
Since it adheres and forms as a scale (Ca or Mg component) on the surface with the pole (Ti material), there is a drawback that the current efficiency of the actual amount generated by Faraday's law is reduced. Required maintenance work.

【0008】本発明の目的は、生成次亜塩装置を改良し
て対称プロセスの殺菌を経済的に行う殺菌システムを提
供することにある。
[0008] It is an object of the present invention to provide a disinfection system which improves the production hypochlorite apparatus and economically disinfects a symmetric process.

【0009】[0009]

【課題を解決するための手段】本発明の目的を達成する
請求項1の殺菌システムは、原料水に対し純水装置を通
過した純水手段と精製塩とにより塩水をつくり、電気分
解槽にてNaClOを生成することで、電極材に付着生
成するスケールを極少にして保守期間を長くし、費用を
減らすことにある。
According to a first aspect of the present invention, there is provided a sterilization system for producing salt water by using pure water means and purified salt which have passed through a pure water apparatus with respect to raw water, and supplying the salt water to an electrolysis tank. The purpose of the present invention is to produce NaClO to minimize the scale generated on the electrode material, to lengthen the maintenance period, and to reduce the cost.

【0010】請求項2に記載した殺菌システムは、電気
分解槽の出力側にNaClOの供給絞り弁と処理水量計
の配水量値とを用いて、NaClOの適量を制御供給す
る制御装置手段を設けるので、経済的に運転ができるこ
とにある。
[0010] The sterilization system according to the second aspect of the present invention is provided with control means for controlling and supplying an appropriate amount of NaClO on the output side of the electrolysis tank using a supply valve of NaClO and a water distribution value of a treated water meter. Therefore, it is possible to drive economically.

【0011】請求項3に記載した殺菌システムは、電気
分解槽の複数の電極ブロックを複数組に分けて処理水量
計の増減値に合わせて、各々のスイッチを開閉させる制
御装置手段により、複数の電極ブロックの運転モード指
令により、電極ブロックの寿命を均等にして信頼性を向
上させることにある。
According to a third aspect of the present invention, in the sterilization system, a plurality of electrode blocks of the electrolysis tank are divided into a plurality of sets, and a plurality of switches are opened and closed according to the increase / decrease value of the treated water meter. An object of the present invention is to improve the reliability by equalizing the life of the electrode block by the operation mode command of the electrode block.

【0012】請求項4に記載した殺菌システムは、水処
理プロセスにオゾン接触池がある場合は必ず排オゾン処
理装置が付属しているので、電気分解槽の不要な成分で
ある水素ガス(H2)を導いて、H2とオゾン(O3)と
を反応させて水(H2O)をつくり、それを純水装置の
入口に導き、再使用する手段により省エネルギー化を図
ることによる。
In the sterilization system according to the present invention, when the water treatment process has an ozone contact pond, an exhaust ozone treatment device is always attached, so that hydrogen gas (H 2) which is an unnecessary component of the electrolysis tank is used. ) To react water with H 2 and ozone (O 3 ) to produce water (H 2 O), guide the water to the inlet of a pure water system, and save energy by means of reuse.

【0013】請求項5に記載した殺菌システムは、塩素
混和池にNaClOを注入する先端部分周囲に乱流カバ
ーを設ける手段により、NaClOと処理水とがよく混
合しあうようにして、混合時間を短かくして塩素混和池
を小さくして経済的効果を得ることにある。
[0013] In the sterilization system according to the fifth aspect, the means for providing a turbulent cover around the tip of the NaClO pouring into the chlorine mixing pond allows the NaClO and the treated water to mix well, thereby reducing the mixing time. The purpose is to shorten the size of the chlorine mixing pond to obtain economic effects.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施を図1から
図8により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0015】図1は上水道のプロセスを示したもので、
河川からの取水は凝集沈澱池1に導きかれて凝集剤1a
を混入し、水中の不要物を固形化して濁度をよくするの
で、池の下部には汚泥1bが蓄積するが、図示のない汚
泥処理機により定期的に搬出処理している。次に、ろ過
池2を通して更にきれいな水とするが、流量計3aが処
理水量となる。更に水質向上のプロセスとしてオゾン接
触池4と活性炭池5とを組合わせし、おいしい水つくり
を行う。
FIG. 1 shows the water supply process.
The water intake from the river is led to the coagulation sedimentation basin 1 and the coagulant 1a
The sludge 1b accumulates in the lower part of the pond because the waste is solidified to improve the turbidity by mixing unnecessary substances in the water. However, the sludge is periodically carried out by a sludge treatment machine (not shown). Next, the water is further purified through the filtration pond 2, and the flow meter 3a becomes the treated water amount. Furthermore, as a process for improving water quality, the ozone contact pond 4 and the activated carbon pond 5 are combined to make delicious water.

【0016】オゾン接触池4はオゾン発生器4aにより
オゾン(O3)ガスを生成し、池の下部より気泡として
水と混合するが、オゾン消化残量分が池の上部空間に排
出される(一般にオゾンガス注入量の約20%が排出さ
れる)。排オゾン処理装置4bはその排出オゾンが有害
であるので、水分除去ユニットMS〜ヒータH〜オゾン
分解剤MnO2〜排出ファンFにより、外部に0.1p
pm以下のオゾンとして排出させるものである。
The ozone contact pond 4 generates ozone (O 3 ) gas by the ozone generator 4a and mixes it with water as bubbles from the lower part of the pond, but the remaining amount of ozone digestion is discharged into the upper space of the pond (generally). About 20% of the injected amount of ozone gas is discharged). Since the discharged ozone is harmful, the discharged ozone treatment device 4b is externally supplied with 0.1 p by the water removal unit MS, the heater H, the ozone decomposer MnO 2, and the discharge fan F.
It is discharged as ozone below pm.

【0017】水分除去ユニットMSの入口側に電気分解
槽15と次亜塩タンク16より排出する水素(H2)を
導くと、反応式(化6)の反応により、水に変化するの
で、水分除去ユニットMSの底側より取り出した生成水
を注入弁12dを介して、純水装置12へ原料水として
入れる。原料水は塩素混和池7に活性炭池5から流れ込
むか、その配管の途中に次亜塩注入器6を設けて、Na
ClOとH2Oとを反応式(化4)、(化5)として反
応させて殺菌処理する。
When hydrogen (H 2 ) discharged from the electrolysis tank 15 and the hypochlorite tank 16 is led to the inlet side of the water removal unit MS, it is converted into water by the reaction of the reaction formula (Formula 6). The produced water taken out from the bottom side of the removing unit MS is fed as raw water into the pure water device 12 via the injection valve 12d. The raw material water flows into the chlorine mixing pond 7 from the activated carbon pond 5 or a hyposalt injector 6 is provided in the middle of the piping to supply Na.
ClO and H 2 O are reacted according to the reaction formulas (Chem. 4) and (Chem. 5) and sterilized.

【0018】この次亜塩注入器6は予備として塩素混和
池7の入口側に次亜塩注入器6aと設けてもよい。出口
側には残塩計7aがあって充分に殺菌しているかの管理
値となる。殺菌された水は配水池8に供給し、需要に応
じて配水ポンプ9が送水する。従って、流量計3bは送
水量を表わす管理値となる。活性炭池5からの水と上述
の生成水とは注入弁12c,12dを介して純水装置1
2に供給される。
The hyposalt injector 6a may be provided as a spare at the inlet side of the chlorine mixing pond 7 with the hyposalt injector 6a. There is a residual salt meter 7a on the outlet side, which is a control value as to whether or not sterilization is sufficient. The sterilized water is supplied to the distribution reservoir 8, and the distribution pump 9 supplies water according to demand. Therefore, the flow meter 3b becomes a management value indicating the amount of water supply. The water from the activated carbon pond 5 and the above-mentioned generated water are supplied to the pure water apparatus 1 via the injection valves 12c and 12d.
2 is supplied.

【0019】これらはプロセス制御部10により各種セ
ンサデータと開閉信号などを発し、全体プロセス監視制
御を24時間運転し、安全でおいしい水を供給してい
る。
[0019] The process controller 10 generates various sensor data and an open / close signal by the process controller 10, operates the whole process monitor and controls for 24 hours, and supplies safe and delicious water.

【0020】一方、次亜塩の生成は塩水槽11に精製塩
11aと純水装置12の注入弁12aより、水とを混合
して塩水をつくる。塩水は塩水ポンプ13によりミキサ
14を介して、一定塩水濃度にして電気分解槽15に入
れる。電気分解槽15では純水装置12から純水を使用
することにより、本発明の−極(Ti材)は従来技術の
−極に比べて−極表面にスケール(CaやMg成分)が
付着しにくくなり、電流効率が低下することなく、定期
的に停止して塩酸を流して除去する保守作業が必要無く
なり、水処理プロセスの運転効率を高めることが出来
る。この点に関して詳細を後述する。
On the other hand, for the production of hyposalt, a salt water is prepared by mixing a purified salt 11a in a salt water tank 11 and water from an injection valve 12a of a pure water apparatus 12. The salt water is supplied to the electrolysis tank 15 at a constant salt water concentration through the mixer 14 by the salt water pump 13. By using pure water from the pure water device 12 in the electrolysis tank 15, the scale (Ca or Mg component) adheres to the surface of the negative electrode (Ti material) of the present invention as compared with the conventional negative electrode. This makes it difficult to reduce the current efficiency, eliminates the need for maintenance work for periodically stopping and flowing and removing hydrochloric acid, and increasing the operating efficiency of the water treatment process. Details regarding this point will be described later.

【0021】電気分解槽15は複数の電極ブロックに分
けてスイッチ15bを介して、直流電源15aよりP1
又はP2又はP3として与えられると、+電極(P面)
では反応式(化1)、−電極(N面)では反応式(化
2)、液内では反応式(化3)の反応が生じ、出口側に
はNaClOが生成され次亜塩タンク16にある程度貯
蔵する。
The electrolysis tank 15 is divided into a plurality of electrode blocks, and is connected to a DC power supply 15a through a switch 15b.
Or, if given as P2 or P3, a + electrode (P plane)
In the reaction formula (Chem. 1), the reaction of the reaction formula (Chem. 3) occurs in the negative electrode (N surface) and the reaction formula (Chem. 3) occurs in the liquid. Store to some extent.

【0022】[0022]

【化1】P面=2Cl~⇒Cl2+2e~[Formula 1] P surface = 2Cl ~ ⇒Cl 2 + 2e ~

【0023】[0023]

【化2】N面=2Naプラスイオン+2H2O+2e~⇒
2NaOH+H2
## STR2 ## N surface = 2Na positive ions + 2H 2 O + 2e ~ ⇒
2NaOH + H 2

【0024】[0024]

【化3】液内=2NaOH+Cl2⇒2NaClO+H2 Embedded image In the liquid = 2NaOH + Cl 2 ⇒2NaClO + H 2

【0025】[0025]

【化4】NaClO+H2O⇔HClO+NaOHEmbedded image NaClO + H 2 O⇔HClO + NaOH

【0026】[0026]

【化5】HClO⇔ClO~+Hプラスイオン[Formula 5] HClO⇔ClO ~ + H plus ion

【0027】[0027]

【化6】H2O+O3+H2⇒2H2O+O2 次亜塩ポンプ16aにより圧力を高め、次亜塩注入弁1
6bにより適量をコントロールして、次亜塩注入器6よ
り塩素混和池7の水中に放出し、殺菌処理をする。制御
部17により流量計3a及び流量計3bの処理水量デー
タ、残塩計7a、直流電源15a、純水装置12を全体
コントロールして最適な次亜塩の生成と注入を行わせ
る。
Embedded image increasing the pressure by H 2 O + O 3 + H 2 ⇒2H 2 O + O 2 TsugiAshio pump 16a, hypochlorite injection valve 1
An appropriate amount is controlled by 6b, and is discharged from the hypochlorite injector 6 into the water of the chlorine mixing pond 7 and sterilized. The control unit 17 controls the flow rate data of the flow meter 3a and the flow meter 3b, the residual salt meter 7a, the DC power supply 15a, and the pure water apparatus 12 as a whole to perform optimal hyposalt generation and injection.

【0028】即ち、制御部17の働きは図4により説明
する。流量計3bからの流量検出値と残塩計7aからの
次亜塩濃度値とが制御部17に入力されると、制御部1
7では次亜塩注入目標値(例えば20mg/L)指令に
対し、流量計(Q1)3bの処理水量と残塩計7a
(0.1mg/L以下)の実測値とを用いて、演算(基
本注入量−残塩分+消費分=修正基本注入率)し、定数
(適用サイト特有のプロセス構造と条件)と補正(適用
サイト特有の滞留時間・日射量、注入来歴データ)とを
加味して、次亜塩注入量を求め、次亜塩注入弁16bの
絞り量を可変指示する。次亜塩注入弁16bは手動にて
行っても良い。
That is, the operation of the control unit 17 will be described with reference to FIG. When the flow rate detection value from the flow meter 3b and the hypochlorite concentration value from the residual salt meter 7a are input to the control unit 17, the control unit 1
In FIG. 7, in response to a hypochlorite injection target value (for example, 20 mg / L) command, the treated water amount of the flow meter (Q1) 3b and the residual salt meter 7a
Using the actual measurement value (0.1 mg / L or less), the calculation (basic injection amount-residual salt content + consumption amount = corrected basic injection rate) is performed, and a constant (process structure and conditions specific to the application site) and correction (application The sub-salt injection amount is determined in consideration of the site-specific residence time, insolation amount, and injection history data), and the throttle amount of the hypo-salt injection valve 16b is variably designated. The hypochlorite injection valve 16b may be manually operated.

【0029】演算部では次亜塩注入量より生成量を演算
するが、その条件は次亜塩タンク16の液レベル計によ
り次亜塩残量条件と生成基準値とよりを求め、電解指令
を直流電源15aによりスイッチ15bを閉じて、電気
分解槽15にNaClOを生成し、次亜塩タンク16へ
送出させる。従って、適量な次亜塩を注入するので、本
発明では従来技術のように余分な次亜塩タンク16がな
くなり、設置スペースの縮小化と多量のNaClO貯蔵
による次亜塩自己分解率が少なくなり、より経済的運転
が可能となった。この点に関して詳細を図8により後述
する。
The calculation unit calculates the amount of generation from the amount of hypochlorite injection. The condition is determined from the remaining amount of hypochlorite and the generation reference value by the liquid level meter of the hypochlorite tank 16, and the electrolysis command is calculated. The switch 15b is closed by the DC power supply 15a, and NaClO is generated in the electrolysis tank 15 and sent to the hypochlorite tank 16. Accordingly, since an appropriate amount of hyposalt is injected, the present invention eliminates the extra hyposalt tank 16 unlike the prior art, and reduces the installation space and reduces the rate of autolysis of hyposalt by storing a large amount of NaClO. , More economical operation became possible. Details regarding this point will be described later with reference to FIG.

【0030】この実施例では純水装置12の原料水は塩
素混和池7の前段側より取出すことと、排オゾン処理装
置4bのMSの下端側より取出して、開閉弁12cと1
2dを介して得る(図1)が、電解指令が少ないときは
原料水の使用量も少ないので、一方の開閉弁12dを開
し、他方の開閉弁12cを閉して省エネルギー運転もで
きる。
In this embodiment, the raw water of the pure water apparatus 12 is taken out from the front side of the chlorine mixing pond 7 and taken out from the lower end of the MS of the waste ozone treatment apparatus 4b.
Although it is obtained through 2d (FIG. 1), when the electrolysis command is small, the amount of raw water used is also small, so that one open / close valve 12d is opened and the other open / close valve 12c is closed, so that energy saving operation can be performed.

【0031】また図2に示すように、次亜塩注入器6は
乱流カバー16cの流水端で乱流水を生じさせ、次亜塩
注入弁16bにより適量のNaClO液を中央部から噴
出して、よく混合反応するので、次亜塩を無駄に注入す
のを防止出来る。
As shown in FIG. 2, the hypochlorite injector 6 generates turbulent water at the end of the turbulent flow cover 16c, and ejects an appropriate amount of NaClO solution from the central portion by the hypochlorite injection valve 16b. Since the mixing reaction is well performed, it is possible to prevent hyposalt from being injected in vain.

【0032】更に、図3は、電気分解槽15の複数の電
極ブロックとして、ここでは+電極がP1〜P3で示し
た。−極はNとして共通でもよい。この時の電気分解量
は図5に示すように電極ブロックが1ケの時にn1点と
して、1Ahで1.326×0.6(gr)のNaCl
Oがファラデー則により生成できる。その時の発生H2
ガスは0.422Lである。電極ブロックが2ケの時は
n2点、3ケの時はn3点となり、NaClOを増量で
きる。また、n1点のNaClOの使用量の時は順次n
1⇒n2⇒n3⇒n1とサイクリックに運転させると、
均等な電極寿命となり保守期間が長くなり、経済的効果
が得られる。勿論、n1⇒n2などへの切替えは図1の
スイッチ15bにより行われる。
FIG. 3 shows a plurality of electrode blocks of the electrolysis tank 15, in which the + electrodes are indicated by P1 to P3. The pole may be common as N; As shown in FIG. 5, the amount of electrolysis at this time was 1.326 × 0.6 (gr) NaCl at 1 Ah, assuming n1 points when there was one electrode block.
O can be generated by the Faraday rule. H2 generated at that time
The gas is 0.422 L. When the number of the electrode blocks is two, the number is n2, and when the number is three, the number is n3. Thus, the amount of NaClO can be increased. In addition, when the amount of use of the NaClO at the n1 point is n
When driving cyclically from 1 to n2 to n3 to n1,
The electrode life is uniform, the maintenance period is lengthened, and an economic effect is obtained. Of course, switching from n1 to n2 is performed by the switch 15b in FIG.

【0033】これに対して、従来の電極寿命は図6に示
すように横軸に運転時間(h)と縦軸にスケール付着量
(gr)とすると、2.5×103(h)の時に×点の
スケール付着が生じ、前述した塩酸を循環させてスケー
ル成分のCa、Mgを除去していた(A曲線)。本発明
によれば、純水装置を使っているので、B曲線となり著
しくスケール付着量が少なくなり、運転時間を長くする
ことができた。
On the other hand, as shown in FIG. 6, the conventional electrode life is 2.5 × 10 3 (h), where the horizontal axis represents the operation time (h) and the vertical axis represents the scale adhesion (gr). Occasionally, scale adhesion at the point x occurred, and the aforementioned hydrochloric acid was circulated to remove Ca and Mg as scale components (A curve). According to the present invention, since the pure water apparatus is used, the curve becomes a B curve, the amount of scale adhesion is remarkably reduced, and the operation time can be prolonged.

【0034】図7は、縦軸をNaClOの放置時間(横
軸)に対する次亜塩自己分解率(%)特性を示したもの
で、約1%/日の割合でNaClO3などに変化し、有
効次亜塩素量(NaClO)が減少してゆくので、本発
明の図1のように使用量に見合ったNaClOを生成し
た方が経済的であることが判る。
FIG. 7 shows the characteristic of the hypochlorite autolysis rate (%) with respect to the standing time (horizontal axis) of NaClO, which changes to NaClO 3 at a rate of about 1% / day. Since the amount of available hypochlorous acid (NaClO) decreases, it can be seen that it is more economical to produce NaClO suitable for the amount used as shown in FIG. 1 of the present invention.

【0035】図8は、縦軸をランニングコスト(RC)
をとり、横軸に対象サイトの処理水量(Q)とすると、
A特性は次亜塩を購入して複数個の貯蔵槽を置く場合、
B特性は塩素を購入して貯蔵槽を置く場合、C特性が本
発明による生成次亜塩により貯蔵槽を極少とした場合を
示し、経済的にもトータルコストで優れていることが判
る。
FIG. 8 shows the running cost (RC) on the vertical axis.
And the horizontal axis is the treated water volume (Q) at the target site,
A characteristic is that if you purchase hyposalt and put multiple storage tanks,
The B characteristic shows the case where chlorine is purchased and the storage tank is placed, and the C characteristic shows the case where the storage tank is minimized by the generated hyposalt according to the present invention, and it can be seen that the total cost is excellent economically.

【0036】[0036]

【発明の効果】以上述べたように、本発明の塩素殺菌シ
ステムによれば、次の効果を達成することが出来る。
As described above, according to the chlorine disinfection system of the present invention, the following effects can be achieved.

【0037】(1)、電気分解槽の入力側に純水装置を
設けたので、電解清掃の保守期間が長くなり保守費用が
少なくなると共に、水処理プラントの運転効率が向上し
た。
(1) Since a pure water apparatus is provided on the input side of the electrolysis tank, the maintenance period for electrolytic cleaning is prolonged, the maintenance cost is reduced, and the operating efficiency of the water treatment plant is improved.

【0038】(2)、電気分解槽の出力側にNaClO
の供給絞り弁と処理水量計の検出値に対応して、適量の
NaClOを指示できる制御装置があるので、余分な貯
蔵タンクが少なくなり、設置スペースが極少化して、経
済的運転が可能となった。
(2) NaClO is placed on the output side of the electrolysis tank.
There is a control device that can indicate the appropriate amount of NaClO according to the supply throttle valve and the detected value of the treated water meter, so the extra storage tank is reduced, the installation space is minimized, and economical operation becomes possible. Was.

【0039】(3)、複数の電極ブロックを複数組に分
けた電気分解槽として、各々のスイッチでサイクリック
運転や並列運転ができるので、運転の信頼性が向上する
と共に、運転時の電気コストを低く抑えることができ
る。
(3) As an electrolysis tank in which a plurality of electrode blocks are divided into a plurality of sets, cyclic operation or parallel operation can be performed with each switch, so that operation reliability is improved and electric cost during operation is improved. Can be kept low.

【0040】(4)、オゾン接触池の排オゾンガスと電
気分解槽側の不要なH2ガスとを混合して、水をつくっ
て純水装置に再利用できるので、省エネルギー運転とな
った。
(4) Since the waste ozone gas from the ozone contact pond and the unnecessary H2 gas on the electrolysis tank side are mixed to produce water and can be reused in the pure water apparatus, energy saving operation is achieved.

【0041】(5)、次亜塩注入器に乱流カバーを付け
たので、良く処理水と反応するようになったので、塩素
混和池の滞留時間を短くできるから、小型となり、建設
費を低く抑えることが出来る。
(5) Since the hypochlorite injector is provided with a turbulent flow cover, it reacts well with the treated water, so that the residence time of the chlorine mixing pond can be shortened. It can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す浄水プロセスの塩素殺
菌システムの構成図。
FIG. 1 is a configuration diagram of a chlorine sterilization system for a water purification process according to an embodiment of the present invention.

【図2】図1に使用した次亜塩注入器の詳細図。FIG. 2 is a detailed view of the hypochlorite injector used in FIG.

【図3】図1に使用した電気分解槽を示す側断面図。FIG. 3 is a side sectional view showing the electrolysis tank used in FIG.

【図4】図1に使用した制御部内の構成を説明したブロ
ック図。
FIG. 4 is a block diagram illustrating a configuration in a control unit used in FIG. 1;

【図5】電気分解槽における直流電源(Ah)とNaC
lO生成量(gr)との特性図。
FIG. 5: DC power supply (Ah) and NaC in electrolysis tank
FIG. 4 is a characteristic diagram with the amount of 10 produced (gr).

【図6】電気分解槽におけるスケール付着量(gr)と
運転時間の関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between a scale adhesion amount (gr) and an operation time in an electrolysis tank.

【図7】次亜塩タンク内のNaClO自己分解率の特性
図。
FIG. 7 is a characteristic diagram of NaClO self-decomposition rate in a hypochlorite tank.

【図8】本発明の生成次亜塩システムと代替法とのラン
ニングコスト比較した特性図。
FIG. 8 is a characteristic diagram comparing running costs of the generated hypochlorite system of the present invention and an alternative method.

【符号の説明】[Explanation of symbols]

1…凝集沈澱池、1a…凝集剤、1b…汚泥、2…ろ過
池、3…流量計、4…オゾン接触池、4a…オゾン発生
器、4b…排オゾン処理装置、5…活性炭池、6…次亜
塩注入器、6a…次亜塩注入器、7…塩素混和池、7a
…残塩計、8…配水池、9…配水ポンプ、10…プロセ
ス制御部、11…塩水槽、11a…精製塩、12…純水
装置、12a〜12b…注入弁、13…塩水ポンプ、1
4…ミキサ、15…電気分解槽、15a…直流電源、1
5b…スイッチ、16…次亜塩タンク、16a…次亜塩
ポンプ、16b…次亜塩注入弁、16c…乱流カバー、
16d…液レベル計、17…制御部。
DESCRIPTION OF SYMBOLS 1 ... Coagulation sedimentation basin, 1a ... Coagulant, 1b ... Sludge, 2 ... Filtration pond, 3 ... Flow meter, 4 ... Ozone contact pond, 4a ... Ozone generator, 4b ... Waste ozone treatment apparatus, 5 ... Activated carbon pond, 6 ... hyposalt injector, 6a ... hyposalt injector, 7 ... chlorine mixing pond, 7a
... Remaining salt meter, 8 ... Distribution reservoir, 9 ... Distribution pump, 10 ... Process control unit, 11 ... Salt water tank, 11a ... Purified salt, 12 ... Pure water device, 12a-12b ... Injection valve, 13 ... Salt water pump, 1
4 mixer, 15 electrolysis tank, 15a DC power supply, 1
5b: switch, 16: hyposalt tank, 16a: hyposalt pump, 16b: hyposalt injection valve, 16c: turbulent cover,
16d: liquid level meter, 17: control unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 550 C02F 1/50 550L A61L 2/16 A61L 2/16 Z 2/24 2/24 C02F 1/46 C02F 1/46 Z 1/78 1/78 (72)発明者 中沢 正光 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 山下 正幸 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 塩野 繁男 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 Fターム(参考) 4C058 AA20 BB07 CC04 DD07 EE30 JJ07 4D050 AA02 AA03 AA15 AB06 BB02 BB06 BD02 BD03 BD04 BD06 BD08 CA06 CA15 CA16 4D061 DA02 DA08 DB01 EA02 EB04 EB20 EB30 EB37 EB39 ED13 FA06 FA13 FA14 FA16 GA02 GA19 GC02 GC06 GC12 GC19──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 550 C02F 1/50 550L A61L 2/16 A61L 2/16 Z 2/24 2/24 C02F 1 / 46 C02F 1/46 Z 1/78 1/78 (72) Inventor Masamitsu Nakazawa 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant of Hitachi, Ltd. (72) Inventor Masayuki Yamashita Hitachi City, Ibaraki Prefecture 1-1-1, Kokubucho, Kokubu Plant, Hitachi, Ltd. (72) Inventor Shigeo Shiono 1-1-1, Kokubuncho, Hitachi, Hitachi City, Ibaraki Prefecture F-term in Hitachi Kokubu Plant, Ltd. 4C058 AA20 BB07 CC04 DD07 EE30 JJ07 4D050 AA02 AA03 AA15 AB06 BB02 BB06 BD02 BD03 BD04 BD06 BD08 CA06 CA15 CA16 4D061 DA02 DA08 DB01 EA02 EB04 EB20 EB30 EB37 EB39 ED13 FA06 FA13 FA14 FA16 GA02 GA19 G C02 GC06 GC12 GC19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水処理用塩素混和池に電気分解で得られ
た次亜塩素酸ナトリウムを供給して水を殺菌する装置に
おいて、電気分解槽の入力側に純水装置を設けることを
特徴とする塩素殺菌システム。
1. An apparatus for sterilizing water by supplying sodium hypochlorite obtained by electrolysis to a chlorine mixing pond for water treatment, wherein a pure water apparatus is provided on an input side of the electrolysis tank. Chlorine sterilization system.
【請求項2】 水処理用塩素混和池に電気分解で得られ
た次亜塩素酸ナトリウムを供給して水を殺菌する装置に
おいて、電気分解槽の出力側に供給絞り弁と処理水量計
と、処理水量計の検出値に対応した供給絞り弁の絞り量
を指示する制御装置とを備えたことを特徴とする塩素殺
菌システム。
2. An apparatus for sterilizing water by supplying sodium hypochlorite obtained by electrolysis to a chlorine mixing pond for water treatment, comprising: a supply throttle valve, a treated water meter at an output side of the electrolysis tank; A chlorine sterilization system, comprising: a control device for instructing a throttle amount of a supply throttle valve corresponding to a detection value of a treated water meter.
【請求項3】 水処理用塩素混和池に電気分解で得られ
た次亜塩素酸ナトリウムを供給して水を殺菌する装置に
おいて、複数の電極ブロックを複数組に分けた電気分解
槽の出力側に供給絞り弁と処理水量計と電極ブロック毎
の各々に接続したスイッチと処理水量計の検出値に対応
して各スイッチを開閉指示する制御装置とを備えている
ことを特徴とする塩素殺菌システム。
3. An apparatus for sterilizing water by supplying sodium hypochlorite obtained by electrolysis to a chlorine mixing pond for water treatment, wherein an output side of an electrolysis tank in which a plurality of electrode blocks are divided into a plurality of sets. A chlorine disinfection system comprising a supply throttle valve, a treated water meter, a switch connected to each of the electrode blocks, and a control device for instructing opening and closing of each switch in accordance with a detected value of the treated water meter. .
【請求項4】 水処理用塩素混和池に電気分解で得られ
た次亜塩素酸ナトリウムを供給して水を殺菌する装置に
おいて、水処理プロセス中にオゾン接触池があって排オ
ゾン処理装置の入口側に、電気分解槽出口側の水素ガス
を接続することを特徴とする塩素殺菌システム。
4. An apparatus for sterilizing water by supplying sodium hypochlorite obtained by electrolysis to a chlorine mixing pond for water treatment, wherein an ozone contact pond is provided during the water treatment process, A chlorine disinfection system, wherein hydrogen gas at the outlet side of the electrolysis tank is connected to the inlet side.
【請求項5】 塩素混和池に乱流カバー付の次亜塩素酸
ナトリウム注入器を設けたことを特徴とする請求項1か
ら4のいずれか1項記載の塩素殺菌システム。
5. The chlorine disinfection system according to claim 1, wherein a sodium hypochlorite injector having a turbulent flow cover is provided in the chlorine mixing pond.
JP30366898A 1998-10-26 1998-10-26 Chlorine-sterilization system Pending JP2000126780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30366898A JP2000126780A (en) 1998-10-26 1998-10-26 Chlorine-sterilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30366898A JP2000126780A (en) 1998-10-26 1998-10-26 Chlorine-sterilization system

Publications (1)

Publication Number Publication Date
JP2000126780A true JP2000126780A (en) 2000-05-09

Family

ID=17923797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30366898A Pending JP2000126780A (en) 1998-10-26 1998-10-26 Chlorine-sterilization system

Country Status (1)

Country Link
JP (1) JP2000126780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506087A (en) * 2007-12-19 2011-03-03 インフラコア ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for treating water with chlorine dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506087A (en) * 2007-12-19 2011-03-03 インフラコア ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for treating water with chlorine dioxide

Similar Documents

Publication Publication Date Title
US8999173B2 (en) Aqueous treatment apparatus utilizing precursor materials and ultrasonics to generate customized oxidation-reduction-reactant chemistry environments in electrochemical cells and/or similar devices
KR100802361B1 (en) Electrolysis sterilization disinfecting possibility supply apparatus
EP1971553A1 (en) Continuous hypochlorite generator
JPH1099864A (en) Method for producing sterilizing solution and apparatus therefor
KR100634760B1 (en) Apparatus for producing sterilizing and oxidizing water by electrolysis cell used overpotential electrode
KR101055990B1 (en) Descaling device by electrochemical reaction and its removal method
KR100675375B1 (en) Management system of water for sea-fish nursery
KR20200115747A (en) A fresh water system capable of producing hydrogen gas
KR101556371B1 (en) Apparatus for producing sodium hypochlorite solution
KR100947255B1 (en) Sodium Hypochlorite GENERATOR having module type Electrolysis cell
KR100794732B1 (en) Electrolytic sterilization system with device for regulating hypochlorous acid concentration
KR101371616B1 (en) Naocl dilution structure of generation-system for antiseptic solution including chlorine
JPH0615276A (en) Electrolytic disinfection of water and flowing water type water electrolytic disinfector
KR100757209B1 (en) Simple waterworks system
JP2000126780A (en) Chlorine-sterilization system
JP3802888B2 (en) Electrolytic sterilization apparatus and method
KR101367779B1 (en) Nacl supply structure of generation-system for antiseptic solution including chlorine
EP1226094B1 (en) Device for electrolysis
KR200462705Y1 (en) Hypochlorite water generator for medical device disinfection
JP2003126858A (en) Method for producing electrolyzed water
JPH07163982A (en) Electrolytic sterilization device for stored water
KR101397127B1 (en) Sterilizing apparatus without adding salt and control method threrof
KR20070075624A (en) Electrolytic water generation apparatus
KR20040065761A (en) Water purification and sterilization using salt water electrolysis
CN116986755A (en) Swimming pool water treatment system and swimming pool water treatment method