KR100312820B1 - Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge - Google Patents
Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge Download PDFInfo
- Publication number
- KR100312820B1 KR100312820B1 KR1019980043419A KR19980043419A KR100312820B1 KR 100312820 B1 KR100312820 B1 KR 100312820B1 KR 1019980043419 A KR1019980043419 A KR 1019980043419A KR 19980043419 A KR19980043419 A KR 19980043419A KR 100312820 B1 KR100312820 B1 KR 100312820B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction tank
- sludge
- fermentation
- aerobic
- tank
- Prior art date
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000002351 wastewater Substances 0.000 title claims abstract description 19
- 238000000855 fermentation Methods 0.000 claims abstract description 67
- 230000004151 fermentation Effects 0.000 claims abstract description 66
- 238000006243 chemical reaction Methods 0.000 claims abstract description 64
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000010865 sewage Substances 0.000 claims abstract description 30
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 24
- 239000011574 phosphorus Substances 0.000 claims abstract description 24
- 239000007787 solid Substances 0.000 claims abstract description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 150000007524 organic acids Chemical class 0.000 claims abstract description 16
- 235000005985 organic acids Nutrition 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000005416 organic matter Substances 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 11
- 238000004065 wastewater treatment Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 6
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 125000001477 organic nitrogen group Chemical group 0.000 claims 2
- 238000007872 degassing Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 claims 1
- 239000005446 dissolved organic matter Substances 0.000 abstract description 9
- 238000004062 sedimentation Methods 0.000 abstract description 8
- 235000019645 odor Nutrition 0.000 abstract description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 abstract description 5
- 238000001556 precipitation Methods 0.000 abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 244000005700 microbiome Species 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000012851 eutrophication Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 238000004148 unit process Methods 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001546 nitrifying effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VGPSUIRIPDYGFV-UHFFFAOYSA-N [N].O[N+]([O-])=O Chemical compound [N].O[N+]([O-])=O VGPSUIRIPDYGFV-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- VYFDHJMUUZUGGZ-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3].[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3].[NH6+3] VYFDHJMUUZUGGZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 fibrin Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000006902 nitrogenation reaction Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/305—Nitrification and denitrification treatment characterised by the denitrification
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/02—Biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1221—Particular type of activated sludge processes comprising treatment of the recirculated sludge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/26—Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
본 발명은 하수 또는 폐수를 처리함에 있어서, 생물학적반응조와 침전지로구성된 처리공정에 발효조가 구비되고, 제1침전지에서 유입하폐수에 함유된 고형물이 침전되어 발생되는 생슬러지가 상기 발효조에서 발효되고, 초산염계열의 유기산 등이 함유되는 상기 발효액이 후탈질방법에 의한 질소산화물의 탈질반응에 소요되는 전자공여체로 이용되는 한편, 제1침전지의 유출수에 함유되는 용존성유기물이 전탈질방법에 의한 질소산화물의 탈질 또는 인의 방출을 위한 혐기성 조건의 유지에 이용되므로써 경제적이고 효과적인 질소·인제거와 함께 악취가 발생되는 생슬러지의 처리·처분에도 기여하게 되는 고도하폐수처리방법에 관한 것이다.In the present invention, in the treatment of sewage or waste water, a fermentation tank is provided in a treatment process consisting of a biological reaction tank and a sedimentation basin, and the raw sludge generated by precipitation of solids contained in the influent wastewater in the first settler is fermented in the fermentation tank, acetate The fermentation broth containing a series of organic acids and the like is used as an electron donor for denitrification of nitrogen oxides by the post-denitrification method, while dissolved organic matter contained in the effluent of the first settler may be The present invention relates to an advanced sewage treatment method, which is used to maintain anaerobic conditions for denitrification or phosphorus release, which contributes to the treatment and disposal of fresh sludge, which produces odors with economical and effective nitrogen and phosphorus removal.
Description
본 발명은 하수 또는 폐수로부터 영양염류를 제거하는 방법에 관한 것으로,더욱 상세하게는 도시하수처리장, 산업폐수처리장 등에서 처리되는 하수 또는 폐수로부터 질소와 인을 제거하기 위하여 반응조와 침전지로 구성되는 생물학적처리공정에 발효조를 설치하고 제1침전지에서 발생되는 생슬러지가 상기 발효조에서 유기산 발효되고, 생성되는 유기산 등이 함유된 슬러지발효액을 이용하여 질소와 인을 높은 효율로 제거할 수 있는 하폐수고도처리방법에 관한 것이다.The present invention relates to a method for removing nutrients from sewage or wastewater, and more particularly, biological treatment consisting of a reaction tank and a sedimentation basin to remove nitrogen and phosphorus from sewage or wastewater treated in an urban sewage treatment plant or an industrial wastewater treatment plant. In the wastewater advanced treatment method, a fermentation tank is installed in the process and fresh sludge generated in the first settler is fermented with organic acid in the fermentation tank, and nitrogen and phosphorus can be removed with high efficiency by using a sludge fermentation solution containing organic acid. It is about.
하수중의 오염물질은 생화학적산소요구량(BOD)으로 표시되는 유기물과 질소와 인과 같은 영양염류등으로 분류될 수 있다. 지금까지 하수처리장에서는 유기물을 주된 처리대상으로 하였으며 질소와 인의 상당부분은 제거되지 못하고 그대로 하천과 호소 또는 해양등의 수계로 방류되었다.Contaminants in sewage can be classified into organic matter expressed as biochemical oxygen demand (BOD) and nutrients such as nitrogen and phosphorus. Up to now, sewage treatment plants have been mainly treated with organic matter, and much of nitrogen and phosphorus have not been removed, but they have been discharged to rivers, lakes, or oceans.
만일 하수중에 질소와 인이 포함된 채 방류되면 하천과 호소등의 수계에 부영양화 현상을 초래하고, 해양에 유입될 경우 적조발생의 원인이 된다. 부영양화가 심해지면 악취가 나고 수질오염이 가중될 뿐만 아니라 식수와 용수로의 사용이 제한된다. 따라서 위와 같은 수계의 부영양화를 방지하기 위해 하수처리장에서 영양염류인 질소화합물이나 인산염을 충분히 제거하여야 한다.If the sewage is discharged with nitrogen and phosphorus, it will cause eutrophication in rivers and lakes, and if it enters the ocean, it can cause red tide. Severe eutrophication causes odors and water pollution, as well as limiting the use of drinking water and waterways. Therefore, in order to prevent eutrophication of the water system as above, it is necessary to sufficiently remove nutrient nitrogen compounds or phosphates from the sewage treatment plant.
생물학적 탈질의 원리는 먼저 호기성(Aerobic)상태에서 질산화(Nitrosomonas,Nitrobactor)균에 의해 암모니아성질소를 산화하여 질산염으로 전환시킨다. 이를 다시 무산소(Anoxic)상태에서 질산염형태의 결합산소가 용존산소대용으로 이용하게 되어 유리질소상태로 환원시키는 미생물의 특성에 의하여 하수에서 질소가 제거되며 이때에 전자공여체로서 유기물이 소요된다.The principle of biological denitrification first converts ammonia nitrogen to nitrate by nitrification ( Nitrosomonas , Nitrobactor ) in aerobic state. In the anoxic state, nitrate-type combined oxygen is used for dissolved oxygen, and nitrogen is removed from the sewage due to the characteristics of microorganisms which reduce to free nitrogen. At this time, organic matter is used as an electron donor.
무산소상태에서 탈질을 위하여 소요되는 유기물의 공급방법은 생물학적 탈질공정에서 매우 중요한 사항이다. 지금까지 개발된 거의 모든 질산화 및 탈질방법은 하수에 함유된 유기물을 이용하는 전탈질방법과 외부에서 메칠알콜등 유기물을 공급하는 후탈질방법으로 구분된다.The method of supplying organic materials for denitrification in anoxic state is very important in biological denitrification process. Almost all nitrification and denitrification methods developed so far are divided into total denitrification using organic materials contained in sewage and post denitrification using organic alcohols such as methyl alcohol from the outside.
그러나 전탈질방법에서는 유입하수에 미생물이 쉽게 이용할 수 있는 용존성유기물의 농도가 낮을 경우에는 탈질효율이 저조하며, 후탈질방법의 경우 처리효율이 높고 전탈질방법에서보다 반응조의 용량이 작은 장점은 있으나 탈질에 소요되는 전자공여체로 이용하기 위하여 메칠알콜과 같이 쉽게 분해되는 유기물을 무산소반응조에 주입하여야 되므로 비용부담이 큰 어려움이 있다.However, in the total denitrification method, the denitrification efficiency is low when the concentration of dissolved organic matter that is readily available to microorganisms in the influent sewage is low. However, in order to use as an electron donor for denitrification, organic materials that are easily decomposed, such as methyl alcohol, need to be injected into an oxygen-free reaction tank, which is a great cost burden.
이에 본 발명은 상술한 제문제점을 해소하기 위하여 안출된 것으로, 구체적으로는 질소제거효율이 높고 무산소반응조의 용량이 작은 후탈질방법의 장점을 살리되, 메칠알콜 조달에 소요되는 운전비용의 문제를 해소하기 위하여 제1침전지에서 유입하폐수에 함유되는 고형물이 침전되어 발생되며, 악취가 발생되고 탈수효율이 저조하여 처리처분에 애로를 겪고 있는 생슬러지를 발효시켜 생성되는 슬러지발효액을 탈질에 필요한 전자공여체로 이용하여 질소·인제거효율이 향상될 수 있는 생슬러지를 이용하는 고도하폐수처리방법을 제공하는 한편, 유입하폐수에 함유된 분해되기 쉬운 용존성유기물을 이용하여 전탈질에 의한 질소제거도 병행하는 고도하폐수처리방법을 제공하는데 그 목적이 있다.Therefore, the present invention was devised to solve the above-mentioned problems, and in particular, while utilizing the advantages of the post-denitrification method with high nitrogen removal efficiency and small anoxic reaction tank, it solves the problem of operating cost required for procurement of methyl alcohol. The sediment fermentation liquor produced by fermenting fresh sludge, which is suffering from odors and poor dehydration efficiency, is treated by sedimentation of solids contained in influent wastewater from the first settler. It provides advanced wastewater treatment method using fresh sludge which can improve nitrogen and phosphorus removal efficiency.In addition, advanced wastewater that also removes nitrogen by total denitrification by using dissolvable dissolved organic matter contained in influent wastewater. The purpose is to provide a treatment method.
하폐수 유입수를 침전시켜서 발생되는 생슬러지는 섬유소, 반섬유소, 전분, 단백질, 지방과 같은 고분자유기화합물의 혼합물로 구성되어 있으며 혐기성상태에서 발효시킬 경우 프로피온산, 부티르산, 에탄올 등을 거쳐서 아세트산이 생성되며 최종적으로는 메탄가스와 이산화탄소로 분해된다. 유기물의 혐기성발효공정에서 메탄발효단계는 매우 까다롭고 실패하기 쉬우나 메탄발효의 전단계인 유기산발효단계까지는 매우 용이하게 이루어진다.Raw sludge produced by sedimentation of sewage wastewater consists of a mixture of high molecular weight organic compounds such as fibrin, hemicellulose, starch, protein and fat. When fermented in anaerobic state, acetic acid is produced through propionic acid, butyric acid and ethanol. It is decomposed into methane gas and carbon dioxide. In the anaerobic fermentation process of organic matter, the methane fermentation step is very difficult and unsuccessful, but it is very easy up to the organic acid fermentation step, which is the first step of methane fermentation.
본 발명에서는 이와 같은 생슬러지의 조성과 혐기성발효특성에 착안하여 처리장으로 유입되는 하폐수에 함유되고 제1침전지에서 침전분리되는 유기성고형물이 주된 성분인 생슬러지를 발효조로 이송하고, 생슬러지가 발효되어 생성되는 아세트산계열의 유기산이 무산소반응조에서 질소산화물의 후탈질방법에 의한 탈질반응에 필요한 전자공여체로 이용되도록 하였다.In the present invention, in view of the composition and anaerobic fermentation characteristics of the fresh sludge, the organic sludge contained in the sewage water flowing into the treatment plant and precipitated in the first settler is transferred to the fermenter, the raw sludge, the raw sludge is fermented The resulting acetic acid-based organic acid was used as an electron donor for the denitrification by the post-nitrogenation of nitrogen oxides in an oxygen-free reactor.
또한 본 발명에서는 유입하폐수에 함유된 고형물은 제1침전지에서 제거되고 제1침전지에서 유출수에 함유되는 용존성유기물도 후속되는 무산소반응조 또는 혐기성반응조로 유입되어 전탈질방법에 의한 탈질반응에 이용되거나 인의 방출(Release)을 위한 혐기성조건의 유지에 이용하여 탈질반응에 부족될 수도 있는 유기물이 최대로 활용되도록 하였다.In addition, in the present invention, the solids contained in the influent wastewater are removed from the first settler and the dissolved organic matter contained in the effluent from the first settler is also introduced into a subsequent anoxic or anaerobic reactor to be used for denitrification by a total denitrification method or phosphorus. It was used to maintain anaerobic conditions for release to maximize the utilization of organic substances that may be deficient in denitrification.
우리나라에서는 하수관로의 연장이 길기 때문에 상당량의 유기물이 해체되어 침전되기 어려운 상태로 유입되므로 제1침전지에서 발생되는 생슬러지만으로는 탈질반응에서의 유기물소요량을 충족시키지 못하거나, 유기물 유입농도가 낮기 때문에 질산화 공정에서 생성된 질소산화물을 충분히 제거하기에는 유기물이 부족하여 탈질효율이 낮은 문제점도 있으므로 본 발명에서는 유입하수중의 용존성유기물도 이용되는 전탈질이 병행되도록 하였다.In Korea, due to the long extension of sewage pipes, a considerable amount of organic matter is introduced into the state where it is difficult to dissolve and settle, so the raw sludge produced in the first settler does not meet the organic material requirement in the denitrification reaction or the nitrification process because the organic inflow concentration is low. In order to sufficiently remove the nitrogen oxides generated in the present invention, there is a problem that the denitrification efficiency is low due to the lack of organic material, so that the total denitrification used in the dissolved organic matter in the influent sewage is performed in parallel.
본 발명에서와 같이 제1침전지에서 발생되는 생슬러지가 발효된 슬러지발효액을 후탈질방법에 의한 탈질반응에 소요되는 전자공여체로 이용하고, 유입하폐수에 함유되는 용존성유기물을 인의 방출을 위한 혐기성조건의 유지와 전탈질방법에 의한 탈질반응에 이용하게 되면, 먼저 하수처리장에서 질소·인제거효율이 향상되어 방류수계의 부영양화가 개선되고 슬러지발생량이 감소되어 슬러지의 매립에 따른 매립지소요와 침출수 발생 및 소각에 따른 대기오염 등 2차오염을 줄일 수 있게 된다.As in the present invention, the raw sludge fermented from sludge fermented in the first settler is used as an electron donor for denitrification by the post-denitrification method, and the anaerobic conditions for the release of phosphorus from the dissolved organic matter contained in the influent wastewater. When used for the denitrification reaction by the maintenance and total denitrification method, the efficiency of nitrogen and phosphorus removal in the sewage treatment plant is improved first, the eutrophication of the effluent system is improved, the sludge generation amount is reduced, and the landfill demand and leachate generation due to the sludge landfill Secondary pollution such as air pollution by incineration can be reduced.
도 1은 본 발명에 따른 제1실시예의 개략 공정도,1 is a schematic process diagram of a first embodiment according to the present invention;
도 2는 본 발명에 따른 제2실시예의 개략 공정도,2 is a schematic process diagram of a second embodiment according to the present invention;
도 3은 본 발명에 따른 제3실시예의 개략 공정도이다.3 is a schematic process diagram of a third embodiment according to the present invention.
- 도면의 주요 부분에 대한 부호의 설명 --Explanation of symbols for the main parts of the drawing-
1a : 제1침전지 1b : 제2침전지1a: first rechargeable battery 1b: second rechargeable battery
2 : 혐기성반응조 3a : 제1호기성반응조2: anaerobic reactor 3a: first aerobic reactor
3b : 제2호기성반응조 4 : 무산소반응조3b: second aerobic reactor 4: anoxic reactor
4a : 제1무산소반응조 4b : 제2무산소반응조4a: 1st anoxic reactor 4b: 2nd anoxic reactor
5 : 발효조 6 : 반송슬러지5: fermentation tank 6: return sludge
7 : 내부순환수 8 : 생슬러지7: Internal circulating water 8: Fresh sludge
9 : 슬러지발효액9: sludge fermentation liquid
이하 본 발명은 첨부한 예시도면을 참조하여 자세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
<도 1의 제1실시예에 관한 설명><Description of Embodiment 1 of FIG. 1>
도 1은 본 발명에 따른 발효슬러지를 이용하는 고도하폐수처리방법의 제1실시예에 관한 개략적인 공정도이다.1 is a schematic process diagram of a first embodiment of a method for treating wastewater using advanced fermentation sludge according to the present invention.
도시된 바와 같이, 본 실시예에서는 유입하수→제1침전지(1a)→혐기성반응조(2)→제1호기성반응조(3a)→무산소반응조(4)→제2호기성반응조(3b)→제2침전지(1b)→유출수의 순서로 구성된 공정에 발효조(5)가 구비되며, 제1침전지(1a)에서 유입하폐수에 함유된 유기성고형물이 침전되어 발생되는 생슬러지(8)가 발효조(5)로 이송되고 발효되어 생성되는 슬러지발효액(9)이 상기 무산소반응조(4)에 주입되고, 제2침전지(1b)에서 침전된 활성슬러지는 반송슬러지(6)로서 제1호기성반응조(3a)로 반송되는 일련의 공정으로 구성된다. 이하 개별 단위공정의 작용을 설명하면 다음과 같다.As shown, in the present embodiment, the influent sewage → the first settler (1a) → the anaerobic reactor (2) → the first aerobic reactor (3a) → the anaerobic reactor (4) → the second aerobic reactor (3b) → the second settler (1b) → The fermentation tank (5) is provided in the process consisting of the effluent water, and the fresh sludge (8) generated by the precipitation of organic solids contained in the inflow and wastewater from the first settler (1a) is transferred to the fermentation tank (5). And the sludge fermentation liquid 9 produced by fermentation is injected into the anoxic reaction tank 4, and the activated sludge precipitated in the second settler 1b is returned to the first aerobic reaction tank 3a as the return sludge 6a. The process consists of. Hereinafter, the operation of the individual unit process will be described.
고액분리공정인 제1침전지(1a)에서는, 유입 하폐수에 함유되었던 용존성유기물이 하폐수를 따라 후속공정인 혐기성반응조(2)로 월류되며, 침강성고형물은 침전분리되어 생슬러지(8)로 인출되어 발효조(5)로 이송된다.In the first sedimentation cell (1a), which is a solid-liquid separation process, dissolved organic matter contained in the influent sewage water is overflowed into the anaerobic reaction tank (2), which is a subsequent process along the sewage water, and the sedimentable solids are precipitated and taken out as fresh sludge (8). It is transferred to the fermentation tank (5).
혐기성반응조(2)에서는 비포기 교반상태에서 혐기성조건이 유지되며 제2침전지(1b)에서 반송되는 활성슬러지로부터 인의 방출(Release)반응이 이루어지게 된다. 이와 같이 상기 혐기성반응조(2)에서는 후속되는 제1호기성반응조(3a)에서 더 많은 양의 인이 과잉섭취(Luxury Uptake)되도록 하기 위하여 필수적인 전단계반응에 해당된다.In the anaerobic reaction tank 2, anaerobic conditions are maintained under aerobic agitation and phosphorus release reaction is performed from activated sludge returned from the second settler 1b. As described above, the anaerobic reactor 2 corresponds to a preliminary reaction necessary to allow a larger amount of phosphorus to be taken up in the first aerobic reactor 3a.
제1호기성반응조(3a)에서는, 상기 혐기성반응조(2)에서 유입된 반응액이 포기혼합되어 호기성조건에서 활성슬러지미생물의 이화 및 동화작용에 의하여 하수중의 유기물질이 호기성분해되며 암모니아성질소가 질산화미생물의 대사작용에 의하여 질산성질소(NO2, NO3)로 산화된다. 또한 제1호기성반응조(3a)에서는 상기 혐기성반응조(2)에서 방출되었던 것보다 더 많은 양의 인이 활성슬러지미생물에 과잉섭취되어 하폐수로부터 인이 제거되는 중요한 작용이 이루어진다.In the first aerobic reactor (3a), the reaction liquid introduced from the anaerobic reactor (2) is aeration mixed, organic matter in the sewage is aerobic decomposed by catabolism and assimilation of activated sludge microorganisms under aerobic conditions, and ammonia nitrogen is It is oxidized to nitric acid nitrogen (NO 2 , NO 3 ) by the metabolism of nitrifying microorganisms. In addition, in the first aerobic reactor 3a, a larger amount of phosphorus is excessively ingested in the activated sludge microorganism than the one released in the anaerobic reactor 2, so that the phosphorus is removed from the wastewater.
무산소반응조(4)에서는, 산소가 공급되지 않고 교반만 이루어져 유리산소가 고갈된 상태에서 호기성미생물에 의하여 제1호기성반응조(3a)로부터 유입되는 질산성질소형태의 결합산소가 이용되어 유리질소로 환원되는 탈질반응이 주로 진행된다. 질산성질소가 전자수용체로 이용되어 유리질소로 환원되기 위해서는 전자공여체인 유기물이 주입되어야 하며, 과거에는 본 발명에서와는 달리 주로 메칠알콜을구입하여 사용하였다.In the oxygen-free reaction tank (4), the combined oxygen in the form of nitrate-nitrogen nitrogen introduced from the first aerobic reaction tank (3a) by aerobic microorganisms is reduced to free nitrogen by the aerobic microorganism in which oxygen is not supplied and only stirring is performed to free oxygen. The denitrification reaction proceeds mainly. In order to reduce the nitrogen nitrate to be used as the electron acceptor to reduce the free nitrogen, an organic substance, which is an electron donor, must be injected. In the past, methyl alcohol was mainly purchased and used, unlike in the present invention.
메칠알콜 사용에 따른 과다한 경제적 부담을 해소하기 위하여 본 발명에서는 상기 제1침전지(1a)에서 발생되는 생슬러지(8)를 발효시켜서 생성되는 분해되기 쉬운 초산염계열의 유기산이 전자공여체로 이용되도록 개선하였다. 생슬러지에 추가하여 잉여활성슬러지를 발효시켜 탈질공정에 이용하게 되면 처리처분에 많은 애로를 겪고 있는 슬러지의 처리문제도 경감될 수 있다.In order to solve the excessive economic burden caused by the use of methyl alcohol in the present invention was improved so that the decomposing acetate-based organic acid produced by fermenting the fresh sludge 8 generated in the first settler (1a) as an electron donor . In addition to fresh sludge, fermentation of surplus activated sludge and denitrification can reduce the problems of sludge, which has a lot of difficulties in disposal.
제2호기성반응조(3b)는 상기 무산소반응조(4)에서 유입되는 반응액이 호기성상태로 전환되는 재포기 공정이다. 그 작용으로는, 잔존유기물이 호기성미생물에 의하여 분해되며, 탈질(Denitrification)이 완료되어 수중에 존재하는 유리질소가 탈기(Air Stripping)되어 대기중으로 방출되고, 전단계의 무산소조건에서 악화되기도 하는 슬러지의 침강성이 개선되는 공정이다.The second aerobic reaction tank 3b is a reaeration process in which the reaction liquid introduced from the oxygen-free reaction tank 4 is converted into an aerobic state. As a result, the remaining organic matter is decomposed by aerobic microorganisms, denitrification is completed, free nitrogen present in water is degassed (Air Stripping), released into the atmosphere, and deteriorated under anoxic conditions of the previous stage. It is a process to improve sedimentation.
최종침전지(1b)는 유입되는 고형물현탁혼합액에서 고형물이 침전되어 깨끗한 상징수가 분리되는 고액분리공정으로, 상기 상징수는 처리수로써 유출되며 침전된 고형물인 활성슬러지는 반송슬러지(6)로서 상기 혐기성반응조(2)로 반송되고 일부 잉여분은 폐기되기도 한다.The final settler 1b is a solid-liquid separation process in which the solid precipitates from the solid suspension mixture to be separated and clean symbolic water is separated. The symbolic water flows out as treated water and the activated sludge, which is the precipitated solid, is the anaerobic sludge as a return sludge. It may be returned to the reactor 2 and some excess may be discarded.
발효조(5)에서는, 제1침전지(1a)에서 침전분리된 생슬러지(8)에 함유되는 유기물이 발효되어 초산염계열의 유기산이 생성되는 공정이다. 본 공정에서 발효된 유기물은 앞에서 설명한 것과 같이 상기 무산소반응조(4)에 주입되어 탈질에 소요되는 전자공여체로 이용된다.In the fermentation tank 5, the organic substance contained in the fresh sludge 8 precipitated and separated in the first settler 1a is fermented to produce an acetate-based organic acid. The organic material fermented in this process is injected into the anoxic reactor 4 as described above and used as an electron donor for denitrification.
생슬러지는 섬유소, 반섬유소, 전분, 단백질, 지방과 같은 고분자유기화합물의 혼합물로 조성되므로 혐기성조건에서 발효시킬 경우 프로피온산, 부티르산, 에탄올 등을 거쳐서 아세트산이 생성되고 최종적으로 메탄가스로 분해되며 이러한 메탄발효는 지금까지 하수처리장의 슬러지감량화 및 안정화에 주로 사용되었다.Raw sludge is composed of a mixture of high molecular organic compounds such as fibrin, semi-fibre, starch, protein, and fat. When fermented under anaerobic conditions, acetic acid is produced through propionic acid, butyric acid, ethanol, etc., and finally decomposed into methane gas. Fermentation has been used mainly for sludge reduction and stabilization of sewage treatment plants.
본 발명에 의한 생슬러지가 발효되는 발효조(5)는 기존의 하수처리장에서 슬러지 감량화 및 메탄가스 생성을 위해 주로 사용되어 온 혐기성소화조와 기본적으로 같은 원리의 단위공정이며 운전형태가 변경된 것에 불과하다. 따라서 기존의 슬러지소화조를 발효조로 이용하므로써, 가동중인 하폐수처리시설에서도 본 발명에 의한 고도처리방법이 용이하게 채택될 수 있다. 기존의 슬러지소화조에서는 유기물을 유기산발효단계를 거쳐서 메탄등 가스생성단계까지 최종분해시켰다. 그러나, 본 발명에서는 종래의 슬러지소화공정의 반응을 한 단계 단축시켜 유기산발효단계에서 반응을 종료시키고, 여기에서 생성되는 유기산이 지금까지 후탈질방법에서 사용되어온 메칠알콜을 대신하여 탈질반응에 이용되므로 질소제거효율이 향상되고 경제적인 측면에서도 매우 유리하다.The fermentation tank 5 in which the raw sludge is fermented according to the present invention is basically a unit process of the same principle as the anaerobic digestion tank that has been mainly used for sludge reduction and methane gas production in a conventional sewage treatment plant, and the operation mode is merely changed. Therefore, by using the existing sludge digestion tank as a fermentation tank, the advanced treatment method according to the present invention can be easily adopted in the sewage treatment plant in operation. In the existing sludge digestion tank, organic matter was finally decomposed to the gas generation stage such as methane through the organic acid fermentation stage. However, in the present invention, the reaction of the conventional sludge digestion process is shortened by one step to terminate the reaction in the organic acid fermentation step, and the organic acid produced therein is used for denitrification instead of methyl alcohol, which has been used in the post-denitrification method. Nitrogen removal efficiency is improved and economically very advantageous.
탈질이 신속히 이루어지려면 미생물의 호흡이 왕성하여야 되며, 미생물의 호흡은 미생물이 이용할 수 있는 유기물의 종류와 양에 밀접하게 관계되므로 미생물에 의하여 쉽게 이용될 수 있는 유기물이 충분히 공급되어야 한다. 지금까지 후탈질방법에서는 미생물에 의하여 쉽게 이용될 수 있고 비교적 가격이 저렴한 메칠알콜을 이용하였으나, 실험결과에 의하면 이러한 유기물로는 분자구조가 비교적 간단한 초산염(아세테이트)이 가장 유리하고, 그 다음에는 부틸염과 알콜류의 순서임이 확인되었다. 발효후 생성된 유기물은 초산염이 가장 많으며 그다음 부틸염, 프로필염 및 알콜류 등으로 이루어져 탈질반응에 효과적으로 이용될 수 있다.In order to be rapidly denitrified, the respiration of microorganisms must be vigorous, and the respiration of microorganisms is closely related to the types and amounts of organic substances available to the microorganisms, and thus, the organic substances that can be easily used by the microorganisms must be sufficiently supplied. Up to now, the post-denitrification method used methyl alcohol, which is easily used by microorganisms, and relatively inexpensive. However, experimental results show that acetate, which has a relatively simple molecular structure, is most advantageous, and then butyl. It was confirmed that the order of salts and alcohols. Organic matter produced after fermentation is the most acetate and then consists of butyl salt, propyl salt and alcohols can be effectively used for denitrification.
특히 지금까지 사용되어온 슬러지소화조는 유기산발효단계까지는 쉽게 완료되고서도 매우 까다로운 메탄발효단계에서 운전에 실패하는 사례가 빈번하였다. 반면에 본 발명에서는 유기산발효단계에서 반응이 종료된 발효액이 탈질에 이용되므로 메탄발효보다 실패의 위험부담이 적고 안정된 방법이다.In particular, the sludge digester that has been used up to now has been frequently failed to operate in the difficult methane fermentation stage even though it is easily completed until the organic acid fermentation stage. On the other hand, in the present invention, since the fermentation broth from which the reaction is completed in the organic acid fermentation step is used for denitrification, the risk of failure is less than that of methane fermentation and is a stable method.
상기 발효조(5)에서 유기산발효가 진행됨에 따라 수소이온농도가 과다하게 증가되어 효과적인 발효를 위해서는 알칼리제의 투입이 요구되기도 한다. 또한 유화수소가스 등이 발생되어 악취가 발생되기도 하므로 2가철염(Fe++)을 투입하거나 생성된 가스를 제1호기성반응조(3a)에 불어넣어서 호기성미생물에 의하여 악취원인물질이 산화분해될 수도 있다.As the organic acid fermentation proceeds in the fermentation tank 5, hydrogen ion concentration is excessively increased, and an alkaline agent may be required for effective fermentation. In addition, emulsified hydrogen gas or the like may cause odors, so ferric salt (Fe ++ ) may be added or the generated gas may be blown into the first aerobic reactor 3a to cause odor decomposition material to be oxidized by aerobic microorganisms. have.
상기 발효조(5)에서 발효가 완료된 발효액에는 무기성고형물 또는 분해되지 못한 유기성고형물이 포함되기도 한다. 이러한 고형물이 제거되지 못하고 상기 무산소반응조(4)에 주입되면 고형성유기물은 서서히 분해되어 제2침전지(1b) 또는 제2침전지(1b)에 근접한 제2호기성반응조(3b)에서 유기물이 용출되어 처리수질에 악영향을 주기도 한다. 또한 무기성고형물은 반송슬러지(6)를 통하여 수처리공정을 순환하게 되므로 활성슬러지에는 유기물의 분해에 기여하는 활성미생물의 구성비율이 감소되어 슬러지의 활성이 저하되기도 한다. 따라서 발효조(5)에는 고액분리수단[도면미표기]을 추가하여 고형물이 분리된 여액을 사용하는 것이 바람직하다.The fermentation broth completed fermentation in the fermentation tank 5 may include inorganic solids or organic solids that cannot be decomposed. If such solids are not removed and injected into the oxygen-free reaction tank 4, the solid organic matter is gradually decomposed and organic matter is eluted from the second aerobic reaction tank 3b close to the second settling battery 1b or the second settling battery 1b. It can also adversely affect water quality. In addition, since the inorganic solid is circulated in the water treatment process through the conveying sludge (6), the active sludge is reduced in the composition ratio of active microorganisms that contribute to the decomposition of organic matter, the sludge activity is also reduced. Therefore, it is preferable to use a filtrate in which the solids are separated by adding solid-liquid separation means [not shown] to the fermentation tank 5.
고액분리수단으로는 발효조(5) 다음에 침전지 또는 탈수기를 추가로 설치하거나, 또는 2개 이상의 발효조를 직렬로 연결하여 발효액이 유출되는 발효조는 교반을 중지하여 침전이 이루어지도록 하고 유출입의 흐름방향을 변경하여 사용하는 방법 등이 있다.As a solid-liquid separation means, an additional sedimentation basin or dehydrator is installed after the fermentation tank (5), or two or more fermentation tanks are connected in series to allow the fermentation broth to flow out of the fermentation tank to stop the agitation so that precipitation occurs and the flow direction of the inflow / outflow There is a method of changing and using.
<도 2의 제2실시예에 관한 설명><Description of Embodiment 2 of FIG. 2>
도 2는 본 발명에 따른 유기성폐기물을 이용한 고도하페수처리방법의 제2실시예에 관한 것이다.Figure 2 relates to a second embodiment of the advanced wastewater treatment method using the organic waste according to the present invention.
도시된 바와같이, 본 실시예에서는 유입하수→제1침전지(1a)→제1무산소반응조(4a)→제1호기성반응조(3a)→제2무산소반응조(4b)→제2호기성반응조(3b)→제2침전지(1b)→유출수의 순서로 구성된 공정에 발효조(5)가 구비되며, 제1침전지(1a)에서 유입하폐수에 함유된 유기성고형물이 침전되어 발생되는 생슬러지(8)가 발효조(5)로 이송되어 발효되고 슬러지발효액(9)은 제2무산소반응조(4b)에 주입되고, 제2침전지(1b)에서 침전된 활성슬러지는 반송슬러지(6)로서 상기 제1무산소반응조(4a)로 반송되며, 상기 제1호기성반응조(3a)의 반응액이 상기 제1무산소반응조(4a)로 내부순환되는 일련의 공정으로 구성된다.As shown, in this embodiment, the influent sewage → the first settler 1a → the first anaerobic reactor 4a → the first aerobic reactor 3a → the second anoxic reactor 4b → the second aerobic reactor 3b. → a fermentation tank (5) is provided in the process consisting of the second settler (1b) → effluent water, the fresh sludge (8) generated by the precipitation of organic solids contained in the influent wastewater from the first settler (1a) is fermentation tank ( 5) fermented and sludge fermented liquor (9) is injected into the second anoxic reaction tank (4b), the activated sludge precipitated in the second settler (1b) as the return sludge (6) the first anoxic reaction tank (4a) And the reaction liquid of the first aerobic reaction tank 3a is internally circulated to the first anoxic reaction tank 4a.
본 실시예에서는 제2무산소반응조(4b)에 의한 후탈질과 제1호기성반응조(3a)로부터 내부순환수가 유입되는 제1무산소반응조(4a)에 의한 전탈질이 함께 이루어진다. 따라서 제1침전지(1a)의 상징수에 포함된 용존성유기물도 추가로 탈질반응에 소요되는 전자공여체로 이용되어 유기물이 최대한 활용될 수 있으므로 유입하폐수에 함유되는 유기물이 주로 용존성유기물로 조성되어 제1침전지(1a)에서 침전후 인출되는 생슬러지발효액에 의한 후탈질만으로는 탈질효율이 충족되지 못할 경우에유리한 방법이다.In this embodiment, post-denitrification by the second anoxic reaction tank 4b and total denitrification by the first anoxic reaction tank 4a into which internal circulating water flows from the first aerobic reaction tank 3a are performed together. Therefore, the dissolved organic matter contained in the symbolic water of the first settler 1a is also used as an electron donor for the denitrification reaction, so that organic matter can be utilized to the fullest. Therefore, organic matter contained in the influent wastewater is mainly composed of dissolved organic matter. This is an advantageous method when the denitrification efficiency is not satisfied only by post-denitration by the fresh sludge fermentation liquor drawn out after precipitation in the first settler 1a.
<도 3의 제3실시예에 관한 설명><Description of Embodiment 3 of FIG. 3>
도 3은 본 발명에 따른 유기성 폐기물을 이용하는 고도하폐수처리방법의 제3실시예에 관한 것이다.Figure 3 relates to a third embodiment of the advanced sewage treatment method using the organic waste according to the present invention.
도시된 바와 같이, 본 실시예에서는 제2실시예를 구성하는 공정에서 제1호기성반응조(3a)의 앞단계에 제1침전지(1a)의 후속공정으로서 혐기성반응조(2)가 추가로 설치되어, 공정의 순서는 유입하수→제1침전지(1a)→혐기성반응조(2)→제1무산소반응조(4a)→제1호기성반응조(3a)→제2무산소반응조(4b)→제2호기성반응조(3b)→제2침전지(1b)→유출수로 구성된다.As shown, in the present embodiment, an anaerobic reaction tank 2 is additionally installed as a subsequent process of the first settler 1a in the front step of the first aerobic reaction tank 3a in the process constituting the second embodiment. The order of the process is influent sewage → first settler (1a) → anaerobic reactor (2) → first anoxic reactor (4a) → first aerobic reactor (3a) → second anoxic reactor (4b) → second aerobic reactor (3b) ) 2nd sedimentation battery 1b → effluent water.
본 실시예에서는 혐기성반응조(2)가 추가로 구비되고 제2침전지(1b)로부터 반송슬러지(6)가 상기 혐기성반응조(2)로 유입되어 인의 방출효율을 증대시킨 것을 제외하고는 제2실시예와 공정의 구성 및 단위공정의 작용이 동일하다.In the present embodiment, an anaerobic reaction tank 2 is further provided, except that the return sludge 6 is introduced into the anaerobic reaction tank 2 from the second settler 1b to increase the emission efficiency of phosphorus. The structure of the process and the operation of the unit process are the same.
앞에서 설명한 각 실시예의 제1호기성반응조(3a)는 탈질반응을 위하여 필수적인 전단계 반응인 질산화반응이 이루어지는 매우 중요한 단위공정이다.The first aerobic reactor 3a of each embodiment described above is a very important unit process in which nitrification reaction, which is an essential step reaction for denitrification, is performed.
이와 같이 중요한 질산화 반응에 기여하는 질산화미생물은 증식계수(Yield Coefficient)가 다른 호기성미생물보다 매우 낮아서 세정(Wash Out)되기 쉬우므로 상기 제1호기성반응조(3a)에 미생물농도가 높게 유지되어야 한다. 미생물농도가 높게 유지되기 위해서는 고형물체류시간(SRT:Solids Retention Time)이 길어야 된다. 따라서 상기 제1호기성반응조(3a)에서 미생물이 부유증식될 경우에는 상기 제1호기성반응조(3a)의 용량이 증대되므로 경제적으로 불리하다. 이러한 비경제성이 감소되고 질산화효율이 증대되는 방법으로는 미생물이 부착증식되어 생물막(BioFilm)이 형성되는 생물막접촉재를 제1호기성반응조(3a)에 충전하거나, 질산화미생물이 중점 증식될 수 있도록 질산화미생물이 포괄고정된 담체를 충전하는 것도 바람직하다.The nitrifying microorganisms contributing to this important nitrification reaction is very easy to wash out because the yield coefficient (Yield Coefficient) is much lower than other aerobic microorganisms should be maintained in a high concentration of microorganisms in the first aerobic reaction tank (3a). In order to maintain a high microbial concentration, the solids retention time (SRT) must be long. Therefore, when microorganisms are suspended and proliferated in the first aerobic reactor 3a, the capacity of the first aerobic reactor 3a is increased, which is economically disadvantageous. The method of reducing the economic efficiency and increasing the nitrification efficiency includes filling the first aerobic reactor 3a with a biofilm contact material in which biofilms are formed and biofilms are formed, or nitrification so that nitrification microorganisms can be multiplyed. It is also desirable to fill a carrier in which the microorganisms are immobilized.
이상에서 설명한 바와 같이 제1침전지에서 발생되는 생슬러지를 탈질반응에 소요되는 전자공여체로 이용하는 본 발명에 따른 발효슬러지를 이용한 질소·인제거방법을 이용하게 되면, 메칠알콜 등을 구입하지 않고서도 경제적인 방법으로 후탈질공법의 장점을 최대한 발휘할 수 있는 한편, 전탈질방법을 추가할 수 있게 되어, 호수의 부영양화에 심각한 영향을 주는 질소와 인을 효과적으로 제거할 수 있다. 또한 처리에 애로를 겪고 있는 슬러지를 질소·인 제거를 위한 자원으로 활용할 수 있게 된다. 특히, 부패되기 쉬운 탈수슬러지의 장거리운반에 따른 운반비용 부담과 운반과정에서의 악취발생, 매립장에서 침출수발생, 소각에 따른 대기오염 등 2차환경오염을 유발시키는 슬러지를 수송이 불필요한 슬러지 발생장소인 하수처리장에서 효과적으로 처리처분할 수 있게 되어 보다 경제적이다.As described above, if the nitrogen and phosphorus removal method using the fermented sludge according to the present invention using the raw sludge generated in the first settler as an electron donor for denitrification reaction is economical without purchasing methyl alcohol or the like. Phosphorus method can maximize the advantages of the post-denitrification method, while it is possible to add a total denitrification method, it is possible to effectively remove nitrogen and phosphorus which seriously affects the eutrophication of the lake. In addition, sludge that is struggling with treatment can be used as a resource for nitrogen and phosphorus removal. Particularly, sludge that does not need to be transported, such as sludge that causes secondary environmental pollution, such as burden of transportation costs due to long-distance transportation of dehydrated sludge that is perishable, odor generation in landfill, leachate in landfill, and air pollution due to incineration. It is more economical because it can be effectively disposed of in sewage treatment plants.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980043419A KR100312820B1 (en) | 1998-10-17 | 1998-10-17 | Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980043419A KR100312820B1 (en) | 1998-10-17 | 1998-10-17 | Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000026051A KR20000026051A (en) | 2000-05-06 |
KR100312820B1 true KR100312820B1 (en) | 2002-02-19 |
Family
ID=19554320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980043419A KR100312820B1 (en) | 1998-10-17 | 1998-10-17 | Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100312820B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100391009B1 (en) * | 2000-06-10 | 2003-07-12 | 장덕 | System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100313315B1 (en) * | 1999-01-22 | 2001-11-05 | 이규남 | Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm |
KR20020048460A (en) * | 2000-12-16 | 2002-06-24 | 차호영 | A process for removing a biological nutrient |
KR20010078472A (en) * | 2001-03-09 | 2001-08-21 | 백병천 | Production of Carbon Source from Sewage Sludge and Denitrification Technologies for Advanced Treatment of Wastewater |
KR100423801B1 (en) * | 2001-11-19 | 2004-03-22 | 뉴엔텍(주) | Advanced waste-water treatment system |
KR100434858B1 (en) * | 2002-04-25 | 2004-06-07 | 주식회사 디엠퓨어텍 | A sewerage method using cultured nitrification microorganism by anaerobic or aerobic digestive fluid of sludge |
KR100474375B1 (en) * | 2002-05-09 | 2005-03-08 | 한국건설기술연구원 | Organic Acid Producing Facility for Advanced Biological Nutrient Removal, and Facility and Method of Hybrid of Sludge & Nutrient Removal (HSNR) by the OAPF |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980042471A (en) * | 1996-11-15 | 1998-08-17 | 미타라이 후지오 | Manufacturing method of semiconductor article |
-
1998
- 1998-10-17 KR KR1019980043419A patent/KR100312820B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980042471A (en) * | 1996-11-15 | 1998-08-17 | 미타라이 후지오 | Manufacturing method of semiconductor article |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100391009B1 (en) * | 2000-06-10 | 2003-07-12 | 장덕 | System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater |
Also Published As
Publication number | Publication date |
---|---|
KR20000026051A (en) | 2000-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6758972B2 (en) | Method and system for sustainable treatment of municipal and industrial waste water | |
CN101279794B (en) | Enhanced endogenous denitrification process and device for denitrification and phosphorus removal by using film-bioreactor | |
CN106745743B (en) | Sewage nitrogen and phosphorus removal system | |
CN104761097B (en) | It is a kind of suitable for high concentration, the processing method of organic wastewater with difficult degradation thereby total nitrogen | |
US20070193949A1 (en) | System and method for treating carbon, nitrogen, phosphorous containing wastewater | |
CN101157510A (en) | Process for treating antibiotic waste water and usage thereof | |
AU5889098A (en) | Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater | |
CN101870540A (en) | System and method for treating nitrogen and phosphorus in urban sewage | |
CN109205954A (en) | Light electrolysis catalysis oxidation, biochemical treatment high-concentration waste hydraulic art | |
CN108558008B (en) | Device and method for treating urban domestic sewage by continuous flow CS-BAF-DEAMOX coupling sludge fermentation | |
KR100274534B1 (en) | Nitrogen and phosphorus removal methods with using fermented organic wastes | |
KR100312820B1 (en) | Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge | |
KR100390633B1 (en) | Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby | |
KR100304544B1 (en) | Method for removing nitrogen and phosphorus using anaerobic digestion | |
CN217398562U (en) | High-concentration nitrogen-containing wastewater treatment system | |
KR20010028550A (en) | Treatment method for livestock waste water including highly concentrated organic, nitrogen and phosphate | |
CN216005540U (en) | Sewage treatment system utilizing internal carbon source based on sludge fermentation | |
McKinney | The role of chemically combined oxygen in biological systems | |
CN201746425U (en) | Treatment system for nitrogen and phosphorus in urban sewage | |
KR20100046936A (en) | Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system | |
KR20010094836A (en) | High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR | |
KR100314744B1 (en) | Nitrogen & Phosphorous Removing Methods from Waste Water with using Organic Wastes | |
CN113149215A (en) | Middle-placed aeration denitrification treatment method for papermaking wastewater | |
Inamori et al. | Domestic sewage treatment using an anaerobic biofilter with an aerobic biofilter | |
KR20010076873A (en) | Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121008 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20131004 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20141013 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20151012 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |