JPH0676213B2 - Method for dissolving zinc powder in zinc carbonate recovery - Google Patents

Method for dissolving zinc powder in zinc carbonate recovery

Info

Publication number
JPH0676213B2
JPH0676213B2 JP32801889A JP32801889A JPH0676213B2 JP H0676213 B2 JPH0676213 B2 JP H0676213B2 JP 32801889 A JP32801889 A JP 32801889A JP 32801889 A JP32801889 A JP 32801889A JP H0676213 B2 JPH0676213 B2 JP H0676213B2
Authority
JP
Japan
Prior art keywords
zinc
dissolution
tank
dissolution tank
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32801889A
Other languages
Japanese (ja)
Other versions
JPH03187918A (en
Inventor
達也 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32801889A priority Critical patent/JPH0676213B2/en
Publication of JPH03187918A publication Critical patent/JPH03187918A/en
Publication of JPH0676213B2 publication Critical patent/JPH0676213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製鉄所などにおける設備から排出されるZn粉
から、炭酸亜鉛の形でZnを回収する際の、溶解工程にお
ける亜鉛粉の溶解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to the dissolution of zinc powder in a dissolution step when recovering Zn in the form of zinc carbonate from Zn powder discharged from equipment such as an iron mill. Regarding the method.

〔従来の技術〕[Conventional technology]

製鉄所設備、例えば還元鉄設備のキルンダストや、Znメ
ッキ設備等からは亜鉛を多く含む亜鉛含有物が排出され
る。そこでこのZnを、好ましくは炭酸亜鉛の形で回収
し、この炭酸亜鉛を、顔料やタイヤの加硫促進剤として
使用される酸化亜鉛の原料として利用するのが望まし
い。
Zinc-containing substances containing a large amount of zinc are discharged from steel mill facilities, such as kiln dust in reduced iron facilities and Zn plating facilities. Therefore, it is desirable to recover this Zn, preferably in the form of zinc carbonate, and utilize this zinc carbonate as a raw material for zinc oxide used as a pigment or a vulcanization accelerator for tires.

そこでかかる炭酸亜鉛の製造方法としては、本出願人は
多くの提案を行ってきたとともに、その有用性を実用化
段階で確認した。
Therefore, the present applicant has made many proposals as a method for producing such zinc carbonate, and confirmed its usefulness at the stage of practical application.

この製造方法の概要は、特開昭59-88319号公報に示され
ているように、少なくともFeおよびPbを含む亜鉛粉を(N
H4)2CO3およびNH4OHを含む水溶液と接触させて前記亜鉛
粉を溶解させるとともに、この溶解工程で金属亜鉛を添
加し、亜鉛の溶解によって生じる未溶解残渣を除去し、
次いで溶解処理後の溶液について金属亜鉛を添加し、金
属亜鉛と不純物との間にイオン置換反応を行い残渣分を
除去した後、炭酸亜鉛に結晶化を行い炭酸亜鉛の回収を
行うものである。
The outline of this production method is as described in JP-A-59-88319, in which zinc powder containing at least Fe and Pb (N
H 4 ) 2 CO 3 and NH 4 OH is contacted with an aqueous solution to dissolve the zinc powder, and metal zinc is added in this dissolution step to remove undissolved residue generated by dissolution of zinc,
Then, metallic zinc is added to the solution after the dissolution treatment, an ion substitution reaction is carried out between metallic zinc and impurities to remove a residue, and then zinc carbonate is crystallized to recover zinc carbonate.

さらに、この製造方法における亜鉛粉の溶解工程につい
ては、例えば特公平1-38050号公報に開示されているよ
うに、攪拌溶解槽を直列に複数設け、前の溶解槽におけ
る清澄液を次の溶解槽に導き、後の溶解槽における未溶
解残渣を前の溶解槽に導くことにより、向流接触溶解に
より不純物の除去効果を高めるようにしている。
Furthermore, as for the zinc powder dissolution step in this production method, as disclosed in, for example, Japanese Patent Publication No. 1-38050, a plurality of stirring dissolution tanks are provided in series, and the clear solution in the previous dissolution tank is dissolved next. By introducing the undissolved residue in the later dissolution tank into the previous dissolution tank, the effect of removing impurities by the countercurrent contact dissolution is enhanced.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、本発明者は、その後改良を加えて行く過
程で、次の問題に直面した。
However, the present inventor encountered the following problem in the process of making improvements thereafter.

すなわち、亜鉛メッキ工場から排出される亜鉛含有物を
炭酸亜鉛回収用粉とするために、メッキドロスなどを乾
燥処理し、サイクロンで捕集するとともに、未捕集分を
さらにバグフィルターや湿式集塵している。
That is, in order to convert the zinc-containing material discharged from the galvanizing plant into powder for recovering zinc carbonate, the plating dross is dried and collected by a cyclone, and the uncollected portion is further filtered by a bag filter or wet dust. ing.

しかるに、バグフィルターや湿式集塵分は、元来、粒径
が小さいとともに品位が劣るので、従来専らサイクロン
で捕集したもののみを、炭酸亜鉛回収用に向けていた。
However, since the bag filter and the wet dust collection originally have a small particle size and are inferior in quality, only those collected by the cyclone have been conventionally dedicated to the recovery of zinc carbonate.

しかし、品位が劣り、外販のコストが低いとしても、も
し最終的に得られる炭酸亜鉛の品質が問題なければ、バ
グフィルターや湿式集塵分も利用できれば、プロセス全
体としてのコストの低減に大きく寄与する。また、湿式
集塵は亜鉛粉の回収効率が高く、回収が容易である。
However, even if the quality is inferior and the cost of external sales is low, if the quality of the finally obtained zinc carbonate is not a problem, if bag filters and wet dust can be used, it will contribute greatly to the reduction of the cost of the whole process. To do. In addition, the wet dust collection has a high zinc powder recovery efficiency and is easy to recover.

ところが、バグフィルターや湿式で捕集したものには、
第2図のように、サイクロンで捕集したものに比較して
粒径が小さく、かつ粒径10μm以下の微細な亜鉛粉が多
く含まれている。
However, for the bag filter and the one collected by the wet method,
As shown in FIG. 2, the particle size is smaller than that collected by the cyclone, and a large amount of fine zinc powder having a particle size of 10 μm or less is contained.

ところで、粒径10μm以下の微細な粉体は、比表面積が
大きいため、この全面積を溶解液により濡らすには比較
的多くの時間がかかる。そこで、バクフィルターや湿式
で捕集した亜鉛粉を炭酸亜鉛回収用の原料とする場合、
溶解槽での攪拌の度合いが強すぎると、粉体が溶解液に
濡れ、溶解が行われるよりも先に、攪拌力による液の流
動に伴って、微細亜鉛粉が溶解槽上部に強制的に浮上さ
せられてしまい、オーバーフロー中に混入させられ、亜
鉛の溶解効率を減じ、かつ溶解が充分でないまま、その
結果不純物の除去が充分でないまま、次の槽または次の
工程に移行してしまい製品純度を低下させることを本発
明者は知見した。
By the way, since a fine powder having a particle size of 10 μm or less has a large specific surface area, it takes a relatively long time to wet the entire area with the solution. Therefore, when using zinc powder collected by a tap filter or wet method as a raw material for recovering zinc carbonate,
If the degree of agitation in the dissolution tank is too strong, the fine zinc powder is forced to the upper part of the dissolution tank as the liquid flows due to the stirring force before the powder gets wet with the dissolution liquid and the dissolution is performed. The product is floated and mixed in the overflow, the dissolution efficiency of zinc is reduced, and the dissolution is not sufficient, resulting in insufficient removal of impurities and moving to the next tank or the next process. The present inventors have found that the purity is lowered.

他方、攪拌力が弱すぎると、攪拌力が重力に打ち勝て
ず、微細粉が未溶解のまま槽底部に沈澱してスラリーの
形成量が多くなり、溶解液と向流接触させるために、ス
ラリーを前の槽に返送するためのポンプの負荷の増大を
来し、また場合によりキャビテーションを起こし、返送
を行うことができない事態を生じる。
On the other hand, if the stirring force is too weak, the stirring force cannot overcome gravity, and the fine powder precipitates on the bottom of the tank while it remains undissolved, increasing the amount of slurry formed, and in order to bring the solution into countercurrent contact, the slurry is mixed. This causes an increase in the load on the pump for returning to the previous tank, and in some cases causes cavitation, causing a situation in which the return cannot be performed.

そこで本発明の主目的は、微細金属Zn粉の投入を行うこ
とができるとともに、もって製造コストの低減を図るこ
とができ、さらに向流接触を支承なく行うことができる
炭酸亜鉛回収における亜鉛粉溶解方法を提供することに
ある。
Therefore, the main object of the present invention is to enable the addition of fine metal Zn powder, and at the same time, to reduce the manufacturing cost, and further to carry out countercurrent contact without support. To provide a method.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題は、少なくともFeおよびPbを含む亜鉛粉を(N
H4)2CO3およびNH4OHを含む水溶液と接触させて前記亜鉛
粉を溶解させるとともに、この溶解工程で金属亜鉛を添
加し、亜鉛の溶解によって生じる未溶解残渣を除去し、
次いで溶解処理後の溶液について金属亜鉛を添加し、金
属亜鉛と不純物との間にイオン置換反応を行い残渣分を
除去した後、炭酸亜鉛に結晶化を行い炭酸亜鉛の回収を
行う方法において、 前記溶解工程において、攪拌溶解槽を直列に複数設け、
前の溶解槽における清澄液を次の溶解槽に導き、後の溶
解槽における未溶解残渣を前の溶解槽に導くとともに、 前記後の溶解槽に粒径の大きい前記亜鉛粉を投入し、前
記前の溶解槽に粒径の小さい亜鉛粉を投入してそれぞれ
の溶解を行い、前記前の溶解槽における攪拌羽根の回転
数を、前の溶解槽から後の溶解槽に移行する清澄液中の
未溶解分の量に応じて制御することで解決できる。
The above problem is to solve zinc powder containing at least Fe and Pb (N
H 4 ) 2 CO 3 and NH 4 OH is contacted with an aqueous solution to dissolve the zinc powder, and metal zinc is added in this dissolution step to remove undissolved residue generated by dissolution of zinc,
Next, in the method of adding zinc metal to the solution after the dissolution treatment, performing an ion substitution reaction between zinc metal and impurities to remove a residue, and crystallizing zinc carbonate to recover zinc carbonate, In the dissolving step, a plurality of stirring and dissolving tanks are provided in series,
The clear solution in the previous dissolution tank is introduced to the next dissolution tank, the undissolved residue in the latter dissolution tank is introduced to the previous dissolution tank, and the zinc powder having a large particle size is added to the latter dissolution tank, Zinc powder with a small particle size is put into the previous dissolution tank to perform each dissolution, and the rotation speed of the stirring blade in the previous dissolution tank is changed from the previous dissolution tank to the subsequent dissolution tank. This can be solved by controlling according to the amount of undissolved components.

〔作用〕[Action]

本発明によれば、後の溶解槽に粒径の大きい前記亜鉛粉
を投入し、前記前の溶解槽に粒径の小さい亜鉛粉を投入
してそれぞれの溶解を行い、前記前の溶解槽における攪
拌羽根の回転数を、前の溶解槽から後の溶解槽に移行す
る清澄液中の未溶解分の量に応じて制御するので、前記
前の溶解槽において、後の溶解槽へ移行する未溶解量を
多くなることおよび前の溶解槽底に沈降するスラリー量
が過大となることを防止しながら溶解できる。
According to the present invention, the zinc powder having a large particle size is charged into the subsequent melting tank, and the zinc powder having a small particle diameter is charged into the previous melting tank to perform respective melting, Since the number of rotations of the stirring blade is controlled according to the amount of undissolved content in the clarified liquid that is transferred from the previous dissolution tank to the subsequent dissolution tank, It is possible to dissolve while preventing an increase in the amount of dissolution and an excessive amount of slurry settling at the bottom of the previous dissolution tank.

その結果、製品純度の低下を防止できる。As a result, it is possible to prevent deterioration of product purity.

〔発明の具体的構成〕[Specific configuration of the invention]

以下本発明をさらに具体的に説明する。 The present invention will be described in more detail below.

第1図は本発明にかかる接触溶解法の基本構成のフロー
シートを示したもので、1〜3はそれぞれ第1〜第3溶
解槽で、各溶解槽1〜3には攪拌機4A、4B、4Cが設けら
れ、また中央部と周囲部とはバッフルプレート5により
区画されている。さらに、第3溶解槽3の下流側には、
沈降分離槽6および一時貯留タンク7が設けられ、各槽
およびタンク7は清澄液を下流側に移行させるためのオ
ーバーフロー管8により連絡され、他方、沈降分離槽
6、第3溶解槽3、第2溶解槽3および第1溶解槽1の
間には、各槽底での沈降スラリーを前の槽へ移行させる
ために途中に返送ポンプ9A〜11Aを有する返送路9〜11
が設けられており、しかも第1沈降分離槽1の槽底から
は沈降スラリーを返送ポンプ12Aにより返送路12を介し
て、前の工程または系外に移行させるようになってい
る。
FIG. 1 shows a flow sheet of the basic constitution of the catalytic dissolution method according to the present invention, in which 1 to 3 are respectively first to third dissolution tanks, and the stirring tanks 4A and 4B are provided in the respective dissolution tanks 1 to 3. 4C is provided, and the central portion and the peripheral portion are partitioned by the baffle plate 5. Furthermore, on the downstream side of the third dissolution tank 3,
A settling separation tank 6 and a temporary storage tank 7 are provided, and each tank and tank 7 are connected by an overflow pipe 8 for transferring the clarified liquid to the downstream side, while the settling separation tank 6, the third dissolution tank 3, Between the second dissolution tank 3 and the first dissolution tank 1, return passages 9 to 11 having return pumps 9A to 11A in the middle for transferring the settled slurry at the bottom of each tank to the previous tank.
In addition, the settling slurry is transferred from the bottom of the first settling / separating tank 1 to the previous step or outside the system by the returning pump 12A via the returning path 12.

このように構成された亜鉛溶解設備において、少なくと
も(NH4)2CO3およびNH4OHを含む溶解液(水溶液)が第1
溶解槽1に供給される一方で、少なくともFeおよびPbを
含む亜鉛粉20、21がそれぞれ第2溶解槽2および第3溶
解槽3に投入される。
In the zinc dissolution equipment configured in this way, the first solution is a solution (aqueous solution) containing at least (NH 4 ) 2 CO 3 and NH 4 OH.
While being supplied to the melting tank 1, zinc powders 20 and 21 containing at least Fe and Pb are charged into the second melting tank 2 and the third melting tank 3, respectively.

投入された亜鉛粉は、前記溶解液と接触し、各攪拌機の
攪拌力により溶解が行われる。この溶解により、(1)
式に従って錯塩が生じる。
The added zinc powder comes into contact with the solution and is dissolved by the stirring force of each stirrer. By this dissolution, (1)
A complex salt is formed according to the formula.

Zn+(NH4)2CO3+NH4OH→ 〔Zn(NH3)4〕CO3+2H2O+H2……(1) また、この溶解工程で金属亜鉛30が添加される。この金
属亜鉛30の添加位置は適宜でよく、実施例では、第3溶
解槽3に添加される。この添加により、FeおよびPbと亜
鉛とのイオン置換が行われる。たとえば、Pbを例の採れ
ば、(2)式のイオン置換反応が生じる。
Zn + (NH 4 ) 2 CO 3 + NH 4 OH → [Zn (NH 3 ) 4 ] CO 3 + 2H 2 O + H 2 (1) Also, metallic zinc 30 is added in this melting step. The metallic zinc 30 may be added at any appropriate position, and in the embodiment, it is added to the third melting tank 3. By this addition, ion substitution of zinc with Fe and Pb is performed. For example, if Pb is taken as an example, the ion substitution reaction of formula (2) occurs.

〔Pb(NH3)4〕CO3+Zn→ 〔Zn(NH3)4〕CO3+Pb…(2) このように亜鉛粉の溶解によって生じる各槽1〜3での
未溶解残渣および不純物分は底部から抜き出され、前の
槽に返送される。他方、溶解に伴う清澄液は、上部から
オーバーフロー管8を介して次の槽に供給される。
[Pb (NH 3) 4] CO 3 + Zn → [Zn (NH 3) 4] CO 3 + Pb ... (2) undissolved residues and impurities content of each tank 1-3 caused by the dissolution of such zinc powder It is extracted from the bottom and returned to the previous tank. On the other hand, the clarified liquid accompanying the dissolution is supplied from the upper part to the next tank through the overflow pipe 8.

さらに、必要により図示の溶解設備の下流側に設けた図
示しないイオン置換反応設備においても、溶解処理後の
溶液について金属亜鉛を添加し、金属亜鉛と不純物との
間にイオン置換反応を行い残渣分を除去した後、炭酸亜
鉛に結晶化を行い炭酸亜鉛の回収が行われる。
Further, if necessary, also in an ion substitution reaction facility (not shown) provided on the downstream side of the dissolution facility shown in the figure, metallic zinc is added to the solution after the dissolution treatment, and an ion substitution reaction is carried out between metallic zinc and impurities to remove residue components. After removing, the zinc carbonate is crystallized to recover the zinc carbonate.

本発明においては、前記前の溶解槽すなわち第2溶解槽
2に粒径の小さい前記亜鉛粉を投入し、前記後の溶解槽
すなわち第3溶解槽3に粒径の大きい亜鉛粉を投入して
それぞれの溶解を行う。
In the present invention, the zinc powder having a small particle diameter is charged into the preceding melting tank, that is, the second melting tank 2, and the zinc powder having a large particle diameter is charged into the following melting tank, that is, the third melting tank 3. Dissolve each.

この場合、第2溶解槽2に投入する亜鉛粉としては、第
2図のように、たとえば10μm以下の粒径分が多い湿式
亜鉛粉が、第3溶解槽3に投入される亜鉛粉としては、
サイクロンで捕集した粒径の大きい亜鉛粉がそれぞれ投
入される。
In this case, as the zinc powder to be charged into the second melting tank 2, as shown in FIG. 2, for example, wet zinc powder having a large particle size of 10 μm or less is used as the zinc powder to be charged into the third melting tank 3. ,
Zinc powder with a large particle size collected by a cyclone is introduced.

また、本発明においては、各槽1〜3の攪拌機4A〜4Cの
うち、少なくとも前の溶解槽としての第2溶解槽におい
て、攪拌用モータのインバーター40を付設し、その攪拌
羽根の回転数を、第2溶解槽2から第3溶解槽に移行す
る清澄液中の未溶解分の量に応じて制御する。
In addition, in the present invention, among the stirrers 4A to 4C of the respective tanks 1 to 3, at least the second melting tank as the preceding melting tank is provided with the inverter 40 of the stirring motor, and the rotation speed of the stirring blades is changed. , And is controlled according to the amount of undissolved component in the clear solution that moves from the second dissolution tank 2 to the third dissolution tank.

ここで、第2溶解槽2から第3溶解槽に移行する清澄液
中の未溶解分の量としては、移行する清澄液をサンプリ
ングして、未溶解分の濃度や不純物濃度などを指標とし
ながら判断できる。また、最終製品の純度を指標とする
こともできる。作業員の判断によることなく、必要によ
り、このような指標を得るための検出器からの信号に基
づいて、前記攪拌羽根の回転数を自動制御することもで
きる。
Here, as the amount of the undissolved component in the clear solution transferred from the second dissolution tank 2 to the third dissolution tank, the transferred clear solution is sampled, and the concentration of the undissolved content and the impurity concentration are used as indicators. I can judge. The purity of the final product can also be used as an index. If necessary, the rotation speed of the stirring blade can be automatically controlled based on the signal from the detector for obtaining such an index, without depending on the operator's judgment.

〔実施例〕〔Example〕

次に実施例により本発明の効果を明らかにする。 Next, the effects of the present invention will be clarified by examples.

第2図に粒度分布を示す湿式集塵あるいはバグフィルタ
ーによる捕集Zn粉の攪拌時における挙動を調査するた
め、第3図に示す装置で攪拌実験を行った。
In order to investigate the behavior of the Zn dust collected by the wet dust collection or bag filter whose particle size distribution is shown in FIG. 2 at the time of stirring, a stirring experiment was conducted with the apparatus shown in FIG.

第3図において、溶解槽50中に攪拌羽根51を設置し、こ
れをモーター52により回転駆動させ、その際インバータ
ーにより回転数を制御可能とした。かかる溶解槽50に対
して、微細亜鉛粉を貯溜槽53から供給するとともに、循
環させるようにした。さらに、サンプリングビーカー54
をサンプリング孔55から出入り自在とした。
In FIG. 3, a stirring blade 51 was installed in the dissolution tank 50, and this was driven to rotate by a motor 52, and at that time, the number of rotations could be controlled by an inverter. Fine zinc powder was supplied from the storage tank 53 to the dissolution tank 50 and circulated. In addition, a sampling beaker 54
Can be freely moved in and out through the sampling hole 55.

かかる試験装置において、試験時間および攪拌羽根の回
転数を変更しながら、溶解槽50の液面近傍の液を試料と
してサンプリングし、この試料中の未溶解Zn分の量(液
量当たりの未溶解分量g/lとして)を測定した。
In such a test apparatus, while changing the test time and the rotation speed of the stirring blade, a liquid near the liquid surface of the dissolution tank 50 was sampled as a sample, and the amount of undissolved Zn in this sample (undissolved per liquid amount) The quantity was measured as g / l).

その結果を第1表および第4図に示した。この図から次
のことが判明した。まず、攪拌機の回転数が高くなる
と、微細Zn粉が浮き、オーバーフローに混入する未溶解
Zn分が多くなる。逆に、その回転数が低くなると、オー
バーフロー中への混入は少なくなる。さらに、未溶解の
スラリーは溶解槽下部に多く溜まり循環ポンプの負荷が
大きくなるとともに、またキャビテーションを起こし、
送り不能となる可能性が認められた。
The results are shown in Table 1 and FIG. The figure revealed the following. First, as the number of revolutions of the stirrer increases, the fine Zn powder floats and is mixed in the overflow, which is undissolved.
Zn content increases. On the contrary, when the number of rotations becomes low, the mixture in the overflow becomes small. Furthermore, the undissolved slurry is much accumulated in the lower part of the dissolution tank, the load of the circulation pump is increased, and cavitation is caused again.
It was confirmed that there was a possibility that it could not be sent.

他方、従来法(一定の回転数)と本発明法(回転数制
御)とを比較するため、前記溶解槽にて溶解を行い、そ
の後晶析により炭酸亜鉛を得て、この品質を調べた。結
果を第1表に併記する。なお、同表中の品質ランクは、
第2表の意味でランク付けを行ったものである。
On the other hand, in order to compare the conventional method (constant rotation speed) with the method of the present invention (rotation speed control), dissolution was carried out in the dissolution tank, and then zinc carbonate was obtained by crystallization to examine its quality. The results are also shown in Table 1. The quality ranks in the table are
It is ranked in the meaning of Table 2.

上記第1表および第2表より、本発明法に従って、微細
Zn粉を併用するとしても、高い品質の炭酸亜鉛を得るこ
とができることが判る。
From Tables 1 and 2 above, according to the method of the present invention,
It can be seen that high quality zinc carbonate can be obtained even when Zn powder is used together.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明法によれば、微細金属亜鉛粉の投入
を行うことができるとともに、もって製造コストの低減
を図ることができ、さらに向流接触を支承なく行うこと
ができるなどの利点がある。
As described above, according to the method of the present invention, it is possible to introduce the fine metal zinc powder, and it is possible to reduce the manufacturing cost, and further, it is possible to perform countercurrent contact without any support. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明法に係る溶解工程例のフローシート、
第2図は微細Zn粉とサイクロン捕集粉との粒度分布を示
す図、第3図は本発明の効果を確認するための試験装置
図、第4図は攪拌の効果を示すグラフである。 1……第1溶解槽、2……第2溶解槽、3……第3溶解
槽、4A、4B、4C……攪拌機、5……バッフルプレート、
6……沈降分離槽、7……貯溜タンク、8……オーバー
フロー管、9A〜11A……返送ポンプ、20、21……亜鉛
粉。
FIG. 1 is a flow sheet of an example of a melting step according to the method of the present invention,
FIG. 2 is a diagram showing the particle size distribution of fine Zn powder and cyclone-collecting powder, FIG. 3 is a test apparatus diagram for confirming the effect of the present invention, and FIG. 4 is a graph showing the effect of stirring. 1 ... First melting tank, 2 ... Second melting tank, 3 ... Third melting tank, 4A, 4B, 4C ... Stirrer, 5 ... Baffle plate,
6 ... Sedimentation / separation tank, 7 ... Storage tank, 8 ... Overflow pipe, 9A-11A ... Return pump, 20, 21 ... Zinc powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくともFeおよびPbを含む亜鉛粉を(N
H4)2CO3およびNH4OHを含む水溶液と接触させて前記亜鉛
粉を溶解させるとともに、この溶解工程で金属亜鉛を添
加し、亜鉛の溶解によって生じる未溶解残渣を除去し、
次いで溶解処理後の溶液について金属亜鉛を添加し、金
属亜鉛と不純物との間にイオン置換反応を行い残渣分を
除去した後、炭酸亜鉛に結晶化を行い炭酸亜鉛の回収を
行う方法において、 前記溶解工程において、攪拌溶解槽を直列に複数設け、
前の溶解槽における清澄液を次の溶解槽に導き、後の溶
解槽における未溶解残渣を前の溶解槽に導くとともに、 前記後の溶解槽に粒径の大きい前記亜鉛粉を投入し、前
記前の溶解槽に粒径の小さい亜鉛粉を投入してそれぞれ
の溶解を行い、前記前の溶解槽における攪拌羽根の回転
数を、前の溶解槽から後の溶解槽に移行する清澄液中の
未溶解分の量に応じて制御することを特徴とする炭酸亜
鉛回収における亜鉛粉溶解方法。
1. A zinc powder containing at least Fe and Pb (N
H 4 ) 2 CO 3 and NH 4 OH is contacted with an aqueous solution to dissolve the zinc powder, and metal zinc is added in this dissolution step to remove undissolved residue generated by dissolution of zinc,
Next, in the method of adding zinc metal to the solution after the dissolution treatment, performing an ion substitution reaction between the zinc metal and impurities to remove a residue, and crystallizing zinc carbonate to recover zinc carbonate, In the dissolving step, a plurality of stirring and dissolving tanks are provided in series,
The clear solution in the previous dissolution tank is introduced to the next dissolution tank, the undissolved residue in the latter dissolution tank is introduced to the previous dissolution tank, and the zinc powder having a large particle size is added to the latter dissolution tank, Zinc powder with a small particle size is put into the previous dissolution tank to perform each dissolution, and the rotation speed of the stirring blade in the previous dissolution tank is changed from the previous dissolution tank to the subsequent dissolution tank. A method for dissolving zinc powder in the recovery of zinc carbonate, characterized by controlling according to the amount of undissolved components.
JP32801889A 1989-12-18 1989-12-18 Method for dissolving zinc powder in zinc carbonate recovery Expired - Lifetime JPH0676213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32801889A JPH0676213B2 (en) 1989-12-18 1989-12-18 Method for dissolving zinc powder in zinc carbonate recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32801889A JPH0676213B2 (en) 1989-12-18 1989-12-18 Method for dissolving zinc powder in zinc carbonate recovery

Publications (2)

Publication Number Publication Date
JPH03187918A JPH03187918A (en) 1991-08-15
JPH0676213B2 true JPH0676213B2 (en) 1994-09-28

Family

ID=18205598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32801889A Expired - Lifetime JPH0676213B2 (en) 1989-12-18 1989-12-18 Method for dissolving zinc powder in zinc carbonate recovery

Country Status (1)

Country Link
JP (1) JPH0676213B2 (en)

Also Published As

Publication number Publication date
JPH03187918A (en) 1991-08-15

Similar Documents

Publication Publication Date Title
EP3587600B1 (en) Method for the extraction and recovery of vanadium
NL2018962B1 (en) Process for metal recovery by ammonia leaching and solvent extraction with gas desorption and absorption
CN103781923B (en) Process for purifying zinc oxide
CA3097576C (en) A process for separating and recycling a spent alkaline battery
CA1073368A (en) Three phase separation
US4087512A (en) Process for removing solid organic material from wet-process phosphoric acid
WO2017105551A1 (en) Hydrometallurgical electrowinning of lead from spent lead-acid batteries
JP7464905B2 (en) Oil-water separation device and method for refining scandium using the same
US20040129636A1 (en) Metal removal and recovery by liquid-liquid extraction
CN1133752C (en) Direct zinc sulfide concentrate leaching-out process with coupled synergic leaching-out and solvent extraction and separation
US4437953A (en) Process for solution control in an electrolytic zinc plant circuit
JPH0676213B2 (en) Method for dissolving zinc powder in zinc carbonate recovery
US4292281A (en) Selective leaching of chloride from copper oxide minerals
JP7419514B2 (en) Improved method for recovering zinc from zinc-bearing feedstocks
JP2009096869A (en) Method for removing inorganic substance such as lead compound from polyvinyl chloride material
US4289609A (en) Process for removing solid organic materials and other impurities from wet-process phosphoric acid
CN1035680A (en) The mercury antimony partition method of mercury antimony complex ore
JP5140006B2 (en) Method for producing zinc carbonate
CN118006916B (en) In-situ online copper removal process for crude lead
JP7206150B2 (en) Method for removing SiO2 from slurry containing silver and SiO2 and method for purifying silver
JP3886652B2 (en) Method and facility for adjusting copper concentration in leachate in cleaning process of wet zinc smelting
CN1066474A (en) The method of superposition precipitating rare earth and device thereof
AU2004259870B2 (en) Method and apparatus for processing metalline sludge
CN207845728U (en) One kind is for liquid filter device before being extracted in wet method refining cobalt technique
RU2226226C1 (en) Nickel/cobalt concentrate processing method