JP2000117284A - Upflow type anaerobic treatment equipment and treatment using the same - Google Patents

Upflow type anaerobic treatment equipment and treatment using the same

Info

Publication number
JP2000117284A
JP2000117284A JP28901198A JP28901198A JP2000117284A JP 2000117284 A JP2000117284 A JP 2000117284A JP 28901198 A JP28901198 A JP 28901198A JP 28901198 A JP28901198 A JP 28901198A JP 2000117284 A JP2000117284 A JP 2000117284A
Authority
JP
Japan
Prior art keywords
gas
phase separation
sludge
treated water
separation member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28901198A
Other languages
Japanese (ja)
Other versions
JP4312858B2 (en
Inventor
Taira Hanaoka
花岡平
Masaki Tojo
東條正樹
Shigeo Nakahata
中畑繁夫
Shinichiro Kyo
京信一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP28901198A priority Critical patent/JP4312858B2/en
Publication of JP2000117284A publication Critical patent/JP2000117284A/en
Application granted granted Critical
Publication of JP4312858B2 publication Critical patent/JP4312858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To further simplify the equipment structure and to enable more efficient separation of formed gas, more efficient settling separation of sludge particles and highly efficient treatment of organic wastewater by placing a lower stage three-phase separation member and an upper stage three-phase separation member which is positioned above the lower stage three phase separation member and has almost the same structure as that of the lower stage three-phase separation member, and using the space between both the two separation members as a flow rectification zone, in the equipment. SOLUTION: This equipment is provided with: an anaerobic treatment vessel 1; a water-to-be- treated supply means 8 which is placed in the lower part of the treatment vessel 1 and connected to a water-to-be-treated supply flow passage 11; a treated water overflow member 15 which is placed in the upper part of the treatment vessel 1 and used for discharging treated water to the preceding stage by allowing the treated water to overflow; a treated water pit 17 placed outside the vessel 1; two stage three-phase separation members 2 and 3 each of which is used for separating a treatment mixture into three phases, i.e., a gas, a liquid and sludge and placed in the horizontal direction in the intermediate part of the treatment vessel 1; a circulation flow passage 14a which is used for circulating a liquid through the water-to-be-treated supply means 8 and connected to the treatment vessel 1 at a position midway between the three-phase separation members 2 and 3; a sludge bed A which is formed below the lower stage three-phase separation member 2 and in which sludge particles are fluidized; and a flow rectification zone which is formed between the lower and upper stage three-phase separation members 2 and 3 and is effective in promoting the settlement of sludge particles entrained by the upflow stream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水を、嫌
気性処理槽内に形成された微生物の自己造粒汚泥床(以
下単に汚泥床という。)を上向流通させて、排水中の有
機物を微生物の生物学的作用で分解処理する上向流嫌気
性処理装置(以下UASB装置という。)及びその処理
方法に関する。
[0001] The present invention relates to an organic effluent, wherein an organic effluent is allowed to flow upward through a self-granulated sludge bed (hereinafter simply referred to as a sludge bed) of microorganisms formed in an anaerobic treatment tank. The present invention relates to an upward anaerobic treatment device (hereinafter referred to as a UASB device) for decomposing organic substances by the biological action of microorganisms, and a method for treating the same.

【0002】[0002]

【従来の技術】従来、食品加工排水、醗酵工場排水、化
学工場排水及び紙パルプ工場排水などの有機性産業排水
や下水を処理する装置として、下部に被処理水供給手
段、上部に処理水及びガス排出手段を設け、内部の下方
にメタン菌を主体として微生物が粒子化した汚泥(以下
汚泥粒子という。)でブランケット状態の汚泥床を形成
し、汚泥床の下部に被処理水供給手段から有機性排水を
上向流通させることにより、排水中の有機物を嫌気性で
生物学的に分解し、発生したメタンガスなどの生成ガス
と処理水を上部で分離して処理水は処理水排出手段から
排出し、また、生成ガスはガス排出手段から排出するU
ASB装置が用いられている。
2. Description of the Related Art Conventionally, as an apparatus for treating organic industrial wastewater or sewage such as food processing wastewater, fermentation factory wastewater, chemical factory wastewater, and pulp and paper factory wastewater, means for supplying treated water at the lower part, treated water and water at the upper part. A gas discharge means is provided, and a sludge bed in a blanket state is formed below the inside of the sludge bed by sludge (hereinafter referred to as sludge particles) mainly composed of methane bacteria and microorganisms are formed. The organic wastewater is anaerobically and biologically decomposed by upwardly circulating wastewater, and the generated gas such as methane gas is separated from the treated water at the top, and the treated water is discharged from the treated water discharge means. And the generated gas is discharged from the gas discharging means.
An ASB device is used.

【0003】前記UASB装置は、排水中の有機物を生
物学的に分解する嫌気性微生物が、微生物自体又は微細
粒子を核として粒子化するため、微生物が高密度で保持
でき、高濃度の有機性排水を効率的に処理することがで
きることにより、装置の設置面積の縮小化が図れ、ま
た、生成するメタンガスを燃料や化学製品製造用原料な
どとして利用できる利点があり、多数設置されている。
In the UASB device, anaerobic microorganisms that biologically decompose organic substances in wastewater are converted into particles using the microorganisms themselves or fine particles as nuclei. Since the wastewater can be efficiently treated, the installation area of the apparatus can be reduced, and the methane gas generated can be used as a fuel or a raw material for producing a chemical product.

【0004】しかし、従来の一般的なUASB装置で
は、生成したメタンガスによって処理槽内の液に乱流が
生じるため、被処理水の上向流速を速めると汚泥粒子が
処理水に伴われて処理水排出手段から流出する恐れがあ
る。また、被処理水の上向流速を速めると、局部的に汚
泥負荷が過負荷状態になり、汚泥粒子表面に酸生成菌が
密集増殖し、汚泥粒子の構造がガスの透過しにくい構造
となり、汚泥粒子の比重が軽くなって流出しやすくな
る。従って従来は、被処理水の上向流速を遅くして汚泥
粒子を膨張流動させず、ブランケット状態に維持して処
理をしている。
However, in the conventional general UASB apparatus, turbulent flow occurs in the liquid in the processing tank due to the generated methane gas. Therefore, when the upward flow velocity of the water to be treated is increased, the sludge particles are treated together with the treated water. There is a risk of spillage from water discharge means. In addition, when the upward flow velocity of the water to be treated is increased, the sludge load is locally overloaded, acid-producing bacteria grow densely on the surface of the sludge particles, and the structure of the sludge particles becomes a structure that is difficult for gas to permeate. The specific gravity of the sludge particles becomes lighter and easier to flow out. Therefore, conventionally, sludge particles are not allowed to expand and flow by slowing the upward flow velocity of the water to be treated, and the sludge particles are treated while being maintained in a blanket state.

【0005】前記の通り従来のUASB装置は、上向流
速が遅く膨張流動展開していないため、被処理水と汚泥
粒子との接触効率が低く、また、被処理水に含まれる無
機性固形物が汚泥粒子に捕捉されやすく、汚泥の生物活
性を高く維持することができない。また、上向流速を速
くすると汚泥粒子が流出する恐れがあるためなどから、
高速、高負荷条件で処理効率を上げることが困難であっ
た。
As described above, the conventional UASB apparatus has a low upward flow velocity and does not expand and flow, so that the contact efficiency between the water to be treated and the sludge particles is low, and the inorganic solid matter contained in the water to be treated is low. Is easily captured by the sludge particles, and the biological activity of the sludge cannot be maintained high. Also, if the upward flow velocity is increased, sludge particles may flow out,
It has been difficult to increase the processing efficiency under high speed and high load conditions.

【0006】前記問題点に鑑みて、処理槽の高さを2〜
3倍に高くし、また、生成ガスや汚泥粒子の分離を効率
よく行うことで汚泥粒子の流出を抑え、被処理水の供給
量を多くすることができるため、有機物負荷を従来の2
〜3倍も高くできる改良された装置(以下高速UASB
装置という。)として、高さ方向に複数のガス回収フ−
ドを設けたガス分離部を上下2段に設け、回収ガスを液
の内部循環流発生用に使用した高速UASB装置が特開
昭61−71896号公報に記載されており、また、特
開昭61−204093号公報には、高さ方向の千鳥状
位置に3段のガス回収フ−ドによるガス分離部を設けた
高速UASB装置が記載されている。
[0006] In view of the above problems, the height of the processing tank is set to 2 to
It is possible to reduce the flow of sludge particles and to increase the supply amount of the water to be treated by increasing the efficiency by three times and efficiently separating generated gas and sludge particles.
Improved device that can be up to 3 times higher (hereinafter referred to as high speed UASB
It is called a device. ), A plurality of gas collection tubes in the height direction.
A high-speed UASB device in which gas separators provided with a gas separator are provided in two upper and lower stages and a recovered gas is used for generating an internal circulation flow of liquid is described in JP-A-61-71896. Japanese Patent Application Laid-Open No. 61-204093 discloses a high-speed UASB device in which a gas separation section having three stages of gas recovery hoods is provided at a staggered position in the height direction.

【0007】[0007]

【発明が解決しようとする課題】前記特開昭61−71
896号公報及び特開昭61−204093号公報に、
それぞれ記載された高速UASB装置の構成では、処理
槽内に多数のパイプやガス回収用フ−ドが配置されるた
め、装置が必要以上に複雑となり、また設備費も嵩む問
題がある。
SUMMARY OF THE INVENTION The above-mentioned JP-A-61-71 is disclosed.
No. 896 and JP-A-61-204093,
In the configuration of the high-speed UASB apparatus described above, since a large number of pipes and hoods for gas recovery are arranged in the processing tank, the apparatus becomes unnecessarily complicated and the equipment cost increases.

【0008】従って、本発明は、従来の高速UASB装
置の複雑な構成をより簡略化すると共に、生成ガスの分
離及び汚泥粒子の沈降分離をより効率よく行うことがで
き、有機性排水の高効率処理が可能となる高速UASB
装置及び処理方法を提供する目的で成されたものであ
る。
Therefore, the present invention can simplify the complicated structure of the conventional high-speed UASB device, and can more efficiently perform the separation of the produced gas and the sedimentation and separation of the sludge particles. High-speed UASB that enables processing
The purpose is to provide an apparatus and a processing method.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、請求項1に記載の発明においては、
下部に被処理水供給手段、上部に処理水排出手段及びガ
ス排出手段を具備し、内部の下方に自己造粒汚泥による
汚泥床を形成した嫌気性処理槽で有機性排水を上向流通
させて処理する上向流嫌気性処理装置において、前記処
理槽内の有効水深の少なくとも1/2よりも高い位置
に、上部にガス排出管を具備した複数のガス回収フ−ド
が水平方向に所定間隔で配置されたガスコレクタを、下
列ガスコレクタ及び下列ガスコレクタの上向流通流路で
ある開口部上方に一定の間隙を持ってガス回収フ−ドが
位置する上列ガスコレクタとの二列に構成したガス、液
及び汚泥を分離する下段三相分離部材を設け、下段三相
分離部材よりも高い位置に、下段三相分離部材と略同一
構成の上段三相分離部材とを設け、下段三相分離部材と
上段三相分離部材との間を整流ゾ−ンとしたことを特徴
とする上向流嫌気性処理装置である。
The gist of the present invention for achieving the above object is as follows.
An organic wastewater is circulated upward in an anaerobic treatment tank provided with a treated water supply means in the lower part, a treated water discharge means and a gas discharge means in the upper part, and a sludge bed formed by self-granulating sludge below the inside. In an upflow anaerobic treatment apparatus to be treated, a plurality of gas recovery hoods having a gas discharge pipe at an upper part thereof are provided at predetermined positions in a horizontal direction at a position higher than at least 1/2 of an effective water depth in the treatment tank. Are arranged in two rows with the lower row gas collector and the upper row gas collector where the gas recovery hood is located with a certain gap above the opening that is the upward flow channel of the lower row gas collector. A lower three-phase separating member for separating the gas, liquid and sludge is provided, and an upper three-phase separating member having substantially the same configuration as the lower three-phase separating member is provided at a position higher than the lower three-phase separating member. Phase separation member and upper three-phase separation member Rectifying zone between - a upflow anaerobic treatment apparatus which is characterized in that the emissions.

【0010】また、請求項2に記載の発明においては、
前記請求項1に記載の上向流嫌気性処理装置において、
下段三相分離部材及び上段三相分離部材の夫々の上下方
向投影面積が、前記処理槽の水平方向断面積と同じであ
ることを特徴とする上向流嫌気性処理装置である。
[0010] In the second aspect of the present invention,
The upflow anaerobic treatment device according to claim 1,
An upflow anaerobic treatment apparatus characterized in that each of the lower three-phase separation member and the upper three-phase separation member has the same vertical projected area as the horizontal sectional area of the processing tank.

【0011】また、請求項3に記載の発明においては、
前記請求項1又は請求項2に記載の上向流嫌気性処理装
置において、下列及び上列のガスコレクタにおける複数
のガス回収フ−ドで形成された上向流通流路である開口
部の開口総断面積が、夫々前記処理槽の水平方向断面積
の30%〜70%であることを特徴とする上向流嫌気性
処理装置である。
Further, in the invention according to claim 3,
The upward flow anaerobic treatment apparatus according to claim 1 or 2, wherein an opening of an opening which is an upward flow passage formed by a plurality of gas recovery hoods in a lower row and an upper row of gas collectors. An upflow anaerobic treatment apparatus, wherein a total sectional area is 30% to 70% of a horizontal sectional area of the treatment tank.

【0012】また、請求項4に記載の発明においては、
前記請求項1〜請求項3のいずれか1項に記載の上向流
嫌気性処理装置において、ガスコレクタにおける下列及
び上列ガスコレクタで形成された上向流通流路である開
口部の開口総断面積が、夫々前記処理槽の水平方向断面
積の30%〜70%であることを特徴とする上向流嫌気
性処理装置である。
Further, in the invention according to claim 4,
The upward flow anaerobic treatment apparatus according to any one of claims 1 to 3, wherein the total opening of the openings that are upward flow channels formed by the lower row and the upper row gas collectors in the gas collector. An upflow anaerobic treatment device, wherein a cross-sectional area is 30% to 70% of a horizontal cross-sectional area of each of the treatment tanks.

【0013】また、請求項5に記載の発明においては、
前記請求項1〜請求項4のいずれか1項に記載の上向流
嫌気性処理装置において、ガスコレクタにおける複数の
ガス回収フ−ドの上部に具備されたガス排出管が、前記
処理槽の外部に付設されたシ−ルポットに接続し、水封
されていることを特徴とする上向流嫌気性処理装置であ
る。
Further, in the invention according to claim 5,
The upflow anaerobic treatment apparatus according to any one of claims 1 to 4, wherein a gas discharge pipe provided above a plurality of gas recovery hoods in a gas collector is provided in the processing tank. An upflow anaerobic treatment device which is connected to a seal pot attached to the outside and is sealed with water.

【0014】また、請求項6に記載の発明においては、
前記請求項1〜請求項5のいずれか1項に記載の上向流
嫌気性処理装置において、下段三相分離部材と上段三相
分離部材間の整流ゾ−ンが、前記処理槽内の有効水深の
5〜30%、好ましくは、10〜20%の高さであるこ
とを特徴とする上向流嫌気性処理装置である。
Further, in the invention according to claim 6,
The upflow anaerobic treatment apparatus according to any one of claims 1 to 5, wherein a rectifying zone between the lower three-phase separation member and the upper three-phase separation member is effective in the processing tank. An upflow anaerobic treatment device characterized by a height of 5 to 30%, preferably 10 to 20% of the water depth.

【0015】また、請求項7に記載の発明においては、
被処理水を下部の被処理水供給手段から供給し、内部の
下方に形成された自己造粒汚泥の汚泥床を上向流通させ
て有機物を嫌気性で生物学的に処理し、下段三相分離部
材部での液上昇速度を60〜90m/hrとして上向流
通させ、ガス、液及び汚泥を分離してガスをガス回収フ
−ドで回収し、整流ゾ−ンで更に汚泥を沈降させ、ま
た、整流ゾ−ンから液を抜き出して被処理水供給手段に
循環し、上段三相分離部材部での液上昇速度を30m/
hr以下として上向流通させ、上部の処理水排出手段か
ら処理水を抜き出して排出すると共に、ガス排出手段か
らガスを回収することを特徴とする上向流嫌気性処理で
ある。
Further, in the invention according to claim 7,
The treated water is supplied from the treated water supply means at the bottom, and the sludge bed of self-granulated sludge formed at the bottom of the inside is upwardly circulated to biologically treat the organic matter anaerobically and the lower three phases. The liquid is circulated upward at a liquid rising speed of 60 to 90 m / hr at the separation member, gas, liquid and sludge are separated, the gas is recovered by a gas recovery hood, and the sludge is further settled by a rectifying zone. Also, the liquid is extracted from the rectifying zone and circulated to the treated water supply means, and the liquid ascending speed at the upper three-phase separation member is 30 m / m.
Upflow anaerobic treatment characterized by flowing upwards at a rate of hr or less, extracting and discharging treated water from an upper treated water discharging means, and collecting gas from a gas discharging means.

【0016】更に、請求項8に記載の発明においては、
被処理水を下部の被処理水供給手段から供給し、内部の
下方に形成された自己造粒汚泥の汚泥床を上向流通させ
て有機物を嫌気性で生物学的に処理し、下段三相分離部
材部での液上昇速度を30m/hr以下として上向流通
させ、ガス、液及び汚泥を分離してガスをガス回収フ−
ドで回収し、整流ゾ−ンで更に汚泥を沈降させ、上段三
相分離部材部での液上昇速度を30m/hr以下として
上向流通させ、上部の処理水排出手段から処理水を抜き
出し、一部を被処理水供給手段に循環し、残部を系外に
排出すると共に、ガス排出手段からガスを回収すること
を特徴とする上向流嫌気性処理である。
Further, in the invention according to claim 8,
The treated water is supplied from the treated water supply means at the bottom, and the sludge bed of self-granulated sludge formed at the bottom of the inside is upwardly circulated to biologically treat the organic matter anaerobically and the lower three phases. The liquid is circulated upward at a liquid rising speed of 30 m / hr or less at the separation member to separate gas, liquid, and sludge to recover the gas.
The sludge is further settled in a rectifying zone, and the liquid is circulated upward at a liquid rising speed of 30 m / hr or less at the upper three-phase separation member, and treated water is extracted from the treated water discharge means on the upper part. The upward anaerobic treatment is characterized in that a part of the anaerobic treatment is circulated to the treated water supply means, the remainder is discharged out of the system, and the gas is recovered from the gas discharge means.

【0017】前記の構成とすることにより、処理槽内に
被処理水を下部の被処理水供給手段から供給し、内部の
下方に形成された汚泥粒子の汚泥床を上向流通させて有
機物を嫌気性で生物学的に処理し、下段三相分離部材
部、整流ゾ−ン及び上段三相分離部材部で、ガス、液及
び汚泥を効率的に分離できるため、有機性排水の高効率
処理が可能である。
With the above structure, the water to be treated is supplied into the treatment tank from the treatment water supply means at the lower portion, and the sludge bed of the sludge particles formed below the inside is circulated upward to remove organic matter. Anaerobic and biologically treated, gas, liquid and sludge can be efficiently separated by the lower three-phase separation member, rectifying zone and upper three-phase separation member, so high efficiency treatment of organic wastewater Is possible.

【0018】また、ガス排出及び回収系統を処理槽の外
部に付設されたシ−ルポットに接続して水封されている
ため、処理槽内の構造が簡略化し、設備費も低廉とな
る。
Further, since the gas discharge and recovery system is connected to a seal pot attached to the outside of the processing tank and sealed with water, the structure in the processing tank is simplified and the equipment cost is reduced.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の一実施の形態の上向流嫌
気性処理装置の構成図、図2は本発明の他の実施の形態
の上向流嫌気性処理装置の構成図、図3は一実施の形態
の三層分離部材部の平面図、図4は他の実施の形態の三
層分離部材部の平面図、図5は本発明の一実施の形態の
上向流嫌気性処理装置の説明図である。なお、全図にお
いて相当する作用を有する部材については、同一の符番
を付した。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an upflow anaerobic treatment device according to one embodiment of the present invention, FIG. 2 is a configuration diagram of an upflow anaerobic treatment device according to another embodiment of the present invention, and FIG. FIG. 4 is a plan view of a three-layer separation member of another embodiment, and FIG. 5 is an explanatory view of an upflow anaerobic treatment device according to one embodiment of the present invention. FIG. In the drawings, members having the same functions are denoted by the same reference numerals.

【0020】1は密閉構造で円筒形状の嫌気性処理槽
(以下単に処理槽という。)であるが、矩形体形状の処
理槽であってもよい。処理槽の下部には、被処理水供給
流路11が接続した被処理水供給手段8が設けられ、上
部には、前段に処理水がオ−バ−フロ−で排出される処
理水オ−バ−フロ−部材15、処理水ピット17を具備
し、処理水排出流路12が接続した処理水排出手段9が
設けられ、また、バッファタンク18及びシ−ルポット
7を介して生成ガス排出流路13が接続し、図示しない
ガス吸引装置を具備したガス排出手段10が設けられて
いる。
Reference numeral 1 denotes a cylindrical anaerobic treatment tank having a closed structure (hereinafter simply referred to as a treatment tank), but may be a rectangular treatment tank. At the lower part of the treatment tank, there is provided treated water supply means 8 to which a treated water supply flow path 11 is connected, and at the upper part, a treated water outlet in which treated water is discharged in an upstream stage. A treated water discharge means 9 is provided, which includes a buffer member 15 and a treated water pit 17, and is connected to a treated water discharge flow path 12. Further, a generated gas discharge flow through a buffer tank 18 and a seal pot 7 is provided. The passage 13 is connected, and a gas discharging means 10 provided with a gas suction device (not shown) is provided.

【0021】前記処理槽1内の中間位置に、ガス、液及
び汚泥の三相に分離する二段の三相分離部材2及び3が
夫々水平方向に横設され、三相分離部材2及び3の中間
位置には、液を被処理水供給手段8に循環する循環流路
14aが接続されており、下段三相分離部材2の下方
に、汚泥粒子が流動化した汚泥床Aが形成され、下段三
相分離部材2と上段三相分離部材3との間は、上向流に
同伴された汚泥粒子の沈降を促進する整流ゾ−ンBが形
成されている。また、処理槽1の前記汚泥床A部には、
余剰汚泥粒子を抜き出す汚泥排出手段19が設けられて
いる。
At an intermediate position in the processing tank 1, two-stage three-phase separation members 2 and 3 for separating into three phases of gas, liquid and sludge are respectively provided horizontally in the horizontal direction. A circulation passage 14a for circulating the liquid to the water-to-be-treated supply means 8 is connected to an intermediate position of the sludge bed A, and a sludge bed A in which sludge particles are fluidized is formed below the lower three-phase separation member 2, A rectifying zone B is formed between the lower three-phase separating member 2 and the upper three-phase separating member 3 to promote the sedimentation of the sludge particles entrained in the upward flow. Further, in the sludge bed A of the treatment tank 1,
Sludge discharging means 19 for extracting excess sludge particles is provided.

【0022】なお、被処理水供給手段8は、被処理水を
処理槽1の水平断面全体を均一に上向流通させるのが好
ましいため、処理槽1の底面に多数の供給口を設けた格
子状部材を底面の略全面にわたって配置するの好まし
く、また、被処理水を処理槽1内の接線方向に供給する
部材であってもよいが、これらには限定されない。
The treatment water supply means 8 preferably distributes the treatment water uniformly upward in the entire horizontal cross section of the treatment tank 1. It is preferable to dispose the shaped member over substantially the entire bottom surface, and it may be a member that supplies the water to be treated in the tangential direction in the treatment tank 1, but is not limited thereto.

【0023】また、処理水オ−バ−フロ−部材15は、
処理水が流入する側面が、ノッチ、スリット状、格子
状、又は金網などで形成された部材であるが、処理水に
同伴されて浮上してきた微生物粒子が流出しない構造が
好ましい。更に、被処理水供給手段8に循環する循環水
として処理水排出手段9から排出される処理水を用いる
場合には、循環流路14aは、循環流路14bとなる。
The treated water overflow member 15 is
The side surface into which the treated water flows is a member formed of a notch, a slit shape, a lattice shape, a wire mesh, or the like, but a structure in which the microorganism particles floating with the treated water do not flow out is preferable. Further, when the treated water discharged from the treated water discharge means 9 is used as the circulating water circulating in the treated water supply means 8, the circulation flow path 14a becomes a circulation flow path 14b.

【0024】2及び3の三相分離部材は、処理槽1内の
有効水深の少なくとも1/2よりも高い位置(即ち、図
5において、Haが処理槽1内の有効水深Hの少なくと
も1/2よりも高いことを意味する。)に設けられてお
り、2は上部にガス排出管16a又は16bを具備した
複数のガス回収フ−ド6が水平方向に所定間隔で配置さ
れたガスコレクタが、下列ガスコレクタ4a及び下列ガ
スコレクタ4aの上向流通流路である開口部上方に一定
の間隙を持ってガス回収フ−ド6が位置する上列ガスコ
レクタ4bとの2列に構成されたガス、液及び汚泥を分
離する下段三相分離部材である。
The two-phase separating members 2 and 3 are located at positions higher than at least 1/2 of the effective water depth in the treatment tank 1 (that is, in FIG. 2 means a gas collector in which a plurality of gas recovery hoods 6 each having a gas discharge pipe 16a or 16b at the top are arranged at predetermined intervals in the horizontal direction. , The upper row gas collector 4a and the upper row gas collector 4b where the gas recovery hood 6 is located with a certain gap above the opening, which is the upward flow passage of the lower row gas collector 4a. It is a lower three-phase separation member for separating gas, liquid and sludge.

【0025】また、3は下段三相分離部材2よりも高い
位置に設けられ、下段三相分離部材2との間に整流ゾ−
ンBを形成した上段三相分離部材で、下段三相分離部材
2と略同一の構成から成り、上部にガス排出管16c又
は16dを具備した複数のガス回収フ−ド6が水平方向
に所定間隔で配置されたガスコレクタが、下列ガスコレ
クタ5a及び下列ガスコレクタ6aの上向流通流路であ
る開口部上方に一定の間隙を持ってガス回収フ−ド6が
位置する上列ガスコレクタ5bとの2列に構成されてい
る。
The numeral 3 is provided at a position higher than the lower three-phase separating member 2, and is provided between the lower three-phase separating member 2 and the rectifying circuit.
A plurality of gas recovery hoods 6 having substantially the same configuration as the lower three-phase separation member 2 and having a gas discharge pipe 16c or 16d at the top are provided in a horizontal direction. Gas collectors arranged at intervals are arranged in the upper row gas collector 5b where the gas recovery hood 6 is located with a certain gap above the opening, which is the upward flow passage of the lower row gas collector 5a and the lower row gas collector 6a. And two rows.

【0026】なお、ガス排出管16の処理槽1外に延設
された先端部は、処理槽1の外部に付設されたシ−ルポ
ット7に接続して水封されている。なお、シ−ルポット
7は、図1に記載されたように、下段三相分離部材2の
下列ガスコレクタ4a、上列ガスコレクタ4b及び上段
三相分離部材の下列ガスコレクタ5a、上列ガスコレク
タ5bに具備されたガス排出管16a,16b,16
c,16dの全てが接続する単一のシ−ルポット7でも
よく、また、図2に記載されたように、夫々のガス排出
管16a,16b,16c,16d毎に接続する複数の
シ−ルポット7でもよい。
The distal end of the gas discharge pipe 16 extending outside the processing tank 1 is connected to a seal pot 7 provided outside the processing tank 1 and sealed with water. As shown in FIG. 1, the seal pot 7 includes a lower row gas collector 4a, an upper row gas collector 4b, a lower row gas collector 5a, and an upper row gas collector 4a. 5b, gas exhaust pipes 16a, 16b, 16
A single seal pot 7 to which all of c and 16d are connected may be used, or a plurality of seal pots to be connected to each of the gas discharge pipes 16a, 16b, 16c and 16d as shown in FIG. 7 is acceptable.

【0027】前記下段三相分離部材2及び上段三相分離
部材3は、下列ガスコレクタ4a、5aのガス回収フ−
ド6と、上列ガスコレクタ4b、5bのガス回収フ−ド
6とが夫々の上向流通流路である開口部に上下で位置し
ているいるため、上下方向投影面積が、前記処理槽の水
平方向断面積と同じとなる。なお、上列ガスコレクタ4
b、5bのガス回収フ−ド6の水平方向大きさは、下列
ガスコレクタ4a、5aのガス回収フ−ド6で形成され
た上向流通流路である開口部の大きさと同一でも、ま
た、それ以上であってもよい。
The lower three-phase separating member 2 and the upper three-phase separating member 3 are connected to the gas recovery tubes of the lower row gas collectors 4a, 5a.
6 and the gas recovery hoods 6 of the upper row gas collectors 4b and 5b are located vertically in the openings which are the upward flow channels, respectively, so that the projected area in the vertical direction is Is the same as the horizontal cross-sectional area. The upper row gas collector 4
b, the horizontal size of the gas recovery hood 6 is the same as the size of the opening that is the upward flow channel formed by the gas recovery hood 6 of the lower row gas collectors 4a, 5a, or Or more.

【0028】更に、前記下段三相分離部材2及び上段三
相分離部材3は、下面が開放された水平方向に長尺の三
角柱形状や半円柱形状のガス回収フ−ド6が、図3に記
載されたように、同心円状に配置された構成てもよく、
また、図4に記載されたように、直線状に配置された構
成でもよい。しかし、本発明はそれらの構成には限定さ
れない。
The lower three-phase separating member 2 and the upper three-phase separating member 3 each have a horizontally elongated triangular or semi-cylindrical gas recovery hood 6 having an open lower surface, as shown in FIG. As described, concentrically arranged configurations may be used,
Further, as shown in FIG. 4, a configuration arranged in a straight line may be used. However, the present invention is not limited to those configurations.

【0029】前記下列及び上列のガスコレクタにおける
複数のガス回収フ−ド6で形成された上向流通流路であ
る開口部の開口総断面積は、夫々前記処理槽1の水平方
向断面積の30%〜70%であるのが好ましい。即ち、
図5において、a1又はa2の幅の上向流通流路である開
口部断面積を積算した総断面積が、処理槽1の直径がd
の水平方向断面積の30%〜70%である。
The total cross-sectional area of the opening, which is the upward flow passage formed by the plurality of gas recovery hoods 6 in the lower and upper rows of gas collectors, is the horizontal cross-sectional area of the processing tank 1 respectively. Is preferably 30% to 70%. That is,
In FIG. 5, the total cross-sectional area obtained by adding up the cross-sectional areas of the openings, which are the upward flow channels having the width of a1 or a2, is equal to the diameter of the processing tank 1.
Is 30% to 70% of the horizontal cross-sectional area.

【0030】前記ガスコレクタにおける下列及び上列ガ
スコレクタ4a、4b又は5a、5bで形成された上向
流通流路である開口部の開口総断面積が、夫々前記処理
槽1の水平方向断面積の30%〜70%であるのが好ま
しい。即ち、図5において、b1又はb2の幅の上向流通
流路である開口部断面積を積算した総断面積が、処理槽
1の直径がdの水平方向断面積の30%〜70%であ
る。
The total cross-sectional area of the opening, which is the upward flow passage formed by the lower and upper gas collectors 4a, 4b or 5a, 5b in the gas collector, is equal to the horizontal cross-sectional area of the processing tank 1. Is preferably 30% to 70%. That is, in FIG. 5, the total cross-sectional area obtained by integrating the cross-sectional areas of the openings, which are the upward flow channels having the width b1 or b2, is 30% to 70% of the horizontal cross-sectional area where the diameter of the processing tank 1 is d. is there.

【0031】前記下段三相分離部材2と上段三相分離部
材3間の整流ゾ−ンBが、前記処理槽1内の有効水深の
5〜30%、好ましくは10〜20%の高さである。即
ち、図5において、Hbが処理槽1内の有効水深Hの1
0〜30%の高さであることを意味する。
The rectifying zone B between the lower three-phase separating member 2 and the upper three-phase separating member 3 has a height of 5 to 30%, preferably 10 to 20% of the effective water depth in the treatment tank 1. is there. That is, in FIG. 5, Hb is 1 of the effective water depth H in the treatment tank 1.
Meaning 0-30% height.

【0032】以下に本発明の作用を図に基づいて説明す
る。食品加工排水などの有機性排水の被処理水を、被処
理水供給流路11から被処理水供給手段8を介して処理
槽1内の下部に供給し、処理槽1内を均一な上向流とし
て流通させることにより、初期に充填された下水汚泥な
どを種菌として自己造粒したメタン菌などの微生物によ
る汚泥粒子の汚泥床Aが形成されるが、初期に他の装置
からの汚泥粒子を充填してもよい。
The operation of the present invention will be described below with reference to the drawings. Water to be treated as organic wastewater such as food processing wastewater is supplied from the treated water supply flow path 11 to the lower part of the treatment tank 1 via the treated water supply means 8, and the inside of the treatment tank 1 is uniformly turned upward. By distributing the sludge as a stream, a sludge bed A of sludge particles formed by microorganisms such as methane bacteria that self-granulate as a seed microorganism using sewage sludge and the like initially filled therein is formed, but sludge particles from other devices are initially formed. It may be filled.

【0033】前記被処理水の上向流速は、従来のUAS
B装置にあっては、汚泥床Aの膨張展開に伴う汚泥粒子
の流出を防止するため、1〜2m/hr程度であり、被
処理水に含まれる無機性固形物が汚泥粒子に捕捉されや
すく、汚泥の生物活性を高く維持することができないと
共に、被処理水供給量も少ないため、高速、高負荷条件
で処理効率を上げることが困難であったが、本発明の高
速UASB装置では、三相分離が効率よく行われるた
め、4〜30m/hrと極めて速い流速とすることがで
き、汚泥床Aの膨張展開を積極的に図り、被処理水と汚
泥粒子との接触効率を高めることができる。また、被処
理水供給量も多くでき、高速、高負荷条件で処理効率を
上げることができる。
The upward flow velocity of the water to be treated is the same as that of the conventional UAS.
In the B apparatus, the flow rate is about 1 to 2 m / hr in order to prevent the sludge particles from flowing out due to the expansion and development of the sludge bed A, and the inorganic solid matter contained in the water to be treated is easily captured by the sludge particles. However, the biological activity of the sludge cannot be kept high, and the supply amount of the water to be treated is small, so that it is difficult to increase the treatment efficiency under high-speed and high-load conditions. Since the phase separation is performed efficiently, the flow velocity can be extremely high as 4 to 30 m / hr, and the expansion and expansion of the sludge bed A can be positively promoted, and the contact efficiency between the water to be treated and the sludge particles can be increased. it can. Further, the supply amount of the water to be treated can be increased, and the treatment efficiency can be increased under high-speed and high-load conditions.

【0034】処理槽1内に供給された被処理水は、汚泥
床Aを上向流通する間に被処理水中の有機物が微生物の
生物学的作用で分解処理され、メタンガスなどのガスが
生成する。なお、汚泥床Aは、従来の汚泥床に比較して
20%以上膨張展開し、被処理水中に主として含有され
る沈降速度が4m/hr以下の無機性固形物及び有機性
固形物は、沈降されないため、汚泥粒子に付着されるこ
となく、処理水に伴われて系外に排出される。また、微
生物の増殖により一定量以上になった汚泥粒子は、汚泥
排出手段19から系外に抜き出される。
In the water to be treated supplied into the treatment tank 1, organic substances in the water to be treated are decomposed by the biological action of microorganisms while flowing upward through the sludge bed A, and gas such as methane gas is generated. . The sludge bed A expands and expands by 20% or more as compared with the conventional sludge bed, and the inorganic solid and the organic solid mainly containing sedimentation velocity of 4 m / hr or less in the water to be treated are settled. Since it is not carried out, it is discharged out of the system together with the treated water without being attached to the sludge particles. In addition, the sludge particles that have exceeded a certain amount due to the growth of microorganisms are extracted from the sludge discharge means 19 to the outside of the system.

【0035】汚泥床Aの微生物で有機物が分解された被
処理水は、更に上昇して下段三層分離部材2部に至り、
下段三相分離部材2の上向流通流路である開口部a1、
b1での液上昇速度を30〜90m/hrとして上向流
通する間に、ガス、液及び汚泥が分離され、ガスは下列
及び上列ガスコレクタ4a、4bのガス回収フ−ドで集
められてガス排出管16からシ−ルポット7を介して回
収され、汚泥は汚泥床に沈降される。
The water to be treated, in which the organic matter has been decomposed by the microorganisms in the sludge bed A, further rises and reaches the lower three-layer separating member 2,
An opening a1, which is an upward flow channel of the lower three-phase separation member 2,
Gas, liquid and sludge are separated while flowing upward at a liquid rising speed of 30 to 90 m / hr at b1, and the gas is collected by gas recovery hoods of the lower and upper gas collectors 4a and 4b. The sludge is recovered from the gas discharge pipe 16 through the seal pot 7, and the sludge is settled on the sludge bed.

【0036】前記下段三相分離部材2部での液上昇速度
は、整流ゾ−ンの循環流路14aから液を抜き出して被
処理水供給手段8に循環する場合であり、処理水の一部
を循環流路14bから被処理水供給手段8に循環する場
合は、三相分離を効率よく行うために、下段三相分離部
材2部での液上昇速度を30m/hr以下として上向流
通させる必要がある。なお、下段三相分離部材2部での
ガス回収率は、生成ガスの約60〜95%程度である。
The liquid ascending speed at the lower three-phase separating member 2 is when the liquid is extracted from the circulation channel 14a of the rectifying zone and circulated to the water supply means 8, and a part of the treated water Is circulated from the circulation channel 14b to the water-to-be-treated supply means 8, in order to efficiently perform three-phase separation, the liquid is upwardly circulated at a liquid rising speed of 30 m / hr or less at the lower three-phase separation member 2 part. There is a need. The gas recovery rate at the lower three-phase separation member 2 is about 60 to 95% of the generated gas.

【0037】前記下段三相分離部材2部で三相分離され
た被処理水は、整流ゾ−ンを上昇する間に、更に汚泥が
沈降分離され、分離汚泥は下段三相分離部材2の上向流
通流路である開口部から汚泥床Aに沈降され、被処理水
の一部は循環水排出流路14から抜き出して被処理水供
給手段に循環される。
The water to be treated, which has been subjected to three-phase separation in the lower three-phase separation member 2, is further settled and separated while the ascending zone rises. The sediment is settled on the sludge bed A from the opening which is the counter flow passage, and a part of the water to be treated is extracted from the circulating water discharge passage 14 and circulated to the treated water supply means.

【0038】被処理水は上段三相分離部材3部に至り、
上段三相分離部材3の上向流通流路である開口部a2、
b2での液上昇速度を30m/hr以下として上向流通
する間に、ガス、液及び汚泥が分離され、ガスは下列及
び上列ガスコレクタ5a、5bのガス回収フ−ドで集め
てガス排出管16からシ−ルポット7を介して回収さ
れ、汚泥は下段三相分離部材2部を経て汚泥床に沈降さ
れる。
The water to be treated reaches the upper three-phase separation member 3,
An opening a2, which is an upward flow channel of the upper three-phase separation member 3,
Gas, liquid and sludge are separated while flowing upward at a liquid rising speed of 30 m / hr or less at b2, and the gas is collected by the gas collection hoods of the lower and upper row gas collectors 5a and 5b and discharged. The sludge is recovered from the pipe 16 through the seal pot 7 and settles on the sludge bed through the lower three-phase separating member 2.

【0039】前記により清浄化処理された被処理水は、
処理水排出手段9の処理水オ−バ−フロ−部材15及び
処理水ピット17を介して、処理水排出流路12から系
外に排出され、、また、ガスは、ガス排出手段10のバ
ッファタンク18及び図示しないガス吸引装置を介して
生成ガス排出流路13からガスタンクなどに回収され
る。
The water to be treated, which has been purified by the above, is
Through the treated water overflow member 15 and treated water pit 17 of the treated water discharge means 9, the treated water is discharged from the treated water discharge channel 12 to the outside of the system. The gas is recovered from the generated gas discharge channel 13 to a gas tank or the like via the tank 18 and a gas suction device (not shown).

【0040】[0040]

【発明の効果】本発明は、生成ガス、汚泥粒子の分離を
効率よく行うことができ、また、微生物粒子の流出が抑
えられ、被処理水の供給量を多くすることができる高速
UASB装置の利点を更に高め、従来の高速UASB装
置の複雑な構成をより簡単とすると共に、生成ガスの分
離及び汚泥粒子の沈降分離をより効率よく行うことがで
き、被処理水の供給量を多くして高効率処理が可能なU
ASB装置及び処理方法である。
According to the present invention, there is provided a high-speed UASB device capable of efficiently separating product gas and sludge particles, suppressing outflow of microbial particles, and increasing the supply amount of water to be treated. The advantages are further enhanced, the complicated structure of the conventional high-speed UASB device is simplified, the separation of generated gas and the sedimentation separation of sludge particles can be performed more efficiently, and the supply amount of the water to be treated is increased. U capable of high efficiency processing
An ASB apparatus and a processing method.

【0041】請求項1においては、処理槽内の有効水深
の少なくとも1/2よりも高い位置に、2列のガスコレ
クタから成る二段の三相分離部材を設けたことにより、
三相分離が効率的に行われ、汚泥床部の高さも高いた
め、汚泥床の膨張展開が積極的に図られ、被処理水と汚
泥粒子との接触効率を高めることができ、また、被処理
水供給量も多くでき、高速、高負荷条件で処理効率を上
げることができる。
According to the first aspect, a two-stage three-phase separating member including two rows of gas collectors is provided at a position higher than at least 1/2 of the effective water depth in the processing tank.
Since the three-phase separation is performed efficiently and the height of the sludge bed is high, the expansion and expansion of the sludge bed can be actively promoted, and the contact efficiency between the water to be treated and the sludge particles can be increased. The supply amount of treated water can be increased, and the treatment efficiency can be increased under high-speed and high-load conditions.

【0042】請求項2においては、三相分離部材の上下
方向投影面積が、処理槽の水平方向断面積と同じである
ため、確実に生成ガスを捕捉回収することができる。
According to the second aspect, the projected area of the three-phase separating member in the vertical direction is the same as the horizontal sectional area of the processing tank, so that the generated gas can be reliably captured and recovered.

【0043】請求項3においては、ガスコレクタにおけ
る複数のガス回収フ−ドで形成された上向流通流路であ
る開口部の開口総断面積が、処理槽の水平方向断面積の
30%〜70%であるため、被処理水の上向流の上昇速
度が必要以上に速くならず、三相分離が効率よく行われ
る。
According to the third aspect of the present invention, the total cross-sectional area of the opening, which is the upward flow passage formed by the plurality of gas recovery hoods in the gas collector, is 30% to 30% of the horizontal cross-sectional area of the processing tank. Since it is 70%, the rising speed of the upward flow of the water to be treated is not increased more than necessary, and three-phase separation is efficiently performed.

【0044】請求項4においては、下列及び上列ガスコ
レクタで形成された上向流通流路である開口部の開口総
断面積が、処理槽の水平方向断面積の30%〜70%で
あるため、被処理水の上向流の上昇速度が必要以上に速
くならず、三相分離が効率よく行われる。
In claim 4, the total cross-sectional area of the opening, which is the upward flow passage formed by the lower and upper gas collectors, is 30% to 70% of the horizontal cross-sectional area of the processing tank. Therefore, the rising speed of the upward flow of the water to be treated is not increased more than necessary, and the three-phase separation is efficiently performed.

【0045】請求項5においては、ガス排出管が、処理
槽の外部に付設されたシ−ルポットに接続し、処理水で
水封されているため、処理槽内の構造が簡略化し、設備
費も低廉となる。
According to the fifth aspect, the gas discharge pipe is connected to a seal pot attached to the outside of the treatment tank and is sealed with treated water, so that the structure inside the treatment tank is simplified and the equipment cost is reduced. Will also be cheaper.

【0046】請求項6においては、下段三相分離部材と
上段三相分離部材間の整流ゾ−ンが、処理槽内の有効水
深の5〜30%、好ましくは10〜20%の高さであ
り、十分に乱流状態が除去されて整流化されるため、汚
泥の沈降が効率よく行われる。
In claim 6, the rectifying zone between the lower three-phase separating member and the upper three-phase separating member has a height of 5 to 30%, preferably 10 to 20% of the effective water depth in the treatment tank. In addition, since the turbulent state is sufficiently removed and rectified, the sludge settles efficiently.

【0047】請求項7においては、整流ゾ−ンから液を
抜き出して被処理水供給手段に循環する場合に、下段三
相分離部材部での液上昇速度が60〜90m/hr、上
段三相分離部材部での液上昇速度が30m/hr以下と
して上向流通させることにより、必要以上に乱流をおこ
すことがないため、三相分離効率がよい。
According to the present invention, when the liquid is extracted from the rectification zone and circulated to the water supply means, the liquid ascending speed at the lower three-phase separating member is 60 to 90 m / hr, and the upper three-phase separating member. By flowing upward at a liquid rising speed of 30 m / hr or less at the separation member portion, turbulence does not occur more than necessary, and the three-phase separation efficiency is high.

【0048】請求項8においては、処理水の一部を被処
理水供給手段に循環する場合に、下段及び上段の三相分
離部材部での液上昇速度を、30m/hr以下として上
向流通させることにより、必要以上に乱流をおこすこと
がないため、三相分離効率がよい。
According to the present invention, when a part of the treated water is circulated to the treated water supply means, the liquid ascending speed at the lower and upper three-phase separation members is set to 30 m / hr or less. By doing so, turbulence does not occur more than necessary, and the three-phase separation efficiency is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の上向流嫌気性処理装置
の構成図
FIG. 1 is a configuration diagram of an upflow anaerobic treatment apparatus according to an embodiment of the present invention.

【図2】本発明の他の実施の形態の上向流嫌気性処理装
置の構成図
FIG. 2 is a configuration diagram of an upflow anaerobic treatment device according to another embodiment of the present invention.

【図3】一実施の形態の三層分離部材部の平面図FIG. 3 is a plan view of a three-layer separating member according to the embodiment;

【図4】他の実施の形態の三層分離部材部の平面図FIG. 4 is a plan view of a three-layer separating member according to another embodiment.

【図5】本発明の一実施の形態の上向流嫌気性処理装置
の説明図
FIG. 5 is an explanatory diagram of an upflow anaerobic treatment device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:嫌気性処理槽 2:下段三相分離部材 3:上段三相分離部材 4a、5a:下列ガスコレクタ 4b、5b:上列ガスコレクタ 6:ガス回収フ−ド 7:シ−ルポット 8:被処理水供給手段 9:処理水排出手段 10:ガス排出手段 1: Anaerobic treatment tank 2: Lower three-phase separation member 3: Upper three-phase separation member 4a, 5a: Lower row gas collector 4b, 5b: Upper row gas collector 6: Gas recovery hood 7: Seal pot 8: Cover Treated water supply means 9: Treated water discharge means 10: Gas discharge means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 京信一郎 神奈川県川崎市川崎区大川町2番1号三菱 化工機株式会社内 Fターム(参考) 4D040 AA01 AA31  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyo Shinichiro 2-1 Okawacho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Mitsubishi Kakoki Co., Ltd. (reference) 4D040 AA01 AA31

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】下部に被処理水供給手段、上部に処理水排
出手段及びガス排出手段を具備し、内部の下方に自己造
粒汚泥による汚泥床を形成した嫌気性処理槽で有機性排
水を上向流通させて処理する上向流嫌気性処理装置にお
いて、前記処理槽内の有効水深の少なくとも1/2より
も高い位置に、上部にガス排出管を具備した複数のガス
回収フ−ドが水平方向に所定間隔で配置されたガスコレ
クタを、下列ガスコレクタ及び下列ガスコレクタの上向
流通流路である開口部上方に一定の間隙を持ってガス回
収フ−ドが位置する上列ガスコレクタとの二列に構成し
たガス、液及び汚泥を分離する下段三相分離部材を設
け、下段三相分離部材よりも高い位置に、下段三相分離
部材と略同一構成の上段三相分離部材とを設け、下段三
相分離部材と上段三相分離部材との間を整流ゾ−ンとし
たことを特徴とする上向流嫌気性処理装置。
1. An anaerobic treatment tank having a treated water supply means in a lower part, a treated water discharge means and a gas discharge means in an upper part, and a sludge bed formed by self-agglomerated sludge below the inside. In an upward flow anaerobic treatment apparatus for processing by flowing upward, a plurality of gas recovery hoods having a gas discharge pipe on the upper part are provided at a position higher than at least 1/2 of the effective water depth in the treatment tank. A gas collector disposed at a predetermined interval in the horizontal direction is provided with an upper gas collector in which a gas recovery hood is located with a certain gap above an opening which is an upward flow passage of the lower gas collector and the lower gas collector. Provide a lower three-phase separation member for separating gas, liquid and sludge configured in two rows, and an upper three-phase separation member having substantially the same configuration as the lower three-phase separation member at a position higher than the lower three-phase separation member. The lower three-phase separation member and the upper three Rectifying zone between the separating member - ting with upflow anaerobic treatment apparatus, characterized in that the.
【請求項2】前記下段三相分離部材及び上段三相分離部
材の夫々の上下方向投影面積が、前記処理槽の水平方向
断面積と同じであることを特徴とする請求項1記載の上
向流嫌気性処理装置。
2. The upwardly directed area of each of the lower three-phase separation member and the upper three-phase separation member is the same as the horizontal sectional area of the processing tank. Flow anaerobic treatment equipment.
【請求項3】前記下列及び上列のガスコレクタにおける
複数のガス回収フ−ドで形成された上向流通流路である
開口部の開口総断面積が、夫々前記処理槽の水平方向断
面積の30%〜70%であることを特徴とする請求項1
又は請求項2記載の上向流嫌気性処理装置。
3. The horizontal cross-sectional area of each of the processing tanks, wherein the total cross-sectional area of the opening, which is an upward flow passage formed by a plurality of gas recovery hoods, in the lower row and the upper row of gas collector hoods, respectively. 3. The method according to claim 1, wherein the ratio is 30% to 70%.
Or the upflow anaerobic treatment device according to claim 2.
【請求項4】前記ガスコレクタにおける下列及び上列ガ
スコレクタで形成された上向流通流路である開口部の開
口総断面積が、夫々前記処理槽の水平方向断面積の30
%〜70%であることを特徴とする請求項1〜請求項3
のいずれか1項に記載の上向流嫌気性処理装置。
4. A total cross-sectional area of an opening, which is an upward flow passage formed by a lower row and an upper row gas collector in the gas collector, is 30% of a horizontal cross-sectional area of the processing tank.
% To 70%.
The upflow anaerobic treatment device according to any one of the above.
【請求項5】前記ガスコレクタにおける複数のガス回収
フ−ドの上部に具備されたガス排出管が、前記処理槽の
外部に付設されたシ−ルポットに接続し、水封されてい
ることを特徴とする請求項1〜請求項4のいずれか1項
に記載の上向流嫌気性処理装置。
5. The gas collector according to claim 1, wherein a gas discharge pipe provided above a plurality of gas recovery hoods in the gas collector is connected to a seal pot provided outside the processing tank and is sealed with water. The upflow anaerobic treatment device according to any one of claims 1 to 4, characterized in that:
【請求項6】前記下段三相分離部材と上段三相分離部材
間の整流ゾ−ンが、前記処理槽内の有効水深の5〜30
%、好ましくは、10〜20%の高さであることを特徴
とする請求項1〜請求項5のいずれか1項に記載の上向
流嫌気性処理装置。
6. A rectifying zone between the lower three-phase separating member and the upper three-phase separating member, wherein the rectifying zone has an effective water depth of 5 to 30 within the treatment tank.
%, Preferably 10 to 20% of the height of the upflow anaerobic treatment device according to any one of claims 1 to 5, characterized in that.
【請求項7】被処理水を下部の被処理水供給手段から供
給し、内部の下方に形成された自己造粒汚泥の汚泥床を
上向流通させて有機物を嫌気性で生物学的に処理し、下
段三相分離部材部での液上昇速度を60〜90m/hr
として上向流通させ、ガス、液及び汚泥を分離してガス
をガス回収フ−ドで回収し、整流ゾ−ンで更に汚泥を沈
降させ、また、整流ゾ−ンから液を抜き出して被処理水
供給手段に循環し、上段三相分離部材部での液上昇速度
を30m/hr以下として上向流通させ、上部の処理水
排出手段から処理水を抜き出して排出すると共に、ガス
排出手段からガスを回収することを特徴とする上向流嫌
気性処理方法。
7. An anaerobic and biological treatment of organic matter by supplying treated water from a treated water supply means at a lower portion and flowing upwardly through a sludge bed of self-granulated sludge formed below the inside. And the liquid rising speed at the lower three-phase separation member is 60 to 90 m / hr.
The gas, liquid and sludge are separated and the gas is recovered by a gas recovery hood, the sludge is further settled by a rectifying zone, and the liquid is extracted from the rectifying zone to be treated. Circulating to the water supply means, flowing upward with the liquid rising speed at the upper three-phase separation member portion being 30 m / hr or less, extracting and discharging treated water from the treated water discharge means on the upper side, and gas from the gas discharge means. Upflow anaerobic treatment method, characterized by recovering water.
【請求項8】被処理水を下部の被処理水供給手段から供
給し、内部の下方に形成された自己造粒汚泥の汚泥床を
上向流通させて有機物を嫌気性で生物学的に処理し、下
段三相分離部材部での液上昇速度を30m/hr以下と
して上向流通させ、ガス、液及び汚泥を分離してガスを
ガス回収フ−ドで回収し、整流ゾ−ンで更に汚泥を沈降
させ、上段三相分離部材部での液上昇速度を30m/h
r以下として上向流通させ、上部の処理水排出手段から
処理水を抜き出し、一部を被処理水供給手段に循環し、
残部を系外に排出すると共に、ガス排出手段からガスを
回収することを特徴とする上向流嫌気性処理方法。
8. An anaerobic and biological treatment of organic substances by supplying treated water from a treated water supply means at a lower portion and flowing upward through a sludge bed of self-granulated sludge formed below the inside. Then, the liquid is circulated upward at a liquid rising speed of 30 m / hr or less at the lower three-phase separation member section, gas, liquid and sludge are separated, and the gas is recovered by a gas recovery hood. The sludge is settled, and the liquid rising speed at the upper three-phase separation member is 30 m / h.
r upward flow, draw out the treated water from the upper treated water discharge means, circulate a part to the treated water supply means,
An upflow anaerobic treatment method characterized by discharging the remainder out of the system and recovering gas from gas discharging means.
JP28901198A 1998-10-12 1998-10-12 Upstream anaerobic treatment apparatus and treatment method Expired - Fee Related JP4312858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28901198A JP4312858B2 (en) 1998-10-12 1998-10-12 Upstream anaerobic treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28901198A JP4312858B2 (en) 1998-10-12 1998-10-12 Upstream anaerobic treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2000117284A true JP2000117284A (en) 2000-04-25
JP4312858B2 JP4312858B2 (en) 2009-08-12

Family

ID=17737685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28901198A Expired - Fee Related JP4312858B2 (en) 1998-10-12 1998-10-12 Upstream anaerobic treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP4312858B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079291A (en) * 2000-09-08 2002-03-19 Ebara Corp Anaerobic treatment method and apparatus
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009178628A (en) * 2008-01-29 2009-08-13 Ihi Corp Apparatus for treating anaerobic waste water
JP2010042352A (en) * 2008-08-12 2010-02-25 Ebara Corp Anaerobic treatment method and apparatus
CN101475261B (en) * 2009-01-19 2011-01-26 浙江大学 Three-phase separator for sewerage anaerobic biochemical reactor
KR101048673B1 (en) * 2009-02-12 2011-07-12 주식회사 앤써브 External circulating anaerobic digester
CN102241433A (en) * 2010-05-11 2011-11-16 泰州康泰环保科技有限公司 Efficient combined three-phase separator
CN104326557A (en) * 2014-10-22 2015-02-04 湖北威能环保工程有限公司 Multi-point jet stirring hybrid anaerobic digester system
CN105110563A (en) * 2015-08-31 2015-12-02 南京大学 Two-phase double-circulation anaerobic device for treating sulfate organic wastewater and treating method
CN107473376A (en) * 2017-09-12 2017-12-15 知和环保科技有限公司 A kind of anaerobic reaction system
WO2021059553A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Apparatus for producing biogas
CN113772895A (en) * 2021-10-09 2021-12-10 肇庆市鹏凯环保装备有限公司 Sewage treatment system capable of being superposed up and down
CN115403142A (en) * 2022-09-06 2022-11-29 三强环保集团有限公司 Biphase internal circulation anaerobic reactor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079291A (en) * 2000-09-08 2002-03-19 Ebara Corp Anaerobic treatment method and apparatus
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
US8021552B2 (en) 2006-01-05 2011-09-20 Veolia Water Solutions & Technologies Support Process and reactor for anaerobic waste water purification
JP4687600B2 (en) * 2006-07-31 2011-05-25 株式会社Ihi Methane fermentation equipment
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2009178628A (en) * 2008-01-29 2009-08-13 Ihi Corp Apparatus for treating anaerobic waste water
JP4661882B2 (en) * 2008-01-29 2011-03-30 株式会社Ihi Anaerobic wastewater treatment equipment
JP2010042352A (en) * 2008-08-12 2010-02-25 Ebara Corp Anaerobic treatment method and apparatus
CN101475261B (en) * 2009-01-19 2011-01-26 浙江大学 Three-phase separator for sewerage anaerobic biochemical reactor
KR101048673B1 (en) * 2009-02-12 2011-07-12 주식회사 앤써브 External circulating anaerobic digester
CN102241433A (en) * 2010-05-11 2011-11-16 泰州康泰环保科技有限公司 Efficient combined three-phase separator
CN104326557A (en) * 2014-10-22 2015-02-04 湖北威能环保工程有限公司 Multi-point jet stirring hybrid anaerobic digester system
CN105110563A (en) * 2015-08-31 2015-12-02 南京大学 Two-phase double-circulation anaerobic device for treating sulfate organic wastewater and treating method
CN107473376A (en) * 2017-09-12 2017-12-15 知和环保科技有限公司 A kind of anaerobic reaction system
WO2021059553A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Apparatus for producing biogas
JPWO2021059553A1 (en) * 2019-09-27 2021-04-01
JP7307806B2 (en) 2019-09-27 2023-07-12 株式会社フジタ biogas generator
CN113772895A (en) * 2021-10-09 2021-12-10 肇庆市鹏凯环保装备有限公司 Sewage treatment system capable of being superposed up and down
CN115403142A (en) * 2022-09-06 2022-11-29 三强环保集团有限公司 Biphase internal circulation anaerobic reactor

Also Published As

Publication number Publication date
JP4312858B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
KR101397780B1 (en) Process and reactor for anaerobic waste water purification
KR101330339B1 (en) Process and reactor for anaerobic waste water purification
US4530762A (en) Anaerobic reactor
US6623640B2 (en) Phase separator having multiple separation units, upflow reactor apparatus, and methods for phase separation
JP2000117284A (en) Upflow type anaerobic treatment equipment and treatment using the same
KR101225579B1 (en) Anaerobic purification device
CS268523B2 (en) Sewage anaerobe treatment plant
US20070017874A1 (en) Effluent treatment method and apparatus
CN103097307A (en) Purifier comprising a solids separation device, and method for wastewater purification
CN113454034A (en) Anaerobic waste water purifying tower
US11613483B2 (en) Granular sludge reactor system comprising an external separator
CN102471109B (en) Reactor for anaerobically purifying waste water comprising multi-phase separator devices
JP2001269694A (en) Upflow anaerobic treating device
JP2002159990A (en) Anaerobic treating vessel
EP3400201A1 (en) Process and apparatus for in-situ cleaning of a gas separator in an anaerobic bioreactor
JP4162234B2 (en) Anaerobic treatment equipment
JP2002219486A (en) Anaerobic treatment equipment with upward flow
JP2001259681A (en) Upward flow anaerobic treating device
JP2002263683A (en) Upward stream anaerobic processor
JP2000005793A (en) Upward current anaerobic treating apparatus and treatment
US11186504B2 (en) Waste water treatment plant
JPH05228492A (en) Device for treating aerobic waste water
JPH0225676B2 (en)
JPH05293489A (en) Anaerobic wastewater treatment apparatus
JPH03245898A (en) Waste water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees