JP2000119035A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JP2000119035A
JP2000119035A JP10287070A JP28707098A JP2000119035A JP 2000119035 A JP2000119035 A JP 2000119035A JP 10287070 A JP10287070 A JP 10287070A JP 28707098 A JP28707098 A JP 28707098A JP 2000119035 A JP2000119035 A JP 2000119035A
Authority
JP
Japan
Prior art keywords
burner
glass
optical fiber
starting member
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10287070A
Other languages
Japanese (ja)
Inventor
Sayaka Itou
さやか 伊東
Koichi Harada
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10287070A priority Critical patent/JP2000119035A/en
Publication of JP2000119035A publication Critical patent/JP2000119035A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a preform for an optical fiber by which a glass microparticle layer having a small fluctuation of outside diameter can be deposited on the outer periphery of a starting member according to an outside vapor-phase deposition method. SOLUTION: This method for producing a preform for an optical fiber is to move the position of a starting point when reciprocating an oxyhydrogen flame burner 2 for each one reciprocation in the method for producing the glass preform for the optical fiber comprising introducing a glass raw material gas into the oxyhydrogen flame burner 2 reciprocating in the longitudinal direction of a rodlike starting member 1 while rotating the rodlike starting member 1 around the shaft thereof, generating glass microparticles by flame hydrolysis and depositing the glass microparticles on the outer periphery of the starting member 1. The moving width thereof is preferably prevented from becoming the same as the pitch width of the fluctuation of the outside diameter of the glass microparticle layer 3 after the deposition. The speed of the reciprocation of the burner 2 is more preferably reduced as the amount of the deposited glass microparticles is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、いわゆる外付け法
による光ファイバ母材の製造方法に関する。
The present invention relates to a method for manufacturing an optical fiber preform by a so-called external method.

【0002】[0002]

【従来の技術】光ファイバ用ガラス母材の製造方法とし
て、外付け法は良く知られている。この方法は、図4に
示すように、棒状の出発部材1をその軸の周りに回転さ
せつつ、該出発部材1の長手方向に往復動する酸水素火
炎バーナー2にガラス原料ガスを導入し、火炎加水分解
によりガラス微粒子を発生させ該出発部材1の外周にガ
ラス微粒子層3として堆積させる方法である。
2. Description of the Related Art As a method for manufacturing a glass preform for an optical fiber, an external method is well known. In this method, as shown in FIG. 4, while rotating a rod-shaped starting member 1 around its axis, a glass raw material gas is introduced into an oxyhydrogen flame burner 2 that reciprocates in the longitudinal direction of the starting member 1, In this method, glass fine particles are generated by flame hydrolysis and deposited on the outer periphery of the starting member 1 as a glass fine particle layer 3.

【0003】上記酸水素火炎バーナー2の往復動におい
て、該バーナー2へのガラス原料ガス、酸素、水素など
の供給は、例えば、出発部材1の右端から左端に向かう
往路のときに行われ、復路のときには停止される。この
とき、往復動の開始位置と終了位置および往復動の速度
が、往復動の最初から最後まで、同じである。
In the reciprocating motion of the oxyhydrogen flame burner 2, the supply of the glass raw material gas, oxygen, hydrogen, etc. to the burner 2 is performed, for example, when the starting member 1 travels from the right end to the left end, and returns. In the case of, it is stopped. At this time, the start position and the end position of the reciprocating motion and the speed of the reciprocating motion are the same from the beginning to the end of the reciprocating motion.

【0004】このような従来技術により製造された光フ
ァイバ用ガラス母材は、図5に示すように、その長手方
向にわたり、あるピッチ幅(通常約70mm程度)をも
った外径変動を生ずることがあった。この外径変動は、
この母材から得られる光ファイバの分散値などの特性変
動を長手方向に生じさせ、さらにこの母材を次の紡糸工
程で紡糸する際に、光ファイバ径の制御を困難にさせ、
紡糸の高速化などの妨げとなっていた。
As shown in FIG. 5, the glass preform for an optical fiber manufactured by such a conventional technique has an outer diameter variation with a certain pitch width (usually about 70 mm) over its longitudinal direction. was there. This outer diameter variation is
In the longitudinal direction, characteristic fluctuations such as the dispersion value of the optical fiber obtained from the base material are caused, and when the base material is spun in the next spinning process, it becomes difficult to control the optical fiber diameter,
This hindered the spinning speed.

【0005】[0005]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、棒状の出発部材をその軸の周りに回転させつ
つ、該出発部材の長手方向に往復動する酸水素火炎バー
ナーにガラス原料ガスを導入し、火炎加水分解によりガ
ラス微粒子を発生させ該出発部材の外周に、外径変動の
小さいガラス微粒子層を堆積させることのできる光ファ
イバ母材の製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to rotate a rod-shaped starting member around its axis and to feed a glass raw material gas to an oxyhydrogen flame burner reciprocating in the longitudinal direction of the starting member. It is an object of the present invention to provide a method for producing an optical fiber preform which can be introduced to generate glass fine particles by flame hydrolysis and deposit a glass fine particle layer having a small variation in outer diameter on the outer periphery of the starting member.

【0006】[0006]

【課題を解決するための手段】かかる課題は、棒状の出
発部材をその軸の周りに回転させつつ、該出発部材の長
手方向に往復動する酸水素火炎バーナーにガラス原料ガ
スを導入し、火炎加水分解によりガラス微粒子を発生さ
せ該出発部材の外周に堆積させる際に、該バーナーが往
復動するときの出発点を、該バーナーの1往復動毎に、
その位置を移動させること、望ましくは、この移動幅を
上記堆積後のガラス微粒子層の外径変動のピッチ幅と同
一にならないようにすること、さらに望ましくは、上記
バーナーの往復動の速度を、上記堆積されるガラス微粒
子の量が増加するにつれて減速することによって解決さ
れる。
The object of the present invention is to introduce a glass raw material gas into an oxyhydrogen flame burner which reciprocates in the longitudinal direction of the starting member while rotating the starting member in a rod shape around its axis. When generating the glass fine particles by hydrolysis and depositing them on the outer periphery of the starting member, the starting point when the burner reciprocates, every one reciprocation of the burner,
To move the position, desirably, the moving width is not the same as the pitch width of the outer diameter variation of the glass particle layer after the deposition, more preferably, the reciprocating speed of the burner, The problem is solved by slowing down as the amount of glass particles deposited increases.

【0007】[0007]

【作用】上記バーナーが往復動するときの出発点を、該
バーナーの1往復動毎に、その位置を移動させることに
より、ガラス微粒子層の外径変動が相殺されるため外径
変動幅が小さくなる。
The starting point when the above-mentioned burner reciprocates is moved every time the burner reciprocates, so that the fluctuation of the outer diameter of the glass fine particle layer is canceled out. Become.

【0008】上記バーナーの出発点の位置の移動幅をガ
ラス微粒子層の外径変動のピッチ幅と同一にならないよ
うにすることにより、外径変動の相殺効果が減少するこ
とを防ぐためである。
[0008] This is to prevent the offset effect of the outer diameter fluctuation from being reduced by preventing the movement width of the starting point position of the burner from being equal to the pitch width of the outer diameter fluctuation of the glass particle layer.

【0009】上記バーナーの往復動の速度を、上記堆積
されるガラス微粒子の量が増加するにつれて減速するこ
とにより、該堆積の当初段階ではバーナーの往復動の速
度が早く、1回の往復動で堆積されるガラス微粒子層が
薄くなり、ガラス微粒子層の外径変動が発生しにくいた
めである。
By reducing the reciprocating speed of the burner as the amount of the glass particles to be deposited increases, the reciprocating speed of the burner is high in the initial stage of the deposition, and the reciprocating speed of the burner is increased by one reciprocating motion. This is because the glass fine particle layer to be deposited becomes thin, and the outer diameter of the glass fine particle layer hardly fluctuates.

【0010】[0010]

【発明の実施の形態】図1は本発明の光ファイバ母材の
製造方法の一例を示すものである。図中符号1は、棒状
の出発部材を示す。この出発部材1をその軸の周りに回
転させつつ、該出発部材1の長手方向に往復動する酸水
素火炎バーナー2にガラス原料ガスを導入し、火炎加水
分解によりガラス微粒子を発生させ該出発部材1の外周
にガラス微粒子層3を堆積させる。
FIG. 1 shows an example of a method for manufacturing an optical fiber preform according to the present invention. Reference numeral 1 in the drawing indicates a rod-shaped starting member. While rotating the starting member 1 around its axis, a glass raw material gas is introduced into an oxyhydrogen flame burner 2 that reciprocates in the longitudinal direction of the starting member 1 to generate glass fine particles by flame hydrolysis to generate the starting material. A glass fine particle layer 3 is deposited on the outer periphery of 1.

【0011】上記バーナーの往復動において、例えば、
1回目の往復動の出発点を、図1に示すAの位置とした
とき、2回目の出発点は出発部材1の中央部寄りの位置
B、3回目の出発点はA点を挟んでB点の反対側の位置
Cとする。その後は、同じ順番で往復動を繰り返しなが
らガラス微粒子層3を堆積する。このようにすることに
より、それぞれの外径変動を相殺することができる。
In the reciprocating motion of the burner, for example,
Assuming that the starting point of the first reciprocation is the position A shown in FIG. 1, the second starting point is a position B near the center of the starting member 1, and the third starting point is a point B across the point A. The position C is on the opposite side of the point. Thereafter, the glass fine particle layer 3 is deposited while repeating reciprocation in the same order. By doing so, the respective outer diameter fluctuations can be offset.

【0012】上記位置Aと位置B、位置Bと位置C、位
置Cと位置Aの間隔は、ガラス微粒子層3の外径変動の
ピッチ幅と同一にならないようにする。これは、外径変
動の相殺効果を減少させないためである。ここでのピッ
チ幅とは、ガラス微粒子層3の外径の長手方向での一変
動周期の始点位置と終点位置との間隔を指している。
The intervals between the positions A and B, between the positions B and C, and between the positions C and A are set so as not to be equal to the pitch width of the outer diameter variation of the glass fine particle layer 3. This is because the effect of offsetting the outer diameter fluctuation is not reduced. Here, the pitch width indicates an interval between the start point position and the end point position of one fluctuation period in the longitudinal direction of the outer diameter of the glass particle layer 3.

【0013】上記バーナー2の往復動の速度は、ガラス
微粒子の堆積の当初段階では、早くして、該ガラス微粒
子堆積量が増加するにつれて減速する。例えば、最終段
階のバーナー2の往復動の速度をVとすると、当初段階
の速度は2V〜6Vとする。このように当初段階のバー
ナーの往復動の速度を早くすることにより、1回の往復
動で堆積されるガラス微粒子層が薄くなり、ガラス微粒
子層の外径変動が発生しにくくなる。さらに、上記当初
段階を過ぎた後は、バーナー2の速度を遅くして、ガラ
ス微粒子の堆積効率を高くする。上記当初段階、最終段
階の目安としては、ガラス微粒子層3の全堆積量の約半
分までを当初段階とし、残りの約半分を最終段階とする
設定が望ましい。
The reciprocating speed of the burner 2 is increased in the initial stage of the deposition of the glass particles, and is reduced as the amount of glass particles deposited increases. For example, assuming that the reciprocating speed of the burner 2 in the final stage is V, the speed in the initial stage is 2V to 6V. By increasing the reciprocating speed of the burner in the initial stage in this way, the glass fine particle layer deposited by one reciprocating movement becomes thin, and the outer diameter of the glass fine particle layer hardly fluctuates. Further, after the initial stage, the speed of the burner 2 is reduced to increase the deposition efficiency of the glass particles. As a guide for the initial stage and the final stage, it is desirable that up to about half of the total deposition amount of the glass fine particle layer 3 be the initial stage and the other half be the final stage.

【0014】上記バーナー2が往復動するときの出発点
を、該バーナーの1往復動毎に、その位置をAからB
へ、BからCへ、さらにCからAへ移動させることによ
り、ガラス微粒子層3の外径の最大値および最小値の発
生する位置を移動させて、位置A、B、Cのときの外径
変動をお互いに相殺させることができ、ガラス微粒子層
3全体としての外径変動幅を小さくすることができる。
The starting point of the reciprocation of the burner 2 is defined as the position from A to B for each reciprocation of the burner.
, From B to C, and from C to A, the position where the maximum value and the minimum value of the outer diameter of the glass fine particle layer 3 are generated is moved, and the outer diameter at the positions A, B, and C is moved. The fluctuations can be offset each other, and the outer diameter fluctuation width of the entire glass fine particle layer 3 can be reduced.

【0015】また、上記バーナー2の出発点の位置の移
動幅を、ガラス微粒子層の外径変動のピッチ幅と同一に
ならないようにすることにより、上記外径変動の相殺効
果が減少することを防ぐことができる。
Further, by making the moving width of the position of the starting point of the burner 2 not to be the same as the pitch width of the outer diameter fluctuation of the glass fine particle layer, the effect of offsetting the outer diameter fluctuation is reduced. Can be prevented.

【0016】上記バーナー2の往復動の速度を、上記堆
積されるガラス微粒子の量が増加するにつれて減速する
ことにより、該堆積の当初段階ではバーナー2の往復動
の速度が早く、1回の往復動で堆積されるガラス微粒子
層3を薄くすることができ、ガラス微粒子層3の外径変
動を小さくすることができる。
By reducing the reciprocating speed of the burner 2 as the amount of the glass particles to be deposited increases, the reciprocating speed of the burner 2 is increased in the initial stage of the deposition, so that one reciprocation is performed. The glass fine particle layer 3 deposited by movement can be made thinner, and the outer diameter fluctuation of the glass fine particle layer 3 can be reduced.

【0017】詳しくは実施例において説明するが、請求
項3の光ファイバ母材の製造方法によると、バーナー2
の往復動の出発点の移動による外径変動の相殺効果と、
バーナー2の速度を当初段階で早くすることによる往復
動1回当たりのガラス微粒子の堆積薄層化効果の相乗効
果を得ることができ、ガラス微粒子層3の外径変動幅
を、従来技術に比べて、約4分の1に低減できる。
Although described in detail in the embodiments, according to the method for manufacturing an optical fiber preform according to claim 3, the burner 2
Offset effect of outer diameter fluctuation by moving the starting point of reciprocation of
By increasing the speed of the burner 2 in the initial stage, it is possible to obtain a synergistic effect of the effect of thinning and depositing the glass fine particles per one reciprocation, and to make the outer diameter fluctuation width of the glass fine particle layer 3 smaller than that of the prior art. Therefore, it can be reduced to about one fourth.

【0018】また、上記堆積薄層化は単に外径変動の低
減効果のみならず、後の焼結工程での出発部材とガラス
微粒子堆積層とのズレを防止する効果も発揮する。
Further, the above-mentioned thinning of the deposited layer not only has the effect of reducing the fluctuation of the outer diameter, but also has the effect of preventing the deviation between the starting member and the deposited layer of glass fine particles in the subsequent sintering step.

【0019】酸水素火炎バーナー2に供給されるガラス
原料ガスは典型的にSiCl4であり、出発部材1は典
型的にGeO2ーSiO2ガラスロッドやSi02ガラス
ロッドである。
The glass raw material gas supplied to the oxyhydrogen flame burner 2 is typically a SiCl 4, starting member 1 is typically GeO 2 over SiO 2 glass rod and Si0 2 glass rod.

【0020】酸水素火炎バーナー2の本数は、1本に限
らず複数本を往復動させても良い。バーナーを複数本に
すると、バーナー相互の間隔距離をガラス微粒子層の外
径変動のピッチ幅と同一にならないようにすることによ
り、上記よりさらなる外径変動幅の減少効果を得ること
ができる。
The number of oxyhydrogen flame burners 2 is not limited to one, and a plurality of oxyhydrogen flame burners may be reciprocated. When a plurality of burners are used, the distance between the burners is made not to be the same as the pitch width of the outer diameter variation of the glass fine particle layer, so that the effect of further reducing the outer diameter variation width can be obtained.

【0021】[0021]

【実施例】以下、本発明を実施例を示して詳しく説明す
る。本実施例1では、図1に示した方法により光ファイ
バ母材を作成した。外径20mmの出発部材1をその軸
の周りに回転させつつ、該出発部材1の長手方向に往復
動する酸水素火炎バーナー2にガラス原料ガスを導入
し、火炎加水分解によりガラス微粒子を発生させ該出発
部材1の外周に堆積させて、外径200mmのガラス微
粒子層3を得た。このときの上記バーナー2の往復動に
おいて、1回目の往復動の出発点を、図1に示すAの位
置とし、2回目の出発点は位置B、3回目の出発点は位
置Cとした。位置Aと位置Bの間隔が20mm、位置A
と位置Cの間隔が20mmであった。さらにその後は、
同じ順番で往復動を繰り返しながらガラス微粒子層3を
堆積した。また、このときの上記バーナー2の往復動の
速度は、55mm/分で、当初段階から最終段階まで同
じであった。上記の製造方法で得た光ファイバ母材の外
径変動の測定結果を図2に示す。本実施例1の外径変動
幅は0.5%で、図5に示す比較例の外径変動幅1.2
%に比べて小さくなっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. In Example 1, an optical fiber preform was prepared by the method shown in FIG. While rotating the starting member 1 having an outer diameter of 20 mm around its axis, a glass raw material gas is introduced into the oxyhydrogen flame burner 2 which reciprocates in the longitudinal direction of the starting member 1, and glass fine particles are generated by flame hydrolysis. The glass particle layer 3 having an outer diameter of 200 mm was deposited on the outer periphery of the starting member 1. In the reciprocating motion of the burner 2 at this time, the starting point of the first reciprocating motion was position A shown in FIG. 1, the second starting point was position B, and the third starting point was position C. The distance between position A and position B is 20 mm, position A
And the interval between the positions C was 20 mm. After that,
The glass fine particle layer 3 was deposited while repeating reciprocation in the same order. The reciprocating speed of the burner 2 at this time was 55 mm / min, which was the same from the initial stage to the final stage. FIG. 2 shows the measurement results of the outer diameter variation of the optical fiber preform obtained by the above manufacturing method. The outer diameter fluctuation width of Example 1 was 0.5%, and the outer diameter fluctuation width of the comparative example shown in FIG.
%.

【0022】本実施例2では、図1に示した方法により
光ファイバ母材を作成した。外径20mmの出発部材1
をその軸の周りに回転させつつ、該出発部材1の長手方
向に往復動する酸水素火炎バーナー2にガラス原料ガス
を導入し、火炎加水分解によりガラス微粒子を発生させ
該出発部材1の外周に堆積させて、外径200mmのガ
ラス微粒子層3を得た。このときの上記バーナー2の往
復動において、1回目の往復動の出発点を、図1に示す
Aの位置とし、2回目の出発点は位置B、3回目の出発
点は位置Cとした。位置Aと位置Bの間隔が20mm、
位置Aと位置Cの間隔が20mmであった。さらにその
後は、同じ順番で往復動を繰り返しながらガラス微粒子
層3を堆積した。また、このときの上記バーナー2の往
復動の速度は、当初段階は220mm/分で、該ガラス
微粒子が目標堆積量の半分に達した後は、55mm/分
であった。上記の製造方法で得た光ファイバ母材の外径
変動の測定結果を図3に示す。本実施例2の外径変動幅
は0.3%で、図5に示す比較例の外径変動幅1.2%
に比べて小さくなっていることは勿論のこと、実施例1
に比べて、さらに小さくなっている。
In Example 2, an optical fiber preform was prepared by the method shown in FIG. Starting member 1 with outer diameter 20mm
While rotating around the axis, a glass raw material gas is introduced into an oxyhydrogen flame burner 2 which reciprocates in the longitudinal direction of the starting member 1 to generate glass fine particles by flame hydrolysis, thereby forming a glass particle on the outer periphery of the starting member 1. By deposition, a glass fine particle layer 3 having an outer diameter of 200 mm was obtained. In the reciprocating motion of the burner 2 at this time, the starting point of the first reciprocating motion was position A shown in FIG. 1, the second starting point was position B, and the third starting point was position C. The distance between position A and position B is 20 mm,
The distance between the position A and the position C was 20 mm. Thereafter, the glass fine particle layer 3 was deposited while reciprocating in the same order. The reciprocating speed of the burner 2 at this time was 220 mm / min in the initial stage, and was 55 mm / min after the glass particles reached half the target deposition amount. FIG. 3 shows a measurement result of the outer diameter variation of the optical fiber preform obtained by the above-described manufacturing method. The outer diameter fluctuation width of Example 2 was 0.3%, and the outer diameter fluctuation width of the comparative example shown in FIG. 5 was 1.2%.
Example 1 is, of course, smaller than
It is even smaller than.

【0023】尚、上記2つの実施例では、位置Aと位置
Bの間隔と、位置Aと位置Cの間隔を等間隔にしたが、
このような等間隔に限らず、非等間隔のときも同様な効
果を得ることができる。
In the above two embodiments, the interval between the position A and the position B and the interval between the position A and the position C are equal.
The same effect can be obtained not only at such equal intervals but also at non-equal intervals.

【0024】本比較例では、図4に示した方法により光
ファイバ母材を作成した。外径20mmの出発部材1を
その軸の周りに回転させつつ、該出発部材1の長手方向
に往復動する酸水素火炎バーナー2にガラス原料ガスを
導入し、火炎加水分解によりガラス微粒子を発生させ該
出発部材1の外周に堆積させて、外径200mmのガラ
ス微粒子層3を得た。このときの上記バーナー2の往復
動において、該往復動の出発点はいつも、図4に示すA
の位置であった。このような往復動を繰り返しながらガ
ラス微粒子層3を堆積した。また、このときの上記バー
ナー2の往復動の速度は、55mm/分で、当初段階か
ら最終段階まで同じであった。上記の製造方法で得た光
ファイバ母材の外径変動の測定結果を図5に示す。本比
較例の外径変動幅は1.2%であった。
In this comparative example, an optical fiber preform was prepared by the method shown in FIG. While rotating the starting member 1 having an outer diameter of 20 mm around its axis, a glass raw material gas is introduced into the oxyhydrogen flame burner 2 which reciprocates in the longitudinal direction of the starting member 1, and glass fine particles are generated by flame hydrolysis. The glass particle layer 3 having an outer diameter of 200 mm was deposited on the outer periphery of the starting member 1. In the reciprocating motion of the burner 2 at this time, the starting point of the reciprocating motion is always the point A shown in FIG.
Was in the position. The glass particle layer 3 was deposited while repeating such a reciprocating motion. The reciprocating speed of the burner 2 at this time was 55 mm / min, which was the same from the initial stage to the final stage. FIG. 5 shows the measurement results of the outer diameter variation of the optical fiber preform obtained by the above-described manufacturing method. The fluctuation range of the outer diameter of this comparative example was 1.2%.

【0025】[0025]

【発明の効果】以上説明したように、請求項1および2
に記載の発明によれば、バーナーの往復動の出発点の移
動による外径変動の相殺効果が得られる。請求項3に記
載の発明によれば、バーナーの速度を当初段階で早くす
ることによる往復動1回当たりのガラス微粒子の堆積薄
層化効果も得ることができ、前記相殺効果との相乗効果
により、光ファイバ母材の外径変動を大幅に低減でき
る。
As described above, claims 1 and 2
According to the invention described in (1), the effect of canceling the outer diameter fluctuation due to the movement of the starting point of the reciprocating motion of the burner can be obtained. According to the third aspect of the invention, the effect of increasing the burner speed at the initial stage can also achieve the effect of thinning and depositing the glass fine particles per one reciprocation, and the synergistic effect with the canceling effect can be obtained. In addition, variation in the outer diameter of the optical fiber preform can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光ファイバ母材の製造方法の一例を
示す構成図である。
FIG. 1 is a configuration diagram illustrating an example of a method for manufacturing an optical fiber preform of the present invention.

【図2】 実施例1で得られた光ファイバ母材の外径変
動の測定結果を示す図表である。
FIG. 2 is a table showing the measurement results of the outer diameter variation of the optical fiber preform obtained in Example 1.

【図3】 実施例2で得られた光ファイバ母材の外径変
動の測定結果を示す図表である。
FIG. 3 is a table showing a measurement result of an outer diameter variation of an optical fiber preform obtained in Example 2.

【図4】 従来技術の光ファイバ母材の製造方法を示す
構成図である。
FIG. 4 is a configuration diagram showing a conventional method for manufacturing an optical fiber preform.

【図5】 比較例で得られた光ファイバ母材の外径変動
の測定結果を示す図表である。
FIG. 5 is a table showing measurement results of outer diameter fluctuation of an optical fiber preform obtained in a comparative example.

【符号の説明】[Explanation of symbols]

1…棒状の出発部材 2…酸水素火炎バーナー 3…ガ
ラス微粒子層
1 ... rod-shaped starting member 2 ... oxyhydrogen flame burner 3 ... glass fine particle layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 棒状の出発部材をその軸の周りに回転さ
せつつ、該出発部材の長手方向に往復動する酸水素火炎
バーナーにガラス原料ガスを導入し、火炎加水分解によ
りガラス微粒子を発生させ該出発部材の外周に堆積させ
る光ファイバ用ガラス母材の製造方法において、 該バーナーが往復動するときの出発点を、該バーナーの
1往復動毎に、その位置を移動させることを特徴とする
光ファイバ母材の製造方法。
1. A glass raw material gas is introduced into an oxyhydrogen flame burner reciprocating in the longitudinal direction of a rod-shaped starting member while rotating the rod-shaped starting member around its axis, and glass fine particles are generated by flame hydrolysis. In the method for producing a glass preform for optical fibers deposited on the outer periphery of the starting member, the starting point at which the burner reciprocates is moved at each reciprocation of the burner. A method for manufacturing an optical fiber preform.
【請求項2】 上記バーナーが往復動するときの出発点
を、該バーナーの1往復動毎に、その位置を移動させる
際に、該移動幅を上記堆積後のガラス微粒子層の外径変
動のピッチ幅と同一にならないようにすることを特徴と
する請求項1記載の光ファイバ母材の製造方法。
2. A starting point when the burner reciprocates is set to a position at which the burner reciprocates for each reciprocation of the burner. 2. The method for manufacturing an optical fiber preform according to claim 1, wherein the pitch width is not equal to the pitch width.
【請求項3】 上記バーナーの往復動の速度を、上記堆
積されるガラス微粒子の量が増加するにつれて減速する
ことを特徴とする請求項1または2記載の光ファイバ母
材の製造方法。
3. The method of manufacturing an optical fiber preform according to claim 1, wherein the reciprocating speed of the burner is reduced as the amount of the deposited glass particles increases.
JP10287070A 1998-10-08 1998-10-08 Production of preform for optical fiber Pending JP2000119035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10287070A JP2000119035A (en) 1998-10-08 1998-10-08 Production of preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287070A JP2000119035A (en) 1998-10-08 1998-10-08 Production of preform for optical fiber

Publications (1)

Publication Number Publication Date
JP2000119035A true JP2000119035A (en) 2000-04-25

Family

ID=17712671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287070A Pending JP2000119035A (en) 1998-10-08 1998-10-08 Production of preform for optical fiber

Country Status (1)

Country Link
JP (1) JP2000119035A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform
KR100507622B1 (en) * 2002-10-17 2005-08-10 엘에스전선 주식회사 Method and apparatus for fabricating an optical fiber preform in OVD
US8516855B2 (en) 2001-04-27 2013-08-27 Prysmian Cavi E Sistemi Energia S.R.L. Method for producing an optical fiber preform
WO2019044805A1 (en) * 2017-08-29 2019-03-07 住友電気工業株式会社 Method for producing glass fine particle deposit, method for producing glass matrix, and glass matrix
CN111032587A (en) * 2017-08-29 2020-04-17 住友电气工业株式会社 Method for producing glass microparticle-deposited body, method for producing glass base material, and glass microparticle-deposited body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform
US8516855B2 (en) 2001-04-27 2013-08-27 Prysmian Cavi E Sistemi Energia S.R.L. Method for producing an optical fiber preform
KR100507622B1 (en) * 2002-10-17 2005-08-10 엘에스전선 주식회사 Method and apparatus for fabricating an optical fiber preform in OVD
WO2019044805A1 (en) * 2017-08-29 2019-03-07 住友電気工業株式会社 Method for producing glass fine particle deposit, method for producing glass matrix, and glass matrix
CN111032587A (en) * 2017-08-29 2020-04-17 住友电气工业株式会社 Method for producing glass microparticle-deposited body, method for producing glass base material, and glass microparticle-deposited body
CN111051259A (en) * 2017-08-29 2020-04-21 住友电气工业株式会社 Method for producing glass fine particle deposit, method for producing glass base material, and glass base material
JPWO2019044805A1 (en) * 2017-08-29 2020-10-01 住友電気工業株式会社 Manufacturing method of glass fine particle deposit, manufacturing method of glass base material and glass base material
CN111032587B (en) * 2017-08-29 2022-12-30 住友电气工业株式会社 Method for producing glass microparticle-deposited body, method for producing glass base material, and glass microparticle-deposited body

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JP2007504092A (en) Optical fiber and preform and method for producing the same
JP2000119035A (en) Production of preform for optical fiber
KR101655271B1 (en) Method for producing optical fiber preform having good production efficiency
CN111051259A (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass base material
JP3396430B2 (en) Method for manufacturing optical fiber preform and apparatus for manufacturing optical fiber preform
JP2612941B2 (en) Method for producing porous optical fiber preform
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP7115095B2 (en) Manufacturing method of preform for optical fiber
JP3517848B2 (en) Manufacturing method of optical fiber preform
JPS6374932A (en) Production of preform for optical fiber
JPH0725637A (en) Production of porous glass preform for optical fiber
KR20070092761A (en) Production method of quartz glass
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
CN1401600A (en) Method for improving longitudinal uniformity of optic fibre preform rod
JP4140839B2 (en) Optical fiber preform manufacturing method
JP4691008B2 (en) Optical fiber manufacturing method
JPH09132423A (en) Production of optical fiber preform
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP3977082B2 (en) Optical fiber preform manufacturing method
JPH09278477A (en) Production of glass preform for optical fiber
KR100641941B1 (en) Method for fabricating multimode optical fiber for gigabit class transmission system having longitudnal uniformity
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JPS60264336A (en) Manufacture of optical glass preform
JPH0986948A (en) Production of porous glass base material for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202