JP2000117286A - Equipment for removing phosphorus in wastewater - Google Patents

Equipment for removing phosphorus in wastewater

Info

Publication number
JP2000117286A
JP2000117286A JP10293786A JP29378698A JP2000117286A JP 2000117286 A JP2000117286 A JP 2000117286A JP 10293786 A JP10293786 A JP 10293786A JP 29378698 A JP29378698 A JP 29378698A JP 2000117286 A JP2000117286 A JP 2000117286A
Authority
JP
Japan
Prior art keywords
sludge
tank
wastewater
anaerobic
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10293786A
Other languages
Japanese (ja)
Inventor
Tatsuo Takechi
辰夫 武智
Masahisa Tanabe
正久 田邊
Toshiaki Tsubone
俊明 局
Jun Miyata
純 宮田
Kei Baba
圭 馬場
Satoru Udagawa
悟 宇田川
Toyoshi Sawada
豊志 沢田
Shinichi Endo
伸一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10293786A priority Critical patent/JP2000117286A/en
Priority to US09/383,314 priority patent/US6387254B1/en
Priority to CA 2281338 priority patent/CA2281338A1/en
Priority to EP19990116858 priority patent/EP0987224A3/en
Publication of JP2000117286A publication Critical patent/JP2000117286A/en
Priority to US10/073,467 priority patent/US20020104798A1/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide equipment which is compact and capable of reducing the burden of operating cost such as addition cost, and also economizing the construction cost by placing a line for returning a part of effluent water from an aerobic treatment vessel or a part of sludge withdrawn from a final settling tank for treated wastewater to a first settling tank for wastewater to be treated and another line for transferring a part of sludge of the first settling tank to an anaerobic treatment vessel or the aerobic treatment vessel. SOLUTION: The treatment process using this equipment comprises: subjecting wastewater 1 to be treated to solid-liquid separation in a first settling tank 2; then, successively passing the separated wastewater 1 through an anaerobic treatment vessel 3 and an aerobic treatment vessel 4 in that order; separating an effluent liquid 10 that flows out from the aerobic vessel 4 and flows into a final settling tank 6, into treated water 7 and activated sludge in the final settling tank 6; transferring at least a part of the separated and concentrated activated sludge 8, namely, withdrawn sludge 8 from the final settling tank 6 to the anaerobic treatment vessel 3 as return sludge; returning at least a part of the effluent liquid 10, i.e., sludge-mixed liquid 10 flowing out from the aerobic treatment vessel 4, at least a part of the withdrawn sludge 8 from the final settling tank 6 or both of them to a first settling tank 2; and allowing at least a part of withdrawn sludge from the first settling tank 2, namely, a first settling tank deposit 9 to flow into the anaerobic treatment vessel 3 or aerobic treatment vessel 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広くは下水・廃水
処理分野に属し、特に廃水からのリン除去装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally belongs to the field of sewage and wastewater treatment, and more particularly to an apparatus for removing phosphorus from wastewater.

【0002】[0002]

【従来の技術】廃水中から有機物を除去するための従来
の代表的な処理プロセスとして活性汚泥法プロセスがあ
り、リン酸イオンおよび有機物を同時に除去する従来の
方法としては嫌気好気活性汚泥法プロセスがある。
2. Description of the Related Art There is an activated sludge process as a conventional representative treatment process for removing organic substances from wastewater, and an anaerobic aerobic activated sludge process is a conventional method for simultaneously removing phosphate ions and organic substances. There is.

【0003】嫌気好気活性汚泥法による廃水処理装置の
一例を第3図に示す。嫌気好気活性汚泥法による廃水処
理装置は、最初沈殿池2と、生物学的リン放出反応によ
り活性汚泥が細胞内のリン酸イオンを廃水中に放出する
嫌気槽3と、生物学的リン摂取反応により活性汚泥が廃
水中のリン酸イオンを細胞内に摂取する好気槽4と最終
沈殿池6とから構成される。好気工程での活性汚泥のリ
ン摂取量は嫌気工程でのリン放出量よりも大であり、こ
のリン摂取量とリン放出量との差が廃水からのリン除去
量に相当する。
FIG. 3 shows an example of a wastewater treatment apparatus using the anaerobic-aerobic activated sludge method. The wastewater treatment apparatus using the anaerobic and aerobic activated sludge method comprises an initial settling basin 2, an anaerobic tank 3 in which activated sludge releases intracellular phosphate ions into wastewater by a biological phosphorus release reaction, and a biological phosphorus intake. The activated sludge is constituted by an aerobic tank 4 for ingesting phosphate ions in wastewater into cells by a reaction and a final sedimentation basin 6. The phosphorus intake of the activated sludge in the aerobic step is larger than the phosphorus release in the anaerobic step, and the difference between the phosphorus intake and the phosphorus release corresponds to the phosphorus removal from the wastewater.

【0004】最初沈殿池2において廃水1中に含まれる
比較的大きくて重い固形物を除去した後、嫌気工程での
生物学的リン放出反応および好気工程での生物学的リン
摂取反応を経て、排水中のリンは汚泥の構成成分に変化
し、最終的に余剰汚泥として廃水処理装置から排出され
る。また、廃水中の有機物は嫌気工程および好気工程の
双方において除去される。
After first removing relatively large and heavy solids contained in wastewater 1 in a sedimentation basin 2, a biological phosphorus release reaction in an anaerobic process and a biological phosphorus uptake reaction in an aerobic process are performed. The phosphorus in the wastewater is converted into a constituent component of the sludge, and is finally discharged from the wastewater treatment apparatus as surplus sludge. Organic matter in the wastewater is removed in both the anaerobic step and the aerobic step.

【0005】嫌気好気活性汚泥法による廃水処理装置を
用いた廃水からのリン除去においては次のような問題が
ある。すなわち、雨水の流入等により廃水の有機物濃度
が低下する場合、廃水は酸素を供給されつつ希釈される
ため、排水中の有機物は酸化と希釈とを受けた後、嫌気
工程へ供給される。この結果、嫌気工程へ供給される有
機物濃度はリン酸イオン濃度に比してより低下するた
め、嫌気工程でのリン放出反応速度および好気工程での
リン摂取反応速度が低くなり、処理水の水質が悪化す
る。
[0005] There are the following problems in removing phosphorus from wastewater using a wastewater treatment apparatus based on the anaerobic-aerobic activated sludge method. That is, when the organic matter concentration of the wastewater decreases due to the inflow of rainwater or the like, the wastewater is diluted while being supplied with oxygen. Therefore, the organic matter in the wastewater is supplied to the anaerobic process after being oxidized and diluted. As a result, the concentration of organic substances supplied to the anaerobic step is lower than the concentration of phosphate ions, so that the phosphorus release reaction rate in the anaerobic step and the phosphorus intake reaction rate in the aerobic step become lower, and the treated water is reduced. Water quality deteriorates.

【0006】また、最初沈殿池において廃水の固形汚濁
物質が沈降分離されるため、最初沈殿池を経由して嫌気
工程へ供給される排水は溶解性汚濁物質を主体とした構
成となる。従って、嫌気工程へ供給される廃水中の溶解
性汚濁物質の有機物濃度/リン酸イオン濃度比が低い場
合においても、嫌気工程でのリン放出反応速度および好
気工程でのリン摂取反応速度が低くなり、処理水の水質
が悪化する。
Further, since solid pollutants of wastewater are settled and separated in the first sedimentation basin, the wastewater supplied to the anaerobic process via the first sedimentation basin is mainly composed of soluble pollutants. Accordingly, even when the organic matter concentration / phosphate ion concentration ratio of the soluble pollutants in the wastewater supplied to the anaerobic step is low, the phosphorus release reaction rate in the anaerobic step and the phosphorus intake reaction rate in the aerobic step are low. And the quality of the treated water deteriorates.

【0007】このような問題点に対処するために、廃水
と共にメタノール等の有機薬剤を嫌気工程へ供給し、廃
水中の有機物濃度の不足分を補うことにより嫌気工程で
のリン放出反応速度および好気工程でのリン摂取反応速
度の低下を防ぐ、という方法が用いられている。
To cope with such a problem, an organic chemical such as methanol is supplied to the anaerobic step together with the wastewater to compensate for the shortage of the concentration of organic substances in the wastewater, thereby improving the phosphorus release reaction rate and the favorable rate in the anaerobic step. A method of preventing a decrease in the reaction rate of phosphorus intake in the pneumatic process has been used.

【0008】有機薬剤を嫌気工程へ流入させるという従
来技術において、通常、メタノールが用いられてきた。
このメタノールは分子量が小さいため生物に利用される
速度は比較的大きいというメリットがあり、メタノール
の価格は比較的安いものの、大量の廃水を処理する場合
にはメタノール量も膨大なものとなり、薬剤費がかかる
という点は運転費に関する大きな問題点である。しか
も、メタノールは第4類危険物であるため、安全を考慮
した取り扱いが必要となり、貯蔵設備や受け入れ・供給
のための設備に関する対策も必要で、設備費がかかると
共に取り扱いにくいという問題もある。
[0008] In the prior art of flowing organic agents into the anaerobic step, methanol has usually been used.
This methanol has the advantage of being relatively fast to be used by living organisms because of its low molecular weight.The price of methanol is relatively low, but when processing large amounts of wastewater, the amount of methanol becomes enormous, and the cost of chemicals increases. This is a major problem with operating costs. In addition, since methanol is a fourth-class hazardous substance, it must be handled in consideration of safety, and measures must be taken for storage facilities and facilities for receiving and supplying.

【0009】嫌気工程におけるリンの放出反応および好
気工程におけるリン摂取反応のいずれにおいても充分な
有機物を必要とすると見られており、嫌気好気活性汚泥
法による廃水からのリン除去処理において、有機物が不
足すると良好なリン除去処理成績が得られないことから
すれば、最初沈殿池へ流入する廃水が含有し、最初沈殿
池で除去される有機物、すなわち固形物を主体とする有
機物を嫌気工程もしくは嫌気工程ならびに好気工程の双
方へ導入することは、リン除去処理成績を向上させるた
めに効果的である。
It is considered that sufficient organic substances are required in both the phosphorus release reaction in the anaerobic step and the phosphorus uptake reaction in the aerobic step, and the removal of organic substances from the wastewater by the anaerobic and aerobic activated sludge method is required. Insufficiently, good phosphorus removal results cannot be obtained, so the wastewater flowing into the sedimentation basin first contains organic matter that is first removed in the sedimentation basin, that is, the organic matter mainly composed of solid matter is subjected to the anaerobic process or The introduction into both the anaerobic step and the aerobic step is effective for improving the phosphorus removal treatment results.

【0010】このような効果を有する従来の設備運転方
法として、複数の処理系列を有する廃水処理設備におけ
る最初沈殿池の使用池数を減少させ最初沈殿池に対する
水面積負荷増加運転を行って、最初沈殿池流出水のSS
を増加させ、もって嫌気工程へ流入する有機物を増加さ
せるという方法がある。
[0010] As a conventional facility operation method having such an effect, the number of ponds used in the first sedimentation basin in the wastewater treatment facility having a plurality of treatment systems is reduced, and the operation of increasing the water area load on the first sedimentation basin is performed. Sedimentation basin effluent SS
And increasing the amount of organic matter flowing into the anaerobic process.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、最初沈
殿池数の変更というデジタルな制御によって、嫌気工程
へ流入する固形有機物量を正確に制御することは困難で
ある。
However, it is difficult to accurately control the amount of solid organic matter flowing into the anaerobic step by digital control of changing the number of first settling ponds.

【0012】かかる問題点を解決するために、発明者
は、嫌気槽へ供給する有機物量を増加させることによっ
て良好なリン除去処理をはかることのできる技術とし
て、最初沈殿池の沈殿物の少なくとも一部を嫌気槽へ流
入させることを特徴とする廃水のリン除去方法ならびに
該沈殿物に対して超音波処理を行って嫌気槽へ流入させ
ることを特徴とする廃水のリン除去方法(特願平9−1
33989号)および該沈殿物に対してオゾン処理を行
って嫌気槽へ流入させることを特徴とする廃水のリン除
去方法(特願平9−133988号)を既に出願してい
る。しかしながら、これらの方法は、以下のような問題
点を有している。最初沈殿池の沈殿物をそのまま嫌気槽
へ導入する場合、該沈殿汚泥に含まれる固形物の粒子は
比較的大きく、単位重量当たりの表面積が少ないもので
あるため、嫌気槽などの生物処理反応槽において分解・
処理される速度が比較的小さく、これをカバーするには
生物処理反応槽を大きくして滞留時間を長くする必要が
あるという問題がある。また、最初沈殿池の沈殿物に対
して超音波処理を施してから嫌気槽へ導入した場合、該
沈殿物である固形物には比較的硬い細胞壁あるいは細胞
膜で包まれた微生物やセルロース繊維などが含まれてお
り、これらは超音波による振動処理によっては破壊され
にくいため、嫌気槽へ導入される固形物の粒子径が充分
小さくならない。従って、これをカバーするためには生
物処理反応槽を大きくして滞留時間を長くする必要があ
るという問題がある。さらに、最初沈殿池の沈殿物に対
してオゾン処理を施してから嫌気槽へ導入する場合、該
沈殿物に含まれる有機物の一部が酸化されて無機化して
有機物としての有効性を失うと共に、オゾンの発生には
約10〜15kWh/kgO3という比較的多くの電力
を消費するため運転費が比較的大となるという問題があ
る。
[0012] In order to solve such a problem, the inventor of the present invention has proposed a technique capable of achieving a good phosphorus removal treatment by increasing the amount of organic substances supplied to an anaerobic tank. For removing phosphorus from wastewater, characterized by flowing the wastewater into an anaerobic tank, and a method for removing phosphorus from wastewater, comprising subjecting the sediment to ultrasonic treatment and flowing into the anaerobic tank (Japanese Patent Application No. Hei 9 (1994)). -1
No. 33989) and a method for removing phosphorus from wastewater, which is characterized by subjecting the precipitate to ozone treatment and flowing into an anaerobic tank (Japanese Patent Application No. 9-133988). However, these methods have the following problems. When the sediment of the first sedimentation basin is directly introduced into the anaerobic tank, solid particles contained in the settling sludge are relatively large and have a small surface area per unit weight. Decomposition at
There is a problem that the processing speed is relatively low, and in order to cover this, it is necessary to enlarge the biological treatment reaction tank and increase the residence time. In addition, when the precipitate in the sedimentation basin is first subjected to ultrasonic treatment and then introduced into the anaerobic tank, the solid, which is the precipitate, includes microorganisms and cellulose fibers wrapped in relatively hard cell walls or cell membranes. Since they are contained and are not easily destroyed by the ultrasonic vibration treatment, the particle diameter of the solid introduced into the anaerobic tank does not become sufficiently small. Therefore, in order to cover this, there is a problem that it is necessary to enlarge the biological treatment reaction tank and lengthen the residence time. Furthermore, when the sediment in the sedimentation basin is first subjected to ozone treatment and then introduced into the anaerobic tank, some of the organic matter contained in the sediment is oxidized and mineralized, losing its effectiveness as an organic matter, Ozone generation consumes a relatively large amount of electric power of about 10 to 15 kWh / kg O 3 , and thus has a problem that the operation cost is relatively large.

【0013】標準活性汚泥設備において反応槽全体の滞
留時間は6〜8時間で設計されるのに対し、第3図に示
した従来の嫌気好気活性汚泥法においては、好気槽4の
滞留時間が6〜8時間、嫌気槽3の滞留時間が1〜2時
間を要するとされている。反応槽全体の滞留時間が6〜
8時間で設計される標準活性汚泥設備において、その反
応槽容積を増加させることなく、嫌気槽3と好気槽4の
間の仕切りを設ける、嫌気槽3の攪拌手段を設ける、な
どによって第3図に示した生物学的硝化脱窒法設備へと
改造し、従来のBOD除去能力にリン除去能力を付与し
ようとしても、反応槽全体の滞留時間が不足するため、
処理水量を低減させることによって反応槽滞留時間を確
保する必要があった。例外的に、標準活性汚泥法におい
て計画設計された処理水量に比べて実際の処理水量が少
ない場合には実際の反応槽滞留時間が長いため、反応槽
を改造してリン除去処理能力を付加することも可能なケ
ースはあったが、この場合、最初沈殿池および最終沈殿
池は計画水量を処理しておらず、設備能力が最大限に利
用されないという問題があった。
In the standard activated sludge facility, the residence time of the entire reaction tank is designed to be 6 to 8 hours, whereas in the conventional anaerobic aerobic activated sludge method shown in FIG. The time is 6 to 8 hours, and the residence time in the anaerobic tank 3 is 1 to 2 hours. Retention time of the entire reaction tank is 6 ~
In a standard activated sludge facility designed for 8 hours, a third partition is provided by providing a partition between the anaerobic tank 3 and the aerobic tank 4 without increasing the reaction tank volume, and by providing a stirring means for the anaerobic tank 3. Even if it is modified to the biological nitrification and denitrification equipment shown in the figure, and the conventional BOD removal ability is given the phosphorus removal ability, the residence time of the whole reaction tank is insufficient.
It was necessary to secure the reaction tank residence time by reducing the amount of treated water. Exceptionally, if the actual treated water volume is smaller than the planned treated water volume in the standard activated sludge process, the actual reactor residence time is longer, so the reactor is modified to add phosphorus removal treatment capacity. In some cases, however, the first settling basin and the final settling basin did not process the planned water volume, and there was a problem that the equipment capacity was not used to the fullest.

【0014】本発明は、廃水中の有機物濃度、特に溶解
性有機物濃度の不足によって嫌気好気活性汚泥法廃水処
理設備のリン除去性能の悪化を生じるという問題と、標
準活性汚泥法に代表される活性汚泥法設備における反応
槽滞留時間をもっては嫌気好気活性汚泥法設備のリン除
去性能が不十分になるという問題を解決するためになさ
れたもので、メタノールの添加等の運転費の負担が少な
く、また、既存のBOD除去処理用の活性汚泥設備を嫌
気好気活性汚泥法廃水処理設備へと改造する場合には既
存の設備の容量および処理能力を最大限に有効利用して
BOD除去処理とリン除去処理とを行うことができると
共に、新設の場合には反応槽全体の滞留時間が標準活性
汚泥法設備と同等のコンパクトなものとすることが可能
で、建設費の経済的な、廃水のリン除去処理方法を提供
することを目的としている。
The present invention is typified by the problem that the phosphorus removal performance of an anaerobic-aerobic activated sludge wastewater treatment facility is deteriorated due to a lack of organic matter concentration in wastewater, particularly, a concentration of soluble organic matter, and a standard activated sludge method. This was made to solve the problem that the phosphorus removal performance of the anaerobic aerobic activated sludge equipment becomes insufficient with the residence time of the reaction tank in the activated sludge equipment, and the burden of operating costs such as the addition of methanol is reduced. In addition, when converting existing activated sludge equipment for BOD removal processing to anaerobic and aerobic activated sludge wastewater treatment equipment, the capacity and processing capacity of the existing equipment are effectively used to the maximum to achieve BOD removal processing. In addition to being able to perform phosphorus removal treatment, in the case of a new installation, the residence time of the entire reaction tank can be made as compact as the standard activated sludge process equipment, and construction costs can be reduced. Do, and its object is to provide a phosphorus removal treatment method of the waste water.

【0015】[0015]

【課題を解決するための手段】かかる本発明は、少なく
とも処理される廃水の沈殿池(最初沈殿池という。)、嫌
気槽、好気槽およびこれらの槽で処理された廃水の沈殿
池(最終沈殿池という。)よりなる装置において、該好
気槽の流出水または処理された廃水の沈殿池から取り出
される汚泥の少なくとも1部を最初沈殿池へ返送するラ
インと最初沈殿池の汚泥の少なくとも1部を嫌気槽また
は好気槽へ送るラインが設けられていることを特徴とす
る廃水のリン除去装置に関するものである。
According to the present invention, at least a sedimentation basin for wastewater to be treated (first sedimentation basin), an anaerobic tank, an aerobic tank, and a sedimentation basin for wastewater treated in these tanks (final sedimentation basin). And a line for returning at least a part of the sludge taken out of the settling basin of the effluent of the aerobic tank or the treated wastewater to the first settling basin, and at least one of the sludge of the first settling basin. The present invention relates to an apparatus for removing phosphorus from wastewater, which is provided with a line for feeding a part to an anaerobic tank or an aerobic tank.

【0016】本発明に基づく廃水の生物学的リン除去処
理装置においては、好気槽より流出する汚泥混合液の少
なくとも一部、もしくは最終沈殿池よりの引き抜き汚泥
の少なくとも一部、またはその両者を最初沈殿池へ返送
することによって、最初沈殿池内に沈殿物および浮遊物
として存在する固形物に含まれる有機物と最初沈殿池へ
返送した活性汚泥中の微生物とを最初沈殿池内の嫌気条
件下で接触させ、最初沈殿池内の固形有機物と最初沈殿
池内での汚泥滞留時間とを有効に利用して、リン除去反
応の内のリン放出反応を進行させる。また、該最初沈殿
池よりの引き抜き汚泥の少なくとも一部を嫌気工程もし
くは無酸素工程もしくは好気工程へ流入させることによ
って、リン放出反応の進行した活性汚泥と固形有機物と
を含有する最初沈殿汚泥を嫌気工程もしくは無酸素工程
もしくは好気工程へ送り、嫌気工程でのさらなるリン放
出反応、もしくは無酸素工程でのリン摂取反応ならびに
場合によっては脱窒反応、もしくは好気工程でのリン摂
取反応を進行させる。
In the biological phosphorus removal treatment apparatus for wastewater according to the present invention, at least a part of the sludge mixture flowing out of the aerobic tank, or at least a part of the sludge drawn out from the final sedimentation basin, or both of them. By returning to the first sedimentation basin, the organic matter contained in the solids existing as sediment and suspended matter in the first sedimentation basin comes into contact with the microorganisms in the activated sludge returned to the first sedimentation basin under anaerobic conditions in the first sedimentation basin By effectively utilizing the solid organic matter in the first sedimentation basin and the sludge residence time in the first sedimentation basin, the phosphorus release reaction in the phosphorus removal reaction proceeds. Further, by causing at least a part of the sludge drawn from the first sedimentation basin to flow into the anaerobic step, the anoxic step, or the aerobic step, the first settled sludge containing the activated sludge having advanced the phosphorus release reaction and the solid organic matter is removed. Sent to the anaerobic or anoxic or aerobic step, further phosphorus release reaction in the anaerobic step, or phosphorus uptake reaction in the anaerobic step and possibly denitrification reaction, or phosphorus uptake reaction in the aerobic step Let it.

【0017】すなわち、本発明の装置においては、活性
汚泥を含む好気槽よりの流出汚泥混合液もしくは最終沈
殿池よりの引き抜き汚泥が最初沈殿池へ返送されるた
め、最初沈殿池内は活性汚泥が存在する状態となる。ま
た、最初沈殿池内には、廃水に由来し、沈殿物および浮
遊物の形態をなす固形有機物と溶解性有機物とが存在
し、最初沈殿池内の活性汚泥はこれらの有機物と接触す
る。最初沈殿池内は曝気されておらず、廃水の酸素要求
量は通常大であるため、最初沈殿池内は嫌気的である。
すなわち、最初沈殿池内において、活性汚泥は有機物を
利用して、活性汚泥細胞内に蓄積したリン酸イオンを廃
水中に放出(=リン放出反応)する。その後、最初沈殿池
沈殿物の少なくとも一部を嫌気槽もしくは好気槽へ流入
させることによって、嫌気槽でのさらなるリン放出反応
もしくは好気槽でのリン摂取反応を起こさせる。
That is, in the apparatus of the present invention, the mixed sludge effluent from the aerobic tank containing the activated sludge or the sludge withdrawn from the final sedimentation basin is returned to the first sedimentation basin. It will be in an existing state. Further, in the first settling basin, there are solid organic matter and soluble organic matter derived from wastewater and in the form of sediment and suspended matter, and the activated sludge in the first settling basin comes into contact with these organic matters. The inside of the first sedimentation basin is anaerobic because the inside of the first sedimentation basin is not aerated and the oxygen demand of the wastewater is usually large.
That is, in the first sedimentation basin, activated sludge uses organic matter to release phosphate ions accumulated in the activated sludge cells into wastewater (= phosphorus release reaction). Thereafter, at least a part of the sedimentation basin sediment is caused to flow into an anaerobic tank or an aerobic tank, thereby causing a further phosphorus release reaction in the anaerobic tank or a phosphorus intake reaction in the aerobic tank.

【0018】最終沈殿池よりの引き抜き汚泥を最初沈殿
池へ返送する場合、最終沈殿池よりの引き抜き汚泥は好
気槽より流出する汚泥混合液に比べて活性汚泥の濃度が
高いため、同じ活性汚泥量を返送するのに必要な返送容
量が少なくて済むというメリットがある。好気槽より流
出する汚泥混合液を最初沈殿池へ返送する場合には、最
終沈殿池よりの引き抜き汚泥を最初沈殿池へ返送する場
合と異なって、最終沈殿池への水量負荷を増加させるこ
とがないというメリットがある。最終沈殿池よりの引き
抜き汚泥を最初沈殿池へ返送する方法と好気槽より流出
する汚泥混合液を最初沈殿池へ返送する方法とを併用し
た場合、上記の二つの場合の中間的なメリットが得られ
る。
When returning the sludge withdrawn from the final sedimentation basin to the first sedimentation basin, the sludge withdrawn from the final sedimentation basin has a higher concentration of activated sludge than the sludge mixture flowing out of the aerobic tank, and therefore the same activated sludge is used. There is an advantage that the return capacity required for returning the quantity is small. When returning the sludge mixture flowing out of the aerobic tank to the first sedimentation basin, increase the water load on the final sedimentation basin, unlike when returning the sludge withdrawn from the final sedimentation basin to the first sedimentation basin. There is a merit that there is no. When the method of returning the sludge withdrawn from the final sedimentation basin to the first sedimentation basin and the method of returning the sludge mixture flowing out of the aerobic tank to the first sedimentation basin are used, the intermediate merits of the above two cases are can get.

【0019】嫌気槽において、活性汚泥は、廃水中の溶
解性成分を主体とする有機物と、場合によっては最初沈
殿池沈殿物に由来する有機物を利用してリン放出反応を
行う。最初沈殿池沈殿物の少なくとも一部が嫌気槽へ導
入される場合、従来法の場合とは異なって、最初沈殿池
内においてリンを放出した活性汚泥が最初沈殿池沈殿物
に由来する固形有機物と共に嫌気槽へ導入され、嫌気槽
内でさらにリン放出反応を行うことになるため、従来法
の場合よりリン放出反応を強化することができる。
In the anaerobic tank, the activated sludge carries out a phosphorus release reaction using an organic substance mainly composed of a soluble component in the wastewater and, in some cases, an organic substance derived from the sedimentation basin sediment. If at least part of the sedimentation tank sediment is introduced into the anaerobic tank, unlike the conventional method, the activated sludge that has released phosphorus in the sedimentation tank is anaerobically mixed with solid organic matter derived from the sedimentation tank sediment. Since it is introduced into the tank and the phosphorus release reaction is further performed in the anaerobic tank, the phosphorus release reaction can be enhanced as compared with the conventional method.

【0020】好気槽においては活性汚泥が、廃水中の溶
解性成分を主体とする有機物と、場合によっては最初沈
殿池沈殿物に由来する有機物を利用して、廃水中のリン
酸イオンを活性汚泥細胞内に摂取する(=リン摂取反
応)と共に、有機物の酸化分解除去を行う。最初沈殿池
沈殿物の少なくとも一部が好気槽へ導入される場合、従
来法の場合とは異なって、最初沈殿池沈殿物に由来する
固形有機物をも利用してリン摂取反応を行うことになる
ため、従来法の場合よりリン摂取反応を強化することが
できる。この場合には、嫌気槽内での活性汚泥濃度を確
保するために、最終沈殿池引き抜き汚泥の少なくとも一
部を嫌気槽へ返送することが好ましい。
In the aerobic tank, the activated sludge activates phosphate ions in the wastewater by utilizing organic matter mainly composed of soluble components in the wastewater and, in some cases, organic matter derived from the sedimentation tank sediment. Ingestion into sludge cells (= phosphorus ingestion reaction) and oxidative decomposition and removal of organic matter. When at least a part of the sedimentation tank sediment is introduced into the aerobic tank, unlike the conventional method, the phosphorus uptake reaction is also performed using solid organic matter derived from the sedimentation tank sediment. Therefore, the phosphorus intake response can be enhanced as compared with the conventional method. In this case, it is preferable to return at least a part of the sludge withdrawn from the final sedimentation basin to the anaerobic tank in order to secure the activated sludge concentration in the anaerobic tank.

【0021】嫌気工程および好気工程から成る廃水処理
装置の他、嫌気工程、脱窒工程(無酸素工程)および硝
化工程(好気工程)から成る廃水処理装置においても本
発明に基づくリン除去方法を適用することが出来る。
In addition to the wastewater treatment apparatus comprising an anaerobic step and an aerobic step, the phosphorus removal method according to the present invention is also applied to a wastewater treatment apparatus comprising an anaerobic step, a denitrification step (anoxic step) and a nitrification step (aerobic step). Can be applied.

【0022】[0022]

【発明の実施の形態】本発明に基づく生物学的リン除去
処理装置の一例を第1図に示した。この図を用いて本発
明を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a biological phosphorus removal treatment apparatus according to the present invention. The present invention will be described in detail with reference to FIG.

【0023】本発明に基づく生物学的リン除去処理装置
は第1図に示したように、主として最初沈殿池2、嫌気
槽3、好気槽4および最終沈殿池6から構成される。嫌
気槽3では攪拌のみが行われ、好気槽4では散気装置5
により酸素供給が行われると共に、散気に伴って生じる
水流により攪拌が行われる。
As shown in FIG. 1, the biological phosphorus removal treatment apparatus according to the present invention mainly comprises a first sedimentation tank 2, an anaerobic tank 3, an aerobic tank 4, and a final sedimentation tank 6. In the anaerobic tank 3, only stirring is performed, and in the aerobic tank 4, a diffuser 5
To supply oxygen, and agitation is performed by a water flow generated by the aeration.

【0024】第1図に示した本発明に基づく生物学的リ
ン除去処理装置において、廃水1は最初沈殿池2での固
液分離を経て嫌気槽3および好気槽4へと順次通水され
る。好気槽4を流出し最終沈殿池6へ流入する流出液1
0は最終沈殿池6で処理水7と活性汚泥とに分離され、
最終沈殿池6で分離、濃縮された活性汚泥すなわち最終
沈殿池よりの引き抜き汚泥8の少なくとも一部は返送汚
泥として嫌気槽3へ送ることが好ましい。
In the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 1, wastewater 1 is first passed through a sedimentation basin 2 through solid-liquid separation to an anaerobic tank 3 and an aerobic tank 4 sequentially. You. Effluent 1 flowing out of the aerobic tank 4 and flowing into the final sedimentation basin 6
0 is separated into treated water 7 and activated sludge in the final sedimentation basin 6,
It is preferable that at least a part of the activated sludge separated and concentrated in the final sedimentation basin 6, that is, at least a part of the sludge drawn out from the final sedimentation basin, is sent to the anaerobic tank 3 as return sludge.

【0025】好気槽4より流出する汚泥混合液10の少
なくとも一部、もしくは最終沈殿池6よりの引き抜き汚
泥8の少なくとも一部、またはその両者を最初沈殿池2
へ返送すると共に、該最初沈殿池2よりの引き抜き汚泥
すなわち最初沈殿池沈殿物9の少なくとも一部を嫌気槽
3もしくは好気槽4へ流入させる。
At least a portion of the sludge mixture 10 flowing out of the aerobic tank 4 and / or at least a portion of the sludge 8 withdrawn from the final sedimentation basin 6 or both of them are mixed with the first sedimentation basin 2.
At the same time, the sludge drawn out from the first sedimentation basin 2, that is, at least a part of the first sedimentation basin sediment 9 flows into the anaerobic tank 3 or the aerobic tank 4.

【0026】廃水の性状その他の条件によっては、最終
沈殿池6よりの引き抜き汚泥8を嫌気槽3へ返送せず、
最初沈殿池沈殿物9の少なくとも一部を嫌気槽3へ送る
ようにしても良い。
Depending on the properties of the wastewater and other conditions, the withdrawn sludge 8 from the final sedimentation basin 6 is not returned to the anaerobic tank 3,
At least a part of the first sedimentation tank sediment 9 may be sent to the anaerobic tank 3.

【0027】第2図に本発明に基づく生物学的リン除去
処理装置の一例を示す。第2図に示した本発明に基づく
生物学的リン除去処理装置は、第1図に示した本発明に
基づく生物学的リン除去処理装置に脱窒槽4を新たにつ
け加えたものであり、主として最初沈殿池2、嫌気槽
3、脱窒槽11、好気槽4および最終沈殿池6から構成
される。
FIG. 2 shows an example of a biological phosphorus removal treatment apparatus according to the present invention. The biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 2 is obtained by adding a denitrification tank 4 to the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. It is composed of a first sedimentation tank 2, an anaerobic tank 3, a denitrification tank 11, an aerobic tank 4, and a final sedimentation tank 6.

【0028】第2図に示した本発明に基づく生物学的リ
ン除去処理装置において、脱窒槽11は攪拌のみが行わ
れる槽であり、本槽には嫌気槽3を流出し脱窒槽11へ
流入する流出液と好気槽4よりの流出汚泥混合液10と
が送られる。脱窒槽11においては廃水中の有機物を利
用して、好気槽4よりの流出汚泥混合液10に含まれる
硝酸性窒素または亜硝酸性窒素を窒素ガスにまで還元
(=脱窒反応)し、脱窒処理する。
In the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 2, the denitrification tank 11 is a tank in which only stirring is performed, and the denitrification tank 3 flows out of the anaerobic tank 3 and flows into the denitrification tank 11. The discharged effluent and the mixed sludge 10 discharged from the aerobic tank 4 are sent. In the denitrification tank 11, nitrate nitrogen or nitrite nitrogen contained in the sludge mixture 10 discharged from the aerobic tank 4 is reduced to nitrogen gas (= denitrification reaction) by utilizing organic matter in the wastewater, Denitrification treatment.

【0029】さらに、第2図に示した本発明に基づく生
物学的リン除去処理装置において、好気槽4よりの流出
汚泥混合液10を最初沈殿池2へ返送すると共に、最初
沈殿池沈殿物9の少なくとも一部を嫌気槽3へ流入させ
る。活性汚泥を最初沈殿池2へ導入することによって、
最初沈殿池2内でのリン放出反応を起こさせることがで
き、リン放出反応の進行した汚泥を含む最初沈殿池沈殿
物9を嫌気槽3へ流入させることによってさらに嫌気槽
3内でのリン放出反応を進行させ、その後段の脱窒槽1
1および好気槽4においてリン摂取反応を進行させる。
Further, in the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 2, the sludge mixture effluent 10 from the aerobic tank 4 is returned to the sedimentation basin 2 first, At least a part of 9 flows into the anaerobic tank 3. By introducing activated sludge into sedimentation basin 2 first,
A phosphorus release reaction can be caused in the first sedimentation basin 2, and the first sedimentation basin sediment 9 containing sludge that has undergone the phosphorus release reaction flows into the anaerobic tank 3 to further release phosphorus in the anaerobic tank 3. The reaction is allowed to proceed, and the subsequent denitrification tank 1
In step 1 and the aerobic tank 4, the phosphorus intake reaction is advanced.

【0030】尚、第2図において、活性汚泥を最初沈殿
池2へ導入するために、好気槽4よりの流出汚泥混合液
10を最初沈殿池2へ返送するという方法を用いたが、
最終沈殿池6よりの引き抜き汚泥8を最初沈殿池2へ返
送するという方法を用いても良い。さらに、第2図にお
いて、最初沈殿池沈殿物9を嫌気槽3へ流入させるとい
う方法を用いたが、脱窒槽11もしくは好気槽4へ流入
させても良い。さらに、硝化反応促進のために、微生物
固定化担体を好気槽4へ投入し保持させてもよい。
In FIG. 2, in order to introduce the activated sludge into the sedimentation basin 2 first, a method of returning the sludge mixture 10 discharged from the aerobic tank 4 to the sedimentation basin 2 is used.
A method of returning the sludge 8 drawn from the final settling tank 6 to the first settling tank 2 may be used. Further, in FIG. 2, although the method in which the sedimentation basin sediment 9 first flows into the anaerobic tank 3 is used, it may flow into the denitrification tank 11 or the aerobic tank 4. Furthermore, in order to promote the nitrification reaction, the microorganism-immobilized carrier may be charged into the aerobic tank 4 and held.

【0031】好気槽の流出水には汚泥が1000〜40
00mg/L程度、通常2000〜3000mg/L程
度存在しており、最終沈殿池の引き抜き汚泥濃度は50
00〜10000mg/L程度、通常6500〜850
0mg/L程度である。本発明ではこれを反応槽に向け
ては流入水量の10〜40%程度、最初沈殿池に向けて
は流入水量の5〜30%程度の流量で返送するようにす
るとよい。一方、上記汚泥が返送されている定常状態に
おける最初沈殿池での引き抜き汚泥濃度は6000〜1
3000mg/L程度、通常8000〜10000mg
/L程度である。本発明ではこれを流入水量の5〜40
%程度、好ましくは10〜30%程度の流量で嫌気槽、
無酸素槽または好気槽へ送るようにする。2槽以上へ送
る場合には上記の量は合計量である。
Sludge is 1000 to 40 in the effluent of the aerobic tank.
It is present at about 00 mg / L, usually about 2000-3000 mg / L.
About 00 to 10000 mg / L, usually 6500 to 850
It is about 0 mg / L. In the present invention, it is preferable to return this to the reaction tank at a flow rate of about 10 to 40% of the inflow water amount, and to the first settling basin at a flow rate of about 5 to 30% of the inflow water amount. On the other hand, in the steady state in which the above-mentioned sludge is returned, the withdrawn sludge concentration in the first sedimentation tank is 6000 to 1
About 3000mg / L, usually 8000-10000mg
/ L. In the present invention, this is defined as 5 to 40 times
Anaerobic tank at a flow rate of about 10%, preferably about 10-30%,
Send to anoxic tank or aerobic tank. When sending to two or more tanks, the above amount is the total amount.

【0032】[0032]

【実施例】本発明に基づく生物学的リン除去方法の1実
施例を以下に示す。第3図に示したような従来法による
嫌気好気活性汚泥法装置と、第1図に示した様な最終沈
殿池6よりの引き抜き汚泥の一部を最初沈殿池へ返送し
最初沈殿池沈殿物9を嫌気槽3へ流入させるというフロ
ーでの本発明方法による嫌気好気活性汚泥法装置とにつ
いて、比較実験を行った。処理量はいずれも12m3
日とした。いずれのケースも、最初沈殿池2、嫌気槽
3、好気槽4および最終沈殿池6の滞留時間をそれぞれ
3時間、1時間、8時間および4時間とした。従来法の
場合、汚泥返送流量を原水流量の30%とし、本発明方
法の場合、最終沈殿池7よりの引き抜き汚泥を嫌気槽3
および最初沈殿池2へ、それぞれ原水流量の20%およ
び10%に相当する流量で返送した。最初沈殿池沈殿物
9を引き抜いて嫌気槽3へ流入させる流量を、原水流量
の10%とした。廃水1として生活排水を用い、水温1
7〜20度で実験を行った。それぞれのケースについて
3ヶ月間の馴致運転を行い、処理が安定して後に得られ
たそれぞれのケースでの処理水水質を、使用した生活排
水の水質と共に、表1に示した。同表におけるデータ採
取時の脱窒槽および硝化槽における浮遊汚泥濃度すなわ
ちMLSS濃度は、従来の場合には約2600mg/
L、本発明方法の場合には約2700mg/Lであっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for removing biological phosphorus according to the present invention will be described below. A conventional anaerobic and aerobic activated sludge method apparatus as shown in FIG. 3 and a part of the sludge withdrawn from the final sedimentation basin 6 as shown in FIG. A comparative experiment was conducted with the anaerobic-aerobic activated sludge method apparatus according to the present invention in a flow of flowing the material 9 into the anaerobic tank 3. The throughput is 12m 3 /
Day. In each case, the residence times of the first sedimentation basin 2, the anaerobic tank 3, the aerobic tank 4, and the final sedimentation basin 6 were 3 hours, 1 hour, 8 hours, and 4 hours, respectively. In the case of the conventional method, the sludge return flow rate is set to 30% of the raw water flow rate, and in the case of the present invention, the sludge drawn from the final sedimentation basin 7 is subjected to the anaerobic tank 3.
And it was returned to the first settling basin 2 at a flow rate corresponding to 20% and 10% of the raw water flow rate, respectively. The flow rate at which the sediment 9 of the sedimentation basin was pulled out and flowed into the anaerobic tank 3 was 10% of the raw water flow rate. Domestic wastewater is used as wastewater 1 and water temperature 1
Experiments were performed at 7-20 degrees. Table 3 shows the quality of the treated water obtained in each case, which was obtained after the three-month acclimatization operation was performed for each case and the treatment was stabilized. In the same table, the concentration of suspended sludge in the denitrification tank and nitrification tank at the time of data collection, that is, the MLSS concentration was about 2600 mg /
L, about 2700 mg / L in the case of the method of the present invention.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に見られるように、本発明方法を用い
ることにより、従来法と同じ容量の設備を用いて同量の
廃水を処理し、従来法に比してリン濃度の低い処理水を
得ることができた。
As can be seen from Table 1, by using the method of the present invention, the same amount of wastewater is treated using equipment having the same capacity as the conventional method, and the treated water having a lower phosphorus concentration than the conventional method is obtained. I got it.

【0035】[0035]

【発明の効果】本発明は、最初沈殿池、嫌気工程と場合
によっては無酸素工程および好気工程を有すると共に、
最終沈殿池を有する廃水の生物学的リン除去処理装置に
おいて、該好気工程より流出する汚泥混合液の少なくと
も一部、もしくは該最終沈殿池よりの引き抜き汚泥の少
なくとも一部、もしくはその両者を該最初沈殿池へ返送
すると共に、該最初沈殿池よりの引き抜き汚泥の少なく
とも一部を嫌気工程もしくは無酸素工程もしくは好気工
程へ流入させる構成とした。
The present invention has an initial sedimentation basin, an anaerobic step and optionally an anoxic step and an aerobic step,
In a biological phosphorus removal treatment device having a final sedimentation basin, at least a part of the sludge mixture discharged from the aerobic step, or at least a part of the sludge withdrawn from the final sedimentation basin, or both of them is removed. In addition to returning the sludge to the first sedimentation basin, at least a part of the sludge drawn from the first sedimentation basin is allowed to flow into the anaerobic step, the anoxic step, or the aerobic step.

【0036】これにより、雨水の流入等の場合の如く、
嫌気工程へ供給される有機物濃度が窒素濃度の低下する
程度以上に低下することによって嫌気工程でのリン放出
反応速度が低くなり処理水の水質が悪化する場合におい
ても、また、最初沈殿池で固液分離処理を受けた後嫌気
工程へ流入する排水中の溶解性汚濁物質の有機物濃度/
窒素濃度比が低いため嫌気工程でのリン放出反応速度が
低くなり処理水の水質が悪化する場合においても、最初
沈殿池がリン放出反応のための反応槽として機能し、廃
水に由来する最初沈殿池内の固形有機物をもリン除去反
応のために有効利用することができる。また、最初沈殿
池内の汚泥滞留時間は、活性汚泥によるリン放出反応を
進行させるために有効に作用する。廃水に由来する最初
沈殿池内の固形有機物がリン放出反応あるいはさらにリ
ン摂取反応のために有効利用できるため、メタノール等
の有機物の添加による薬剤費の負担が少なくなる。また
オゾンなど、その製造に電力費を要する化学品を用いる
必要もない。本発明方法を実施する上で必要な主な運転
費は、送液、送気のための電力費であり、従来の嫌気好
気活性汚泥法設備の場合とほぼ同程度で、運転費が経済
的である。
Thus, as in the case of inflow of rainwater,
Also, when the concentration of organic substances supplied to the anaerobic process drops to a level lower than the nitrogen concentration decreases, the phosphorus release reaction rate in the anaerobic process decreases, and the quality of treated water deteriorates. Organic matter concentration of soluble pollutants in wastewater flowing into the anaerobic process after undergoing liquid separation treatment /
Even when the nitrogen release ratio in the anaerobic process is low due to the low nitrogen concentration ratio and the quality of the treated water deteriorates, the first sedimentation basin functions as a reaction tank for the phosphorus release reaction, and the first sedimentation from wastewater The solid organic matter in the pond can also be effectively used for the phosphorus removal reaction. Further, the sludge residence time in the first settling basin effectively acts to promote the phosphorus release reaction by the activated sludge. The solid organic matter in the first sedimentation basin derived from the wastewater can be effectively used for the phosphorus release reaction or the phosphorus ingestion reaction, so that the burden of chemical costs due to the addition of organic matter such as methanol is reduced. In addition, there is no need to use chemicals such as ozone which require electric power for the production thereof. The main operating cost required for carrying out the method of the present invention is the power cost for liquid feeding and air feeding, which is almost the same as that of the conventional anaerobic aerobic activated sludge equipment, and the operating cost is economical. It is a target.

【0037】また、本発明方法によれば、最初沈殿池が
リン放出反応槽としても機能し、最初沈殿池の汚泥滞留
時間がリン放出反応のために有効に作用するため、既存
のBOD除去処理用の活性汚泥設備を嫌気好気活性汚泥
法設備へと改造する場合には既存設備の土木の基本構造
を大幅に変更することなく反応槽を大きくした場合と同
じ効果が得られ、しかも、最初沈殿池および最終沈殿池
は計画設計時の水量を処理できるため、既存活性汚泥設
備の容量および処理能力を最大限に有効利用してBOD
除去処理とリン除去処理と、場合によってはさらに窒素
除去処理とを行って、良好な処理成績を得ることができ
るので建設費(=改造費)が経済的である。さらに、嫌
気好気活性汚泥法廃水処理設備を新設する場合、生物処
理反応槽は従来の標準活性汚泥法設備の場合と同等の大
きさのコンパクトなもので済むため、建設費が経済的で
ある。
Further, according to the method of the present invention, the first sedimentation tank also functions as a phosphorus release reaction tank, and the sludge residence time of the first sedimentation tank effectively functions for the phosphorus release reaction. Conversion of the activated sludge equipment for anaerobic to aerobic activated sludge method equipment has the same effect as the case where the reaction tank is enlarged without greatly changing the basic structure of civil engineering of the existing equipment. Since the sedimentation basin and the final sedimentation basin can treat the water volume at the time of planning and design, the BOD can be used by maximally utilizing the capacity and treatment capacity of the existing activated sludge equipment.
Since the removal treatment, the phosphorus removal treatment, and, in some cases, the nitrogen removal treatment can be performed to obtain good treatment results, the construction cost (= remodeling cost) is economical. Furthermore, when newly installing an anaerobic aerobic activated sludge wastewater treatment facility, the construction cost is economical because the biological treatment reaction tank can be as compact as the conventional standard activated sludge facility. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1図は本発明の1実施例である生物学的リ
ン除去処理装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a biological phosphorus removal treatment apparatus according to one embodiment of the present invention.

【図2】 第2図は本発明の別の1実施例である生物学
的リン除去処理装置の構成を示す図である。
FIG. 2 is a diagram showing a configuration of a biological phosphorus removal treatment apparatus according to another embodiment of the present invention.

【図3】 第3図は従来の生物学的リン除去処理装置の
構成を示す図である。
FIG. 3 is a diagram showing a configuration of a conventional biological phosphorus removal treatment apparatus.

【符号の説明】[Explanation of symbols]

1.廃水 2.最初沈殿池 3.嫌気槽 4.好気槽 5.散気装置 6.最終沈殿池 7.処理水 8.最終沈殿池引き抜き汚泥 9.最初沈殿池沈殿物 10.好気槽流出汚泥混合液 11.脱窒槽 1. Wastewater 2. First sedimentation basin 3. Anaerobic tank 4. Aerobic tank 5. Air diffuser 6. Final sedimentation basin 7. Treated water 8. 8. Sludge drawn from final sedimentation basin First sedimentation tank sediment 10. 10. Sludge mixture in aerobic tank Denitrification tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 局 俊明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 宇田川 悟 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 沢田 豊志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 遠藤 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D028 AA08 BC28 BD12 4D040 BB72 BB93  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Toshiaki Inventor Bureau 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Jun Miyata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Kei Baba Kei 1-2-1 Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Satoru Udagawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Co., Ltd. (72) Inventor Toyoshi Sawada 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Shinichi Endo 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. F-term (reference) 4D028 AA08 BC28 BD12 4D040 BB72 BB93

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも処理される廃水の沈殿池、嫌
気槽、好気槽およびこれらの槽で処理された廃水の沈殿
池よりなる装置において、該好気槽の流出水または処理
された廃水の沈殿池から取り出される汚泥の少なくとも
1部を処理される廃水の沈殿池へ返送するラインと処理
される廃水の沈殿池の汚泥の少なくとも1部を嫌気槽ま
たは好気槽へ送るラインが設けられていることを特徴と
する廃水のリン除去装置
An apparatus comprising at least a sedimentation basin, an anaerobic tank, an aerobic tank, and a sedimentation basin of wastewater treated in these tanks, wherein the effluent of the aerobic tank or the treated wastewater is provided. A line for returning at least part of the sludge taken out of the sedimentation basin to the settling basin of the wastewater to be treated and a line for supplying at least part of the sludge of the sedimentation basin of the treated wastewater to the anaerobic tank or the aerobic tank; Wastewater phosphorus removing device
【請求項2】 嫌気槽と好気槽の間に無酸素槽が設けら
れ、処理される廃水の沈殿池の汚泥の少なくとも1部を
該無酸素槽へ送るラインが設けられていることを特徴と
する請求項1に記載の廃水のリン除去装置
2. An oxygen-free tank is provided between the anaerobic tank and the aerobic tank, and a line is provided for sending at least a part of the sludge of the sedimentation basin of the wastewater to be treated to the oxygen-free tank. The phosphorus removal device for wastewater according to claim 1,
JP10293786A 1998-09-03 1998-10-15 Equipment for removing phosphorus in wastewater Pending JP2000117286A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10293786A JP2000117286A (en) 1998-10-15 1998-10-15 Equipment for removing phosphorus in wastewater
US09/383,314 US6387254B1 (en) 1998-09-03 1999-08-25 Apparatus for wastewater treatment
CA 2281338 CA2281338A1 (en) 1998-09-03 1999-09-02 Method and apparatus for wastewater treatment
EP19990116858 EP0987224A3 (en) 1998-09-03 1999-09-03 Method and apparatus for removing phosphorus and nitrogen from wastewater
US10/073,467 US20020104798A1 (en) 1998-09-03 2002-02-11 Method and apparatus for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293786A JP2000117286A (en) 1998-10-15 1998-10-15 Equipment for removing phosphorus in wastewater

Publications (1)

Publication Number Publication Date
JP2000117286A true JP2000117286A (en) 2000-04-25

Family

ID=17799162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293786A Pending JP2000117286A (en) 1998-09-03 1998-10-15 Equipment for removing phosphorus in wastewater

Country Status (1)

Country Link
JP (1) JP2000117286A (en)

Similar Documents

Publication Publication Date Title
JP4801256B2 (en) Surge anoxic mixed continuous batch reaction system
US6387254B1 (en) Apparatus for wastewater treatment
JPS637839B2 (en)
US20170066668A1 (en) Highly effective sewage treatment based on regulation and control of directed electron flow and apparatus thereof
CN102603128A (en) Method for advanced treatment and recycling of landfill leachate
CN103288311B (en) Slack coal pressure gasification wastewater resourceful treatment method and treatment system as well as application
JP2016172236A (en) Apparatus and method for treating water
JPH07106360B2 (en) Method and equipment for cleaning wastewater, especially urban wastewater
JP6749313B2 (en) Water treatment method and water treatment device
CN108203203A (en) Anoxic-Oxic-Phostrip techniques
CN108569817A (en) A kind of coal chemical industrial waste water biochemical system processing unit
CN113184996B (en) Self-control-based integrated autotrophic nitrogen removal coupled biological phosphorus removal method and device
KR100312820B1 (en) Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge
JP6533676B2 (en) Water treatment apparatus and water treatment method
KR20020075046A (en) The treating method of high concentration organic waste water
CN111807611A (en) A2O process-based sewage nitrogen removal method
JP2000117286A (en) Equipment for removing phosphorus in wastewater
KR100360561B1 (en) A treatment methods for organic sewage
KR100377947B1 (en) Aqua-composting BNR Device and Method for Clearing Wastewater Employing the Same
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2004202387A (en) Sewage disposal treatment method
JP4411850B2 (en) Biological dephosphorization method and apparatus
CN217868303U (en) High-integration full-set immersion type aeration filter tank
KR20190001090A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
KR200190709Y1 (en) Phosphorus removing device for waste water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term