JP2000126591A - Denitrification catalyst - Google Patents

Denitrification catalyst

Info

Publication number
JP2000126591A
JP2000126591A JP11124794A JP12479499A JP2000126591A JP 2000126591 A JP2000126591 A JP 2000126591A JP 11124794 A JP11124794 A JP 11124794A JP 12479499 A JP12479499 A JP 12479499A JP 2000126591 A JP2000126591 A JP 2000126591A
Authority
JP
Japan
Prior art keywords
denitration
catalyst
catalyst component
metal
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11124794A
Other languages
Japanese (ja)
Other versions
JP4505873B2 (en
Inventor
Hiroaki Ohara
宏明 大原
Hiroyuki Kamata
博之 鎌田
Katsumi Takahashi
克巳 高橋
Wataru Ihashi
渉 居橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12479499A priority Critical patent/JP4505873B2/en
Publication of JP2000126591A publication Critical patent/JP2000126591A/en
Application granted granted Critical
Publication of JP4505873B2 publication Critical patent/JP4505873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a conversion ratio into N2 and to decrease a conversion ratio into SO3 by making a carrier support a catalyst component, a metal the first ionization potential of which is greater than that of vanadium, and the second catalyst component of the metal. SOLUTION: In order to decrease the adsorption of sulfur dioxide (SO) by two-coordinate lattice oxygen (O3) or in order to decrease the charge of the two-coordinate lattice oxygen (O3), on a carrier comprising titanium oxide, a catalyst component containing 1-3% in weight ratio of vanadium pentaoxide (V2 O5) as a main component and the second catalyst component comprising 1-3% in weight ratio of a metal such as Cr, Zr, Nb, Ac, Hf, Mo, Te, Bi, Sn, Ru, Pb, Mn,..., Ta, W, Pd, and Zn the first ionization potential of which is greater than that of vanadium (V) or its oxide are made to be supported.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱硝触媒に係り、
特に、五酸化バナジウムを主成分とし、二酸化硫黄の転
化率が低い脱硝触媒に関するものである。
[0001] The present invention relates to a denitration catalyst,
In particular, the present invention relates to a denitration catalyst containing vanadium pentoxide as a main component and having a low conversion of sulfur dioxide.

【0002】[0002]

【従来の技術】火力発電所などにおけるボイラ1の排ガ
スGに対しては、図7に示すように、脱硝装置2を用い
て脱硝した後、排ガスG中の燃焼灰などを集塵器(例え
ば、バグフィルタなど)3で除去し、その後、脱硫装置
4を用いて脱硫し、煙突5から排出を行っている。
2. Description of the Related Art As shown in FIG. 7, exhaust gas G from a boiler 1 in a thermal power plant or the like is denitrified using a denitration apparatus 2, and then the combustion ash and the like in the exhaust gas G are collected into a dust collector (for example, a dust collector). , A bag filter, etc.) 3, then desulfurize using a desulfurizer 4, and discharge from a chimney 5.

【0003】脱硝装置2は、ケーシング(図示せず)内
に、図8に示すように、酸化チタンや酸化タングステン
などからなるハニカム構造の担体11に、五酸化バナジ
ウム(以下、V2 5 と呼ぶ)を主成分とする触媒成分
を担持させてなる脱硝触媒12が多数個設けられてな
り、脱硝反応の副反応において、二酸化硫黄(以下、S
2 と呼ぶ)を酸化し、三酸化硫黄(以下、SO3 と呼
ぶ)に転化させる。ここで、担体11に対するV2 5
の重量比は、通常で1〜2%、最大でも5〜6%程度で
ある。
As shown in FIG. 8, a denitration apparatus 2 includes a carrier 11 having a honeycomb structure made of titanium oxide or tungsten oxide and a vanadium pentoxide (hereinafter, referred to as V 2 O 5 ) in a casing (not shown). ) Is provided with a large number of denitration catalysts 12 each carrying a catalyst component whose main component is sulfur dioxide (hereinafter referred to as S2) in a side reaction of the denitration reaction.
O 2 hereinafter) to oxidize the sulfur trioxide (hereinafter, it is converted to be called SO 3). Here, V 2 O 5 with respect to carrier 11
Is usually about 1 to 2%, and at most about 5 to 6%.

【0004】SO2 が転化されてなるSO3 は、乾式の
脱硫装置4では捕捉(脱硫)することができず、煙突5
から排出される際に紫色の煙に見えるため、環境・住民
対策上好ましくない。また、SO3 は、脱硝反応(還元
反応)の際に用いられるアンモニアガスAと反応して固
体の硫酸アンモニウム(NH4 SO3 ;硫安)及び酸性
硫安を生成し、この硫安が煙道を閉塞させるおそれがあ
る。
[0004] SO 3 which SO 2 is formed by conversion can not be captured (desulfurization) in dry desulfurizer 4, the chimney 5
This is not preferable in terms of environmental and inhabitant measures because it looks like purple smoke when discharged from the city. In addition, SO 3 reacts with ammonia gas A used in the denitration reaction (reduction reaction) to generate solid ammonium sulfate (NH 4 SO 3 ; ammonium sulfate) and acidic ammonium sulfate, and this ammonium sulfate blocks the flue. There is a risk.

【0005】よって、脱硝触媒12においては、SO3
への転化率を下げる方法が採られているのが現状であ
る。SO3 への転化率を下げる従来の方法は、担体11
に対するV2 5 の重量比を小さくする又は担体11に
触媒成分と金属(例えば、Al、Sc、Mg、Zn)か
らなる第2触媒成分とを担持させることで対応してい
た。
Therefore, in the denitration catalyst 12, SO 3
At present, there is a method to reduce the conversion rate to wastewater. Conventional methods of reducing the conversion to SO 3 include the support 11
Catalyst component and a metal (e.g., Al, Sc, Mg, Zn ) or carrier 11 to reduce the weight ratio of V 2 O 5 with respect corresponded by supporting the second catalyst component comprising.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この方
法では以下に挙げるような問題があった。
However, this method has the following problems.

【0007】 担体11に対するV2 5 の重量比を
小さくしても、オリマルジョン等のようなV分を多く含
有した燃料を燃焼させると、燃焼灰中にV2 5 が析出
し、その結果、脱硝触媒12におけるV2 5 の重量比
が再び大きくなるため、SO3への転化率が上昇する。
[0007] Even when the weight ratio of V 2 O 5 to the carrier 11 is reduced, when a fuel containing a large amount of V such as orimulsion is burned, V 2 O 5 is precipitated in the combustion ash, and as a result, Since the weight ratio of V 2 O 5 in the denitration catalyst 12 increases again, the conversion to SO 3 increases.

【0008】 担体11に対するV2 5 の重量比を
小さくすると、脱硝反応(NOX をN2 に還元)におけ
るN2 への転化率が低くなってしまう。
[0008] Reducing the weight ratio of V 2 O 5 with respect to the carrier 11, conversion to N 2 in the denitration reaction (reducing the NO X to N 2) is lowered.

【0009】 第2触媒成分を担持させることでSO
3 への転化率は下げることができるが、触媒成分の良好
な脱硝性能を阻害し、脱硝反応におけるN2 への転化率
が著しく低くなってしまう。
By supporting the second catalyst component, SO 2
Although the conversion to 3 can be reduced, the favorable denitration performance of the catalyst component is impaired, and the conversion to N 2 in the denitration reaction becomes extremely low.

【0010】そこで本発明は、上記課題を解決し、N2
への転化率が高く、かつ、SO3 への転化率が低い脱硝
触媒を提供することにある。
Therefore, the present invention solves the above-mentioned problems and provides N 2
Conversion to high, and is that the conversion to SO 3 to provide a low denitration catalyst.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、担体に五酸化バナジウムを主成分
とする触媒成分を担持させた脱硝触媒において、上記担
体に、上記触媒成分と第一イオン化ポテンシャルがVよ
りも大きい金属及びその酸化物からなる第2触媒成分と
を担持させたものである。
In order to solve the above-mentioned problems, the present invention is directed to a denitration catalyst comprising a carrier having a catalyst component containing vanadium pentoxide as a main component. And a metal having a first ionization potential greater than V and a second catalyst component composed of an oxide thereof.

【0012】請求項2の発明は、上記担体に、重量比で
1〜3%の上記五酸化バナジウム、および重量比で1〜
3%の上記金属及びその酸化物を担持させた請求項1記
載の脱硝触媒である。
The invention of claim 2 is characterized in that the carrier is provided with 1 to 3% by weight of the vanadium pentoxide,
The denitration catalyst according to claim 1, wherein 3% of the metal and its oxide are supported.

【0013】請求項3の発明は、上記金属が、Cr、Z
r、Nb、Ac、Hf、Mo、Te、Bi、Sn、R
u、Pb、Mnの中から選択される少なくとも一つであ
る請求項1記載の脱硝触媒である。
According to a third aspect of the present invention, the metal is Cr, Z
r, Nb, Ac, Hf, Mo, Te, Bi, Sn, R
The denitration catalyst according to claim 1, which is at least one selected from u, Pb, and Mn.

【0014】以上の構成によれば、脱硝率を下げること
なく、かつ、担体に対するV2 5の重量比を小さくす
ることなく、SO3 への転化率を下げることができ、ま
た、V分を多く含有した燃料を燃焼させても、SO3
の転化率が上昇することはない。
According to the above configuration, the conversion rate to SO 3 can be reduced without lowering the denitration rate and without reducing the weight ratio of V 2 O 5 to the carrier. Even if a fuel containing a large amount of is burned, the conversion rate to SO 3 does not increase.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0016】先ず、本発明者らは、V2 5 触媒の量子
化学的検討を行った。
First, the present inventors conducted a quantum chemical study on a V 2 O 5 catalyst.

【0017】V2 5 の結晶構造モデル図を図4に示
す。
FIG. 4 shows a model of the crystal structure of V 2 O 5 .

【0018】図4に示すように、V原子と結合するO原
子は、1個のV原子と二重結合した1配位格子酸素(O
1 )、2個のV原子と結合した2配位格子酸素
(O2 )、および同じく2個のV原子と結合した2配位
格子酸素(O3 )というように、配位の異なる3つに分
類される。
As shown in FIG. 4, an O atom bonded to a V atom is a one-coordinate lattice oxygen (O) double-bonded to one V atom.
1 ) three coordination lattice oxygen (O 2 ) bonded to two V atoms and two coordination lattice oxygen (O 3 ) also bonded to two V atoms are categorized.

【0019】V2 5 の各O原子におけるエネルギーと
ピーク強度との関係を図5に示す。
FIG. 5 shows the relationship between the energy and the peak intensity of each O atom of V 2 O 5 .

【0020】図5に示すように、各O原子において、2
配位格子酸素(O3 )のエネルギーが一番低く、チャー
ジ(マイナスの電荷)をたくさん帯びていることが伺え
る。
As shown in FIG. 5, for each O atom, 2
It can be seen that the energy of coordination lattice oxygen (O 3 ) is the lowest, and that it has a lot of charge (negative charge).

【0021】すなわち、脱硝反応初期のH2 O(又は
H)は、図5に示すように、エネルギーが最も高い1配
位格子酸素(O1 )に吸着され、1配位格子酸素
(O1 )のエネルギーレベルが作用することが伺える。
また、SO2 の吸着は、チャージの大きさがその反応性
を決定するため、図5に示すように、チャージが最も大
きい2配位格子酸素(O3 )に吸着されることが伺え
る。
[0021] That is, the denitration reaction initial H 2 O (or H), as shown in FIG. 5, is attracted to the energy is the highest 1 coordination lattice oxygen (O 1), 1 coordination lattice oxygen (O 1 It can be seen that the energy level of ()) works.
In addition, since the magnitude of the charge determines the reactivity of the adsorption of SO 2 , the charge is adsorbed to the two-coordinate lattice oxygen (O 3 ) having the largest charge as shown in FIG.

【0022】脱硝反応におけるSO2 の吸着量とSO3
への転化率との関係を図6に示す。
The adsorption amount of SO 2 and SO 3 in the denitration reaction
FIG. 6 shows the relationship with the conversion rate to the temperature.

【0023】ここで、図6に示すように、脱硝反応にお
けるSO2 の吸着量が増加するにつれてSO3 への転化
率も増加する。このため、2配位格子酸素(O3 )によ
るSO2 の吸着を防ぐことが必要となってくる。
Here, as shown in FIG. 6, the conversion to SO 3 increases as the amount of SO 2 adsorbed in the denitration reaction increases. Therefore, it is necessary to prevent the adsorption of SO 2 by the two-coordinate lattice oxygen (O 3 ).

【0024】よって、本発明者らは、2配位格子酸素
(O3 )によるSO2 の吸着を減らすべく、すなわち、
2配位格子酸素(O3 )のチャージを低下させるべく、
担体に、V2 5 と共に、Vよりも第一イオン化ポテン
シャル(以下、I.p.と呼ぶ)の大きな金属又はその酸化
物を担持させることにより、2配位格子酸素(O3 )の
チャージが低下するということを見出した。
Therefore, the present inventors aimed to reduce the adsorption of SO 2 by two-coordinated lattice oxygen (O 3 ),
In order to reduce the charge of the two-coordinate lattice oxygen (O 3 ),
By supporting a metal or an oxide thereof having a first ionization potential (hereinafter, referred to as Ip) higher than V together with V 2 O 5 on the carrier, the charge of two-coordinate lattice oxygen (O 3 ) is reduced. I found that.

【0025】本発明の脱硝触媒は、図8に示した酸化チ
タンからなる担体11に、重量比で1〜3%のV2 5
を主成分とする触媒成分と、同じく重量比で1〜3%の
VよりもI.p.が大きな金属又はその酸化物からなる第2
触媒成分を担持させたものである。
The denitration catalyst of the present invention, a carrier 11 made of titanium oxide as shown in FIG. 8, V 1 to 3 percent by weight 2 O 5
And a second catalyst comprising a metal or an oxide thereof having a larger Ip than V by 1 to 3% by weight.
The catalyst component is supported.

【0026】ここで、各種金属元素の第一イオン化ポテ
ンシャル(eV)を表1に示す。
Here, Table 1 shows the first ionization potential (eV) of various metal elements.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、I.p.がV(6.74e
V)よりも大きな金属元素としては、I.p.の小さい順
に、Cr、Zr、Nb、Ac、Hf、Mo、Te、B
i、Sn、Ru、Pb、Mn、…、Ta、W、Pd、Z
nなどが挙げられる。
As shown in Table 1, Ip is V (6.74e
As metal elements larger than V), Cr, Zr, Nb, Ac, Hf, Mo, Te, B
i, Sn, Ru, Pb, Mn,..., Ta, W, Pd, Z
n.

【0029】第一イオン化ポテンシャル(eV)と脱硝
性能との関係を図2に示す。図2中の縦軸は、担体にV
2 5 を主成分とする触媒成分とVよりも大きなI.p.を
有する金属(又はその酸化物)からなる第2触媒成分と
を担持させた脱硝触媒の脱硝率と、担体にV2 5 を主
成分とする触媒成分のみを担持させた脱硝触媒の脱硝率
との比を示している(比が大きい(脱硝性能が高い)ほ
ど良好)。尚、脱硝反応温度は380℃とした。
FIG. 2 shows the relationship between the first ionization potential (eV) and the denitration performance. The vertical axis in FIG.
The denitration rate of a denitration catalyst supporting a catalyst component containing 2 O 5 as a main component and a second catalyst component made of a metal (or an oxide thereof) having an Ip greater than V, and V 2 O 5 as a carrier The graph shows the ratio to the denitration rate of the denitration catalyst supporting only the catalyst component as the main component (the larger the ratio (the higher the denitration performance), the better). The denitration reaction temperature was 380 ° C.

【0030】図2に示すように、担体にV2 5 を主成
分とする触媒成分とVよりも大きなI.p.を有する金属
(図2中ではCr、Zr、Nb、Hf、Mo、Mn)か
らなる第2触媒成分とを担持させた脱硝触媒において
は、金属のI.p.が大きくなればなるほど、脱硝性能が低
下する傾向が伺える。また、担体にV2 5 を主成分と
する触媒成分とVよりも小さいI.p.を有する金属(図2
中ではAl、Sc)からなる第2触媒成分とを担持させ
た脱硝触媒においては、脱硝性能が著しく低くなること
が伺える。すなわち、触媒成分と共に担体に担持させる
金属のI.p.が、Vよりも大きすぎる場合およびVよりも
小さい場合、脱硝触媒の本来の目的である脱硝性能の低
下を招いてしまう。尚、Mgを第2触媒成分として担持
させた脱硝触媒の脱硝性能は、0.5未満であったため
図示を省略している。
As shown in FIG. 2, the carrier is composed of a catalyst component mainly composed of V 2 O 5 and a metal having a higher Ip than V (Cr, Zr, Nb, Hf, Mo, Mn in FIG. 2). In the denitration catalyst supporting the second catalyst component, the denitration performance tends to decrease as the metal Ip increases. In addition, a catalyst component mainly composed of V 2 O 5 and a metal having an Ip smaller than V (FIG. 2)
Among them, it can be seen that the denitration performance of the denitration catalyst supporting the second catalyst component composed of Al and Sc) is extremely low. That is, when the Ip of the metal supported on the carrier together with the catalyst component is too large or smaller than V, the denitration performance, which is the original purpose of the denitration catalyst, is reduced. The denitration performance of the denitration catalyst supporting Mg as the second catalyst component was less than 0.5, and is not shown.

【0031】第一イオン化ポテンシャル(eV)とSO
2 吸着量との関係を図3に示す。図3中の縦軸は、担体
にV2 5 を主成分とする触媒成分と各金属(又はその
酸化物)からなる第2触媒成分とを担持させた脱硝触媒
のSO2 吸着量を示している(SO2 吸着量が少ないほ
ど良好)。
First ionization potential (eV) and SO
The relationship between the 2 adsorption amount shown in FIG. The vertical axis in FIG. 3 indicates the SO 2 adsorption amount of the denitration catalyst in which the catalyst component mainly composed of V 2 O 5 and the second catalyst component composed of each metal (or oxide thereof) are supported on the carrier. (The smaller the SO 2 adsorption amount, the better).

【0032】図3に示すように、Vをピークとして、V
よりも大きなI.p.を有する金属を担持させるほどSO2
の吸着量が少なくなり、延いては、SO3 への転化が抑
制される。ただし、I.p.が7.45eV程度で、SO2
の吸着量減少効果は飽和するため、I.p.が7.45eV
よりも大きな金属を担持させてもSO2 の吸着量は殆ど
変わらなくなる。
As shown in FIG. 3, V is a peak and V
The more the metal having a larger Ip is supported, the more SO 2
Is reduced, and the conversion to SO 3 is suppressed. However, when Ip is about 7.45 eV and SO 2
Since the effect of reducing the amount of adsorption is saturated, Ip is 7.45 eV
Even if a larger metal is supported, the adsorption amount of SO 2 hardly changes.

【0033】よって、図2、図3の結果から、I.p.がV
よりも大きく、かつ、7.45eV未満の金属(又はそ
の酸化物)を第2触媒成分として担体に担持させること
で、脱硝性能の低下が殆どなく、かつ、SO2 の吸着量
が少ない脱硝触媒を得ることができる。
Therefore, from the results of FIGS. 2 and 3, Ip is V
A metal (or oxide thereof) larger than 7.45 eV and supported on a carrier as the second catalyst component, so that the denitration performance is hardly reduced and the SO 2 adsorption amount is small. Can be obtained.

【0034】脱硝性能とSO2 吸着能との関係を図1に
示す。図1中の横軸は、担体にV25 を主成分とする
触媒成分とVよりも大きなI.p.を有する金属(又はその
酸化物)からなる第2触媒成分とを担持させた脱硝触媒
の脱硝性能と、担体にV2 5 を主成分とする触媒成分
のみを担持させた脱硝触媒の脱硝性能との比を示してい
る(比が大きい(脱硝性能高い)ほど良好)。また、縦
軸は、担体にV2 5を主成分とする触媒成分とVより
も大きなI.p.を有する金属(又はその酸化物)からなる
第2触媒成分とを担持させた脱硝触媒のSO2 吸着量
と、担体にV2 5 を主成分とする触媒成分のみを担持
させた脱硝触媒のSO2 吸着量との比を示している(比
が小さい(SO2 吸着能が低い)ほど良好)。さらに、
図1中の黒丸印は本発明の脱硝触媒における第2触媒成
分金属を示し、白丸印は従来の脱硝触媒における第2触
媒成分金属を示している。
FIG. 1 shows the relationship between the denitration performance and the SO 2 adsorption performance. The abscissa in FIG. 1 represents a denitration catalyst in which a catalyst component mainly composed of V 2 O 5 and a second catalyst component composed of a metal (or an oxide thereof) having an Ip greater than V are supported on a carrier. The graph shows the ratio between the denitration performance and the denitration performance of a denitration catalyst in which only a catalyst component mainly composed of V 2 O 5 is supported on a carrier (the larger the ratio (the higher the denitration performance), the better). The vertical axis indicates the SO 2 of the denitration catalyst in which the carrier carries a catalyst component mainly composed of V 2 O 5 and a second catalyst component composed of a metal (or an oxide thereof) having an Ip greater than V. It shows the ratio between the adsorption amount and the SO 2 adsorption amount of a denitration catalyst in which only a catalyst component mainly composed of V 2 O 5 is supported on a carrier (the smaller the ratio (the lower the SO 2 adsorption capacity), the better) ). further,
The black circles in FIG. 1 indicate the second catalyst component metal in the denitration catalyst of the present invention, and the white circles indicate the second catalyst component metal in the conventional denitration catalyst.

【0035】図1に示すように、本発明の脱硝触媒にお
ける第2触媒成分金属は、SO2 吸着能が低いため、S
3 への転化率が低くなることは言うまでもなく、担体
にV2 5 を主成分とする触媒成分のみを担持させた脱
硝触媒の脱硝性能と比較して、脱硝性能の低下を20%
未満に抑制することができ、良好な脱硝性能も併せ持っ
ていることが伺える。
As shown in FIG. 1, the second catalyst component metal in the denitration catalyst of the present invention has a low SO 2 adsorption capacity,
Needless to say, the conversion rate to O 3 is lowered, and the denitration performance is reduced by 20% as compared with the denitration performance of the denitration catalyst in which only the catalyst component mainly composed of V 2 O 5 is supported on the carrier.
It can be seen that it also has good denitration performance.

【0036】これに対して、従来の脱硝触媒における第
2触媒成分金属は、本発明の脱硝触媒における第2触媒
成分金属よりもSO2 吸着能が全般的に低く、SO2
着能だけに関して言えば良好であるものの、担体にV2
5 を主成分とする触媒成分のみを担持させた脱硝触媒
の脱硝性能と比較して、脱硝性能の低下が20〜60%
にも達し、脱硝性能が著しく悪いことが伺える。
On the other hand, the second catalyst component metal in the conventional denitration catalyst generally has lower SO 2 adsorption ability than the second catalyst component metal in the denitration catalyst of the present invention, and it can be said that only the SO 2 adsorption ability is concerned. Is good, but V 2
O 5 as compared to the denitrification performance of the denitration catalyst supported only catalyst component composed mainly of a reduction in the denitration performance 20% to 60%
It can be said that the denitration performance is extremely poor.

【0037】本発明の脱硝触媒における第2触媒成分金
属としては、Cr、Zr、Nb、Ac、Hf、Mo、T
e、Bi、Sn、Ru、Pb、Mnの中から選択される
少なくとも一種が好ましく、更に好ましくは、図1中の
斜線領域内の金属(図1中ではNb、Hf)が挙げられ
る。
As the second catalyst component metal in the denitration catalyst of the present invention, Cr, Zr, Nb, Ac, Hf, Mo, T
At least one selected from the group consisting of e, Bi, Sn, Ru, Pb, and Mn is preferable, and more preferably, metals (Nb and Hf in FIG. 1) in a hatched region in FIG.

【0038】触媒成分および第2触媒成分を担持させる
担体11としては、図8に示したハニカム構造体に特に
限定するものではなく、例えば、球体、円筒体、粉末
体、或いは多孔質状平板体などが挙げられる。
The carrier 11 for supporting the catalyst component and the second catalyst component is not particularly limited to the honeycomb structure shown in FIG. 8, and may be, for example, a sphere, a cylinder, a powder, or a porous plate. And the like.

【0039】担体11の構成材は、酸化チタンに特に限
定するものではなく、例えば、酸化タングステン、シリ
カ、シリカ/アルミナなどが挙げられる。
The constituent material of the carrier 11 is not particularly limited to titanium oxide, but includes, for example, tungsten oxide, silica, silica / alumina and the like.

【0040】本発明の脱硝触媒によれば、担体11に、
担体11に対する重量比がそれぞれ1〜3%のV2 5
を主成分とする触媒成分とVよりもI.p.が大きな金属又
はその酸化物からなる第2触媒成分とを担持させている
ため、それらの金属又はその酸化物がV2 5 における
Vのチャージを吸収し、それによって、2配位格子酸素
(O3 )のチャージが小さくなり、2配位格子酸素(O
3 )に吸着されるSO2 の量が減少してSO3 への転化
率が下がる。
According to the denitration catalyst of the present invention, the carrier 11
V 2 O 5 having a weight ratio to the carrier 11 of 1 to 3%, respectively.
And a second catalyst component composed of a metal or an oxide thereof having a larger Ip than V, so that the metal or the oxide thereof can charge V in V 2 O 5 . So that the charge of the two-coordinate lattice oxygen (O 3 ) is reduced,
The amount of SO 2 that is adsorbed to 3) conversion to SO 3 drops decreases.

【0041】また、担体11に担持させる触媒成分(V
2 5 )の量を少なくしているわけではなく、かつ、脱
硝率が良好な金属又はその酸化物を選択して第2触媒成
分としてV2 5 と共に担持させているため、脱硝開始
初期の脱硝率が下がることはない。
Further, the catalyst component (V
Since the amount of 2 O 5 ) is not reduced and a metal or oxide thereof having a good denitration rate is selected and supported together with V 2 O 5 as the second catalyst component, the initial stage of denitration start The denitration rate does not decrease.

【0042】さらに、オリマルジョン等のようなV分を
多く含有した燃料を燃焼させ、燃焼灰中のV2 5 が脱
硝触媒に付着したとしても、VよりもI.p.の大きい金属
又はその酸化物を、十分に(担体11に対して、重量比
で1〜3%)担持させているため、その影響は小さなも
のとなり、その結果、SO3 への転化率が上昇すること
はない。
Further, even if V 2 O 5 in the combustion ash adheres to the denitration catalyst by burning a fuel containing a large amount of V, such as orimulsion, etc., a metal having a larger Ip than V or its oxide is removed. However, since it is sufficiently supported (1 to 3% by weight with respect to the carrier 11), the effect is small, and as a result, the conversion rate to SO 3 does not increase.

【0043】また更に、本発明の脱硝触媒を火力発電所
などの排ガス処理に用いることで、SO3 生成による排
煙の紫煙化のおそれが殆どなく、SO3 とアンモニアガ
スとが反応して析出する硫安(又は酸性硫安)による脱
硝触媒の性能劣化を防ぐことができる。
Further, by using the denitration catalyst of the present invention for exhaust gas treatment of a thermal power plant or the like, there is almost no possibility that the exhaust gas becomes purple smoke due to SO 3 generation, and SO 3 and ammonia gas react and precipitate. The performance of the denitration catalyst can be prevented from deteriorating due to ammonium sulfate (or acidic ammonium sulfate).

【0044】尚、本発明の脱硝触媒は、図7に示したよ
うに、火力発電所などにおけるボイラ1の排ガスGに限
らず、その他に、ゴミ焼却炉の排ガス、ガス化炉のガス
化ガスなどに対しても適用することができる。
As shown in FIG. 7, the denitration catalyst of the present invention is not limited to the exhaust gas G of the boiler 1 in a thermal power plant or the like, but also the exhaust gas of a garbage incinerator and the gasified gas of a gasification furnace. It can be applied to such as.

【0045】[0045]

【発明の効果】以上要するに本発明によれば、担体に、
2 5 を主成分とする触媒成分とVよりもイオン化ポ
テンシャルが大きな金属又はその酸化物からなる第2触
媒成分とを担持させることで、触媒成分による良好な脱
硝性能を保ちつつ、V2 5 における2配位格子酸素
(O3 )のチャージが小さくなることから、2配位格子
酸素(O3 )に吸着されるSO2 の量が減少してSO3
への転化率が低くなるという優れた効果を発揮する。
In summary, according to the present invention, the carrier comprises:
V 2 O 5 of the catalyst component and V mainly comprising by supporting the second catalyst component ionization potential consisting of large metal or an oxide thereof, while maintaining good denitration performance by the catalytic component, V 2 Since the charge of the two-coordinate lattice oxygen (O 3 ) in O 5 becomes small, the amount of SO 2 adsorbed on the two-coordinate lattice oxygen (O 3 ) decreases, and the SO 3
It has an excellent effect that the conversion rate to carbon is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱硝性能とSO2 吸着能との関係を示す図であ
る。
FIG. 1 is a graph showing the relationship between denitration performance and SO 2 adsorption performance.

【図2】第一イオン化ポテンシャル(eV)と脱硝性能
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between first ionization potential (eV) and denitration performance.

【図3】第一イオン化ポテンシャル(eV)とSO2
着量との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a first ionization potential (eV) and an SO 2 adsorption amount.

【図4】V2 5 の結晶構造モデルを示す図である。FIG. 4 is a diagram showing a crystal structure model of V 2 O 5 .

【図5】V2 5 の各O原子におけるエネルギーとピー
ク強度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between energy and peak intensity in each O atom of V 2 O 5 .

【図6】脱硝反応におけるSO2 の吸着量とSO3 への
転化率との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the adsorption amount of SO 2 and the conversion to SO 3 in the denitration reaction.

【図7】ボイラの排ガスのフローを示す概略図である。FIG. 7 is a schematic diagram showing a flow of exhaust gas from a boiler.

【図8】脱硝触媒の斜視図である。FIG. 8 is a perspective view of a denitration catalyst.

【符号の説明】[Explanation of symbols]

11 担体 12 脱硝触媒 11 carrier 12 denitration catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 27/057 B01D 53/36 102B B01J 23/64 102A (72)発明者 高橋 克巳 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 (72)発明者 居橋 渉 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 27/057 B01D 53/36 102B B01J 23/64 102A (72) Inventor Katsumi Takahashi Isogo-ku, Yokohama-shi, Kanagawa No. 1 Shin-Nakahara-cho Ishi Kawashima-Harima Heavy Industries Co., Ltd. Machinery and Plant Development Center (72) Inventor Wataru Ibashi 1-shi Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 担体に五酸化バナジウムを主成分とする
触媒成分を担持させた脱硝触媒において、上記担体に、
上記触媒成分と第一イオン化ポテンシャルがVよりも大
きい金属及びその酸化物からなる第2触媒成分とを担持
させたことを特徴とする脱硝触媒。
1. A denitration catalyst comprising a carrier carrying a catalyst component containing vanadium pentoxide as a main component, wherein the carrier comprises:
A denitration catalyst comprising the catalyst component and a second catalyst component comprising a metal having a first ionization potential greater than V and an oxide thereof.
【請求項2】 上記担体に、重量比で1〜3%の上記五
酸化バナジウム、および重量比で1〜3%の上記金属及
びその酸化物を担持させた請求項1記載の脱硝触媒。
2. The denitration catalyst according to claim 1, wherein the carrier supports 1 to 3% by weight of the vanadium pentoxide and 1 to 3% by weight of the metal and its oxide.
【請求項3】 上記金属が、Cr、Zr、Nb、Ac、
Hf、Mo、Te、Bi、Sn、Ru、Pb、Mnの中
から選択される少なくとも一つである請求項1記載の脱
硝触媒。
3. The method according to claim 1, wherein the metal is Cr, Zr, Nb, Ac,
The denitration catalyst according to claim 1, wherein the catalyst is at least one selected from Hf, Mo, Te, Bi, Sn, Ru, Pb, and Mn.
JP12479499A 1998-08-19 1999-04-30 Denitration method Expired - Fee Related JP4505873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12479499A JP4505873B2 (en) 1998-08-19 1999-04-30 Denitration method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23291798 1998-08-19
JP10-232917 1998-08-19
JP12479499A JP4505873B2 (en) 1998-08-19 1999-04-30 Denitration method

Publications (2)

Publication Number Publication Date
JP2000126591A true JP2000126591A (en) 2000-05-09
JP4505873B2 JP4505873B2 (en) 2010-07-21

Family

ID=26461394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12479499A Expired - Fee Related JP4505873B2 (en) 1998-08-19 1999-04-30 Denitration method

Country Status (1)

Country Link
JP (1) JP4505873B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037593A1 (en) * 2005-09-27 2007-04-05 Korea Power Engineering Company, Inc. Vanadium/titania catalyst comprising natural manganese ore for removing nitrogen oxides and dioxin in wide operating temperature rangeand method of using the same
CN107262119A (en) * 2017-07-14 2017-10-20 邢台旭阳科技有限公司 A kind of middle low temperature resistant to sulfur catalyst for denitrating flue gas
CN108144601A (en) * 2018-02-05 2018-06-12 安徽弘昇环境工程科技有限公司 A kind of SCR ultralow temperature denitrating catalyst and preparation method thereof
CN112121831A (en) * 2020-10-30 2020-12-25 山东信能达工程科技有限公司 Wide-temperature sulfur-resistant water-resistant vanadium-titanium denitration catalyst and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159889A (en) * 1974-06-10 1975-12-24
JPS519094A (en) * 1974-07-15 1976-01-24 Nippon Steel Corp
JPS5180697A (en) * 1975-01-09 1976-07-14 Sumitomo Chemical Co
JPS5325290A (en) * 1976-08-20 1978-03-08 Mitsubishi Heavy Ind Ltd Production of denitration catalyst
JPS5433291A (en) * 1977-08-18 1979-03-10 Kobe Steel Ltd Production of titania catalyst element
JPH0474533A (en) * 1990-07-17 1992-03-09 Chiyoda Corp Exhaust gas denitrating catalyst and method
JPH06246166A (en) * 1993-02-17 1994-09-06 Siemens Ag Catalyst for substituting reactant of gas mixture
JPH08257363A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Exhaust gas treatment method
JPH09220468A (en) * 1996-02-19 1997-08-26 Babcock Hitachi Kk Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159889A (en) * 1974-06-10 1975-12-24
JPS519094A (en) * 1974-07-15 1976-01-24 Nippon Steel Corp
JPS5180697A (en) * 1975-01-09 1976-07-14 Sumitomo Chemical Co
JPS5325290A (en) * 1976-08-20 1978-03-08 Mitsubishi Heavy Ind Ltd Production of denitration catalyst
JPS5433291A (en) * 1977-08-18 1979-03-10 Kobe Steel Ltd Production of titania catalyst element
JPH0474533A (en) * 1990-07-17 1992-03-09 Chiyoda Corp Exhaust gas denitrating catalyst and method
JPH06246166A (en) * 1993-02-17 1994-09-06 Siemens Ag Catalyst for substituting reactant of gas mixture
JPH08257363A (en) * 1995-03-28 1996-10-08 Mitsubishi Heavy Ind Ltd Exhaust gas treatment method
JPH09220468A (en) * 1996-02-19 1997-08-26 Babcock Hitachi Kk Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037593A1 (en) * 2005-09-27 2007-04-05 Korea Power Engineering Company, Inc. Vanadium/titania catalyst comprising natural manganese ore for removing nitrogen oxides and dioxin in wide operating temperature rangeand method of using the same
CN107262119A (en) * 2017-07-14 2017-10-20 邢台旭阳科技有限公司 A kind of middle low temperature resistant to sulfur catalyst for denitrating flue gas
CN108144601A (en) * 2018-02-05 2018-06-12 安徽弘昇环境工程科技有限公司 A kind of SCR ultralow temperature denitrating catalyst and preparation method thereof
CN112121831A (en) * 2020-10-30 2020-12-25 山东信能达工程科技有限公司 Wide-temperature sulfur-resistant water-resistant vanadium-titanium denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP4505873B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP5051977B2 (en) Device for removing trace harmful substances in exhaust gas and operation method thereof
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
GB2256375A (en) Exhaust gas cleaner and method of cleaning exhaust gas
GB2248194A (en) Catalyst for cleaning exhaust gases
WO2008012878A1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JPWO2008035773A1 (en) Metallic mercury oxidation catalyst
JPH07299331A (en) Dry desulfurization and denitration process
JPH01184311A (en) Coal fired boiler device with denitration device
KR20140033069A (en) Catalysts possessing an improved resistance to poisoning
JP2000126591A (en) Denitrification catalyst
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP2001096155A (en) Denitrification catalyst
JP3224708B2 (en) DeNOx catalyst
JP6703924B2 (en) Mercury oxidation catalyst and method for manufacturing mercury oxidation treatment apparatus equipped with mercury oxidation catalyst
JP2005161255A (en) Removing agent of gaseous mercury and its production method
KR19980052956A (en) Catalyst for exhaust gas purification of diesel engine
JP3785296B2 (en) Catalyst regeneration method
JP6400379B2 (en) Denitration method for combustion exhaust gas
JP2638067B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH01258746A (en) Catalytic filter and production thereof
EP1982763A1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
JP3998218B2 (en) Carbon deposition control desulfurization agent
JP5186699B2 (en) Oxidation catalyst for metallic mercury in exhaust gas and method for oxidizing metallic mercury using the catalyst
US10773204B2 (en) Systems and processes for removal and reduction of NOx and CO gases from flue/exhaust gas streams
JPH07328378A (en) Treatment of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees