JP2000121353A - Range finder - Google Patents

Range finder

Info

Publication number
JP2000121353A
JP2000121353A JP10300331A JP30033198A JP2000121353A JP 2000121353 A JP2000121353 A JP 2000121353A JP 10300331 A JP10300331 A JP 10300331A JP 30033198 A JP30033198 A JP 30033198A JP 2000121353 A JP2000121353 A JP 2000121353A
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
center
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10300331A
Other languages
Japanese (ja)
Inventor
Takashi Ichinomiya
敬 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10300331A priority Critical patent/JP2000121353A/en
Publication of JP2000121353A publication Critical patent/JP2000121353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize wide visual field multipoint rang finding without increasing the light receiving area by constituting a light receiving means of a plurality of light receiving sections, receiving the light reflected from an object located in the center at a plurality of light receiving sections and receiving the light reflected from one and the other of adjacent objects at one and the other of the plurality of light receiving sections. SOLUTION: A CPU 16 lights an IRED (infrared light emitting diode) 5 through an IRED drive circuit 9 and a phase difference operating section 14 receives a signal subjected to amplification 12 and A/D conversion 13 from CCDs 1, 2 through a projection lens 8 and light receiving lenses 3, 4. Distance to an object located in the center is then calculated based on the phase difference thus determined. Subsequently, IREDs 6, 7 are lighted through IRED drive circuits 10, 11 and a center of gravity operating section 15 receives a signal subjected to amplification 12 and A/D conversion 13 from the CCDs 1, 2. Finally, the distances to one and the other of adjacent objects located in the center are calculated based on the center of gravity of respective optical receiving images.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アクティブ方式の
測距装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an active distance measuring device.

【0002】[0002]

【従来の技術】アクティブ方式による測距装置は、投射
した光を半導体位置検出素子(以下、PSDと記す)等
により受光し、その信号出力からPSD上の反射位置
(反射光の重心位置)を検出することにより、測定対象
までの距離を得ていることはよく知られている。
2. Description of the Related Art An active-type distance measuring apparatus receives a projected light by a semiconductor position detecting element (hereinafter, referred to as a PSD) or the like, and determines a reflection position on the PSD (a center of gravity of the reflected light) from a signal output thereof. It is well known that the distance to the object to be measured is obtained by detection.

【0003】また、上記重心位置検出方式では、コント
ラスト被写体(例えば被写体の半分は反射率が高いが、
もう半分は反射率が低いようなコントラストを有する被
写体)では誤測距することから、CCDなどの受光素子
を2個併設し、スキム動作(CCDにて蓄積された電荷
の一部を捨てる信号処理)により外来光を除去すると共
に、投光した光の反射光をこれらで受光させ、各受光素
子の信号出力の位相差により測定対象までの距離を得る
ことも知られている。
[0003] Further, in the center-of-gravity position detection method, a contrast object (for example, half of the object has a high reflectance,
The other half is subject to erroneous distance measurement when the contrast is low. Therefore, two light receiving elements such as CCDs are installed in parallel, and skim operation ( charges accumulated in the CCDs) is performed.
It is also known that extraneous light is removed by signal processing that discards part of the light, and the reflected light of the projected light is received by these, and the distance to the measurement object is obtained by the phase difference of the signal output of each light receiving element. ing.

【0004】この例を、図6を用いて説明する。This example will be described with reference to FIG.

【0005】図6は、CCDを2個併設したアクティブ
方式の位相差測距装置の原理を説明するための図であ
る。
FIG. 6 is a diagram for explaining the principle of an active phase difference measuring device having two CCDs.

【0006】図6において、22は第1の受光素子であ
るところのCCD(L)、23は第2の受光素子である
ところのCCD(R)である。3,4は一定の基線長B
だけ隔てて併設された受光レンズである。21は投光手
段であるところの赤外発光ダイオード(以下、IRED
と記す)であり、8は投光レンズであり、これらIRE
D21と投光レンズ8により投光手段を形成している。
24は測定対象である。
In FIG. 6, reference numeral 22 denotes a CCD (L) serving as a first light receiving element, and reference numeral 23 denotes a CCD (R) serving as a second light receiving element. 3 and 4 are constant baseline length B
It is a light receiving lens provided side by side only. Reference numeral 21 denotes an infrared light emitting diode (hereinafter referred to as IRED) which is a light projecting means.
And 8 is a light projecting lens.
D21 and the light projecting lens 8 form a light projecting means.
24 is an object to be measured.

【0007】この図において、受光レンズ3,4の主点
からCCD22,23までの距離をf、受光レンズ3,
4の主点から測定対象24までの距離をHとする。ま
た、受光レンズ3の光軸から、前記Hの距離にある測定
対象24よりの反射光が受光レンズ3により集光され、
CCD22上に結像された受光像の中心位置までの受光
像移動量をx1、又受光レンズ4の光軸から、前記Hの
距離にある測定対象24よりの反射光が受光レンズ4に
より集光され、CCD23上に結像された受光像の中心
位置までの受光像移動量をx2とすると、下記の関係が
成り立つ。
In this figure, the distance from the principal point of the light receiving lenses 3 and 4 to the CCDs 22 and 23 is f,
Let H be the distance from the principal point of No. 4 to the measurement object 24. Further, the reflected light from the measurement target 24 located at the distance H from the optical axis of the light receiving lens 3 is collected by the light receiving lens 3,
The amount of movement of the received light image to the center position of the received light image formed on the CCD 22 is x1, and the reflected light from the measurement object 24 at the distance H from the optical axis of the light receiving lens 4 is collected by the light receiving lens 4. When the amount of movement of the received light image up to the center position of the received light image formed on the CCD 23 is x2, the following relationship is established.

【0008】 H=(B×f)/(x2−x1) ………(1) ここで、CCD22とCCD23で得られた信号像の相
関量から、前記(1)式の右辺の分母である(x2−x
1)を求めて、測定対象24までの距離を測定すること
ができる。
H = (B × f) / (x2−x1) (1) Here, from the correlation amount between the signal images obtained by the CCD 22 and the CCD 23, the denominator on the right side of the above equation (1) is obtained. (X2-x
By determining 1), the distance to the measurement target 24 can be measured.

【0009】しかし、上記位相差方式による測距装置で
は、1つの測定対象しか測距することができない。そこ
で、図7を用いて、位相差方式による多点測距装置の説
明をする。
However, in the distance measuring apparatus using the phase difference method, only one object to be measured can be measured. Therefore, a multi-point distance measuring apparatus based on the phase difference method will be described with reference to FIG.

【0010】図7は、投光手段を複数のIREDで構成
し、複数の測定点を持つ測距装置の構成図である。図6
と同じ部分を同一符号と付し、その説明は省略する。
FIG. 7 is a block diagram of a distance measuring device having a plurality of IREDs as the light projecting means and having a plurality of measuring points. FIG.
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted.

【0011】図7において、41,42,43は測定対
象である。5は中央方向の測定対象41に投光する為の
IREDであり、7は左方向にの測定対象43に投光す
る為のIREDであり、6は右方向にの測定対象42に
投光する為のIREDである。
In FIG. 7, reference numerals 41, 42 and 43 denote measurement objects. Reference numeral 5 denotes an IRED for projecting light to the measurement object 41 in the center direction, reference numeral 7 denotes an IRED for projecting light to the measurement object 43 in the left direction, and reference numeral 6 denotes light to the measurement object 42 in the right direction. IRED for

【0012】前記IRDE5による投射された光は、中
央方向の測定対象41で反射し、その反射光は受光レン
ズ3,4によって集光され、5’と5”の位置で結像す
る。一方、前記IRED6による投射された光は、右方
向の測定対象42で反射し、その反射光は6’と6”の
位置で結像する。また、前記IRED7による投射され
た光は、左方向の測定対象43で反射し、その反射光は
7’と7”の位置で結像する。
The light projected by the IRDE 5 is reflected by the object 41 to be measured in the center direction, and the reflected light is condensed by the light receiving lenses 3 and 4 to form an image at the positions 5 'and 5 ". The light projected by the IRED 6 is reflected by the measurement object 42 in the right direction, and the reflected light forms an image at positions 6 ′ and 6 ″. The light projected by the IRED 7 is reflected by the measurement target 43 in the left direction, and the reflected light forms an image at the positions 7 'and 7 ".

【0013】ここで、CCD22とCCD23と受光像
5’,5”,6’,6”,7’,7”の位置関係を、図
8を用いて説明する。
Here, the positional relationship between the CCD 22, the CCD 23, and the light-receiving images 5 ', 5 ", 6', 6", 7 ', 7 "will be described with reference to FIG.

【0014】図8(a)の様に、IRED5の投射され
た光による受光像5’,5”はCCD22,23上に存
在し、各CCD22,23からの画素出力によって、位
相検出が可能である。一方、IRED6とIRED7の
投光に対応する受光像6’,6”,7’,7”は共にC
CD22,23上からはみ出している。したがって、I
RED6,7による投光では、位相差検出することはで
きない。
As shown in FIG. 8A, light-receiving images 5 'and 5 "of the light projected from the IRED 5 are present on the CCDs 22 and 23, and the phase can be detected by the pixel outputs from the CCDs 22 and 23. On the other hand, the light-receiving images 6 ', 6 ", 7', 7" corresponding to the light projected by the IRED 6 and the IRED 7 are all C
It protrudes from the CDs 22 and 23. Therefore, I
In the light emission by the REDs 6 and 7, the phase difference cannot be detected.

【0015】そこで、この対策として、受光像6’,
6”と受光像7’,7”それぞれを受光できるように、
図8(b)の22’,23’に示す様に、CCDを矢印
方向に長くすることが考えられる。
Therefore, as a countermeasure against this, a light receiving image 6 ',
6 "and the light-receiving images 7 'and 7"
As shown at 22 'and 23' in FIG. 8B, it is conceivable to lengthen the CCD in the direction of the arrow.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、投射し
た光の反射光を2個のCCDで受光し、その信号出力の
位相差により測距する装置において、上記図8(b)の
様に、複数の測定対象を測距させる為にCCDの両側を
長くした場合、測定対象が1点しかない測距装置に比
べ、CCDチップのチップ面積の増大とそれに伴なうコ
ストアップが問題となっている。
However, in a device in which reflected light of the projected light is received by two CCDs and the distance is measured by the phase difference of the signal output, as shown in FIG. If both sides of the CCD are lengthened in order to measure the distance of the object to be measured, an increase in the chip area of the CCD chip and an increase in cost associated therewith are a problem as compared with a distance measuring apparatus having only one object to be measured. .

【0017】(発明の目的)本発明の目的は、受光手段
の受光面積を大きくすることなく、複数の測定対象を行
うことのできる測距装置を提供しようとするものであ
る。
(Object of the Invention) An object of the present invention is to provide a distance measuring apparatus capable of performing a plurality of measurement objects without increasing the light receiving area of the light receiving means.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、請求項1〜3及び6〜8記載の本発明は、略中央方
向及びそれに隣接する測定対象へ光を投射する投光手段
と、前記略中央方向及びその周辺に位置する測定対象か
らの反射光をそれぞれ受光する受光手段と、該受光手段
からの出力を基に測定対象までの距離を算出する演算手
段とを有する測距装置であって、前記受光手段は二つの
受光部より成り、前記略中央方向に位置する測定対象か
らの反射光は前記二つの受光部にて受光し、前記隣接す
る一方に位置する測定対象からの反射光は前記二つの受
光部のうちの一方の受光部にて受光し、前記隣接する他
方に位置する測定対象からの反射光は前記二つの受光部
のうちの他方の受光部にて受光するよう、前記二つの受
光部を配置する測距装置とするものである。
In order to achieve the above object, the present invention according to claims 1 to 3 and 6 to 8 comprises a light projecting means for projecting light to a substantially central direction and a measuring object adjacent thereto. A distance measuring device comprising: light receiving means for receiving reflected light from a measurement object located substantially in the central direction and its periphery; and calculating means for calculating a distance to the measurement object based on an output from the light receiving means. Wherein the light receiving means comprises two light receiving portions, and reflected light from the measurement object located in the substantially central direction is received by the two light receiving portions, and the reflected light from the measurement object located on the adjacent one is received. The reflected light is received by one of the two light receiving units, and the reflected light from the adjacent measurement object is received by the other of the two light receiving units. As shown in FIG. It is an apparatus.

【0019】上記構成において、略中央方向に位置する
測定対象からの反射光は二つの受光部にて受光し、隣接
する一方又は他方に位置する測定対象からの反射光は前
記二つの受光部のうちの一方又は他方の受光部のみにて
受光するようにし、前記略中央方向に位置する測定対象
については、前記二つの受光部の出力の位相差を求め、
該位相差を基に距離を算出し、前記隣接する一方又は他
方に位置する測定対象については、前記二つの受光部の
うちの一方又は他方の受光部上の受光像の重心位置を求
め、該重心位置を基に距離を算出するようにしている。
In the above configuration, the reflected light from the measurement object positioned substantially in the center direction is received by the two light receiving units, and the reflected light from the adjacent one or other measurement object is reflected by the two light receiving units. In order to receive light only in one or the other of the light receiving units, for the measurement object located in the substantially central direction, determine the phase difference between the outputs of the two light receiving units,
The distance is calculated based on the phase difference, and for the measurement object located at the adjacent one or the other, the center of gravity of the light receiving image on one or the other light receiving unit of the two light receiving units is obtained. The distance is calculated based on the position of the center of gravity.

【0020】同じく上記目的を達成するために、請求項
4〜8記載の本発明は、略中央方向及びそれに隣接する
測定対象へ光を投射する投光手段と、前記略中央方向及
びその周辺に位置する測定対象からの反射光をそれぞれ
受光する受光手段と、該受光手段からの出力を基に測定
対象までの距離を算出する演算手段とを有する測距装置
であって、前記受光手段は一つの受光部より成り、前記
略中央方向に位置する測定対象からの反射光は前記一つ
の受光部の左右にて受光し、前記隣接する一方及び他方
のに位置する測定対象からの反射光は、前記略中央方向
に位置する測定対象からの反射光を受光する左右の部分
に挟まれた、それぞれ異なる一つの部分にて受光するよ
うにした測距装置とするものである。
According to another aspect of the present invention, there is provided a light emitting device for projecting light to a substantially central direction and a measuring object adjacent thereto, and A distance measuring apparatus comprising: a light receiving unit that receives reflected light from a measurement object located therein; and a calculation unit that calculates a distance to the measurement object based on an output from the light receiving unit. Consisting of two light receiving sections, the reflected light from the measurement object located in the substantially central direction is received on the left and right of the one light receiving section, and the reflected light from the adjacent one and the other measurement object located on the other side, This is a distance measuring device that receives light reflected by one of different portions sandwiched between left and right portions that receive reflected light from the measurement object positioned in the substantially central direction.

【0021】上記構成において、略中央方向に位置する
測定対象からの反射光は一つの受光部の左右にて受光
し、隣接する一方又は他方に位置する測定対象からの反
射光は前記左右部分に挟まれた一つの部分のみにて受光
するようにし、前記略中央方向に位置する測定対象につ
いては、前記一つの受光部の左右の部分の出力の位相差
を求め、該位相差を基に距離を算出し、前記隣接する一
方又は他方に位置する測定対象については、前記左右の
部分に挟まれた、それぞれ異なる部分に形成される受光
像の重心位置を求め、該重心位置を基に距離を算出する
ようにしている。
In the above configuration, the reflected light from the measurement object located substantially in the center direction is received by the left and right sides of one light receiving section, and the reflected light from the adjacent one or other measurement object is reflected by the left and right portions. Light is received only at one of the sandwiched portions, and for the measurement object located in the substantially central direction, the phase difference between the outputs of the left and right portions of the one light receiving portion is obtained, and the distance is determined based on the phase difference. For the measurement object located on the adjacent one or the other, the center of gravity of the light-receiving images formed in different portions sandwiched between the left and right portions is obtained, and the distance is calculated based on the center of gravity. It is calculated.

【0022】[0022]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments.

【0023】図1は本発明の実施の第1の形態に係る測
距装置の概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a distance measuring apparatus according to a first embodiment of the present invention.

【0024】図1において、1は第1のCCD、2は第
2のCCD、3は第1の受光レンズ、4は第2の受光レ
ンズ、9,10,11はIRED駆動回路、5,6,7
はIRED、8は投光レンズ、12は信号増幅回路、1
3はA/D変換回路である。16は各部制御及び演算等
を行うCPUであり、内部に位相差演算部14,重心位
置演算部15を有している。
In FIG. 1, 1 is a first CCD, 2 is a second CCD, 3 is a first light receiving lens, 4 is a second light receiving lens, 9, 10, and 11 are IRED driving circuits, and 5, 6 , 7
Is an IRED, 8 is a light projecting lens, 12 is a signal amplification circuit, 1
Reference numeral 3 denotes an A / D conversion circuit. Reference numeral 16 denotes a CPU for controlling each unit, performing calculations, and the like, and includes a phase difference calculation unit 14 and a center-of-gravity position calculation unit 15 therein.

【0025】図1に示した測距装置は、距離を測定した
い測定対象に向けて光を投光し、前記測定対象からの反
射光を受光して三角測量の測距を行い、上記測定対象ま
での距離を測定するようにしている。
The distance measuring apparatus shown in FIG. 1 projects light toward a measuring object whose distance is to be measured, receives reflected light from the measuring object, performs triangulation ranging, and performs distance measurement. We measure distance to.

【0026】IRED5,6,7、IRED駆動回路9
〜11、投光レンズ8により投光手段を形成し、前記I
RED駆動回路9,10,11はCPU16によって制
御され、前記IRED5,6,7の点灯,消灯を行うこ
とができ、また、CPU16は投光手段の投光方向を選
択することができる。
IREDs 5, 6, 7 and IRED drive circuit 9
-11, a light projecting means is formed by the light projecting lens 8;
The RED driving circuits 9, 10, and 11 are controlled by the CPU 16 to turn on and off the IREDs 5, 6, and 7, and the CPU 16 can select the light emitting direction of the light emitting means.

【0027】前記CCD1および前記CCD2は、複数
のセンサが配列されていて、上記測定対象からの反射光
を受光して光電変換するためのものである。また、CC
D1,2は、図2の様に、隣接するCCDの方向にセン
サを延長している。なお、図2の二点鎖線で示した部分
は、前述の図8(b)の例(両方にセンサを長くした
例)を重ねて示したものである。
The CCD 1 and the CCD 2 are arranged with a plurality of sensors, and receive light reflected from the object to be measured and perform photoelectric conversion. Also, CC
D1 and D2 extend the sensor in the direction of the adjacent CCD as shown in FIG. Note that the portion shown by the two-dot chain line in FIG. 2 overlaps the above-described example of FIG. 8B (an example in which the sensor is lengthened for both).

【0028】ここで、図8(b)におけるCCDと異な
る点は、前記CCD22,23では各CCDの両側方向
にセンサを延長しているのに対し、CCD1,2は隣接
するCCDの方向(矢印方向)にのみセンサを延長して
いる所にある。
Here, the difference from the CCD in FIG. 8B is that the CCDs 22 and 23 extend the sensors in both sides of each CCD, whereas the CCDs 1 and 2 extend in the direction of the adjacent CCD (arrows). Direction) only where the sensor is extended.

【0029】上記信号増幅回路12は、CCD1,2の
画素出力を増幅し、A/D変換回路13は増幅されたC
CD画素出力をA/D変換し、CPU16内の位相差演
算部14や重心演算部15に出力する為のものである。
The signal amplifying circuit 12 amplifies the pixel outputs of the CCDs 1 and 2, and the A / D converting circuit 13 amplifies the amplified C
This is for A / D converting the CD pixel output and outputting it to the phase difference calculator 14 and the center of gravity calculator 15 in the CPU 16.

【0030】前記位相差演算部14は、上記投光手段に
よって複数の測定対象に投光されたもののうち、中心方
向の投光によって形成された受光像の位相差を求めるた
めのものである。また、前記重心演算部15は、上記投
光手段によって複数の被写体に投光されたもののうち、
中心方向以外の投光によって形成された受光像の重心位
置を求めるためのものである。
The phase difference calculating section 14 is for calculating the phase difference of the light-receiving image formed by the light projecting in the center direction, of the light projected on the plurality of measurement objects by the light projecting means. Further, the center-of-gravity calculating unit 15 is one that is projected on a plurality of subjects by the projecting unit.
This is for calculating the position of the center of gravity of the light-receiving image formed by light projection other than in the center direction.

【0031】上記構成における測距装置の実施の形態
を、図3を参照しながら詳細に説明する。なお、図7と
同じ部分は同一符号を付し、その説明は省略する。
An embodiment of the distance measuring apparatus having the above configuration will be described in detail with reference to FIG. The same parts as those in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted.

【0032】図3において、42は右方向の測定対象と
し、41は中央方向の測定対象とし、43は左方向の測
定対象としている。また、受光レンズ3,4の主点から
CCD3,4までの距離をF、受光レンズ3,4の主点
から測定対象41までの距離をH1 、測定対象42まで
の距離をH2 、測定対象43までの距離をH3 としてい
る。また、投光レンズ8の光軸から、受光レンズ3,4
までの距離をそれぞれB1 ,B2 とし、受光レンズ3,
4の光軸間の距離をB3 としている。さらに、受光レン
ズ3の光軸から、CCD1上に結像された受光像5’と
7’の中心位置までの受光像移動量をそれぞれx5’と
x7’としている。又受光レンズ4の光軸からCCD2
上に結像された受光像5”と6”の中心位置までの受光
像移動量をそれぞれx5”とx7”としている。
In FIG. 3, reference numeral 42 denotes a measurement object in the right direction, 41 denotes a measurement object in the center direction, and 43 denotes a measurement object in the left direction. The distance from the principal point of the light receiving lenses 3 and 4 to the CCDs 3 and 4 is F, the distance from the principal point of the light receiving lenses 3 and 4 to the measurement target 41 is H 1 , the distance from the measurement target 42 is H 2 , the distance to the target 43 is set to H 3. Further, the light receiving lenses 3 and 4 are separated from the optical axis of the light projecting lens 8.
The distances to are B 1 and B 2 respectively,
4 of the distance between the optical axes is set to B 3. Further, the light-receiving image movement amounts from the optical axis of the light-receiving lens 3 to the center positions of the light-receiving images 5 'and 7' formed on the CCD 1 are x5 'and x7', respectively. Also, the CCD 2 is moved from the optical axis of the light receiving lens 4 to the CCD 2.
The moving amounts of the received light images up to the center position of the received light images 5 "and 6" formed above are x5 "and x7", respectively.

【0033】IRED駆動回路9を駆動した場合、IR
ED5によって投射された投光スポットは中央方向の測
定対象41で反射し、CCD1上の5’とCCD2上の
5”のように結像する。そして、該CCD1とCCD2
で得られた信号像により位相差を求め、下記の(2)式
により測定対象41までの距離を算出することができ
る。
When the IRED driving circuit 9 is driven, the IR
The projected spot projected by the ED 5 is reflected by the measurement object 41 in the center direction and forms an image like 5 'on the CCD 1 and 5 "on the CCD 2. The CCD 1 and the CCD 2
The phase difference is obtained from the signal image obtained in step (1), and the distance to the measurement target 41 can be calculated by the following equation (2).

【0034】 H1 =(B3 ×F)/(x5’−x5”) ………(2) また、IRED駆動回路10を駆動した場合、IRED
6によって投光された投光スポットは右方向の測定対象
42で反射し、CCD2上の6”のように結像する。そ
して、受光像6”の重心位置を求め、下記の(3)式に
より測定対象42までの距離を算出することができる。
H 1 = (B 3 × F) / (x5′−x5 ″) (2) When the IRED drive circuit 10 is driven,
The projected spot projected by 6 is reflected by the measurement object 42 in the right direction, and forms an image like 6 ″ on the CCD 2. Then, the center of gravity of the received light image 6 ″ is obtained, and the following equation (3) is obtained. Thus, the distance to the measurement target 42 can be calculated.

【0035】 H2 =(B2 ×F)/x6” ………(3) さらに、IRED駆動回路11を駆動した場合、IRE
D7によって投射された投光スポットは左方向の測定対
象43で反射し、CCD1上の7’のように結像する。
そして、受光像7’の重心位置を求め、下記の(4)式
により測定対象43までの距離を算出することができ
る。
H 2 = (B 2 × F) / x6 ″ (3) Further, when the IRED drive circuit 11 is driven, the IRE
The projection spot projected by D7 is reflected by the measurement target 43 in the left direction, and forms an image like 7 'on the CCD 1.
Then, the position of the center of gravity of the received light image 7 'is obtained, and the distance to the measurement target 43 can be calculated by the following equation (4).

【0036】 H3 =(B1 ×F)/x7” ………(4) 図6は、上記の測距装置を実際の測距動作を示したフロ
ーチャートであり、以下これに従って説明する。
H 3 = (B 1 × F) / x7 ″ (4) FIG. 6 is a flowchart showing the actual distance measuring operation of the above distance measuring apparatus.

【0037】まず、ステップ#101において、CPU
16はIRED5を点灯する。そして、次のステップ#
102において、CCD(L)1から増幅されてA/D
変換された信号を位相差演算部14に取り込む。続くス
テップ#103においては、今度はCCD(R)2から
増幅されてA/D変換された信号を位相差演算部14に
取り込む。そして、次のステップ#104において、C
CD(L)1とCCD(R)2からのA/D変換値を基
に位相差演算部14により位相差を求め、次のステップ
#105において、前記位相差より、測定対象41まで
の距離を算出してステップ#106へ進み、ここは前記
IRED5を消灯し、ステップ#107へと進む。
First, in step # 101, the CPU
Reference numeral 16 turns on the IRED 5. And the next step #
At 102, the A / D signal amplified from the CCD (L) 1
The converted signal is taken into the phase difference calculation unit 14. In the following step # 103, the signal amplified and A / D-converted from the CCD (R) 2 is taken into the phase difference calculating section 14. Then, in the next step # 104, C
The phase difference is calculated by the phase difference calculation unit 14 based on the A / D conversion values from the CD (L) 1 and the CCD (R) 2, and in the next step # 105, the distance from the phase difference to the measurement object 41 is calculated. Is calculated, and the process proceeds to step # 106, where the IRED 5 is turned off, and the process proceeds to step # 107.

【0038】ステップ#107においては、IRED
6,7を点灯する。ここで、図2の様に、IRED6の
発光による受光像6”はCCD(R)2では受光できる
が、CCD(L)1では受光像6’がはみ出し、相関演
算することができない。反対に、IRED7の発光によ
る受光像7’は、CCD(L)1では受光できるが、C
CD(R)2では受光像7”がはみ出し、相関演算する
ことができない。
In step # 107, the IRED
Lights 6 and 7. Here, as shown in FIG. 2, the light receiving image 6 ″ by the light emission of the IRED 6 can be received by the CCD (R) 2, but the light receiving image 6 ′ protrudes from the CCD (L) 1, and the correlation operation cannot be performed. , IRED 7 can receive light by CCD (L) 1,
In the CD (R) 2, the received light image 7 "protrudes, and the correlation operation cannot be performed.

【0039】そこで、次のステップ#108において
は、CCD(R)2から増幅されてA/D変換された信
号を重心位置演算部15に取り込み、続くステップ#1
09において、CCD(R)2からのA/D変換値を基
に該CCD(R)2上の受光像6”の重心を求める。C
CD上の受光像6”の重心の求め方は、画素信号のピー
クとしたり、画像の傾斜角から画素間を補完して画素ピ
ッチより細かく算出する方法で行っても良い。そして、
ステップ#110において、その受光像6”の重心位置
により測定対象42までの距離を算出してステップ#1
11へ進む。
Therefore, in the next step # 108, the signal amplified and A / D converted from the CCD (R) 2 is taken into the center-of-gravity position calculating section 15, and the following step # 1
At 09, the center of gravity of the light-receiving image 6 ″ on the CCD (R) 2 is obtained based on the A / D converted value from the CCD (R) 2.
The method of calculating the center of gravity of the light-receiving image 6 ″ on the CD may be a method of calculating the peak of the pixel signal or calculating the pixel pitch more finely than the pixel pitch by complementing the pixels from the tilt angle of the image.
In step # 110, the distance to the measurement target 42 is calculated from the position of the center of gravity of the received light image 6 ″, and step # 1
Proceed to 11.

【0040】ステップ#111においては、CCD
(L)1から増幅されてA/D変換された信号を重心位
置演算部15に取り込み、次のステップ#112におい
て、CCD(L)1のA/D変換値を基に該CCD
(L)2上の受光像7’の重心を求める。そして、次の
ステップ#113において、その受光像7’の重心位置
により測定対象43までの距離を算出してステップ#1
14へ進む。
In step # 111, the CCD
The signal amplified and A / D-converted from (L) 1 is taken into the center-of-gravity position calculating unit 15, and in the next step # 112, the CCD (L) 1 receives the signal based on the A / D converted value.
(L) Find the center of gravity of the received light image 7 ′ on 2. Then, in the next step # 113, the distance to the measurement target 43 is calculated based on the position of the center of gravity of the received light image 7 ', and step # 1 is performed.
Proceed to 14.

【0041】ステップ#114においては、上記IRE
D駆動回路10,11を介してIRED6,7を消灯
し、次のステップ#115にて一連の測距動作を終了す
る。
In step # 114, the IRE
The IREDs 6 and 7 are turned off via the D drive circuits 10 and 11, and a series of distance measuring operations is completed in the next step # 115.

【0042】(実施の第2の形態)図5は本発明の実施
の第2の形態に係る測距装置のCCDを示す図であり、
図2と同じ部分は同一の符号を付してある。また、その
他の構成は実施の第1の形態と同様であるので、その説
明は省略する。
(Second Embodiment) FIG. 5 is a view showing a CCD of a distance measuring apparatus according to a second embodiment of the present invention.
2 are given the same reference numerals. Further, the other configuration is the same as that of the first embodiment, and the description thereof is omitted.

【0043】図5において、81は受光素子であるとこ
ろのCCDであり、図2との相違点は、CCD(L)1
とCCD(R)2を、隣接するCCDの方向に延長させ
て、CCDが1本になった所にある。
In FIG. 5, reference numeral 81 denotes a CCD which is a light receiving element. The difference from FIG. 2 is that the CCD (L) 1
And the CCD (R) 2 are extended in the direction of the adjacent CCD, so that there is only one CCD.

【0044】前記CCD81上の受光像により得られた
信号像のうち、所望の信号像を抜き取り、受光像5’と
5”により相関演算によって、また、6”,7’の重心
位置から重心演算することにより、各測定対象までの距
離を測距する事ができる。
A desired signal image is extracted from the signal images obtained from the light-receiving images on the CCD 81, and a correlation operation is performed using the light-receiving images 5 'and 5 ", and a center of gravity is calculated from the positions of the centers of gravity of 6" and 7'. By doing so, the distance to each measurement object can be measured.

【0045】以上の実施の各形態によれば、中央方向以
外の測定対象からの受光像が受光素子であるCCDから
はみ出してしまうため、該CCDを隣接するCCDの方
向にのみ延長させる(重心位置を求める受光像7’,
6”が形成されるセンサ部分を、位相差を求める受光像
5’,5”が形成されるセンサ部分に挟まれるようにし
て配置する)ようにしている(図2,図5参照)。そし
て、中央方向の測定対象を測距する場合は、CCDの出
力より該CCD上に結像された受光像の位相差を求め、
この位相差から測定対象までの距離を求めるようにして
いる。一方、中央方向以外の測定対象を測距する場合
は、CCDの出力より該CCD上に結像された受光像の
重心位置を求め、この重心位置から測定対象までの距離
を求めるようにしている。
According to each of the above-described embodiments, since the light-receiving image from the object to be measured other than the central direction protrudes from the CCD which is the light-receiving element, the CCD is extended only in the direction of the adjacent CCD (center of gravity position). Received image 7 'for obtaining
The sensor portion where 6 ″ is formed is arranged so as to be sandwiched between the sensor portions where the light receiving images 5 ′ and 5 ″ for which the phase difference is to be formed (see FIGS. 2 and 5). Then, when measuring the distance of the object to be measured in the center direction, the phase difference of the received light image formed on the CCD is obtained from the output of the CCD,
The distance to the object to be measured is determined from the phase difference. On the other hand, when measuring the distance of a measurement object other than the center direction, the position of the center of gravity of the received light image formed on the CCD is obtained from the output of the CCD, and the distance from the position of the center of gravity to the measurement object is obtained. .

【0046】このようにすることにより、CCDのチッ
プ面積を大きくすることなく、広視野多点測距を行うこ
とができる。
By doing so, it is possible to perform wide-field multi-point ranging without increasing the CCD chip area.

【0047】(発明と実施の形態の対応)上記実施の形
態において、IRED5,6,7、IRED駆動回路9
〜11及び投光レンズ8が本発明の投光手段に、CCD
1,2及び受光レンズ3,4が本発明の受光手段に、位
相差演算部14及び重心位置演算部15が本発明の演算
手段に、それぞれ相当する。
(Correspondence between the Invention and the Embodiment) In the above embodiment, the IREDs 5, 6, 7,
11 and the light projecting lens 8 are used as the light projecting means of the present invention.
The light receiving lenses 1 and 2 and the light receiving lenses 3 and 4 correspond to the light receiving unit of the present invention, and the phase difference calculating unit 14 and the center of gravity calculating unit 15 correspond to the calculating unit of the present invention.

【0048】(変形例)投光手段を複数のIREDと投
光レンズにより構成しているが、これに限定されるもの
ではなく、一つのIREDと光路を複数に分割できる投
光レンズを配置した構成であってもよい。
(Modification) The light projecting means is constituted by a plurality of IREDs and a light projecting lens, but is not limited to this. One IRED and a light projecting lens capable of dividing an optical path into a plurality of light paths are arranged. It may be a configuration.

【0049】受光手段として、CCDを用いているが、
その他の受光素子を用いても良い。また、受光手段とし
てCCDを用いた場合、スキム動作により外来光を除去
する機能を付加するようにしても良い。
Although the CCD is used as the light receiving means,
Other light receiving elements may be used. When a CCD is used as the light receiving means, a function of removing extraneous light by a skim operation may be added.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
受光手段の受光面積を大きくすることなく、複数の測定
対象を行うことができる測距装置を提供できるものであ
る。
As described above, according to the present invention,
An object of the present invention is to provide a distance measuring apparatus capable of performing a plurality of measurement objects without increasing the light receiving area of the light receiving means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1の形態に係わる測距装置の
回路構成を示すブロック図である。
FIG. 1 is a block diagram showing a circuit configuration of a distance measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の実施の第1の形態におけるCCDと受
光像の位置関係を示す図である。
FIG. 2 is a diagram showing a positional relationship between a CCD and a received light image according to the first embodiment of the present invention.

【図3】本発明の実施の第1の形態に係わる測距装置を
説明する為の図である。
FIG. 3 is a diagram for explaining a distance measuring apparatus according to the first embodiment of the present invention.

【図4】本発明の実施の第1の形態に係る測距装置の一
連の動作を示すフローチャートである。
FIG. 4 is a flowchart showing a series of operations of the distance measuring apparatus according to the first embodiment of the present invention.

【図5】本発明の実施の第2の形態に係る測距装置のC
CDと受光レンズによって結像される受光像を示す図で
ある。
FIG. 5 shows a distance measuring device C according to a second embodiment of the present invention.
FIG. 3 is a diagram illustrating a light receiving image formed by a CD and a light receiving lens.

【図6】従来の1点位相差測距型アクティブ測距方式の
測距装置を説明する為の図である。
FIG. 6 is a diagram for explaining a conventional one-point phase difference distance measuring type active distance measuring distance measuring apparatus.

【図7】従来の3点位相差測距型アクティブ測距方式の
測距装置を説明する為の図である。
FIG. 7 is a diagram for explaining a conventional three-point phase difference distance measuring type active distance measuring distance measuring apparatus.

【図8】従来におけるCCDと受光像の位置関係を示す
図である。
FIG. 8 is a diagram showing a conventional positional relationship between a CCD and a received light image.

【符号の説明】 1,2 CCD 3,4 受光レンズ 8 投光レンズ 5,6,7 IRED 9,10,11 IRED駆動回路 14 位相差演算部 16 重心演算部 16 CPU[Description of Signs] 1, 2 CCD 3, 4 Light receiving lens 8 Projection lens 5, 6, 7 IRED 9, 10, 11 IRED drive circuit 14 Phase difference calculation unit 16 Center of gravity calculation unit 16 CPU

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA06 AA17 DD00 DD02 FF09 GG07 GG13 HH14 JJ01 JJ05 JJ25 JJ26 LL04 NN01 PP22 QQ00 QQ03 QQ25 QQ26 QQ28 QQ31 2F112 AA07 AA08 AC03 AC10 BA03 BA10 CA12 DA02 DA04 DA26 DA28 EA20 FA03 FA07 FA41 FA45 FA50 GA01 5J084 AA05 AD02 AD07 BA02 BA06 BA34 BA39 BB02 CA31 CA49 CA67 CA68 CA69 DA01 EA02 EA07 EA31  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA06 AA17 DD00 DD02 FF09 GG07 GG13 HH14 JJ01 JJ05 JJ25 JJ26 LL04 NN01 PP22 QQ00 QQ03 QQ25 QQ26 QQ28 QQ31 2F112 AA07 AA08 AC03 AC10 BA03 FA04 FA45 FA50 GA01 5J084 AA05 AD02 AD07 BA02 BA06 BA34 BA39 BB02 CA31 CA49 CA67 CA68 CA69 DA01 EA02 EA07 EA31

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 略中央方向及びそれに隣接する測定対象
へ光を投射する投光手段と、前記略中央方向及びその周
辺に位置する測定対象からの反射光をそれぞれ受光する
受光手段と、該受光手段からの出力を基に測定対象まで
の距離を算出する演算手段とを有する測距装置であっ
て、 前記受光手段は二つの受光部より成り、前記略中央方向
に位置する測定対象からの反射光は前記二つの受光部に
て受光し、前記隣接する一方に位置する測定対象からの
反射光は前記二つの受光部のうちの一方の受光部にて受
光し、前記隣接する他方に位置する測定対象からの反射
光は前記二つの受光部のうちの他方の受光部にて受光す
るよう、前記二つの受光部を配置したことを特徴とする
測距装置。
1. A light projecting means for projecting light to a substantially central direction and a measuring object adjacent thereto, a light receiving means for receiving reflected light from the measuring object located substantially in the central direction and the periphery thereof, and the light receiving means Calculating means for calculating a distance to the object to be measured based on an output from the means, wherein the light receiving means comprises two light receiving portions, and the light reflected from the object to be measured is located substantially in the central direction. The light is received by the two light receiving portions, and the reflected light from the measurement object located on the adjacent one is received by the light receiving portion of one of the two light receiving portions and is located on the other adjacent side. A distance measuring device, wherein the two light receiving units are arranged so that reflected light from a measurement target is received by the other light receiving unit of the two light receiving units.
【請求項2】 前記演算手段は、前記略中央方向に位置
する測定対象については、前記二つの受光部の出力の位
相差を求め、該位相差を基に距離を算出し、前記隣接す
る一方又は他方に位置する測定対象については、前記二
つの受光部のうちの一方又は他方の受光部上の受光像の
重心位置を求め、該重心位置を基に距離を算出すること
を特徴とする請求項1記載の測距装置。
2. The calculation means calculates a phase difference between outputs of the two light receiving units for a measurement object located in the substantially central direction, calculates a distance based on the phase difference, and calculates a distance between the two adjacent light receiving units. Alternatively, for a measurement object located on the other side, a center of gravity of a light receiving image on one or the other of the two light receiving units is obtained, and a distance is calculated based on the center of gravity. Item 7. The distance measuring device according to Item 1.
【請求項3】 前記二つの受光部の、重心位置を求める
受光像が形成される部分は、位相差を求める受光像が形
成される部分に挟まれるようにして配置されていること
を特徴とする請求項2記載の測距装置。
3. A portion of the two light receiving portions where a light receiving image for obtaining a position of a center of gravity is formed so as to be sandwiched between portions where a light receiving image for obtaining a phase difference is formed. The distance measuring apparatus according to claim 2.
【請求項4】 略中央方向及びそれに隣接する測定対象
へ光を投射する投光手段と、前記略中央方向及びその周
辺に位置する測定対象からの反射光をそれぞれ受光する
受光手段と、該受光手段からの出力を基に測定対象まで
の距離を算出する演算手段とを有する測距装置であっ
て、 前記受光手段は一つの受光部より成り、前記略中央方向
に位置する測定対象からの反射光は前記一つの受光部の
左右にて受光し、前記隣接する一方及び他方のに位置す
る測定対象からの反射光は、前記略中央方向に位置する
測定対象からの反射光を受光する左右の部分に挟まれ
た、それぞれ異なる一つの部分にて受光するようにした
ことを特徴とする測距装置。
4. A light projecting means for projecting light to a substantially central direction and a measuring object adjacent thereto, a light receiving means for receiving reflected light from the measuring object located substantially in the central direction and the periphery thereof, and the light receiving means. Calculating means for calculating a distance to the object to be measured based on an output from the means, wherein the light receiving means comprises a single light receiving part, and the light reflected from the object to be measured is located substantially in the center direction. The light is received at the left and right of the one light receiving unit, and the reflected light from the measurement object located at the adjacent one and the other is the left and right light receiving the reflection light from the measurement object located at the substantially central direction. A distance measuring device characterized in that light is received by one different portion sandwiched between the portions.
【請求項5】 前記演算手段は、前記略中央方向に位置
する測定対象については、前記一つの受光部の左右の部
分の出力の位相差を求め、該位相差を基に距離を算出
し、前記隣接する一方又は他方に位置する測定対象につ
いては、前記左右の部分に挟まれた、それぞれ異なる部
分に形成される受光像の重心位置を求め、該重心位置を
基に距離を算出することを特徴とする請求項4記載の測
距装置。
5. The calculation means calculates a phase difference between outputs of right and left portions of the one light receiving unit for a measurement target positioned in the substantially central direction, and calculates a distance based on the phase difference. For the measurement object located at the adjacent one or the other, the center of gravity of the light receiving image formed in each of the different portions sandwiched between the left and right portions is obtained, and the distance is calculated based on the center of gravity. The distance measuring apparatus according to claim 4, wherein
【請求項6】 前記受光手段は、CCDであることを特
徴とする請求項1又は4記載の測距装置。
6. The distance measuring apparatus according to claim 1, wherein said light receiving means is a CCD.
【請求項7】 前記CCDは、スキム動作により外来光
を除去する機能を有することを特徴とする請求項6記載
の測距装置。
7. The distance measuring apparatus according to claim 6, wherein said CCD has a function of removing extraneous light by a skim operation.
【請求項8】 前記演算手段は、位相差を求める時は、
受光手段の構成要素の一つである複数の受光レンズ間の
距離を基線長とし、重心位置を求める時は、投光手段の
構成要素の一つである投光レンズと前記各受光レンズの
距離を基線長として、測定対象までの距離を算出するこ
とを特徴とする請求項2又は5記載の測距装置。
8. The calculating means, when obtaining a phase difference,
The distance between the plurality of light receiving lenses, which are one of the components of the light receiving means, is defined as the base length, and when determining the position of the center of gravity, the distance between the light emitting lens, which is one of the components of the light emitting means, and each of the light receiving lenses The distance measuring apparatus according to claim 2, wherein the distance to the object to be measured is calculated using the distance as a base line length.
JP10300331A 1998-10-08 1998-10-08 Range finder Pending JP2000121353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300331A JP2000121353A (en) 1998-10-08 1998-10-08 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10300331A JP2000121353A (en) 1998-10-08 1998-10-08 Range finder

Publications (1)

Publication Number Publication Date
JP2000121353A true JP2000121353A (en) 2000-04-28

Family

ID=17883495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300331A Pending JP2000121353A (en) 1998-10-08 1998-10-08 Range finder

Country Status (1)

Country Link
JP (1) JP2000121353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163901A (en) * 2010-02-09 2011-08-25 Sharp Corp Optical ranging sensor device and electronic apparatus
US8022153B2 (en) 2007-06-27 2011-09-20 H R D Corporation System and process for production of polyethylene and polypropylene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022153B2 (en) 2007-06-27 2011-09-20 H R D Corporation System and process for production of polyethylene and polypropylene
JP2011163901A (en) * 2010-02-09 2011-08-25 Sharp Corp Optical ranging sensor device and electronic apparatus
US8390793B2 (en) 2010-02-09 2013-03-05 Sharp Kabushiki Kaisha Optical ranging sensor and electronic equipment

Similar Documents

Publication Publication Date Title
US6483536B2 (en) Distance measuring apparatus and method employing two image taking devices having different measurement accuracy
JPH07280563A (en) Car-to-car distance detector
TW200919271A (en) System and method for performing optical navigation using scattered light
JP2002139304A (en) Distance measuring device and distance measuring method
JP2006322853A (en) Distance measuring device, distance measuring method and distance measuring program
JP2003247823A (en) Method and device for detecting phase difference, range finder, and image pickup device
JP3078069B2 (en) Distance measuring device
US5373343A (en) Apparatus for a camera system for judging distance based on distance measurements taken at central and peripheral parts of an image plane
JP2000121353A (en) Range finder
US6522394B2 (en) Rangefinder device and camera
JPH0483133A (en) Three-dimensional scanner
JPH06317741A (en) Range finder
JPH06137861A (en) Range measuring device for camera
JP3034967B2 (en) Distance measuring device
JP2005143054A (en) Projector and method for detecting fault state thereof
JPH1096851A (en) Range finder for camera
US6633730B2 (en) Rangefinder device and camera incorporating the same
JPH09196665A (en) Distance measuring apparatus
JP2003344044A (en) Ranging apparatus
JP2682690B2 (en) Distance measuring device
JP3064429B2 (en) Moving object distance measuring apparatus and moving object distance measuring method
JP3549117B2 (en) Camera ranging device
JP2002277212A (en) Intruder detecting device
JPH0618259A (en) Range finder for camera
JPS63266435A (en) Automatic focusing device