KR100391009B1 - System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater - Google Patents

System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater Download PDF

Info

Publication number
KR100391009B1
KR100391009B1 KR10-2000-0031920A KR20000031920A KR100391009B1 KR 100391009 B1 KR100391009 B1 KR 100391009B1 KR 20000031920 A KR20000031920 A KR 20000031920A KR 100391009 B1 KR100391009 B1 KR 100391009B1
Authority
KR
South Korea
Prior art keywords
tank
acid fermentation
phosphorus
anaerobic
dpb
Prior art date
Application number
KR10-2000-0031920A
Other languages
Korean (ko)
Other versions
KR20010111341A (en
Inventor
장덕
서성철
김수영
성문성
홍기호
Original Assignee
장덕
서성철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장덕, 서성철 filed Critical 장덕
Priority to KR10-2000-0031920A priority Critical patent/KR100391009B1/en
Publication of KR20010111341A publication Critical patent/KR20010111341A/en
Application granted granted Critical
Publication of KR100391009B1 publication Critical patent/KR100391009B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/903Nitrogenous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/906Phosphorus containing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

본 발명은 하수의 생물학적 처리 시스템에 관한 것으로 특히, 기존의 활성슬러지 공정이나 질소/인 제거 단일슬러지 공정에 추가로 설치하여 유기물, 질소 및 인의 제거율을 향상시키는 것을 목적으로 한다.The present invention relates to a biological treatment system for sewage, and in particular, to be installed in an existing activated sludge process or nitrogen / phosphor removal single sludge process to improve the removal rate of organic matter, nitrogen and phosphorus.

무산소조/DPB조(1)와 호기조(2)와 혐기조(3)와 산발효조(4)와 저장조(5)와 최종 침전지(6)로 이루어지며, 기존 공정으로부터 폭기액이 무산소조/DPB조(1)로 공급되고; 일차 슬러지가 산발효조(4)로 공급되고; 최종 침전지(6)로부터 슬러지의 일부가 혐기조(3)로 공급되어, 폭기액은 무산소조/DPB조(1)와 호기조(2)를 거쳐 최종 침전지(6)을 통하여 배출되고; 일차 슬러지는 산발효조(4)와 저장조(5)를 거쳐 혐기조(3)에서 최종 침전지(6)에서 반송되는 슬러지와 합류된 후, 무산소조/DPB조(1)에서 다시 폭기액과 합류되어 무산소조/DPB조(1)와 호기조(2)를 거쳐 최종 침전지(6)을 통하여 배출되도록 한 시스템.Anaerobic tank / DPB tank (1), aerobic tank (2), anaerobic tank (3), acid fermentation tank (4), storage tank (5) and final sedimentation basin (6). ); Primary sludge is fed to the acid fermentation tank 4; A part of the sludge is supplied from the final settling basin 6 to the anaerobic tank 3, and the aeration liquid is discharged through the final settling basin 6 through the anaerobic tank / DPB tank 1 and the aerobic tank 2; The primary sludge is combined with the sludge returned from the final settling basin (6) in the anaerobic tank (3) via the acid fermentation tank (4) and the storage tank (5), and then again with the aeration liquid in the anaerobic tank / DPB tank (1). A system for discharging through the final settling basin (6) via a DPB tank (1) and an aerobic tank (2).

Description

기존공정의 처리수로부터 질소와 인을 추가로 제거하기 위한 시스템{System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater}System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater}

본 발명은 하수의 생물학적 처리 시스템에 관한 것으로 특히, 기존의 활성슬러지 공정이나 질소/인 제거 단일슬러지 공정에 추가로 설치하여 유기물, 질소 및 인의 제거율을 향상시키는 시스템에 관한 것이다.The present invention relates to a biological treatment system for sewage, and more particularly, to a system for improving the removal rate of organic matter, nitrogen and phosphorus by being installed in addition to an existing activated sludge process or nitrogen / phosphorus removal single sludge process.

현재까지 개발된 생물학적 질소/인 동시제거 시스템은 내부반송을 특징으로 하는 전탈질(pre-denitrification) 공정과 외부에서 탄소원을 공급해주는 것을 특징으로 하는 후탈질(post-denitrification) 공정으로 대별된다.Biological nitrogen / phosphorus simultaneous removal systems developed to date are roughly classified into a pre-denitrification process characterized by internal transport and a post-denitrification process characterized by supplying carbon sources from the outside.

전탈질 공정에는 변형된 바덴포 5단공정, VIP 공정, UCT 공정, A2/O 공정 등이 있는데 유입 유량의 2∼5배 정도의 양을 내부 반송해야 하므로 반응조의 실체류시간이 감소되어 반응조의 용적이 커야 하고 대용량의 펌프시설 등이 소요되는 등 시설비와 운영비가 증가되는 단점이 있다. 또한, 인 제거율도 낮은데 이는 혐기성 조건을 유지하기가 어렵고, 생물학적 인방출이 원활하게 일어나게 하기 위해서는 생물학적으로 분해되기 쉬운 유기물이 존재해야 하는데 내부 반송율을 증가시키면 실체류시간이 짧아지고 유입수 내의 유기물이 희석되어 생물학적 인방출이 어렵게 되기 때문이다. 무엇보다도, C/N비가 낮은 우리나라 하수의 특성상 하수 내에 포함된 유기물 만으로는 만족스러운 수준으로 질소와 인을 제거하기 어렵다는 단점이 있다.The denitrification process includes the modified Badenpo 5-stage process, VIP process, UCT process, and A 2 / O process, and the actual residence time of the reaction tank is reduced because the internal return of about 2 to 5 times the inflow flow rate is reduced. It has the disadvantage of increasing the facility cost and operating cost, such as the large volume and the large-capacity pump facility. In addition, the phosphorus removal rate is low, which makes it difficult to maintain anaerobic conditions, and in order for biological phosphorus release to occur smoothly, organic matters that are easily biodegradable should be present. This is because biological phosphorus release becomes difficult. Above all, due to the characteristics of Korean sewage with low C / N ratio, it is difficult to remove nitrogen and phosphorus to a satisfactory level only with organic matter contained in sewage.

반면에, 후탈질 공정은 질소 및 인 제거율이 높다는 장점이 있으나 유입수 내의 유기물을 탈질과정의 탄소원으로 이용할 수 없어 오로지 외부 탄소원에 의존해야 하므로 운전비가 많이 드는 단점이 있다.On the other hand, the post-denitrification process has the advantage of high nitrogen and phosphorus removal rates, but the organic material in the influent cannot be used as a carbon source for the denitrification process, so it has to be dependent solely on an external carbon source, resulting in a high operating cost.

후탈질 공정은 외부 탄소원의 종류에 따라 그 평가가 달라지는데 메탄올이나 그와 유사한 화합물을 외부 탄소원으로 사용할 경우에는 운전의 안정성이 뛰어나고 질소 제거율도 높으며 공정도 간단하다. 반면에 내부 탄소원을 거의 이용하지 않으므로 운전비용이 많이 든다.The post-denitrification process varies depending on the type of external carbon source. When methanol or a similar compound is used as the external carbon source, the operation is excellent in stability, high nitrogen removal rate and simple process. On the other hand, it uses very little internal carbon source, so it is expensive to operate.

음식물 쓰레기 등을 산발효시켜 외부 탄소원으로 사용하는 경우에는 산발효를 위한 추가적인 공정이 필요하여 공정이 복잡하고 운전이 까다롭다. 또한, 산발효액을 과량으로 투입할 경우에는 산발효액 내에 포함되어 있는 암모니아로 인해 질소 제거율을 감소될 우려가 있다.When acid fermentation of food waste is used as an external carbon source, an additional process for acid fermentation is required, which makes the process complicated and difficult to operate. In addition, when the acid fermentation solution is added in an excessive amount, there is a concern that the nitrogen removal rate may be reduced due to the ammonia contained in the acid fermentation solution.

본 발명의 목적은 기존의 활성슬러지 공정이나 질소/인 제거 단일슬러지 공정에 추가로 설치함으로써 유기물, 질소 및 인의 제거율을 향상시키는 시스템을 제공하는 것이다.It is an object of the present invention to provide a system for improving the removal rate of organic matter, nitrogen and phosphorus by additionally installing it in an existing activated sludge process or nitrogen / phosphor removal single sludge process.

제1도는 본 발명에 따른 제1 실시예의 개략 공정도이다.1 is a schematic process diagram of a first embodiment according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1:무산소조/DPB조 2:호기조1: anaerobic tank / DPB group 2: angi group

3:혐기조 4:산발효조3: anaerobic tank 4: acid fermentation tank

상기 목적을 달성하기 위한 본 발명의 시스템은 무산소조/DPB조(1)와 호기조(2)와 혐기조(3)와 산발효조(4)와 저장조(5)와 최종 침전지(6)로 이루어지며 기존 공정으로부터 폭기액이 무산소조/DPB조(1)로 공급되고, 일차 슬러지가 산발효조(4)로 공급되고, 최종 침전지(6)로부터 슬러지의 일부가 혐기조(3)로 공급되어; 폭기액은 무산소조/DPB조(1)에서 혐기조(3)로부터 유입되는 산발효액과 합류하여 질소가 제거된 후 호기조(2)를 거쳐 최종 침전지(6)을 통하여 배출되고, 일차 슬러지는 산발효조(4)와 저장조(5)를 거쳐 혐기조(3)에서 최종 침전지(6)에서 반송되는 슬러지와 합류하여 산발효가 일어나고 인 방출이 이루어진 후 무산소조/DPB조(1)에서 다시 폭기액과 합류되어 무산소조/DPB조(1)와 호기조(2)를 거쳐 최종 침전지(6)를 통하여 배출되는 것을 특징으로 한다.The system of the present invention for achieving the above object consists of an anaerobic tank / DPB tank (1) and an aerobic tank (2) and an anaerobic tank (3), an acid fermentation tank (4), a storage tank (5) and a final settling basin (6). From the aeration liquid is supplied to the anaerobic tank / DPB tank 1, the primary sludge is supplied to the acid fermentation tank 4, and a part of the sludge is supplied from the final settling basin 6 to the anaerobic tank 3; The aeration liquid is combined with an acid fermentation solution flowing from the anaerobic tank / DPB tank (1) from the anaerobic tank (3) to remove nitrogen and then discharged through the aerobic tank (2) through the final settling basin (6), and the primary sludge is an acid fermentation tank ( 4) and through the storage tank (5) to join the sludge conveyed from the final settling basin (6) in the anaerobic tank (3), acid fermentation occurs, and after phosphorus release has been achieved in the anaerobic tank / DPB tank (1) again joined with aeration liquid It is characterized in that it is discharged through the final sedimentation basin (6) via / DPB tank (1) and aerobic tank (2).

본 발명의 구성을 기존 공정으로부터 공급되는 폭기액과 일차 슬러지의 흐름을 따라가며 도 1을 사용하여 상세히 설명하면 다음과 같다.The configuration of the present invention will be described in detail with reference to FIG. 1 while following the flow of aeration liquid and primary sludge supplied from an existing process.

기존 공정으로부터 공급되는 질산성 질소 및 아질산성 질소를 함유하는 폭기액(질산화수)은 무산소조/DPB조(1)로 유입되는데 무산소조/DPB조(1)에서 혐기조(3)로부터 유입되는 산발효액과 합류하여 산발효액에 함유된 유기산을 이용하여 질소가 제거된다. 질소가 제거된 무산소조/DPB조(1)의 유출수는 호기조(2)로 유입되어 폭기에 의하여 용존산소(DO)가 2㎎/ℓ이상으로 증가되어 슬러지 침강성이 개선된 후, 최종 침전지(6)에서 고액분리되어 배출된다.The aeration liquid (nitric oxide) containing nitrate nitrogen and nitrite nitrogen supplied from the existing process flows into the anaerobic tank / DPB tank (1), and the acid fermentation solution from the anaerobic tank (3) and the anaerobic tank / DPB tank (1) The nitrogen is removed using the organic acid contained in the acid fermentation solution. The effluent from the anoxic tank / DPB tank (1) from which nitrogen was removed flows into the aerobic tank (2) and the dissolved oxygen (DO) is increased to 2 mg / l or more due to aeration to improve sludge sedimentation, and then the final settling basin (6). Solids are separated and discharged.

한편, 기존 공정으로부터 공급되는 일차 슬러지는 산발효조(4)에서 산발효되고 고액분리된 후, 저장조(5)에 저장되었다가 혐기조(3)로 유입된다. 혐기조로 유입되는 유기산을 함유하는 산발효액은 최종 침전지(6)로부터 반송되는 슬러지와 합류하여 혐기조(3)에서 인방출이 이루어진 후, 무산소조/DPB조(1)로 유입되어 상기 폭기액과 합류된 후, DPB(denitrifying phosphorus removal bacteria)에 의해 인의 섭취가 이루어지며 호기조(2)로 유입된다. 호기조로 유입된 후, 호기조에서 추가적으로 인의 섭취가 이루어지는데 일반적으로, 인제거는 인제거 미생물들에 의해 혐기성 조건에서 PHB(poly-β-hydroxy buterate)를 축적하면서 인이 방출되고 호기성 조건에서는 인이 섭취되는 과정을 반복하면서 인이 제거된다. 그러나, DPB는 무산소조건에서도 인을 섭취하는데 호기성조건에서의 인의 섭취가 산소를 전자수용체로 이용하는데 반하여 무산소조건에서는 질산성질소나 아질산성질소를 전자수용체로 이용하여 탈질과 탈인이 동시에 수행되기 때문이다.On the other hand, the primary sludge supplied from the existing process is acid fermented and solid-liquid separated in the acid fermentation tank (4), and then stored in the storage tank (5) is introduced into the anaerobic tank (3). The acid fermentation broth containing the organic acid flowing into the anaerobic tank is combined with the sludge returned from the final settling basin (6), and the phosphorus is discharged from the anaerobic tank (3), and then introduced into the anaerobic tank / DPB tank (1) and joined with the aeration liquid. Then, phosphorous intake is made by denitrifying phosphorus removal bacteria (DPB) and flows into the aerobic tank (2). After entering the aerobic tank, the phosphorus is further ingested in the aerobic tank. In general, phosphorus removal is released by phosphorus-removing microorganisms, accumulating phosphorus under anaerobic conditions, and phosphorus ingested under aerobic conditions. The phosphorus is removed as the process is repeated. However, DPB ingests phosphorus even under anoxic conditions because phosphorus intake in aerobic conditions uses oxygen as an electron acceptor, whereas denitrification and dephosphorylation are performed simultaneously using nitrate or nitrite nitrogen as an electron acceptor under anoxic conditions. .

이어서, 본 발명을 구성하는 반응조의 역할을 보다 상세히 설명하면 다음과 같다.Next, the role of the reactor constituting the present invention will be described in more detail.

무산소조/DPB조(1)에서는 기존 공정으로부터 폭기액(질산화수)과 혐기조(3)를 거쳐 유입되는 산발효액이 합류하여 탈질이 일어난다. 산발효액에 함유된 유기산을 전자공여체로 사용하여 질산성 질소와 아질산성 질소가 제거되는 것이다. 또한, 혐기조(3)에서 PHB를 축적한 DPB에 의하여 인의 섭취가 일어난다. 이 때는 폭기액에 함유된 질산성 질소와 아질산성 질소를 전자수용체로 이용한다.In the anoxic tank / DPB tank (1), denitrification occurs by combining the aeration liquid (nitric oxide water) and the acid fermentation liquid flowing through the anaerobic tank (3) from the existing process. Nitrate nitrogen and nitrite nitrogen are removed using the organic acid contained in the acid fermentation solution as an electron donor. In addition, intake of phosphorus occurs by DPB in which PHB is accumulated in the anaerobic tank 3. In this case, nitrate nitrogen and nitrite nitrogen contained in the aeration liquid are used as the electron acceptor.

호기조(2)에서는 DO가 2㎎/ℓ이상으로 증가되어 이어지는 최종 침전지(6)에서의 슬러지 침강성이 개선된다. 또한, 산소를 전자수용체로 이용하는 인의 섭취가 일어난다. DO는 통상적인 폭기에 의하여 높인다.In the aerobic tank 2, the DO is increased to 2 mg / l or more, thereby improving sludge settling in the final settling basin 6. In addition, intake of phosphorus using oxygen as the electron acceptor occurs. DO is raised by conventional aeration.

혐기조(3)에서는 최종 침전지(6)에서 반송되는 이차 슬러지와 산발효조(4)에서 유입되는 산발효액이 합류한다. 여기에서 반송 슬러지에 함유된 인제거 미생물에 의한 PHB의 축적 및 인의 방출이 일어나는데 이 때 구조가 간단하고 분해가 쉬운 유기산을 이용하는 것이 폐수 내의 유기물을 이용하는 것보다 훨씬 더 효율적이다. 이러한 이유로 산발효액을 인방출조인 혐기조(3)로 투입하는 것이며 본 발명의 특징적인 차이점이다.In the anaerobic tank 3, the secondary sludge returned from the final sedimentation basin 6 and the acid fermentation liquor flowing from the acid fermentation tank 4 join. Here, PHB accumulation and phosphorus release by the phosphorus-removing microorganisms contained in the conveying sludge occur, and using an organic acid having a simple structure and easy decomposition is much more efficient than using organic matter in waste water. For this reason, the acid fermentation solution is introduced into the anaerobic tank 3, which is a phosphorus release tank, which is a characteristic difference of the present invention.

산발효조(4)에서는 기존 공정에서 유입된 일차 슬러지가 산발효된다. 주로 아세트산, 부틸산, 프로피온산 등이 생성되는데 이러한 유기산들은 생물학적으로 분해가 빠르고 보다 쉽게 인 및 질소제거 미생물이 이용될 수 있다. 체류시간은 1∼2일 정도로 하며 고액분리하여 상징액은 저장조(5)에 저장하였다가 혐기조(3)로 공급한다. 산발효 혼합액은 탈수 장치나 마이크로 시브(micro sieve)를 사용하여 분리하면 효율적이다. 소량의 응집제를 투입하면 고액분리능이 향상된다.In the acid fermentation tank (4), the primary sludge introduced in the existing process is acid fermented. Mainly acetic acid, butyric acid, propionic acid, etc. are produced. These organic acids are biologically decomposed quickly and more easily, and phosphorus and nitrogen removal microorganisms can be used. The residence time is about 1 to 2 days and the solid solution is separated and the supernatant is stored in the storage tank (5) and supplied to the anaerobic tank (3). The acid fermentation mixed liquor can be efficiently separated using a dehydration device or a micro sieve. Adding a small amount of flocculant improves solid-liquid separation.

최종 침전지(6)에서는 호기조(2)로부터 유입되는 혼합액을 고액분리하여 그 상징액을 최종적으로 방류한다. 침강된 슬러지는 혐기조(3)와 기존공정의 전단으로반송한다.In the final sedimentation basin 6, the mixed liquor flowing from the aerobic tank 2 is separated into solid-liquid, and the supernatant is finally discharged. The settled sludge is returned to the anaerobic tank (3) and the shear of the existing process.

본 발명의 구성은 다음의 실시예로부터 더욱 명확해질 것이다.The configuration of the present invention will become more apparent from the following examples.

<실시예><Example>

(1) 반응 시스템(1) reaction system

용적이 각각 무산소조/DPB조(1)=8ℓ, 호기조(2)=4ℓ, 혐기조(3)=2ℓ, 산발효조(4)=2ℓ인 시스템을 구성하여 기존 공정(A2/O 공정)에 덧붙여 5회에 걸쳐 실험하였다.In addition to the existing process (A 2 / O process), a system consisting of anoxic tank / DPB tank (1) = 8 l, aerobic tank (2) = 4 l, anaerobic tank (3) = 2 l, and acid fermentation tank (4) = 2 l respectively Five experiments were performed.

A2/O 공정의 폭기액은 시간당 4ℓ씩 무산소조/DPB조로 공급하고, 일차 슬러지는 하수처리장에서 별도로 채취하여 시간당 40㎖씩(폭기액의 1%) 산발효조로 공급하였다. 무산소조/DPB조와 혐기조와 산발효조에는 교반장치를 설치하였으며 최종 침전지의 슬러지는 기존 공정의 호기조로 50% 반송하고, 혐기조로 50% 반송하였다.The aeration liquid of the A 2 / O process was fed to the anaerobic tank / DPB tank at 4 L per hour, and the primary sludge was collected separately from the sewage treatment plant and fed to the acid fermentation tank at 40 ml per hour (1% of the aeration solution). In the anoxic tank / DPB tank, anaerobic tank and acid fermentation tank, agitator was installed. The sludge of the final sedimentation basin was returned 50% to the aerobic tank of the existing process and 50% to the anaerobic tank.

(2) 폭기액 및 일차 슬러지 시료(2) aeration liquid and primary sludge sample

폭기액은 서울시 강서구 소재 가양환경사업소의 유입하수를 A2/O 공정으로 처리하여 투입하였고, 일차 슬러지는 경기도 성남시 소재 성남환경사업소에서 채취하여 투입하였다.The amount of aeration was treated by inflow of sewage from Gayang Environmental Office in Gangseo-gu, Seoul by A 2 / O process, and the first sludge was collected from Seongnam Environmental Office in Seongnam, Gyeonggi-do.

폭기액은 [표 1]에, 일차 슬러지는 [표 2]에 각각 그 성상을 기재하였다.The aeration liquid is described in [Table 1] and the primary sludge in [Table 2], respectively.

항 목Item 폭기액Aeration pHpH 6.4∼7.26.4 to 7.2 DO(mg/L)DO (mg / L) 1.8∼2.51.8 to 2.5 Alkalinity(mgCaCO3/L)Alkalinity (mgCaCO 3 / L) 60∼11060 to 110 MLSS(mg/L)MLSS (mg / L) 2,500∼3,4002,500 ~ 3,400 SCODCr(mg/L)SCOD Cr (mg / L) 12∼2812 to 28 SBOD5(mg/L)SBOD 5 (mg / L) 8∼168 to 16 Ammonia(mgN/L)Ammonia (mgN / L) 2∼42 to 4 Nitrite+Nitrate(mgN/L)Nitrite + Nitrate (mgN / L) 6∼86 to 8 S-P(mg/L)S-P (mg / L) 1.1∼2.51.1 to 2.5

항 목Item 일차 슬러지Primary sludge pHpH 5.3∼6.25.3 to 6.2 ORP(mV)ORP (mV) -233∼-38-233 to -38 Alkalinity(mgCaCO3/L)Alkalinity (mgCaCO 3 / L) 425∼1,570425-1,570 TS(mg/L)TS (mg / L) 16,000∼39,00016,000-39,000 VS(mg/L)VS (mg / L) 11,650∼21,45011,650 ~ 21,450 TSS(mg/L)TSS (mg / L) 15,900∼34,80015,900-34,800 VSS(mg/L)VSS (mg / L) 11,400∼18,70011,400-18,700 TCODCr(mg/L)TCOD Cr (mg / L) 22,300∼45,00022,300-45,000 SCODCr(mg/L)SCOD Cr (mg / L) 2,300∼4,3402,300-4,340

[표 2]의 일차 슬러지를 48 시간 동안 산발효시켜 분리한 액상(혐기조에 투입된 산발효액)의 성상은 다음의 [표 3]과 같다.The characteristics of the liquid phase (acid fermentation solution added to the anaerobic tank) separated by acid fermentation of the primary sludge of [Table 2] for 48 hours is shown in the following [Table 3].

항목Item 혐기조에 투입된 산발효액Acid Fermentation Solution in Anaerobic Tank TCODCr(mg/L)TCOD Cr (mg / L) 2,400∼2,8002,400-2,800 SCODCr(mg/L)SCOD Cr (mg / L) 2,100∼2,6002,100-2,600 VAVA 1,670∼17101,670-1710 TKNTKN 210∼230210 to 230 T-PT-P 25∼2825-28

본 발명의 시스템으로 [표 1]의 폭기액을 처리한 결과, 유출수의 성상은 [표 4]와 같았다. (총체류시간 = 3.0 시간)As a result of treating the aeration liquid of [Table 1] with the system of this invention, the characteristics of the outflow water were as [Table 4]. (Total stay time = 3.0 hours)

항목Item 처리수 성상Treated water property Alkalinity(mgCaCO3/L)Alkalinity (mgCaCO 3 / L) 118∼135118-135 TCODCr(mg/L)TCOD Cr (mg / L) 14∼2114-21 SCODCr(mg/L)SCOD Cr (mg / L) 11∼1511-15 SBOD5(mg/L)SBOD 5 (mg / L) 2∼42 to 4 TKN(mgN/L)TKN (mgN / L) 1∼31 to 3 Ammonia(mgN/L)Ammonia (mgN / L) 1∼21 to 2 Nitrite+Nitrate(mgN/L)Nitrite + Nitrate (mgN / L) 2∼32-3 T-P(mg/L)T-P (mg / L) 0.5∼0.80.5 to 0.8

[표 1]의 폭기액과 [표 4]의 유출수의 질소와 인 성분을 비교하면 암모니아성 질소와 질산성 질소는 약 1/2로 감소되었고, 인은 1/2∼1/3으로 감소되었음을 알 수 있다. 이는 종래의 탈질탈인 공정의 유출수를 본 발명의 시스템으로 3시간 동안 추가로 처리하면 질소와 인을 50% 이상 더 제거할 수 있음을 의미한다.Comparing the nitrogen and phosphorus components of the aeration liquid in [Table 1] and the effluent in [Table 4], the ammonia nitrogen and nitrate nitrogen were reduced to about 1/2, and the phosphorus was reduced to 1/2 to 1/3. Able to know. This means that if the effluent of the conventional denitrification process is further treated with the system of the present invention for 3 hours, nitrogen and phosphorus can be further removed by 50% or more.

SCODCr도 12∼28㎎/ℓ에서 11∼15㎎/ℓ로 감소되어 유기물도 상당량이 제거되었음을 알 수 있다. 이는 탈질탈인 과정에서 산발효조에서 공급되는 유기산 외에 폭기액 내에 함유된 유기물이 일부 사용되는 것으로 해석된다.SCOD Cr was also reduced from 12 to 28 mg / l to 11 to 15 mg / l it can be seen that a considerable amount of organic matter was removed. It is interpreted that some organic matter contained in the aeration liquid is used in addition to the organic acid supplied from the acid fermentation tank in the denitrification process.

기존 설비에 본 발명의 시스템을 추가적으로 설치하거나 기존의 공정을 구조변경하는 것만으로 전탈질 공정의 미흡한 탈질탈인 효율을 획기적으로 개선할 수 있다.By simply installing the system of the present invention in an existing facility or restructuring the existing process, the insufficient denitrification efficiency of the total denitrification process can be drastically improved.

또한, 일차 슬러지를 산발효시켜 탄소원으로 유기산을 공급함으로써 외부 탄소원을 별도로 공급해야 하는 후탈질 공정의 단점을 해결할 수 있다.In addition, by acid-fermenting the primary sludge to supply the organic acid to the carbon source can solve the disadvantage of the post-denitrification process that must be supplied separately from the external carbon source.

Claims (2)

무산소조/DPB조(1)와 호기조(2)와 혐기조(3)와 산발효조(4)와 저장조(5)와 최종 침전지(6)로 이루어지며 기존 공정으로부터 폭기액이 무산소조/DPB조(1)로 공급되고, 일차 슬러지가 산발효조(4)로 공급되고, 최종 침전지(6)로부터 슬러지의 일부가 혐기조(3)로 공급되어; 폭기액은 무산소조/DPB조(1)에서 혐기조(3)로부터 유입되는 산발효액과 합류하여 질소가 제거된 후 호기조(2)를 거쳐 최종 침전지(6)을 통하여 배출되고, 일차 슬러지는 산발효조(4)와 저장조(5)를 거쳐 혐기조(3)에서 최종침전지(6)에서 반송되는 슬러지와 합류하여 산발효가 일어나고 인 방출이 이루어진 후 무산소조/DPB조(1)에서 다시 폭기액과 합류되어 무산소조/DPB조(1)와 호기조(2)를 거쳐 최종 침전지(6)를 통하여 배출되는 것을 특징으로 하는 질소/인 추가제거 시스템.Anaerobic tank / DPB tank (1), aerobic tank (2), anaerobic tank (3), acid fermentation tank (4), storage tank (5) and final settling basin (6). Primary sludge is supplied to the acid fermentation tank 4, and a portion of the sludge from the final settling basin 6 is supplied to the anaerobic tank 3; The aeration liquid is combined with an acid fermentation solution flowing from the anaerobic tank / DPB tank (1) from the anaerobic tank (3) to remove nitrogen and then discharged through the aerobic tank (2) through the final settling basin (6), and the primary sludge is an acid fermentation tank ( 4) and through the storage tank (5) and the sludge conveyed from the final settler (6) in the anaerobic tank (3) to acid fermentation and phosphorus release, and then to the aeration liquid in the anoxic tank / DPB tank (1) again to the aerobic tank Nitrogen / phosphorus additional removal system, characterized in that it is discharged through the final sedimentation basin (6) via / DPB tank (1) and aerobic tank (2). 제1항에 있어서, 산발효조(4)에 응집제 투여장치를 부가하여 산발효조의 고액분리능을 향상시키고 인제거를 촉진하는 것을 특징으로 하는 질소/인 추가제거 시스템.The nitrogen / phosphorus further removal system according to claim 1, wherein a coagulant dispensing device is added to the acid fermentation tank to improve the solid-liquid separation performance of the acid fermentation tank and promote phosphorus removal.
KR10-2000-0031920A 2000-06-10 2000-06-10 System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater KR100391009B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0031920A KR100391009B1 (en) 2000-06-10 2000-06-10 System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0031920A KR100391009B1 (en) 2000-06-10 2000-06-10 System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater

Publications (2)

Publication Number Publication Date
KR20010111341A KR20010111341A (en) 2001-12-17
KR100391009B1 true KR100391009B1 (en) 2003-07-12

Family

ID=45931137

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0031920A KR100391009B1 (en) 2000-06-10 2000-06-10 System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater

Country Status (1)

Country Link
KR (1) KR100391009B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177670B1 (en) 2012-01-02 2012-08-27 현대건설주식회사 Apparatus and method for removing total phosphorus in wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121754B (en) * 2011-11-18 2016-12-07 上海市政工程设计研究总院(集团)有限公司 A kind of denitrification dephosphorization technique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980041507A (en) * 1996-11-30 1998-08-17 안덕기 Removal of Biological Nitrogen and Phosphorus in Sewage and Wastewater
KR20000026051A (en) * 1998-10-17 2000-05-06 한상배 Tertiary treatment of wastewater using digested sludge
KR20010094092A (en) * 2000-04-04 2001-10-31 이병희 Advanced wastewater treatment system
KR20010100301A (en) * 2000-04-14 2001-11-14 허준무 System for Removal of Nitrogen and Phosphorus from Sewage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980041507A (en) * 1996-11-30 1998-08-17 안덕기 Removal of Biological Nitrogen and Phosphorus in Sewage and Wastewater
KR20000026051A (en) * 1998-10-17 2000-05-06 한상배 Tertiary treatment of wastewater using digested sludge
KR100312820B1 (en) * 1998-10-17 2002-02-19 한상배 Advanced Waste Water Treatmant Methods with using Fermented Primary Sludge
KR20010094092A (en) * 2000-04-04 2001-10-31 이병희 Advanced wastewater treatment system
KR20010100301A (en) * 2000-04-14 2001-11-14 허준무 System for Removal of Nitrogen and Phosphorus from Sewage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177670B1 (en) 2012-01-02 2012-08-27 현대건설주식회사 Apparatus and method for removing total phosphorus in wastewater

Also Published As

Publication number Publication date
KR20010111341A (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US20200325051A1 (en) Wastewater treatment system using anaerobic ammonium oxidation in mainstream
AU731280B2 (en) Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
KR100315874B1 (en) Method and Apparatus of Biological Nitrogen Removal from the High Concentration Industrial Wastewater
KR100392747B1 (en) System for Removal of Nitrogen and Phosphorus from Sewage
KR100391009B1 (en) System for Additional Removal of Nitrogen and Phosphorus from Treated Wastewater
KR20010047158A (en) Wastewater treatment process using return sludge reaction tank
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100325005B1 (en) Method of denitrification and denitrification for the purification of wastewater
KR100300820B1 (en) Advanced Treatment Method for Sewage or Industrial Waste Water
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
KR100415437B1 (en) Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100330730B1 (en) Advanced Waste Water Treatment Method
KR100423801B1 (en) Advanced waste-water treatment system
KR100463480B1 (en) Method of Removing Nitrogen and Phosphorus in Industrial and Domestic Wastewater
KR100311342B1 (en) Wastewater treatment apparatus for removing nitrogen and phosphorus and method therefor
Acharya et al. A novel two-stage MBR denitrification process for the treatment of high strength pet food wastewater
AU646807B2 (en) Wastewater treatment
KR101877208B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR100244376B1 (en) Method for removing nitrogen and phosphorous from drainage/wastewater having a low cod/tkn ratio and drainage/wastewater treating system for performing the same
KR200325010Y1 (en) Retrofitting of conventional activated sludge process and the supplementation of external carbon source for nutrients removal from domestic and industrial wastewater
KR100419030B1 (en) Advanced sludge reaeration process without first clarifier and internal recycling for nutrient removal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120706

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee