JP2000119764A - Adjusting method of copper concentration in leaching liquid in cleaning process of wet zinc metallurgy and adjusting equipment therefor - Google Patents

Adjusting method of copper concentration in leaching liquid in cleaning process of wet zinc metallurgy and adjusting equipment therefor

Info

Publication number
JP2000119764A
JP2000119764A JP28571698A JP28571698A JP2000119764A JP 2000119764 A JP2000119764 A JP 2000119764A JP 28571698 A JP28571698 A JP 28571698A JP 28571698 A JP28571698 A JP 28571698A JP 2000119764 A JP2000119764 A JP 2000119764A
Authority
JP
Japan
Prior art keywords
leachate
tank
copper
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28571698A
Other languages
Japanese (ja)
Other versions
JP3886652B2 (en
Inventor
Yasuhiro Yamamoto
安宏 山本
Tetsuo Sekiya
鉄男 関屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP28571698A priority Critical patent/JP3886652B2/en
Publication of JP2000119764A publication Critical patent/JP2000119764A/en
Application granted granted Critical
Publication of JP3886652B2 publication Critical patent/JP3886652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adjusting method and adjusting equipment for copper concentration in a leaching liquid in a cleaning process of wet zinc metallurgy in which copper quarity in a residue obtained in a copper removing process is high and the precipitability of copper in the leaching liquid in the copper removing process is excellent. SOLUTION: This adjusting method of copper concentration in a leaching liquid in a cleaning process of wet zinc metallurgy is for separating the leaching liquid from a zinc calcined one by a sulfuric acid solution, adding zinc powder in one of the leaching liquid after the liquid separation and mixing them to separate and remove the copper and mixing the resultant leaching liquid with the other leaching liquid after the liquid separation to adjust the copper concentration. The adjusting equipment of the copper concentration in the leaching liquid is used for the adjusting method of the copper concentration in the leaching liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湿式亜鉛製錬の清
浄工程における浸出液中銅濃度の調整方法および調整設
備に関し、特に、脱銅工程で得られる残渣中の銅品位が
高く、さらには脱銅工程における浸出液中の銅の沈降性
に優れた湿式亜鉛製錬の清浄工程における浸出液中銅濃
度の調整方法および調整設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for adjusting the concentration of copper in a leachate in a cleaning process of a wet zinc smelting process. The present invention relates to a method and an equipment for adjusting the copper concentration in a leachate in a cleaning process of wet zinc smelting, which is excellent in the sedimentation of copper in a leachate in a copper process.

【0002】[0002]

【従来の技術】湿式亜鉛製錬工程においては、亜鉛精鉱
を焙焼し、得られた亜鉛焼鉱を硫酸溶液で溶解し、得ら
れた溶解液である浸出液を電解し亜鉛(:電気亜鉛)を
製造する。この場合、浸出液中に銅(Cu)、コバルト
(Co)などの重金属不純物が存在すると亜鉛電解時に亜
鉛中に析出して亜鉛の純度が低下するばかりでなく亜鉛
電解時の電流効率が著しく低下する。
2. Description of the Related Art In a wet zinc smelting process, zinc concentrate is roasted, the obtained zinc ore is dissolved in a sulfuric acid solution, and the resulting leaching solution is electrolyzed into zinc (: electric zinc). ) To manufacture. In this case, if heavy metal impurities such as copper (Cu) and cobalt (Co) are present in the leaching solution, not only will the zinc precipitate during zinc electrolysis and the purity of zinc will decrease, but also the current efficiency during zinc electrolysis will significantly decrease. .

【0003】このため、亜鉛(Zn)の電解採取において
は、浸出液中のCu、CoなどZnより貴な不純物を電解前に
除去する清浄工程が必要になる。図2および図3に、従
来の湿式亜鉛製錬の清浄工程における浸出液中銅濃度の
調整設備、浸出液中不純物の除去設備に係る工程図を示
す。図2は、銅の分離、除去工程における固液分離装置
としてシックナを用いた方式を示し、図3は、銅の分
離、除去工程における固液分離装置としてフィルタープ
レスを用いた方式を示す。
[0003] Therefore, in the electrowinning of zinc (Zn), a cleaning step is required to remove impurities more noble than Zn such as Cu and Co in the leachate before electrolysis. FIGS. 2 and 3 show process diagrams relating to a facility for adjusting the concentration of copper in a leachate and a facility for removing impurities in a leachate in a conventional cleaning process of wet zinc smelting. FIG. 2 shows a system using a thickener as a solid-liquid separator in the copper separation and removal process, and FIG. 3 shows a system using a filter press as the solid-liquid separation device in the copper separation and removal process.

【0004】図2において、1は亜鉛焼鉱の浸出槽(:
溶解槽)、1bは硫酸溶液(:浸出液)、2は亜鉛焼鉱の
溶解液である浸出液の固液分離装置(:中性シック
ナ)、2b、4b、5Aa 、6b、8bは浸出液、3は浸出液を昇
温するための熱交換器、4は亜鉛末の添加によってCu2+
の一部を置換、析出するための浸出液脱銅槽(以下脱銅
槽とも記す)、4aは亜鉛末の浸出液脱銅槽4内への供給
装置、4c、6c、8cは攪拌機駆動装置、5Aはシックナ、5A
b は銅回収工程、6はCo2+、Ni2+、Cu2+を置換、析出す
るための清浄槽(以下脱コバルト槽とも記す)、6aは清
浄槽6内へ亜鉛末および亜砒酸を供給する供給装置、
7、9はフィルタープレス、8はCdを置換、析出するた
めの清浄槽(以下脱カドミウム槽とも記す)、8aは亜鉛
末の清浄槽8内への供給装置、10は亜鉛電解槽、11は硫
酸溶液である電解尾液の浸出槽1への供給配管、21は高
温高酸溶解槽、71はコバルト回収工程、91はカドミウム
回収工程、Pはポンプを示す。
In FIG. 2, reference numeral 1 denotes a zinc leaching tank (:
Dissolution tank), 1b is a sulfuric acid solution (: leachate), 2 is a solid-liquid separation device (: neutral thickener) of a leachate, which is a solution of zinc ore, 2b, 4b, 5Aa, 6b, 8b is a leachate, 3 is a leachate heat exchanger for leachate heating, 4 Cu 2+ by addition of zinc dust
Leachate removal copper tank (hereinafter also referred to as copper removal tank) for substituting and precipitating a part of copper, 4a is a supply device of zinc dust into leachate removal copper tank 4, 4c, 6c, 8c is a stirrer driving device, 5A Is Sicuna, 5A
b is a copper recovery process, 6 is a cleaning tank for replacing and depositing Co 2+ , Ni 2+ , and Cu 2+ (hereinafter also referred to as a decobalt tank), and 6a supplies zinc dust and arsenite to the cleaning tank 6 Feeding device,
7 and 9 are filter presses, 8 is a cleaning tank for replacing and precipitating Cd (hereinafter also referred to as a decadmium tank), 8a is a supply device of zinc powder into the cleaning tank 8, 10 is a zinc electrolytic tank, and 11 is a zinc electrolytic tank. A supply pipe for the electrolytic tail solution, which is a sulfuric acid solution, to the leaching tank 1, 21 is a high-temperature and high-acid dissolving tank, 71 is a cobalt recovery step, 91 is a cadmium recovery step, and P is a pump.

【0005】また、図3において、5Bはフィルタープレ
ス、5Bb は銅回収工程を示し、その他の符号は図2と同
様の内容を示す。図2に示す従来の湿式亜鉛製錬の浸出
工程、清浄工程においては、先ず、浸出槽1に、亜鉛精
鉱を焙焼して得られた亜鉛焼鉱、亜鉛電解槽10で使用さ
れた硫酸溶液である電解尾液および過マンガン酸カリウ
ム(KMnO4)などの酸化剤が供給され、亜鉛焼鉱が浸
出(:溶解)される。
In FIG. 3, 5B indicates a filter press, 5Bb indicates a copper recovery step, and other reference numerals indicate the same contents as in FIG. In the leaching step and the cleaning step of the conventional wet zinc smelting shown in FIG. 2, first, in a leaching tank 1, a zinc ore obtained by roasting a zinc concentrate and sulfuric acid used in a zinc electrolytic tank 10 are used. An oxidizing agent such as an electrolytic tail solution and potassium permanganate (KMnO 4 ), which are solutions, is supplied, and zinc ore is leached (dissolved).

【0006】得られた浸出液は、固液分離装置2を経由
して脱銅槽4に送液され、脱銅槽4に供給される亜鉛末
と混合、攪拌された後、シックナ5Aに送液される。シッ
クナ5Aを経由した浸出液は、熱交換器3で約60〜80℃に
昇温後、清浄槽(:脱コバルト槽)6において、清浄槽
6に供給される亜鉛末および亜砒酸と混合、攪拌された
後、フィルタープレス7に送液される。
[0006] The obtained leachate is sent to the copper removal tank 4 via the solid-liquid separator 2, mixed with zinc dust supplied to the copper removal tank 4, stirred, and then sent to the thickener 5A. Is done. The leachate passed through the thickener 5A is heated to about 60 to 80 ° C. in the heat exchanger 3 and then mixed and stirred with zinc dust and arsenous acid supplied to the cleaning tank 6 in the cleaning tank (decobalt tank) 6. After that, the solution is sent to the filter press 7.

【0007】フィルタープレス7を経由した浸出液は、
清浄槽(:脱カドミウム槽)8において、清浄槽8に供
給される亜鉛末と混合、攪拌された後、フィルタープレ
ス9に送液される。フィルタープレス9を経由した清浄
後の浸出液は、亜鉛電解槽10に送液され、硫酸亜鉛の電
解により電気亜鉛が製造される。
[0007] The leachate passed through the filter press 7 is:
After being mixed and stirred with zinc dust supplied to the cleaning tank 8 in the cleaning tank (: de-cadmium tank) 8, the liquid is sent to the filter press 9. The leachate after cleaning through the filter press 9 is sent to a zinc electrolytic cell 10 to produce electrozinc by electrolysis of zinc sulfate.

【0008】亜鉛電解槽10で亜鉛濃度が低下した浸出液
(:電解尾液)は、浸出槽1に循環供給され、亜鉛が補
給される。上記した浸出、清浄、亜鉛電解工程において
は、亜鉛焼鉱が浸出されると共に、下記の反応によって
Fe、As、Sb、Ge、Cu、Co、Ni、Cdである不純物が除去さ
れる。
The leachate having a reduced zinc concentration in the zinc electrolytic cell 10 (electrolysis tail liquid) is circulated and supplied to the leach tank 1 to replenish zinc. In the above-described leaching, cleaning, and zinc electrolysis steps, zinc ore is leached and by the following reaction
The impurities of Fe, As, Sb, Ge, Cu, Co, Ni, and Cd are removed.

【0009】〔浸出槽1、固液分離装置2におけるFe、
As、Sb、Geの除去:〕浸出液中のFe2+が酸化剤で酸化さ
れて生成したFe(OH)3 の沈澱時に、As、Sb、Geが共沈し
て除去される。 〔脱銅槽4、シックナ5AにおけるCuの除去:〕下記式
(1) による置換、析出(:沈澱)反応によってCuが析出
し、析出したCuはシックナ5Aによって、浸出液と分離さ
れ、分離されたCuは銅回収工程5Ab に送られる。
[Fe in the leaching tank 1 and the solid-liquid separation device 2,
Removal of As, Sb, and Ge:] As Fe (OH) 3 formed by oxidizing Fe 2+ in the leachate with an oxidizing agent, As, Sb, and Ge are co-precipitated and removed. [Removal of Cu in copper removal tank 4, thickener 5A:]
Cu is precipitated by the substitution and precipitation (precipitation) reaction by (1), and the deposited Cu is separated from the leaching solution by the thickener 5A, and the separated Cu is sent to the copper recovery step 5Ab.

【0010】Cu2++Zn→Zn2++Cu↓………(1) なお、析出したCuの分離法としては、図3に示すよう
に、フィルタープレス5Bを用いることも可能である。 〔清浄槽(:脱コバルト槽)6、フィルタープレス7に
おけるCo、Niの除去:〕Co、Niの除去を完全に行うため
に、亜鉛末と共に亜砒酸を添加し、Co、Niを置換、析出
し、析出したCo、Niはフィルタープレス7によって、浸
出液と分離され、分離されたCoはコバルト回収工程71に
送られる。
Cu 2+ + Zn → Zn 2+ + Cu ↓ (1) As a method for separating precipitated Cu, a filter press 5B can be used as shown in FIG. [Removal of Co and Ni in cleaning tank (: de-cobalt tank) 6 and filter press 7:] To completely remove Co and Ni, arsenous acid is added together with zinc powder to replace and precipitate Co and Ni. The precipitated Co and Ni are separated from the leachate by the filter press 7, and the separated Co is sent to a cobalt recovery step 71.

【0011】この場合、残留するCu2+が置換、析出しC
o、Niと共沈する。 〔清浄槽(:脱カドミウム槽)8、フィルタープレス9
におけるCdの除去:〕浸出液への亜鉛末の添加、混合に
よって、Cdが置換、析出し、析出したCdはフィルタープ
レス9によって、浸出液と分離され、分離されたCdはカ
ドミウム回収工程91に送られる。
In this case, the remaining Cu 2+ is replaced and precipitated,
Co-precipitates with o and Ni. [Purification tank (: decadmium tank) 8, filter press 9
Removal of Cd in :) Addition and mixing of zinc dust to the leachate, Cd is replaced and precipitated, and the deposited Cd is separated from the leachate by the filter press 9 and sent to the cadmium recovery step 91. .

【0012】以上、従来の湿式亜鉛製錬における浸出、
清浄工程について説明したが、前記した図2、図3に示
す清浄槽(:脱コバルト槽)6におけるCo、Niの置換、
析出に際しては、Cuとの共沈が必要であり、清浄槽(:
脱コバルト槽)6の浸出液中のCu2+イオン濃度を一定の
範囲内に制御する必要がある。すなわち、脱銅槽4にお
いて亜鉛末を一定量以上添加し、Cu2+をCuとして置換、
析出すると、脱コバルト槽6に供給される浸出液中のCu
2+濃度が、Co、Niとの共沈に必要な量より低下し、C
o2+、Ni2+の除去が進行せず、亜鉛電解槽10へ供給され
る浸出液中の不純物量が増加する。
As described above, the leaching in the conventional wet zinc smelting,
Although the cleaning step has been described, the replacement of Co and Ni in the cleaning tank (: de-cobalt tank) 6 shown in FIGS.
For precipitation, co-precipitation with Cu is necessary, and the cleaning tank (:
It is necessary to control the concentration of Cu 2+ ions in the leachate of the cobalt removal tank 6 within a certain range. That is, in the copper removal tank 4, a certain amount of zinc powder is added, and Cu 2+ is replaced with Cu.
When precipitated, Cu in the leachate supplied to the decobalt tank 6
2+ concentration lower than the amount required for coprecipitation with Co, Ni, C
The removal of o 2+ and Ni 2+ does not proceed, and the amount of impurities in the leachate supplied to the zinc electrolytic cell 10 increases.

【0013】逆に、脱銅槽4における亜鉛末の添加量が
一定量以下の場合、脱銅槽4におけるCu2+のCuへの置
換、析出量が減少し、脱コバルト槽6への銅負荷が増
し、Co2+、Ni2+の除去が進行せず、亜鉛電解槽10へ供給
される浸出液中の不純物量が増加する。すなわち、湿式
亜鉛製錬の清浄工程においては、脱銅槽4による浸出液
中の銅濃度の調整が重要となるが、従来、下記の問題点
(1) 、(2) があった。
Conversely, when the amount of zinc dust added in the copper removal tank 4 is less than a certain amount, the amount of Cu 2+ replaced by Cu in the copper removal tank 4 and the amount of precipitation are reduced, and the amount of copper added to the cobalt removal tank 6 is reduced. The load increases, the removal of Co 2+ and Ni 2+ does not progress, and the amount of impurities in the leachate supplied to the zinc electrolytic cell 10 increases. That is, in the cleaning step of the wet zinc smelting, it is important to adjust the copper concentration in the leachate by the copper removal tank 4, but conventionally, the following problems have been encountered.
There were (1) and (2).

【0014】(1)脱銅工程の固液分離装置で得られる残
渣中のCu品位の問題:図2のシックナ5Aもしくは図3の
フィルタープレス5Bで得られる残渣中のCu品位が低く、
銅回収工程5Ab 、5Bb での負荷が大であった。 (2)脱銅工程で置換、析出するCuの沈降性の問題:図2
の脱銅槽4で置換、析出するCuのシックナ5Aにおける沈
降性が悪く、浸出液の送液量を制限するか、送液量を増
加するためにシックナの容積を増加する必要があった。
(1) The problem of the Cu quality in the residue obtained by the solid-liquid separator in the copper removal step: The Cu quality in the residue obtained by the thickener 5A in FIG. 2 or the filter press 5B in FIG.
The load in the copper recovery steps 5Ab and 5Bb was heavy. (2) Problem of sedimentation of Cu replaced and deposited in copper removal process: Fig. 2
The sedimentation of Cu replaced and precipitated in the copper removal tank 4 in the thickener 5A was poor, and it was necessary to limit the amount of the leachate to be sent or to increase the volume of the thickener in order to increase the amount of the leachate.

【0015】[0015]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、脱銅工程で得られる残渣中の
銅品位が高く、さらには、脱銅工程における浸出液中の
銅の沈降性に優れた湿式亜鉛製錬の清浄工程における浸
出液中銅濃度の調整方法および調整設備を提供すること
を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has high copper quality in the residue obtained in the decoppering step, and further has the effect of removing copper in the leachate in the decopperizing step. It is an object of the present invention to provide a method and an equipment for adjusting the copper concentration in a leachate in a cleaning process of wet zinc smelting having excellent sedimentation properties.

【0016】[0016]

【課題を解決するための手段】第1の発明は、亜鉛焼鉱
の硫酸溶液による浸出液を分液し、分液後の一方の浸出
液に亜鉛末を添加、混合し、銅を分離、除去して得られ
た浸出液と、前記した分液後の他方の浸出液とを混合し
浸出液中の銅濃度を調整することを特徴とする湿式亜鉛
製錬の清浄工程における浸出液中銅濃度の調整方法であ
る。
According to a first aspect of the present invention, a leachate of a calcined ore with a sulfuric acid solution is separated, zinc powder is added to one of the leachates after the separation, mixed, and copper is separated and removed. And a method for adjusting the copper concentration in the leachate in the cleaning step of the wet zinc smelting, which comprises mixing the leachate obtained as described above and the other leachate after the separation to adjust the copper concentration in the leachate. .

【0017】前記した第1の発明の浸出液中銅濃度の調
整方法は、さらに、該調整方法で銅濃度を調整した混合
浸出液に、亜鉛末と、亜砒酸、亜アンチモン酸、酒石酸
アンチモンおよび酒石酸アンチモンカリウムから選ばれ
た1種または2種以上とを添加、混合した後、該混合浸
出液中の析出物を分離、除去する湿式亜鉛製錬の清浄工
程における浸出液中不純物の除去方法に好適に用いられ
る(第1の発明の好適態様)。
In the above method for adjusting the copper concentration in a leachate according to the first invention, the mixed leachate having the copper concentration adjusted by the adjustment method further comprises adding zinc dust, arsenous acid, antimony acid, antimony tartrate and potassium antimony tartrate to the mixed leachate. After adding and mixing with one or more kinds selected from the group consisting of, a precipitate in the mixed leachate is separated and removed, and is suitably used in a method for removing impurities in a leachate in a cleaning step of wet zinc smelting ( Preferred embodiment of the first invention).

【0018】また、前記した第1の発明、第1の発明の
好適態様においては、前記した混合によって得られる浸
出液中のCu2+濃度が所定のCu2+濃度M0 となるように、
浸出液の分液比を調整することが好ましい。さらに、前
記した第1の発明、第1の発明の好適態様においては、
分液前の浸出液など亜鉛末添加前の浸出液(:亜鉛末未
添加の状態の浸出液)のCu2+濃度Mを分析し、混合して
得られる浸出液のCu2+濃度が所定のCu2+濃度M0 となる
ように、下記式(2) 、(3) に基づいて分液比(:F1
2 )および前記した分液後の一方の浸出液中への亜鉛
末の添加(:供給)量Xを制御することが、より好まし
い。
Further, in the above-mentioned first invention and preferred embodiments of the first invention, the Cu 2+ concentration in the leachate obtained by the above-mentioned mixing becomes a predetermined Cu 2+ concentration M 0 .
It is preferable to adjust the liquid separation ratio of the leaching solution. Further, in the above-mentioned first invention and preferred embodiments of the first invention,
The Cu 2+ concentration M of the leachate before zinc powder addition (ie, the leachate without zinc powder added) such as the leachate before liquid separation is analyzed, and the Cu 2+ concentration of the leachate obtained by mixing is predetermined Cu 2+ The liquid separation ratio (: F 1 / F) is determined based on the following equations (2) and (3) so that the concentration becomes M 0.
It is more preferable to control the amount X (addition) of zinc powder to F 2 ) and one of the leaching solutions after the liquid separation.

【0019】 分液比=F1 /F2 =(M0 )/(M−M0 )………(2) 前記した分液後の一方の浸出液中への亜鉛末の添加(:供給)量X(mol-Zn/hr ) ≧(1000F2 )×M(mol-Cu2+ /l- 浸出液) …………(3) なお、上記式(2) 、(3) 中、F1 は前記した分液後の一
方の浸出液の処理量(または流量)(m3/hr) 、F2 は前
記した分液後の他方の浸出液の処理量(または流量)(m
3/hr) を示す。
Separation ratio = F 1 / F 2 = (M 0 ) / (M−M 0 ) (2) Addition of zinc dust to one leachate after the above-mentioned separation (: supply) Amount X (mol-Zn / hr) ≧ (1000F 2 ) × M (mol-Cu 2+ / l− leaching solution) (3) In the above formulas (2) and (3), F 1 is The processing amount (or flow rate) of one leachate after the above-described separation (m 3 / hr), and F 2 is the processing amount (or flow rate) of the other leachate after the above-described separation (or flow rate) (m
3 / hr).

【0020】また、M0 は、前記した混合して得られる
浸出液の所定のCu2+濃度である。すなわち、M0 は、亜
鉛末、亜砒酸、亜アンチモン酸などの薬剤添加による反
応(=Co、Ni除去反応)が生じない状態での混合浸出液
の目標Cu2+濃度を示し、脱コバルト前の浸出液中のCo2+
濃度またはCo2+濃度およびNi2+濃度の両者から設定する
ことができる。
M 0 is a predetermined Cu 2+ concentration of the leachate obtained by mixing. That is, M 0 indicates the target Cu 2+ concentration of the mixed leachate in a state in which a reaction (= Co, Ni removal reaction) due to the addition of a chemical such as zinc dust, arsenous acid, antimony acid, etc. Co 2+ in
It can be set from the concentration or both the Co 2+ concentration and the Ni 2+ concentration.

【0021】第2の発明は、亜鉛焼鉱を硫酸溶液で浸出
する浸出槽1の出側に配設された浸出液の固液分離装置
2と該固液分離装置2の後工程として配設された清浄槽
60とを接続する第1の送液系統101 と、該第1の送液系
統101 から分岐されると共に前記清浄槽60に接続された
第2の送液系統102 とを有し、該第2の送液系統102
に、亜鉛末の槽内への供給装置40a を付設した浸出液脱
銅槽40と、該浸出液脱銅槽40内から流出する浸出液の固
液分離装置50と、該固液分離装置50から流出する浸出液
の前記清浄槽60への送液系統102cが配設されたことを特
徴とする湿式亜鉛製錬の清浄工程における浸出液中銅濃
度の調整設備である。
According to a second aspect of the present invention, a solid-liquid separation device 2 for leaching liquid provided on the outlet side of a leaching tank 1 for leaching zinc ore with a sulfuric acid solution and a solid-liquid separation device 2 provided as a post-process. Clean tank
60, and a second liquid feed system 102 branched from the first liquid feed system 101 and connected to the cleaning tank 60. Liquid sending system 102
In addition, a leachate removal copper tank 40 provided with a supply device 40a for feeding zinc powder into the tank, a solid-liquid separation device 50 for the leachate flowing out of the leachate removal copper tank 40, and a leachate flowing out of the solid-liquid separation device 50 This is a facility for adjusting the copper concentration in the leachate in the cleaning step of wet zinc smelting, wherein a liquid supply system 102c for feeding the leachate to the cleaning tank 60 is provided.

【0022】前記した第2の発明の浸出液中銅濃度の調
整設備は、さらに、前記清浄槽(60)に、該槽内へ亜鉛末
と、亜砒酸、亜アンチモン酸、酒石酸アンチモンおよび
酒石酸アンチモンカリウムから選ばれる1種または2種
以上とを供給する供給装置(60a) および該槽内から流出
する浸出液の固液分離装置(70)が配設された湿式亜鉛製
錬の清浄工程における浸出液中不純物の除去設備に好適
に用いられる(第2の発明の好適態様)。
The above-mentioned equipment for adjusting the concentration of copper in a leachate according to the second aspect of the present invention further comprises the step of adding zinc powder and arsenous acid, antimony acid, antimony tartrate and antimony potassium tartrate to the cleaning tank (60). A feeder (60a) for supplying one or more selected ones and a solid-liquid separator (70) for the leachate flowing out of the tank (70) are provided. It is suitably used for a removal facility (a preferred embodiment of the second invention).

【0023】なお、前記した第2の発明、第2の発明の
好適態様においては、前記した第1の送液系統101 、第
2の送液系統102 に、下記〜のいずれかの方式で浸
出液流量計FM1 、FM2 、浸出液流量調節弁CVを付設する
ことが好ましい。 :第1の送液系統101 および第2の送液系統102 の両
者に浸出液流量計FM1、FM2 を付設すると共に、第2の
送液系統102 を分岐した後の第1の送液系統101 である
送液系統101bおよび第2の送液系統102 の内、少なくと
もいずれかの送液系統に浸出液流量調節弁CVを付設す
る。
In the above-mentioned second and second aspects of the present invention, the leachate is supplied to the first liquid supply system 101 and the second liquid supply system 102 by any of the following methods: It is preferable to provide flow meters FM 1 and FM 2 and a leachate flow rate control valve CV. : The leachate flow meters FM 1 and FM 2 are attached to both the first liquid feed system 101 and the second liquid feed system 102, and the first liquid feed system after branching the second liquid feed system 102 A leachate flow rate control valve CV is attached to at least one of the liquid feed system 101b and the second liquid feed system 102 which is 101.

【0024】:第1の送液系統101 であって第2の送
液系統102 を分岐する前の送液系統101aに浸出液流量計
FM1 を付設すると共に、第2の送液系統102 を分岐した
後の第1の送液系統101 である送液系統101bおよび第2
の送液系統102 の内、少なくともいずれかの送液系統に
浸出液流量調節弁CVを付設する。 :第1の送液系統101 であって第2の送液系統102 を
分岐した後の第1の送液系統101 である送液系統101bに
浸出液流量計FM1 を付設すると共に、第2の送液系統10
2 に浸出液流量調節弁CVを付設する。
A leachate flow meter is provided in the liquid sending system 101a, which is the first liquid sending system 101 and is not branched from the second liquid sending system 102.
In addition to the FM 1 , the first liquid supply system 101 after branching the second liquid supply system 102, the liquid supply system 101 b, and the second
The leachate flow rate control valve CV is attached to at least one of the liquid supply systems 102 among the liquid supply systems 102. : While attached leachate flow meter FM 1 to the first liquid supply line 101b is a feeding line 101 after it is branched to the second liquid supply system 102 and a first feeding line 101, the second Liquid supply system 10
2 is equipped with a leachate flow rate control valve CV.

【0025】:第2の送液系統102 に浸出液流量計FM
2 を付設すると共に、第2の送液系統102 を分岐した後
の第1の送液系統101 である送液系統101bに浸出液流量
調節弁CVを付設する。また、前記した第2の発明、第2
の発明の好適態様においては、前記した第1の送液系統
101 、第2の送液系統102 であって浸出液脱銅槽40の上
流側の送液系統102aの内、少なくともいずれかの送液系
統に銅濃度分析計20を付設することが好ましい。
The leachate flow meter FM is supplied to the second liquid sending system 102.
2 , and a leachate flow rate control valve CV is added to the liquid supply system 101b, which is the first liquid supply system 101 after branching the second liquid supply system 102. Further, the second invention, the second invention,
In a preferred embodiment of the invention, the first liquid feeding system described above
It is preferable that the copper concentration analyzer 20 be attached to at least one of the second liquid feed system 102 and the liquid feed system 102a on the upstream side of the leachate removing copper tank 40.

【0026】さらに前記した第2の発明、第2の発明の
好適態様の浸出液中銅濃度の調整設備、浸出液中不純物
の除去設備においては、前記した第1の送液系統101 お
よび第2の送液系統102 に、前記した〜のいずれか
の方式で浸出液流量計FM1 および/または浸出液流量計
FM2 と、浸出液流量調節弁CVとを付設し、前記した第1
の送液系統101 、第2の送液系統102 であって浸出液脱
銅槽40の上流側の送液系統102aの内、少なくともいずれ
かの送液系統に銅濃度分析計20を付設すると共に、(1)
該銅濃度分析計20で得られる銅濃度の分析値M、(2) 清
浄槽60へ送液する浸出液(:全浸出液)の目標Cu2+濃度
0 および(3) 浸出液流量計FM1 および/または浸出液
流量計FM2 で得られる流量測定値の3者に基づき浸出液
流量調節弁CVの開度を制御する制御装置100 を付設する
ことが、より好ましい。
Further, in the facility for adjusting the copper concentration in the leachate and the facility for removing impurities in the leachate according to the second aspect of the present invention and the preferred aspect of the second aspect of the invention, the first liquid supply system 101 and the second supply The leachate flow meter FM 1 and / or the leachate flow meter
FM 2 and a leachate flow rate control valve CV are attached, and the first
A copper concentration analyzer 20 is attached to at least one of the liquid supply systems 101 and the second liquid supply system 102, which is the liquid supply system 102a on the upstream side of the leachate removing copper tank 40, (1)
Analyzed value M of the copper concentration obtained by the copper concentration analyzer 20, (2) target Cu 2+ concentration M 0 of the leachate to be sent to the cleaning tank 60 (: total leachate) and (3) leachate flow meter FM 1 and it is more preferable / or for attaching a control unit 100 for controlling the opening of the leachate flow control valve CV based on the three-way flow measurements obtained by leachate flow meter FM 2.

【0027】また、上記した制御装置100 は、下記式
(2) 、(4) に基づいて浸出液流量調節弁CVの開度を制御
する制御装置であることが、より好ましい。 F1 /F2 =(M0 )/(M−M0 )………(2) F1 =F−F2 …………………………………(4) なお、上記式(2) 、(4) 中、Fは第1の送液系統101 で
あって第2の送液系統102 を分岐する前の送液系統101a
を送液される浸出液の流量、F1 は清浄槽60へ直接送液
する浸出液の流量、F2 は脱銅槽40へ送液する浸出液の
流量、Mは前記した銅濃度分析計20で得られる銅濃度の
分析値、M0 は清浄槽60へ送液する浸出液(:全浸出
液)の目標Cu2+濃度を示す。
Further, the above-mentioned control device 100 has the following formula:
It is more preferable that the control device controls the opening degree of the leachate flow rate control valve CV based on (2) and (4). F 1 / F 2 = (M 0 ) / (M−M 0 ) (2) F 1 = F−F 2 ……………………… (4) In (2) and (4), F is the first liquid feed system 101 and the liquid feed system 101a before branching off the second liquid feed system 102.
Leachate flow is fed to, F 1 is obtained in a clean tank 60 directly feeding the leachate to flow to, F 2 copper concentration analyzer 20 leachate flow, M is described above for feeding to Datsudoso 40 The analysis value of the copper concentration, M 0 , indicates the target Cu 2+ concentration of the leachate (total leachate) sent to the cleaning tank 60.

【0028】なお、前記した清浄槽60へ送液する浸出液
(:全浸出液)の目標Cu2+濃度M0は、該浸出液のCo2+
濃度または該浸出液のCo2+濃度およびNi2+濃度から決定
することが好ましい。
The target Cu 2+ concentration M 0 of the leaching solution (total leaching solution) to be sent to the cleaning tank 60 is determined by the Co 2+ of the leaching solution.
It is preferable to determine the concentration or the Co 2+ concentration and the Ni 2+ concentration of the leachate.

【0029】[0029]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、前記した従来技術の問題点を解決
するため鋭意検討した結果、下記浸出液中銅濃度の調整
方法、調整設備に想到した。すなわち、図2、図3に示
す脱銅槽4への亜鉛末添加量の制御による従来の清浄槽
(:脱コバルト槽)6浸出液中のCu2+濃度の制御(:全
浸出液を対象とする部分脱銅)に対して、発想を全く転
換し、亜鉛焼鉱の浸出液を分液し、分液後の一方の浸出
液に該浸出液中のCu2+の全量が置換、析出するために必
要な十分な量の亜鉛末を添加し、Cu2+を除去し、得られ
た浸出液と、分液後のCu2+を含有する他方の浸出液とを
混合することによって、浸出液中のCu2+濃度を所定の値
に制御する浸出液中銅濃度の調整方法、調整設備に想到
した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems of the prior art, and as a result, have arrived at the following method and equipment for adjusting the copper concentration in a leachate. That is, the conventional cleaning tank (: cobalt removal tank) 6 controls the concentration of Cu 2+ in the leachate by controlling the amount of zinc dust added to the copper removal tank 4 shown in FIGS. For partial decopperization, the idea was completely changed, and the leachate of zinc ore was separated, and the total amount of Cu 2+ in the leachate was replaced and precipitated by one of the leachate after separation. adding a sufficient amount of zinc powder to remove Cu 2+, and the resulting leachate, by mixing the other leachate containing Cu 2+ after separation, Cu 2+ concentration in the leaching solution Of the method and apparatus for adjusting the copper concentration in the leachate to control the temperature to a predetermined value.

【0030】上記した分液後の一方の浸出液を全量脱銅
し、得られた浸出液を分液後の他方の浸出液と混合し、
清浄槽(:脱コバルト槽)へ供給することによって、浸
出液中のCoを安定して高除去率で除去することが可能で
あると共に、脱銅工程において高いCu品位の残渣を得る
ことが可能となり、さらには脱銅工程における浸出液中
のCuの沈降性を大幅に向上することが可能となった。
The whole leachate after the above liquid separation is decoppered, and the obtained leachate is mixed with the other leachate after the liquid separation,
By supplying it to the cleaning tank (: decobalt tank), it is possible to remove Co in the leachate stably at a high removal rate and to obtain a high Cu grade residue in the copper removal process. Further, it was possible to greatly improve the sedimentation of Cu in the leachate in the copper removal step.

【0031】すなわち、第1の発明の骨子は、亜鉛焼鉱
の浸出液を分液し、分液後の一方の浸出液に亜鉛末を添
加し、Cuを置換、析出、分離、除去した後の浸出液と、
分液後の他方の浸出液とを混合し浸出液中の銅濃度を調
整する湿式亜鉛製錬の清浄工程における浸出液中銅濃度
の調整方法である。また、第1の発明の好適態様の骨子
は、前記した第1の発明において、得られた混合浸出液
に、亜鉛末と、亜砒酸、亜アンチモン酸、酒石酸アンチ
モンおよび酒石酸アンチモンカリウムから選ばれる1種
または2種以上とを添加し、Coを置換、析出し、Cuと共
沈せしめ、分離、除去する湿式亜鉛製錬の清浄工程にお
ける浸出液中不純物の除去方法である。
That is, the essence of the first invention is to separate a leachate of calcined ore, add zinc powder to one of the leachate after the separation, and replace, precipitate, separate and remove Cu to obtain the leachate. When,
This is a method for adjusting the copper concentration in the leachate in the cleaning step of wet zinc smelting, in which the separated leachate is mixed with the other leachate to adjust the copper concentration in the leachate. Further, the gist of a preferred embodiment of the first invention is the above-mentioned first invention, wherein the obtained mixed leaching solution contains zinc powder and one or more selected from arsenous acid, antimony acid, antimony tartrate and antimony potassium tartrate. This is a method for removing impurities in a leachate in a cleaning step of wet zinc smelting, in which two or more kinds are added to replace and precipitate Co, coprecipitate with Cu, and separate and remove.

【0032】第2の発明の骨子は、亜鉛焼鉱の硫酸溶液
による浸出液の固液分離装置2と清浄槽(:脱コバルト
槽)60とを接続する第1の送液系統101 と、該第1の送
液系統101 から分岐されると共に前記清浄槽60に接続さ
れた第2の送液系統102 を有し、該第2の送液系統102
に、亜鉛末の供給装置40a を付設した浸出液脱銅槽(:
脱銅槽)40と、該脱銅槽40内から流出する浸出液の固液
分離装置50と、該固液分離装置50から流出する浸出液の
前記清浄槽60への送液系統102cが配設された湿式亜鉛製
錬の清浄工程における浸出液中銅濃度の調整設備であ
る。
The gist of the second invention is a first liquid sending system 101 which connects a solid-liquid separation device 2 for a leachate with a sulfuric acid solution of a calcined ore, and a cleaning tank (a decobalt tank) 60, A second liquid feed system 102 branched from the first liquid feed system 101 and connected to the cleaning tank 60;
In addition, a leachate removal copper tank (:
A copper removal tank) 40; a solid-liquid separation device 50 for the leachate flowing out of the copper removal tank 40; and a liquid supply system 102c for the leachate flowing out of the solid-liquid separation device 50 to the cleaning tank 60. This is a facility for adjusting the copper concentration in the leachate in the cleaning process of wet zinc smelting.

【0033】第2の発明の好適態様の骨子は、前記した
第2の発明において、前記清浄槽60に、該槽内への亜鉛
末と、亜砒酸、亜アンチモン酸、酒石酸アンチモンおよ
び酒石酸アンチモンカリウムから選ばれる1種または2
種以上とを供給する供給装置60a および該槽内から流出
する浸出液の固液分離装置70を配設した湿式亜鉛製錬の
清浄工程における浸出液中不純物の除去設備である。
The gist of a preferred embodiment of the second invention is that, in the above-mentioned second invention, the above-mentioned cleaning tank 60 contains zinc dust and arsenous acid, antimony acid, antimony tartrate and antimony potassium tartrate in the tank. One or two selected
This is a facility for removing impurities in leachate in the cleaning process of wet zinc smelting, which is provided with a supply device 60a for supplying seeds or more and a solid-liquid separation device 70 for leachate flowing out of the tank.

【0034】以下、本発明を、図面を参照して説明す
る。図1に、本発明の湿式亜鉛製錬の清浄工程における
浸出液中銅濃度の調整設備、浸出液中不純物の除去設備
に係る工程図の一例を示す。図1において、A部が本発
明の浸出液中銅濃度の調整設備の一例を示し、B部が本
発明の浸出液中不純物の除去設備の一例を示す。
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 shows an example of a process diagram relating to a facility for adjusting the copper concentration in a leachate and a facility for removing impurities in a leachate in the cleaning step of the wet zinc smelting of the present invention. In FIG. 1, part A shows an example of a facility for adjusting the copper concentration in a leachate of the present invention, and part B shows an example of a facility for removing impurities in a leachate of the present invention.

【0035】図1において、20はCu濃度分析計(:Cu濃
度自動分析計)、40はCu2+の一部を置換、析出するため
の浸出液脱銅槽(:脱銅槽)、40a は亜鉛末の脱銅槽40
内への供給装置、40b 、50a 、60b は浸出液、40c 、60
c は攪拌機駆動装置、50はシックナなどの固液分離装
置、50b は銅回収工程、51は貯液槽、60はCo2+、Ni2+
Cu2+を置換、析出するための清浄槽(:脱コバルト
槽)、60a は清浄槽60内へ亜鉛末と、亜砒酸、亜アンチ
モン酸、酒石酸アンチモンおよび酒石酸アンチモンカリ
ウムから選ばれる1種または2種以上とを供給する供給
装置、70はフィルタープレスなどの固液分離装置、100
は制御装置を示す。
In FIG. 1, reference numeral 20 denotes a Cu concentration analyzer (: Cu concentration automatic analyzer), 40 denotes a leachate copper removal tank (: copper removal tank) for replacing and depositing a part of Cu 2+ , and 40a denotes a copper removal tank. Copper dust removal tank 40
Inlet device, 40b, 50a, 60b is leachate, 40c, 60
c is a stirrer drive, 50 is a solid-liquid separator such as thickener, 50b is a copper recovery process, 51 is a storage tank, 60 is Co 2+ , Ni 2+ ,
Purification tank for replacing and depositing Cu 2+ (: decobalt tank), 60a is zinc powder and one or two kinds selected from arsenous acid, antimony acid, antimony tartrate and antimony potassium tartrate in cleaning tank 60 A supply device that supplies the above, 70 is a solid-liquid separation device such as a filter press, 100
Indicates a control device.

【0036】また、101 は浸出槽1の出側に配設された
浸出液の固液分離装置2と該固液分離装置2の後工程と
して配設された清浄槽(:脱コバルト槽)60とを接続す
る第1の送液系統、101aは第1の送液系統101 であって
第2の送液系統102 を分岐する前の送液系統、101bは第
1の送液系統101 であって第2の送液系統102 を分岐し
た後の第1の送液系統101 、102 は第1の送液系統101
から分岐されると共に清浄槽60に接続された第2の送液
系統、102aは第1の送液系統101 から分岐されると共に
脱銅槽40に接続された送液系統、102bは脱銅槽40と固液
分離装置50とを接続する送液系統、102cは固液分離装置
50から流出する浸出液の脱コバルト槽60への送液系統、
103 は固液分離装置50で分離された種結晶を含むスラリ
ー(または濾過ケーキ)の脱銅槽40への返送系統、CVは
浸出液流量調節弁、Fは浸出槽1から流出する浸出液の
流量、F1 は第1の送液系統101 (送液系統101a、101
b)を経由して清浄槽60へ直接送液する浸出液の流量、
2 は送液系統102 (送液系統102a)を経由して脱銅槽
40へ送液する浸出液の流量、FM1,FM2 は浸出液流量計、
1,l2,l3,l4,l5 は送液配管、Pはポンプを示し、
その他の符号は図2、図3と同様の内容を示す。
Reference numeral 101 denotes a solid-liquid separating device 2 for leaching liquid provided on the outlet side of the leaching tank 1 and a cleaning tank (a decobalt tank) 60 provided as a post-process of the solid-liquid separating device 2. A first liquid sending system 101a is a first liquid sending system 101 and a liquid sending system before branching a second liquid sending system 102, and 101b is a first liquid sending system 101. After branching the second liquid supply system 102, the first liquid supply systems 101 and 102 are connected to the first liquid supply system 101.
, A liquid supply system 102a branched from the first liquid supply system 101 and connected to the copper removal tank 40, and 102b a copper removal tank connected to the copper removal tank 40. A liquid feeding system connecting the solid-liquid separator 40 and the solid-liquid separator 50, and 102c is a solid-liquid separator.
A system for sending the leachate flowing out of the tank 50 to the decobalt tank 60,
103 is a system for returning the slurry (or filter cake) containing the seed crystals separated by the solid-liquid separator 50 to the copper removal tank 40, CV is a leachate flow rate control valve, F is the flow rate of the leachate flowing out of the leach tank 1, F 1 is a first liquid supply system 101 (liquid supply line 101a, 101
b) the flow rate of leachate sent directly to the cleaning tank 60 via
F 2 is a copper removal tank via the liquid feed system 102 (liquid feed system 102a)
Leachate flow rate to be sent to 40, FM 1 and FM 2 are leachate flow meters,
l 1 , l 2 , l 3 , l 4 , l 5 are liquid feed pipes, P is a pump,
Other symbols indicate the same contents as in FIGS.

【0037】また、制御装置100 は、銅濃度分析計20で
得られる銅濃度の分析値M、清浄槽60へ送液する浸出液
(:全浸出液)の目標Cu2+濃度M0 および浸出液流量計
FM1、FM2 で得られる流量測定値F、F2 の4者に基づ
き浸出液流量調節弁CVの開度を制御する制御装置であ
り、下記式(5) で規定される流量F2 となるように、浸
出液流量調節弁CVの開度を制御する制御装置である。
The control unit 100 also includes a copper concentration analysis value M obtained by the copper concentration analyzer 20, a target Cu 2+ concentration M 0 of the leachate (total leachate) to be sent to the cleaning tank 60, and a leachate flow meter.
An FM 1, flow measurements obtained in FM 2 F, a control device for controlling the opening of the leachate flow control valve CV based on the 4's F 2, the flow rate F 2 which is defined by the following formula (5) As described above, the control device controls the opening degree of the leachate flow rate control valve CV.

【0038】 F2 =〔(M−M0 )/M〕×F………(5) なお、上記した清浄槽60へ送液する浸出液(:全浸出
液)の目標Cu2+濃度M0は、該浸出液のCo2+濃度から決
定する。また、図1に示す固液分離装置50としては、フ
ィルタープレスなどの固液分離装置を用いることも可能
であり、固液分離の方式は制限されない。
F 2 = [(M−M 0 ) / M] × F (5) The target Cu 2+ concentration M 0 of the leaching solution (total leaching solution) to be sent to the cleaning tank 60 is: , Determined from the Co 2+ concentration of the leachate. Further, as the solid-liquid separation device 50 shown in FIG. 1, a solid-liquid separation device such as a filter press can be used, and the method of solid-liquid separation is not limited.

【0039】これは、本発明によれば、固液分離装置50
としてシックナ、フィルタープレスなどいずれの固液分
離装置を用いた場合も、固液分離後に得られる残渣中の
Cu品位を高めることが可能なためである。図1に示す浸
出液中銅濃度の調整設備A、浸出液中不純物の除去設備
Bにおいては、浸出槽1から固液分離装置(:中性シッ
クナ)2、熱交換器3を経由して送液された浸出液を分
液し、分液後の一方の浸出液を、送液系統101bによって
清浄槽(:脱コバルト槽)60へ、直接、送液する。
According to the present invention, the solid-liquid separation device 50
When using any solid-liquid separation device such as thickener, filter press, etc., the residue in the solid-liquid separation
This is because it is possible to enhance Cu quality. In the equipment A for adjusting the copper concentration in the leachate and the equipment B for removing impurities in the leachate shown in FIG. 1, the liquid is sent from the leach tank 1 via a solid-liquid separator (: neutral thickener) 2 and a heat exchanger 3. The separated leachate is separated, and one of the separated leachate is directly sent to the cleaning tank (: cobalt removal tank) 60 by the liquid sending system 101b.

【0040】一方、分液後の他方の浸出液を、送液系統
102aによって脱銅槽40へ送液し、脱銅槽40で得られた析
出Cuを含有する浸出液を送液系統102bによって固液分離
装置50に送液し、析出Cuを除去した後の浸出液を送液系
統102cによって清浄槽(:脱コバルト槽)60へ送液しCo
を除去する。脱銅槽40においては、好ましくは、供給さ
れる浸出液中のCu2+と当量以上の亜鉛末を添加し、浸出
液中のCu2+を全てCuとして置換、析出せしめ、得られた
浸出液を送液系統102bによって固液分離装置50に送液
し、浸出液中のCu2+、Cuを実質的に全て除去した後、送
液系統102cによって清浄槽(:脱コバルト槽)60へ送液
する。
On the other hand, the other leachate after liquid separation is supplied to a liquid sending system.
It is sent to the copper removal tank 40 by 102a, the leachate containing precipitated Cu obtained in the copper removal tank 40 is sent to the solid-liquid separator 50 by the liquid sending system 102b, and the leachate after removing the precipitated Cu is removed. The solution is sent to the cleaning tank (: de-cobalt tank) 60 by the liquid sending system 102c,
Is removed. In the copper removal tank 40, preferably, zinc powder in an amount equivalent to or more than Cu 2+ in the supplied leachate is added, and all the Cu 2+ in the leachate is replaced and precipitated with Cu, and the obtained leachate is fed. The solution is sent to the solid-liquid separation device 50 by the liquid system 102b, and after substantially removing Cu 2+ and Cu in the leachate, the solution is sent to the cleaning tank (: cobalt removing tank) 60 by the liquid sending system 102c.

【0041】上記した方法によれば、脱銅槽40におい
て、好ましくは、供給される浸出液中のCu2+イオンの量
に対して当量以上の亜鉛末を添加、混合することによっ
て、シックナ、フィルタープレスなどいずれの固液分離
装置50を用いた場合も、高いCu品位の残渣を得ることが
可能となり、さらには、浸出液中のCuの沈降性が大幅に
向上した。
According to the above-described method, in the decoppering tank 40, preferably, zinc powder in an amount equivalent to or more than the amount of Cu 2+ ions in the supplied leachate is added and mixed, thereby forming a thickener and a filter. In the case of using any of the solid-liquid separation devices 50 such as a press, a residue of high Cu quality can be obtained, and the sedimentation of Cu in the leachate has been greatly improved.

【0042】固液分離装置50で得られた固形分を含むス
ラリーまたはケーキは銅回収工程50b へ送給される。な
お、本発明において固液分離装置50としてシックナを用
いる場合、固液分離装置50で得られた固形分を含むスラ
リーまたはケーキの一部を種結晶として返送系統103 を
経由し脱銅槽40に返送することによって、沈降性をさら
に改善することができる。
The slurry or cake containing the solid content obtained in the solid-liquid separator 50 is sent to the copper recovery step 50b. When a thickener is used as the solid-liquid separator 50 in the present invention, a part of the slurry or cake containing the solid content obtained by the solid-liquid separator 50 is used as a seed crystal as a seed crystal and returned to the copper removal tank 40 via the return system 103. By returning, sedimentation can be further improved.

【0043】一方、分液後の他方の浸出液は、送液系統
101bによって、直接、清浄槽(:脱コバルト槽)60へ送
液するか、もしくは脱銅槽40で脱銅された浸出液と混合
後、清浄槽60へ送液する。上記した本発明の方法、設備
によれば、脱銅槽40から供給されるCu2+濃度が実質的に
0の浸出液と浸出槽1で得られた浸出液と同一のCu2+
度の浸出液との混合によって、清浄槽60に供給される浸
出液のCu2+濃度を制御し、清浄槽(:脱コバルト槽)60
におけるCo2+の置換、析出、Cuとの共沈を十分行うこと
ができると共に、後記の実施例に示されるように、脱銅
工程において高いCu品位の残渣を得ることが可能とな
り、さらには脱銅工程における浸出液中のCuの沈降性が
大幅に向上した。
On the other hand, the other leachate after liquid separation is supplied to a liquid sending system.
According to 101b, the solution is directly sent to the cleaning tank (: cobalt removal tank) 60, or mixed with the leachate decopperized in the copper removal tank 40, and then sent to the cleaning tank 60. According to the above-described method and equipment of the present invention, a leachate having a Cu 2+ concentration supplied from the copper removal tank 40 of substantially 0 and a leachate having the same Cu 2+ concentration as the leachate obtained in the leach tank 1 are used. By controlling the concentration of Cu 2+ in the leachate supplied to the cleaning tank 60 by mixing
Substitution of Co 2+ in, precipitation, and co-precipitation with Cu can be sufficiently performed, and as shown in Examples described later, it becomes possible to obtain a high Cu grade residue in the decoppering step. The sedimentation of Cu in the leachate in the copper removal process was greatly improved.

【0044】さらに、前記した本発明においては、図1
に示すように、浸出液流量計FM1 、FM2 、浸出液流量調
節弁CVによって、清浄槽60へ送液する浸出液(:全浸出
液)のCu2+濃度が所定の濃度となるように、脱銅槽40へ
送液する浸出液、清浄槽60へ直接送液する浸出液の分液
比を調整することが好ましい。このためには、脱銅槽40
を経由する送液系統102 へ分液する液量と送液系統101b
へ分液する液量を、浸出液中のCu2+濃度に基づいて決定
することが好ましい。
Further, in the present invention described above, FIG.
As shown in, the leachate flowmeters FM 1 and FM 2 and the leachate flow rate control valve CV are used to remove the copper so that the Cu 2+ concentration of the leachate (total leachate) sent to the cleaning tank 60 becomes a predetermined concentration. It is preferable to adjust the separation ratio between the leachate to be sent to the tank 40 and the leachate to be sent directly to the cleaning tank 60. For this, the copper removal tank 40
The amount of liquid to be separated into the liquid sending system 102 via the
It is preferable that the amount of liquid to be separated is determined based on the concentration of Cu 2+ in the leachate.

【0045】さらに具体的には、分液前の浸出液など亜
鉛末添加前の浸出液(:亜鉛末未添加の状態の浸出液)
のCu2+濃度Mを分析し、清浄槽60へ送液する浸出液(:
全浸出液)のCu2+濃度が所定のCu2+濃度M0 となるよう
に、下記式(2) に基づいて分液比(:F1 /F2 )を制
御し、さらには下記式(3) に基づいて脱銅槽40へ供給す
る亜鉛末の供給量を制御することが好ましい。
More specifically, a leachate before zinc powder addition, such as a leachate before liquid separation (: a leachate without zinc powder added)
Analyze the Cu 2+ concentration M of the leachate (:
The liquid separation ratio (: F 1 / F 2 ) is controlled based on the following equation (2) so that the Cu 2+ concentration of the total leaching solution becomes a predetermined Cu 2+ concentration M 0, and further, the following equation ( It is preferable to control the supply amount of zinc dust supplied to the copper removal tank 40 based on 3).

【0046】 分液比=F1 /F2 =(M0 )/(M−M0 )………(2) 脱銅槽40へ供給する亜鉛末の供給量X(mol-Zn/hr) ≧(1000F2 )×M(mol-C u2+ /l- 浸出液) …………(3) なお、前記したように、M0 は、脱コバルト前の浸出液
中のCo2+濃度またはCo 2+濃度およびNi2+濃度の両者から
設定することができる。
Separation ratio = F1/ FTwo= (M0) / (MM)0) (2) Supply amount of zinc dust to be supplied to the copper removal tank 40 X (mol-Zn / hr) ≧ (1000FTwo) × M (mol-C u2+/ l- leachate) ............ (3) As described above, M0Is the leachate before decobaltation
Co inside2+Concentration or Co 2+Concentration and Ni2+From both concentrations
Can be set.

【0047】すなわち、上記した本発明における銅濃度
の最適制御方法は下記のとおりであり、前記した図1に
示す制御装置100 によって制御することが可能である。 〔最適制御方法:〕 浸出槽1から流出する浸出液中のCu2+濃度Mの分
析(:Cu濃度自動分析計20) 清浄槽60に供給される全浸出液(:流量=F1
2 )の目標Cu2+濃度M0の設定 浸出槽1から流出する浸出液の流量Fの測定 脱銅槽40に供給される浸出液の流量F2 の測定 脱銅槽40に供給する浸出液の流量F2 の設定(:前記
式(5) に基づく)→浸出液流量調節弁CVの制御 脱銅槽40に供給される浸出液の流量F2 の測定→上記
の制御 脱銅槽40に供給する亜鉛末の供給量Xの設定(:前記
式(3) に基づく)(脱銅槽40に供給される浸出液のCu2+
量に対して当量以上) 以上述べた本発明の方法、装置によれば、下記の優れた
効果が得られる。
That is, the above-mentioned optimal control method of the copper concentration in the present invention is as follows, and can be controlled by the control device 100 shown in FIG. [Optimal control method:] Analysis of Cu 2+ concentration M in leachate flowing out of leach tank 1 (: Cu concentration automatic analyzer 20) Total leachate supplied to cleaning tank 60 (: flow rate = F 1 +
Setting of target Cu 2+ concentration M 0 of F 2 ) Measurement of flow rate L of leachate flowing out of leach tank 1 Measurement of flow rate L 2 of leachate supplied to copper removal tank 40 Flow rate of leachate supplied to copper removal tank 40 Setting of F 2 (based on the above formula (5)) → Control of the leachate flow rate control valve CV Measurement of the flow rate F 2 of the leachate supplied to the copper removal tank 40 → Control described above Zinc dust supplied to the copper removal tank 40 (Based on the above formula (3)) (Cu 2+ of the leachate supplied to the copper removal tank 40)
According to the method and apparatus of the present invention described above, the following excellent effects can be obtained.

【0048】(1)清浄槽(:脱コバルト槽)におけるCo
2+の置換、析出、Cuとの共沈を、安定して十分に行うこ
とができる。 (2)脱銅工程において高いCu品位の残渣を得ることが可
能となった。 (3)脱銅工程における浸出液中のCuの沈降性が大幅に向
上する。 (4)脱銅工程における浸出液の処理量が低下し、脱銅
槽、シックナ、フィルタープレスなど固液分離装置が小
型化できる。
(1) Co in a cleaning tank (: decobalt tank)
Substitution of 2+ , precipitation, and coprecipitation with Cu can be performed stably and sufficiently. (2) It became possible to obtain a high Cu grade residue in the copper removal process. (3) The sedimentation of Cu in the leachate in the copper removal step is greatly improved. (4) The throughput of the leachate in the copper removal step is reduced, and the solid-liquid separation device such as a copper removal tank, thickener, filter press, etc. can be miniaturized.

【0049】[0049]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に述べる。 (実施例)前記した図1に示す本発明の湿式亜鉛製錬の
清浄工程における浸出液中銅濃度の調整設備、浸出液中
不純物の除去設備を用いて、不純物の除去試験を行っ
た。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. (Example) An impurity removal test was performed using the equipment for adjusting the copper concentration in the leachate and the equipment for removing impurities in the leachate in the cleaning step of the wet zinc smelting of the present invention shown in FIG. 1 described above.

【0050】なお、脱銅工程における固液分離装置50と
しては、シックナを配設した。本試験における操業条件
(試験期間中の平均値)は下記条件であり、清浄槽(:
脱コバルト槽)60へ送液する全浸出液(:送液系統101b
および送液系統102 の両者から清浄槽60へ送液する浸出
液)の目標Cu2+濃度M0 が300mg/l となるように、制御
装置100 および前記した最適制御方法によって、浸出液
流量調節弁CVの開度を制御した。
As a solid-liquid separation device 50 in the copper removal step, a thickener was provided. The operating conditions (average value during the test period) in this test are as follows, and the cleaning tank (:
Total leachate to be sent to the decobalt tank (60): (Solution sending system 101b)
The leachate flow control valve CV is controlled by the control device 100 and the above-described optimal control method so that the target Cu 2+ concentration M 0 of the leachate to be sent from both the liquid supply system 102 to the cleaning tank 60 is 300 mg / l. Was controlled.

【0051】なお、上記した目標Cu2+濃度M0 は、脱コ
バルト前の浸出液中のCo2+濃度から設定した。 〔操業条件:〕 浸出槽1から流出する浸出液の流量=F=70m3/hr 浸出槽1から流出する浸出液のCu2+濃度M=700mg/l 脱銅槽40へ供給する亜鉛末の供給量X=脱銅槽40へ供給
する浸出液中のCu2+の量の1.25倍当量 清浄槽(:脱コバルト槽)60へ直接送液する浸出液の流
量F1 =(3/7) F=30m3/hr 脱銅槽40へ送液する浸出液の流量F2 =(4/7) F=40m3
/hr 清浄槽(:脱コバルト槽)60へ供給する薬剤:亜鉛末+
亜砒酸 熱交換器3出口の浸出液の液温=85℃ 本試験時の固液分離装置(:中性シックナ)2出口の浸
出液の平均Co濃度:20mg/lに対して、フィルタープレス
70出口の浸出液中の平均Co濃度は、9μg/l であった。
The above-mentioned target Cu 2+ concentration M 0 was set based on the Co 2+ concentration in the leachate before the removal of cobalt. [Operating conditions:] Flow rate of leachate flowing out of leach tank 1 = F = 70 m 3 / hr Cu 2+ concentration of leachate flowing out of leach tank 1 M = 700 mg / l Supply amount of zinc dust supplied to copper removal tank 40 X = 1.25 times equivalent of the amount of Cu 2+ in the leachate supplied to the copper removal tank 40 The flow rate of the leachate directly sent to the cleaning tank (: cobalt removal tank) 60 F 1 = (3/7) F = 30 m 3 / hr Flow rate of leachate sent to copper removal tank 40 F 2 = (4/7) F = 40m 3
/ hr Chemical to be supplied to cleaning tank (: decobalt tank) 60: zinc powder +
Liquid temperature of leachate at the outlet of the arsenous acid heat exchanger 3 = 85 ° C The average Co concentration of the leachate at the solid-liquid separator (: neutral thickener) 2 at the time of this test: 20 mg / l, and the filter press
The average Co concentration in the leachate at outlet 70 was 9 μg / l.

【0052】さらに、本試験時の固液分離装置(:シッ
クナ)50出口の浸出液中の懸濁物質の濃度は、45〜80mg
/lと低濃度で推移した。なお、本試験時、脱銅槽40から
固液分離装置50に供給される浸出液をサンプリングし、
浸出液中の懸濁物質の沈降性を調べた。すなわち、サン
プリングした浸出液を1lのメスシリンダに1000ml分取
し、5分間静置させた後、上層部:750ml 、下層部:25
0ml のそれぞれを分取し、濾過した。
Further, the concentration of the suspended substance in the leachate at the outlet of the solid-liquid separation device (: Thickener) 50 at the time of this test was 45 to 80 mg.
The concentration remained low at / l. During the test, the leachate supplied to the solid-liquid separator 50 from the copper removal tank 40 was sampled,
The sedimentation of suspended matter in the leachate was examined. That is, 1000 ml of the sampled leachate was dispensed into a 1-liter graduated cylinder and allowed to stand for 5 minutes, and then the upper part: 750 ml and the lower part: 25
0 ml of each was taken and filtered.

【0053】次に、それぞれの濾過残渣を水洗、乾燥
後、秤量し、下記式(6) で定義される沈降性を求めた。 沈降性=〔(下層部の残渣量)/(上層部の残渣量+下層部の残渣量)〕×10 0 (wt%)………(6) その結果、沈降性は、94.3wt%であった。
Next, each filtration residue was washed with water, dried and weighed to determine the sedimentation defined by the following equation (6). Sedimentability = [(residual amount in lower layer) / (residual amount in upper layer + residual amount in lower layer)] x 100 (wt%) ... (6) As a result, the sedimentation property was 94.3 wt%. there were.

【0054】上記した試験結果から、本発明によれば、
脱銅工程における浸出液中のCuの沈降性が大幅に向上す
ることが分かった。さらに、固液分離装置50で得られた
残渣のCu品位を分析した結果、残渣中のCu含有量は80wt
%、Zn含有量は3wt%であり、本発明によれば、脱銅工
程において高いCu品位の残渣を得ることが可能であるこ
とが分かった。
From the above test results, according to the present invention,
It was found that the sedimentation of Cu in the leachate in the copper removal process was significantly improved. Furthermore, as a result of analyzing the Cu quality of the residue obtained in the solid-liquid separation device 50, the Cu content in the residue was 80 wt.
% And Zn content were 3 wt%, and it was found that according to the present invention, it is possible to obtain a residue of high Cu quality in the copper removal step.

【0055】(比較例)前記した図2に示す従来の浸出
液中銅濃度の調整設備、浸出液中不純物の除去設備を用
いて、不純物の除去試験を行った。本試験における操業
条件(試験期間中の平均値)は、下記のとおりである。 〔操業条件:〕 浸出槽1から流出する浸出液の流量=F=脱銅槽4へ送
液する浸出液の流量=清浄槽(:脱コバルト槽)6へ送
液する浸出液の流量=70m3/hr 浸出槽1から流出する浸出液のCu2+濃度 =700mg/l 清浄槽6へ送液する浸出液の目標Cu2+濃度=300mg/l 脱銅槽4へ供給する亜鉛末の供給量=〔(脱銅槽4へ供
給される浸出液中のCu 2+の量)−(清浄槽60へ供給する
浸出液中のCu2+の目標の量)〕の1.4 倍当量 清浄槽(:脱コバルト槽)6へ供給する薬剤:亜鉛末+
亜砒酸 熱交換器3出口の浸出液の液温=85℃ 本試験時のシックナ5A出口の浸出液中の懸濁物質の濃度
は、200 〜300mg/l と高濃度で推移した。
(Comparative Example) The conventional leaching shown in FIG.
Uses equipment for adjusting copper concentration in liquid and equipment for removing impurities in leachate
Then, an impurity removal test was performed. Operation in this test
The conditions (average value during the test period) are as follows. [Operating conditions:] Flow rate of leachate flowing out of leach tank 1 = F = sent to copper removal tank 4
Leaching liquid flow rate = sent to cleaning tank (: decobalt tank) 6
Leachate flow rate = 70mThree/ hr Cu of leachate flowing out from leach tank 12+Concentration = 700mg / l Target Cu of leachate sent to cleaning tank 62+Concentration = 300 mg / l Supply amount of zinc dust supplied to copper removal tank 4 = [(supplied to copper removal tank 4
Cu in leachate supplied 2+Amount)-(Supply to the cleaning tank 60)
Cu in leachate2+1.4 times the equivalent of the target amount)) Chemicals to be supplied to the cleaning tank (: de-cobalt tank) 6: zinc powder +
Arsenous acid Liquid temperature of leachate at heat exchanger 3 outlet = 85 ° C Concentration of suspended solids in leachate at thickener 5A outlet during this test
Showed a high concentration of 200-300 mg / l.

【0056】本試験時に、脱銅槽40からシックナ5Aに供
給される浸出液をサンプリングし、前記した実施例と同
一の方法で、浸出液中の懸濁物質の沈降性を調べた。そ
の結果、前記式(6) で定義される沈降性は、21.8wt%で
あった。さらに、シックナ5Aで得られた残渣のCu品位を
分析した結果、残渣中のCu含有量は50〜60wt%、Zn含有
量は6〜10wt%であり、低いCu品位であった。
At the time of this test, the leachate supplied to the thickener 5A from the copper removal tank 40 was sampled, and the sedimentation of suspended substances in the leachate was examined in the same manner as in the above-described embodiment. As a result, the sedimentation defined by the above formula (6) was 21.8 wt%. Furthermore, as a result of analyzing the Cu quality of the residue obtained by thickener 5A, the Cu content in the residue was 50 to 60 wt%, and the Zn content was 6 to 10 wt%, indicating a low Cu quality.

【0057】なお、前記した実施例においては、清浄槽
(:脱コバルト槽)60へ供給する薬剤として、亜鉛末と
亜砒酸を用いたが、亜砒酸に代えて亜アンチモン酸、酒
石酸アンチモン、酒石酸アンチモンカリウム、またはこ
れら4種の薬剤から選ばれる2種以上を用いても前記し
た実施例に示される高コバルト除去率を安定して得るこ
とが可能である。
In the above-described embodiment, zinc powder and arsenous acid were used as the chemicals to be supplied to the cleaning tank (decobalt tank) 60. Alternatively, even if two or more selected from these four agents are used, the high cobalt removal rate shown in the above-described embodiment can be stably obtained.

【0058】また、前記した実施例においては、脱銅工
程における固液分離装置50として、シックナを用いた
が、フィルタープレスを用いることもでき、その場合も
高いCu品位の残渣を得ることが可能である。
In the above-described embodiment, a thickener is used as the solid-liquid separation device 50 in the copper removal step. However, a filter press can be used, and in that case, a high Cu grade residue can be obtained. It is.

【0059】[0059]

【発明の効果】本発明によれば、下記の優れた効果が得
られる。 (1)清浄槽(:脱コバルト槽)におけるCo2+の置換、析
出、Cuとの共沈を、安定して十分に行うことができる。 (2)脱銅工程において高いCu品位の残渣を得ることが可
能となった。
According to the present invention, the following excellent effects can be obtained. (1) The replacement and precipitation of Co 2+ and the coprecipitation with Cu in the cleaning tank (: decobalt tank) can be performed stably and sufficiently. (2) It became possible to obtain a high Cu grade residue in the copper removal process.

【0060】(3)脱銅工程における浸出液中のCuの沈降
性が大幅に向上する。 (4)脱銅槽、シックナ、フィルタープレスなど固液分離
装置が小型化できる。
(3) The sedimentation of Cu in the leachate in the copper removal step is greatly improved. (4) Solid-liquid separators such as a copper removal tank, thickener, and filter press can be miniaturized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の湿式亜鉛製錬の清浄工程における浸出
液中銅濃度の調整設備(A部)、浸出液中不純物の除去
設備(B部)に係る工程図である。
FIG. 1 is a process diagram relating to equipment for adjusting the copper concentration in a leachate (part A) and equipment for removing impurities in a leachate (part B) in the cleaning step of the wet zinc smelting of the present invention.

【図2】従来の湿式亜鉛製錬の清浄工程における浸出液
中銅濃度の調整設備、浸出液中不純物の除去設備に係る
工程図である。
FIG. 2 is a process diagram relating to a facility for adjusting a copper concentration in a leachate and a facility for removing impurities in a leachate in a conventional cleaning process of wet zinc smelting.

【図3】従来の湿式亜鉛製錬の清浄工程における浸出液
中銅濃度の調整設備、浸出液中不純物の除去設備に係る
工程図である。
FIG. 3 is a process diagram relating to a facility for adjusting the concentration of copper in a leachate and a facility for removing impurities in a leachate in a conventional cleaning process of wet zinc smelting.

【符号の説明】[Explanation of symbols]

1 亜鉛焼鉱の浸出槽(:溶解槽) 1b 硫酸溶液(:浸出液) 2,50 浸出液の固液分離装置 2b,4b,6b,8b,40b,5Aa,50a,60b 浸出液 3 熱交換器 4,40 浸出液脱銅槽(:脱銅槽) 4a,40a 亜鉛末の脱銅槽内への供給装置 4c,6c,8c,40c,60c 攪拌機駆動装置 5A シックナ 5B,7,9 フィルタープレス 6,60 清浄槽(:脱コバルト槽) 6a,60a 供給装置 8 清浄槽(:脱カドミウム槽) 8a 亜鉛末の脱カドミウム槽内への供給装置 10 亜鉛電解槽 11 電解尾液の浸出槽への供給配管 20 銅濃度分析計(:銅濃度自動分析計) 21 高温高酸溶解槽 5Ab,5Bb,50b 銅回収工程 51 貯液槽 71 コバルト回収工程 91 カドミウム回収工程 100 制御装置 101 送液系統101a,101b から構成される第1の送液系
統 102 送液系統102a,102b,102cから構成される第2の送
液系統 101a,101b,102a,102b,102c 送液系統 103 固液分離装置で分離された種結晶を含むスラリー
またはケーキの脱銅槽への返送系統 CV 浸出液流量調節弁 F 浸出槽1から流出する浸出液の流量 F1 清浄槽60へ直接送液する浸出液の流量 F2 脱銅槽40へ送液する浸出液の流量 FM1,FM2 浸出液流量計 l1,l2,l3,l4,l5 送液配管 P ポンプ
1 Leaching tank for zinc ore (: dissolution tank) 1b Sulfuric acid solution (: leachate) 2,50 Solid-liquid separator for leachate 2b, 4b, 6b, 8b, 40b, 5Aa, 50a, 60b Leachate 3 Heat exchanger 4, 40 Leaching liquid copper removal tank (copper removal tank) 4a, 40a Supply device for zinc powder into copper removal tank 4c, 6c, 8c, 40c, 60c Stirrer drive 5A thickener 5B, 7,9 Filter press 6,60 Cleaning Tank (: decobalt tank) 6a, 60a Supply device 8 Purification tank (: decadmium tank) 8a Supply device for zinc powder into decadmium tank 10 Zinc electrolytic tank 11 Supply pipe for leaching tank of electrolytic tail liquid 20 Copper Concentration analyzer (: Copper concentration automatic analyzer) 21 High-temperature and high-acid dissolving tank 5Ab, 5Bb, 50b Copper recovery process 51 Storage tank 71 Cobalt recovery process 91 Cadmium recovery process 100 Control device 101 Consists of liquid supply systems 101a and 101b First liquid supply system 102 Second liquid supply system 101a, 101b, 102a, 102b, 102c composed of liquid supply systems 102a, 102b, 102c Liquid supply system 103 Separation by solid-liquid separation device Species back line CV leachate flow from the control valve F leaching vessel 1 to the flow F 1 cleaning tank 60 of the leaching solution exiting direct feeding to leachate flow F 2 Datsudoso crystal to copper removal tank slurry or cake containing a flow rate FM 1 exudates to feed to 40, FM 2 leachate flow meter l 1, l 2, l 3 , l 4, l 5 liquid feed pipe P pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛焼鉱の硫酸溶液による浸出液を分液
し、分液後の一方の浸出液に亜鉛末を添加、混合し、銅
を分離、除去して得られた浸出液と、前記した分液後の
他方の浸出液とを混合し浸出液中の銅濃度を調整するこ
とを特徴とする湿式亜鉛製錬の清浄工程における浸出液
中銅濃度の調整方法。
1. A leachate obtained by a zinc sulfate ore sulfuric acid solution is separated, zinc powder is added to one of the separated leachates, mixed, and copper is separated and removed. A method for adjusting the copper concentration in a leachate in a cleaning process of wet zinc smelting, comprising mixing the other leachate after the liquid with the other leachate to adjust the copper concentration in the leachate.
【請求項2】 亜鉛焼鉱を硫酸溶液で浸出する浸出槽
(1) の出側に配設された浸出液の固液分離装置(2) と該
固液分離装置(2) の後工程として配設された清浄槽(60)
とを接続する第1の送液系統(101) と、該第1の送液系
統(101) から分岐されると共に前記清浄槽(60)に接続さ
れた第2の送液系統(102) とを有し、該第2の送液系統
(102) に、亜鉛末の槽内への供給装置(40a) を付設した
浸出液脱銅槽(40)と、該浸出液脱銅槽(40)内から流出す
る浸出液の固液分離装置(50)と、該固液分離装置(50)か
ら流出する浸出液の前記清浄槽(60)への送液系統(102c)
が配設されたことを特徴とする湿式亜鉛製錬の清浄工程
における浸出液中銅濃度の調整設備。
2. A leaching tank for leaching zinc ore with a sulfuric acid solution.
A solid-liquid separation device (2) for leaching liquid provided on the outlet side of (1) and a cleaning tank (60) provided as a post-process of the solid-liquid separation device (2)
And a second liquid feeding system (102) branched from the first liquid feeding system (101) and connected to the cleaning tank (60). And the second liquid sending system
(102), a leachate removal copper tank (40) provided with a supply device (40a) for feeding zinc powder into the tank, and a solid-liquid separation device (50) for leachate flowing out of the leachate removal copper tank (40) And a liquid sending system (102c) of the leachate flowing out from the solid-liquid separation device (50) to the cleaning tank (60).
A facility for adjusting the concentration of copper in a leachate in the cleaning process of hydro-zinc smelting, wherein
JP28571698A 1998-10-07 1998-10-07 Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting Expired - Lifetime JP3886652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28571698A JP3886652B2 (en) 1998-10-07 1998-10-07 Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28571698A JP3886652B2 (en) 1998-10-07 1998-10-07 Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting

Publications (2)

Publication Number Publication Date
JP2000119764A true JP2000119764A (en) 2000-04-25
JP3886652B2 JP3886652B2 (en) 2007-02-28

Family

ID=17695110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28571698A Expired - Lifetime JP3886652B2 (en) 1998-10-07 1998-10-07 Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting

Country Status (1)

Country Link
JP (1) JP3886652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929687A (en) * 2017-03-14 2017-07-07 四川弘业环保科技有限公司 A kind of zinc hydrometallurgy cleanser and its purification technique
WO2020246079A1 (en) * 2019-06-07 2020-12-10 川崎重工業株式会社 System and method for treating waste lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106929687A (en) * 2017-03-14 2017-07-07 四川弘业环保科技有限公司 A kind of zinc hydrometallurgy cleanser and its purification technique
CN106929687B (en) * 2017-03-14 2018-12-25 四川弘业环保科技有限公司 A kind of zinc hydrometallurgy cleanser and its purification process
WO2020246079A1 (en) * 2019-06-07 2020-12-10 川崎重工業株式会社 System and method for treating waste lithium ion battery
JPWO2020246079A1 (en) * 2019-06-07 2020-12-10
CN113164972A (en) * 2019-06-07 2021-07-23 川崎重工业株式会社 Treatment system and treatment method for waste lithium ion battery
JP7195424B2 (en) 2019-06-07 2022-12-23 川崎重工業株式会社 Waste lithium-ion battery processing system and processing method

Also Published As

Publication number Publication date
JP3886652B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
CN102725086B (en) Method and arrangement for producing metal powder
JP5176493B2 (en) Method and apparatus for nickel removal from copper removal electrolyte
Wang Impurity control and removal in copper tankhouse operations
JPH11506808A (en) Copper matte electrowinning method
JPH07505443A (en) Electrochemical system for recovery of metals from metal compounds
CN101500735A (en) Method for the production of metal powder
Xiao et al. Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes
JP3886652B2 (en) Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting
JP4903042B2 (en) Method and apparatus for controlling the separation of metals
DE4318168A1 (en) Process for the direct electrochemical refining of copper waste
DE3014315C2 (en) Method and device for removing metals from metal salt solutions
CA1180195A (en) Method and apparatus for removing metals from metal- salt solutions
JP3380262B2 (en) Waste catalyst treatment method
KR100423350B1 (en) Method for processing anode slime of copper electrolysis
JP2000328281A (en) Method for continuously cleaning silver electrolyte and equipment therefor
JP7022332B2 (en) Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment
JP2021167256A (en) METHOD FOR PRODUCING HIGH-PURITY COBALT CHLORIDE AQUEOUS SOLUTION HAVING LOW Mg CONCENTRATION
JP3552512B2 (en) Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper
JPH11124639A (en) Method for separating and recovering metal from waste and device therefor
CN116377242A (en) Slag treatment system and process method
JP2023066461A (en) Production method of aqueous cobalt chloride solution with low magnesium concentration
JPH10158879A (en) Method and device for electrowinning antimony and bismuth
CN112063855A (en) Method for selectively purifying and removing copper and cadmium by automatic potential control
JPH06306696A (en) Recovering method for nickel incorporated in plating solution and device therefor
JPH0676213B2 (en) Method for dissolving zinc powder in zinc carbonate recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term