JP2001259681A - Upward flow anaerobic treating device - Google Patents

Upward flow anaerobic treating device

Info

Publication number
JP2001259681A
JP2001259681A JP2000077531A JP2000077531A JP2001259681A JP 2001259681 A JP2001259681 A JP 2001259681A JP 2000077531 A JP2000077531 A JP 2000077531A JP 2000077531 A JP2000077531 A JP 2000077531A JP 2001259681 A JP2001259681 A JP 2001259681A
Authority
JP
Japan
Prior art keywords
gas
treated water
sludge
collector
gas recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000077531A
Other languages
Japanese (ja)
Inventor
Ippei Sakamoto
一平 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2000077531A priority Critical patent/JP2001259681A/en
Publication of JP2001259681A publication Critical patent/JP2001259681A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To provide a high speed UASB device which enables simplifying a complicated composition of device, efficiently performing the separation of the generated gas and the sedimentation of sludge particles and efficiently treating organic waste water. SOLUTION: This upward flow anaerobic treating device is featured in that a three phases separation means which is constituted of a lower stage gas collector and an upper gas collector in two-stage is disposed in an anaerobic treating tank, a lower degassing pipe of which the trifurcate upper end is positioned on the lower side of a gas recovery hood of an upper stage gas collector is disposed on a gas recovery hood of the lower stage gas collector, the inside of the treating tank of the upper side of the upper stage gas collector is divided in the horizontal direction to a gas ascending zone and a treated water ascending zone, an upper degassing pipe of which the upper end is positioned on the lower side of the gas ascending zone and a baffle which is positioned on the treated water ascending zone are disposed on the gas recovery hood of the upper gas collector and a treated water exhaust means is disposed on the upper part of the treated water ascending zone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水を、嫌
気性処理槽内に形成された微生物の自己造粒汚泥床(以
下単に汚泥床という。)を上向流通させて、排水中の有
機物を微生物の生物学的作用で嫌気性分解処理する上向
流嫌気性処理装置(以下UASB装置という。)に関す
る。
[0001] The present invention relates to an organic effluent, wherein an organic effluent is allowed to flow upward through a self-granulated sludge bed (hereinafter simply referred to as a sludge bed) of microorganisms formed in an anaerobic treatment tank. The present invention relates to an upward anaerobic treatment device (hereinafter, referred to as a UASB device) for anaerobic decomposition treatment of organic matter by biological action of microorganisms.

【0002】[0002]

【従来の技術】従来、食品加工排水、醗酵工場排水、化
学工場排水及び紙パルプ工場排水などの有機性産業排水
や下水を処理する装置として、下部に被処理水供給手
段、上部に処理水排出手段及びガス排出手段を具備し、
下方にメタン菌を主体として微生物が粒子化した汚泥
(以下グラニュ−ル汚泥という。)でブランケット状態
の汚泥床を形成し、汚泥床の上方に汚泥、ガス及び処理
水の三相に分離する三相分離手段が設けられた嫌気性処
理槽に、汚泥床の下部から被処理水を供給して有機性排
水を上向流通させることにより、排水中の有機物を嫌気
性で生物学的に分解し、発生したメタンガスなどの生成
ガス、処理水及びグラニュ−ル汚泥を上部の三相分離手
段で分離し、グラニュ−ル汚泥は下方の汚泥床に沈降さ
せ、処理水は処理水排出手段から排出し、また、生成ガ
スはガス排出手段から排出するUASB装置が用いられ
ている。
2. Description of the Related Art Conventionally, as a device for treating organic industrial wastewater or sewage such as food processing wastewater, fermentation plant wastewater, chemical plant wastewater, and pulp and paper plant wastewater, a treatment water supply means is provided at a lower part, and a treated water discharge is provided at an upper part. Means and gas exhaust means,
A sludge bed in the form of a blanket is formed below the sludge in which microorganisms are mainly composed of methane bacteria (hereinafter referred to as granular sludge), and the sludge, gas and treated water are separated into three phases above the sludge bed. By supplying the water to be treated from the lower part of the sludge bed to the anaerobic treatment tank provided with the phase separation means and flowing the organic wastewater upward, the organic matter in the wastewater is anaerobically decomposed biologically. The generated gas such as methane gas, treated water, and granular sludge are separated by the upper three-phase separation means, the granular sludge is settled on the lower sludge bed, and the treated water is discharged from the treated water discharge means. Further, a UASB device that discharges generated gas from gas discharging means is used.

【0003】前記UASB装置は、排水中の有機物を生
物学的に分解する嫌気性微生物が、微生物自体又は微細
粒子を核として粒子化しているため、微生物が高密度で
保持でき、高濃度の有機性排水を効率的に処理すること
ができることにより、装置の設置面積の縮小化が図れ、
また、生成するメタンガスを燃料などとして利用できる
利点があるため多数設置されている。
[0003] In the UASB apparatus, the anaerobic microorganisms that biologically decompose the organic matter in the wastewater are formed into particles by using the microorganisms themselves or fine particles as nuclei. Efficient treatment of wastewater, reducing the installation area of the device,
In addition, a large number is installed because there is an advantage that generated methane gas can be used as fuel or the like.

【0004】しかし、従来の一般的なUASB装置で
は、生成したメタンガスによって処理槽内の液に乱流が
生じるため、被処理水の上向流速を速めるとグラニュ−
ル汚泥が処理水に伴われて処理水排出手段から流出する
恐れがある。また、被処理水の上向流速を速めると、局
部的に汚泥負荷が過負荷状態になり、グラニュ−ル汚泥
表面に酸生成菌が密集増殖し、グラニュ−ル汚泥の構造
がガスの透過しにくい構造となり、グラニュ−ル汚泥の
比重が軽くなって流出しやすくなる。そのため、高速、
高負荷条件で処理効率を上げることが困難であった。
However, in a conventional general UASB apparatus, turbulent flow occurs in the liquid in the processing tank due to the generated methane gas.
Sludge may flow out of the treated water discharge means with the treated water. Also, when the upward flow velocity of the water to be treated is increased, the sludge load is locally overloaded, acid-producing bacteria grow densely on the surface of the granular sludge, and the structure of the granular sludge allows gas to permeate. The structure becomes difficult, and the specific gravity of the granular sludge becomes lighter, which makes it easier to flow out. Therefore, high speed,
It was difficult to increase the processing efficiency under high load conditions.

【0005】前記問題点に鑑みて、処理槽の高さを高く
し、また、生成ガスやグラニュ−ル汚泥の分離を効率よ
く行うことでグラニュ−ル汚泥の流出を抑え、被処理水
の供給量を多くすることができるため、有機物負荷を従
来の2〜3倍も高くできる改良された装置(以下高速U
ASB装置という。)として、高さ方向に複数のガス回
収フ−ドを設けたガス分離部を上下2段に設け、回収ガ
スを液の内部循環流発生用に使用した高速UASB装置
が特開昭61−71896号公報に記載されており、ま
た、特開昭61−204093号公報には、高さ方向の
千鳥状位置に3段のガス回収フ−ドによるガス分離部を
設けた高速UASB装置が記載されている。
In view of the above-mentioned problems, the height of the treatment tank is increased, and the outflow of the granular sludge is suppressed by efficiently separating the generated gas and the granular sludge. An improved device (hereinafter referred to as a high-speed U
It is called ASB device. Japanese Patent Laid-Open No. 61-71896 discloses a high-speed UASB apparatus in which gas separation sections provided with a plurality of gas recovery hoods in the height direction are provided in two upper and lower stages, and the recovered gas is used for generating an internal circulation flow of liquid. Japanese Patent Application Laid-Open No. 61-204093 discloses a high-speed UASB device provided with a three-stage gas recovery hood at a staggered position in the height direction. ing.

【0006】[0006]

【発明が解決しようとする課題】前記特開昭61−71
896号公報及び特開昭61−204093号公報に、
それぞれ記載された高速UASB装置の構成では、処理
槽内に多数のパイプやガス回収用フ−ドが配置されるた
め、装置が必要以上に複雑となり、設備費が嵩み、更
に、グラニュ−ル汚泥の保持層以外のガス回収部分の塔
高が高くなるという問題がある。
SUMMARY OF THE INVENTION The above-mentioned JP-A-61-71 is disclosed.
No. 896 and JP-A-61-204093,
In the configuration of the high-speed UASB device described above, since a large number of pipes and hoods for gas recovery are arranged in the processing tank, the device becomes unnecessarily complicated, the equipment cost increases, and the granules are further increased. There is a problem that the tower height of the gas recovery part other than the sludge holding layer becomes high.

【0007】従って、本発明は、従来の高速UASB装
置の複雑な構成をより簡略化すると共に、生成ガスの分
離及び汚泥粒子の沈降分離をより効率よく行うことがで
き、有機性排水の高効率処理が可能となる高速UASB
装置を提供する目的で成されたものである。
Accordingly, the present invention can simplify the complicated structure of the conventional high-speed UASB apparatus, and can more efficiently perform the separation of the generated gas and the sedimentation separation of the sludge particles. High-speed UASB that enables processing
This was done for the purpose of providing the device.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、請求項1に記載の発明においては、
下部に被処理水供給手段、上部に処理水排出手段及びガ
ス排出手段を具備し、内部の下方に自己造粒汚泥による
汚泥床を形成した嫌気性処理槽で有機性排水を上向流通
させて処理する上向流嫌気性処理装置において、嫌気性
処理槽内の上部に、複数のガス回収フ−ドが水平方向に
所定間隔で配置された下段ガスコレクタ及び複数のガス
回収フ−ドが下段ガスコレクタの上向流通流路である開
口部上方に位置する水平方向に所定間隔で配置された上
段ガスコレクタとの二段に構成されたガス、液及び汚泥
を分離する三相分離手段を設け、下段ガスコレクタのガ
ス回収フ−ドに、二本の管の先端が隣設するガス回収フ
−ドに夫々接続し、他の一本の管の先端が上段ガスコレ
クタのガス回収フ−ド下方に位置するように三又状の下
部ガス抜き管を設け、上段ガスコレクタの上方の処理槽
内を水面位置よりも高く延設した区画部材で、水平方向
にガス上昇ゾ−ンと処理水上昇ゾ−ンに区画し、上段ガ
スコレクタのガス回収フ−ドに、上端がガス上昇ゾ−ン
の下方に位置する上部ガス抜き管及び処理水上昇ゾ−ン
の下方に位置して頂部から上方へ突設したバッフルを設
け、処理水上昇ゾ−ンの上部に、処理水排出手段を設け
たことを特徴とする上向流嫌気性処理装置である。
The gist of the present invention for achieving the above object is as follows.
An organic wastewater is circulated upward in an anaerobic treatment tank provided with a treated water supply means in the lower part, a treated water discharge means and a gas discharge means in the upper part, and a sludge bed formed by self-granulating sludge below the inside. In an upflow anaerobic treatment apparatus for processing, a lower gas collector in which a plurality of gas recovery hoods are horizontally arranged at predetermined intervals and a plurality of gas recovery hoods are disposed in an upper part of the anaerobic treatment tank. Three-phase separation means for separating gas, liquid and sludge formed in two stages with an upper gas collector arranged at a predetermined interval in the horizontal direction and located above an opening which is an upward flow passage of a gas collector is provided. The ends of two pipes are connected to the gas recovery hood of the lower gas collector, respectively, and the ends of the other pipe are connected to the gas recovery hood of the upper gas collector. A three-pronged lower gas vent pipe is installed at the bottom. A partition member extending above the upper gas collector in the processing tank above the water surface position, and is horizontally divided into a gas rising zone and a treated water rising zone, and the gas collecting hood of the upper gas collector is formed. An upper gas vent pipe whose upper end is located below the gas rising zone and a baffle located below the treated water rising zone and projecting upward from the top are provided on the upper side of the treated water rising zone. An upflow anaerobic treatment apparatus characterized in that treated water discharge means is provided at the upper part.

【0009】前記の本発明の構成により、簡単な構造の
高効率な三相分離手段であるため、設備費が低廉であ
り、生成ガスの分離及びグラニュ−ル汚泥の沈降分離を
より効率よく行うことができ、有機性排水の高効率処理
が可能となった。また、請求項2に記載の構成では、上
部ガス抜き管の下端に設けられた切欠部により、エアリ
フト効果が低減されるため、グラニュ−ル汚泥の上昇
が、少なくなるため、更に効率的な処理を行うことがで
きる。
According to the structure of the present invention, since the three-phase separation means has a simple structure and high efficiency, the equipment cost is low, and the separation of generated gas and the sedimentation and separation of granular sludge are performed more efficiently. This enabled highly efficient treatment of organic wastewater. Further, in the configuration according to the second aspect, the notch provided at the lower end of the upper degassing pipe reduces the air lift effect, so that the rise of granular sludge is reduced, so that more efficient treatment is performed. It can be performed.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の一実施の形態のUASB
装置の概略全体構成図、図2は図1の上部拡大図、図3
は図2の90°回転図、図4は図2のA−A矢視図、図
5は図2のB−B矢視図である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a UASB according to an embodiment of the present invention.
FIG. 2 is an enlarged view of the upper part of FIG. 1, FIG.
2 is a 90 ° rotation view of FIG. 2, FIG. 4 is a view on arrow AA of FIG. 2, and FIG. 5 is a view on arrow BB of FIG. 2.

【0011】1は、嫌気性処理槽(以下単に処理槽とい
う。)であり、処理槽の底部に、被処理水供給管2aに
接続した被処理水供給手段2、上方には、グラニュ−ル
汚泥、ガス及び処理水の三相を分離する三相分離手段
3、処理水排出管8bに接続し、清澄な処理水をオ−バ
−フロ−で排出する処理水オ−バ−フロ−手段8aが設
けられた処理水排出手段8及び有機物の生物分解により
生成したメタンガスなどのガスを排出するガス排出手段
9が設けられている。また、三相分離手段3の上方を水
平方向にガス上昇ゾ−ンIと処理水上昇ゾ−ンIIに区
画する2枚の区画部材7が、処理槽1内の水面位置より
も高く延設されている。また、前記処理槽1内の下方に
は、メタン菌を主体として微生物が粒子化したグラニュ
−ル汚泥でブランケット状態となった汚泥床4が形成さ
れている。なお、前記処理槽1は、密閉構造で円筒形状
の嫌気性処理槽であるが、矩形体形状の処理槽であって
もよく、また、処理槽の中段にも三相分離手段やガス抜
き手段を設けた装置であってもよい。
Reference numeral 1 denotes an anaerobic treatment tank (hereinafter simply referred to as a treatment tank). At the bottom of the treatment tank, a treatment water supply means 2 connected to a treatment water supply pipe 2a, and above the granule. Three-phase separation means 3 for separating three phases of sludge, gas and treated water, connected to a treated water discharge pipe 8b, and treated water overflow means for discharging clear treated water by overflow. A treated water discharging means 8 provided with 8a and a gas discharging means 9 for discharging gas such as methane gas generated by biodegradation of organic matter are provided. Further, two partition members 7 for partitioning the upper part of the three-phase separation means 3 into a gas rising zone I and a treated water rising zone II in a horizontal direction extend higher than the water surface position in the processing tank 1. Have been. A sludge bed 4 is formed in the lower part of the treatment tank 1 in the form of a granular sludge made of granular sludge mainly composed of methane bacteria and microbes. Although the processing tank 1 is a cylindrically shaped anaerobic processing tank having a closed structure, it may be a rectangular processing tank, and a three-phase separation means and a gas releasing means may be provided in the middle stage of the processing tank. May be provided.

【0012】前記被処理水供給手段8は、被処理水を処
理槽1の水平断面全体を均一に上向流通させるため、処
理槽1の底面に多数の供給ノズルを設けた格子状手段や
併設手段を底面の略全面にわたって配置するの好まし
く、また、被処理水を処理槽1内の接線方向に供給する
手段であってもよい。更に、処理水排出手段8の処理水
オ−バ−フロ−手段8aは、処理水が流入する側面が、
ノッチ、スリット状、格子状、又は金網などで形成され
た手段であるが、処理水に同伴されて浮上してきた微生
物粒子が流出し難い構造が好ましい。
The treatment water supply means 8 is provided with a grid-like means provided with a number of supply nozzles on the bottom surface of the treatment tank 1 or a juxtaposed means in order to uniformly distribute the treatment water upward in the entire horizontal section of the treatment tank 1. Preferably, the means is disposed over substantially the entire bottom surface. Alternatively, the means for supplying the water to be treated in the tangential direction in the treatment tank 1 may be used. Further, the treated water overflow means 8a of the treated water discharge means 8 has a side surface into which the treated water flows,
It is a means formed by a notch, a slit, a lattice, a wire mesh, or the like, but a structure in which the microbial particles floating with the treated water are difficult to flow out is preferable.

【0013】また、前記三相分離手段3は、ガス抜き管
を付設した複数の長尺ガス回収フ−ドが水平方向に所定
間隔で配置された下段ガスコレクタ5及び上段ガスコレ
クタ6との上下二段に構成されており、下段ガスコレク
タ5のガス回収フ−ド5aに、二本の管の先端が隣設す
るガス回収フ−ド5aに夫々接続し、他の一本の管の先
端が上段ガスコレクタ6のガス回収フ−ド6a下方に位
置するように三又状の下部ガス抜き管5bが設けられて
おり、また、上段ガスコレクタ6は、下段ガスコレクタ
5の上向流通流路である開口部上方に一定の間隙を持っ
て設けられたガス回収フ−ド6aに、上端がガス上昇ゾ
−ンの下方に位置する上部ガス抜き管6bが設けられ、
更に、頂部には、上方へ突設したバッフル10が処理水
上昇ゾ−ンIIの下方に位置して設けられている。
The three-phase separating means 3 includes a plurality of long gas recovery hoods provided with degassing pipes, which are vertically arranged with respect to a lower gas collector 5 and an upper gas collector 6 which are arranged at predetermined intervals in the horizontal direction. The two pipes are connected to the gas recovery hood 5a of the lower gas collector 5 and the tips of the two pipes are connected to the adjacent gas recovery hood 5a, respectively. Is provided below the gas recovery hood 6a of the upper gas collector 6 with a trifurcated lower gas vent pipe 5b. An upper gas vent pipe 6b having an upper end located below the gas rising zone is provided on a gas recovery hood 6a provided with a certain gap above an opening which is a path,
Further, a baffle 10 projecting upward is provided on the top of the baffle 10 below the treated water rising zone II.

【0014】なお、下段ガスコレクタ5に設けられる三
又状の下部ガス抜き管5bは、垂直な管から下端で二本
の管に分岐し、二本の管は夫々隣設するガス回収フ−ド
5aの斜辺部に、90°方向で接続した形状であるの
が、ガス回収フ−ド5a内にガス界面が保持され、エア
リフト効果が低減されてグラニュ−ル汚泥の上昇が少な
くなるため好ましい。また、上段ガスコレクタ6に設け
られる上部ガス抜き管6bは、ガス回収フ−ド6aの内
部から頂部を貫通して設けられ、下端に切欠部11を設
けるのが、エアリフト効果が低減され、グラニュ−ル汚
泥の上昇が少なくなるため好ましい。また、切欠部11
は三角形状に切り込みを入れて設けた形状が好ましい。
[0014] The trifurcated lower gas vent pipe 5b provided in the lower gas collector 5 branches from a vertical pipe to two pipes at the lower end, and the two pipes are respectively provided with adjacent gas recovery pipes. It is preferable that the gas collection hood 5a has a gas interface held in the gas collection hood 5a, the air lift effect is reduced, and the rise of granulated sludge is reduced, since the gas collection hood 5a is connected to the oblique side of the gutter 5a in a 90 ° direction. . Further, the upper gas vent pipe 6b provided in the upper gas collector 6 is provided so as to penetrate from the inside of the gas recovery hood 6a to the top, and the notch 11 is provided at the lower end. This is preferable because the rise of sludge is reduced. Notch 11
Is preferably provided with a cut in a triangular shape.

【0015】汚泥床4は、処理槽2の下方にメタン菌を
主体として微生物が粒子化したグラニュ−ル汚泥でブラ
ンケット状態が形成されており、汚泥床4の高さは略一
定に保持され、被処理水とグラニュ−ル汚泥との接触が
平均的且つ均一に行われるように維持されている。ま
た、前記グラニュ−ル汚泥は、通常消化槽汚泥を種菌と
して形成されるが、直接他のUASB装置のグラニュ−
ル汚泥を充填してもよく、更に、微細な粒子又は多孔質
粒子を核とし、その表面にメタン菌を増殖させたもので
あってもよい。
The sludge bed 4 has a blanket state formed of granular sludge in which microorganisms are mainly composed of methane bacteria below the treatment tank 2, and the height of the sludge bed 4 is kept substantially constant. The contact between the water to be treated and the granular sludge is maintained so as to be even and uniform. In addition, the granular sludge is usually formed using a digester sludge as a seed fungus, but it is directly used in granules of other UASB devices.
The sludge may be filled with fine particles or porous particles as nuclei, and methane bacteria may be grown on the surface.

【0016】次に、前記構成の装置により食品加工排
水、醗酵工場排水、下水などの有機性排水を処理する作
用について説明する。通常、前記有機性排水である被処
理水は、図示しない調整槽に貯留され、必要によりpH
が調整されて前沈殿槽に導入され、被処理水中の夾雑物
が固液分離された被処理水がUASB装置の処理槽1に
供給される。また、被処理水量が少ない場合などには、
所定の上向流量や流速が得られるように、処理水循環管
が設けられ、処理水循環管から処理水を循環して水量の
確保が図られる。
Next, the operation of treating organic wastewater such as food processing wastewater, fermentation factory wastewater, and sewage by the above-described apparatus will be described. Usually, the water to be treated, which is the organic waste water, is stored in a regulating tank (not shown), and if necessary, the pH is adjusted.
Is adjusted and introduced into the pre-sedimentation tank, and the to-be-treated water from which impurities in the to-be-treated water are separated into solid and liquid is supplied to the treatment tank 1 of the UASB device. When the amount of water to be treated is small,
A treated water circulation pipe is provided so as to obtain a predetermined upward flow rate and a predetermined flow rate, and the treated water is circulated from the treated water circulation pipe to secure a sufficient amount of water.

【0017】被処理水は、被処理水供給管2aから被処
理水供給手段2に導入され、複数の吐出ノズルから処理
槽1内に吐出供給される。処理槽1に供給された被処理
水は、均一な上向流として汚泥床4を流通することによ
り、汚泥床4を形成するグラニュ−ル汚泥のメタン菌な
どの微生物により被処理水中の有機物が、炭酸ガスやメ
タンガスまで生物学的に分解される。
The treated water is introduced into the treated water supply means 2 from the treated water supply pipe 2a, and is discharged and supplied into the treatment tank 1 from a plurality of discharge nozzles. The treated water supplied to the treatment tank 1 flows through the sludge bed 4 as a uniform upward flow, so that organic matter in the treated water is removed by microorganisms such as methane bacteria of the granular sludge forming the sludge bed 4. It is biologically decomposed into carbon dioxide and methane.

【0018】前記被処理水の上向流速は、従来のUAS
B装置にあっては、汚泥床4の膨張展開に伴う汚泥粒子
の流出を防止するため、1〜2m/hr程度であり、被
処理水に含まれる無機性固形物が汚泥粒子に捕捉されや
すく、汚泥の生物活性を高く維持することができないと
共に、被処理水供給量も少ないため、高速、高負荷条件
で処理効率を上げることが困難であったが、本発明の高
速UASB装置では、グラニュ−ル汚泥、ガス及び処理
水の三相分離が効率よく行われるため、4〜30m/h
rと極めて速い流速とすることができ、汚泥床4の膨張
展開が積極的に図られ、被処理水と汚泥粒子との接触効
率を高めることができる。また、被処理水供給量も多く
でき、高速、高負荷条件で処理効率を上げることができ
る。
The upward flow velocity of the water to be treated is the same as that of a conventional UAS.
In the B apparatus, the flow rate is about 1 to 2 m / hr in order to prevent the sludge particles from flowing out due to the expansion and development of the sludge bed 4, and the inorganic solid matter contained in the water to be treated is easily captured by the sludge particles. However, the biological activity of the sludge cannot be kept high, and the amount of water to be treated is small. Therefore, it is difficult to increase the treatment efficiency under high-speed and high-load conditions. -4 to 30 m / h because three-phase separation of wastewater sludge, gas and treated water is performed efficiently
r, the flow velocity can be extremely high, the expansion and expansion of the sludge bed 4 can be positively achieved, and the contact efficiency between the water to be treated and the sludge particles can be increased. Further, the supply amount of the water to be treated can be increased, and the treatment efficiency can be increased under high-speed and high-load conditions.

【0019】汚泥床4の微生物で有機物が分解された被
処理水は、更に上昇して三層分離手段3に至り、下段ガ
スコネクタ5でグラニュ−ル汚泥に付着した発生ガス気
泡やエアリフト効果を起こす気泡が分離されることによ
り、グラニュ−ル汚泥が汚泥床4に沈降される。分離さ
れたガスは、ガス回収フ−ド5aで回収され、下部ガス
抜き管5bで上段ガスコネクタ6のガス回収フ−ド6a
に導入される。なお、下段ガスコネクタ5では、生成ガ
スの40〜70%量のガスを回収することができる。
The water to be treated, in which the organic matter is decomposed by the microorganisms on the sludge bed 4, further rises and reaches the three-layer separation means 3, where the gas bubbles attached to the granular sludge by the lower gas connector 5 and the air lift effect are reduced. By separating the generated bubbles, the granular sludge is settled on the sludge bed 4. The separated gas is recovered by a gas recovery hood 5a, and the gas recovery hood 6a of the upper gas connector 6 is connected to the lower gas vent pipe 5b.
Will be introduced. In the lower gas connector 5, 40 to 70% of the generated gas can be recovered.

【0020】前記下段ガスコネクタ5で三相分離された
被処理水は、上向流通流路である開口部を上昇して上段
ガスコレクタ6で、グラニュ−ル汚泥に付着した発生ガ
ス気泡やエアリフト効果を起こす気泡が更に分離され
る。分離されたグラニュ−ル汚泥は下段ガスコネクタ5
の開口部を経て汚泥床4に沈降される。分離されたガス
は、ガス回収フ−ド6aで回収され、下段ガスコレクタ
5で回収されたガスと共に、上部ガス抜き管6bで区画
部材7により形成されたガス上昇ゾ−ンIに導入され
る。回収されたガスは、ガス上昇ゾ−ンIを上昇して処
理槽1上部の気相部を経て、ガス排出手段9から、図示
しないガス吸引装置を介してガスタンクなどに回収され
る。なお、従来のUASB装置では、ガス回収流路に大
規模なシ−ルタンクを必要としたが、本発明の装置では
特に必要としない。また、ガス上昇ゾ−ンIでは、ガス
上向流と水の下降流などによる対流で、グラニュ−ル汚
泥に付着したガスが効率よく分離される。
The water to be treated, which has been separated into three phases by the lower gas connector 5, rises through an opening, which is an upward flow channel, and is generated by an upper gas collector 6, in which generated gas bubbles and air lifts adhering to the granular sludge. Bubbles causing the effect are further separated. The separated granular sludge is supplied to the lower gas connector 5.
Is settled on the sludge bed 4 through the opening. The separated gas is recovered by a gas recovery hood 6a and, together with the gas recovered by the lower gas collector 5, is introduced into a gas rising zone I formed by the partition member 7 through an upper degassing pipe 6b. . The recovered gas rises in the gas rising zone I, passes through the gas phase in the upper part of the processing tank 1, and is recovered from the gas discharging means 9 to a gas tank or the like via a gas suction device (not shown). Although the conventional UASB device requires a large-scale seal tank in the gas recovery channel, the device of the present invention does not particularly require it. In the gas rising zone I, the gas adhering to the granular sludge is efficiently separated by convection due to the upward flow of gas and the downward flow of water.

【0021】処理水は、処理水上昇ゾ−ンIIを上向流
し、処理水排出手段8の処理水オ−バ−フロ−手段8a
を経て、処理水排出管8bから清澄な処理水として処理
槽1外に排出され、必要により後段に設けられる図示し
ない処理装置に供給されるが、処理水上昇ゾ−ンIIで
は、ガス回収フ−ド6aの頂部に設けられたバッフル1
0により処理水が整流化されて導入され、また、ガスが
ほとんど分離されているため、グラニュ−ル汚泥が気泡
のエアリフト効果により浮上して、処理水排出管8bか
ら流出する恐れはない。
The treated water flows upward in the treated water rising zone II, and the treated water overflow means 8a of the treated water discharge means 8
Through the treated water discharge pipe 8b, the treated water is discharged out of the treatment tank 1 as clear treated water and supplied to a treatment device (not shown) provided at a later stage if necessary. Baffle 1 provided at the top of the door 6a
Since the treated water is rectified and introduced by 0, and the gas is almost separated, there is no possibility that the granular sludge will float by the air lift effect of the bubbles and flow out of the treated water discharge pipe 8b.

【0022】[0022]

【発明の効果】本発明は、簡単な構造の高効率な三相分
離手段であるため、設備費が低廉であり、生成ガスの分
離及びグラニュ−ル汚泥の沈降分離をより効率よく行う
ことができ、有機性排水の高効率処理が可能であり、ま
た、請求項2に記載の構成では、上部ガス抜き管の下端
に設けられた切欠部により、エアリフト効果が低減され
るため、グラニュ−ル汚泥の上昇が、少なくなるため、
更に効率的な処理を行うことができる高速UASB装置
である。
Since the present invention is a highly efficient three-phase separation means having a simple structure, the equipment cost is low, and the separation of generated gas and the sedimentation separation of granular sludge can be performed more efficiently. It is possible to perform highly efficient treatment of the organic waste water, and in the configuration according to the second aspect, the notch provided at the lower end of the upper degassing pipe reduces the air lift effect, so that the granules are formed. Because sludge rise is reduced,
This is a high-speed UASB device that can perform more efficient processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態のUASB装置の概略全
体構成図
FIG. 1 is a schematic overall configuration diagram of a UASB device according to an embodiment of the present invention.

【図2】図1の上部拡大図FIG. 2 is an enlarged view of the upper part of FIG.

【図3】図2の90°回転図FIG. 3 is a 90 ° rotation diagram of FIG. 2;

【図4】図2のA−A矢視図FIG. 4 is a view taken in the direction of arrows AA in FIG. 2;

【図5】図2のB−B矢視図FIG. 5 is a view taken in the direction of arrows BB in FIG. 2;

【符号の説明】[Explanation of symbols]

1:嫌気性処理槽 2:被処理水供給手段 3:三相分離手段 4:汚泥床 5:下段ガスコレクタ 5a:ガス回収フ−ド 5b:下部ガス抜き管 6:上段ガスコレクタ 6a:ガス回収フ−ド 6b:上部ガス抜き管 7:区画部材 8:処理水排出手段 9:ガス排出手段 10:バッフル 11:切欠部 1: Anaerobic treatment tank 2: Treatment water supply means 3: Three-phase separation means 4: Sludge bed 5: Lower gas collector 5a: Gas recovery hood 5b: Lower gas vent pipe 6: Upper gas collector 6a: Gas recovery Hood 6b: Upper gas vent pipe 7: Partition member 8: Treated water discharge means 9: Gas discharge means 10: Baffle 11: Notch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下部に被処理水供給手段、上部に処理水排
出手段及びガス排出手段を具備し、内部の下方に自己造
粒汚泥による汚泥床を形成した嫌気性処理槽で有機性排
水を上向流通させて処理する上向流嫌気性処理装置にお
いて、嫌気性処理槽内の上部に、複数のガス回収フ−ド
が水平方向に所定間隔で配置された下段ガスコレクタ及
び複数のガス回収フ−ドが下段ガスコレクタの上向流通
流路である開口部上方に位置する水平方向に所定間隔で
配置された上段ガスコレクタとの二段に構成されたガ
ス、液及び汚泥を分離する三相分離手段を設け、下段ガ
スコレクタのガス回収フ−ドに、二本の管の先端が隣設
するガス回収フ−ドに夫々接続し、他の一本の管の先端
が上段ガスコレクタのガス回収フ−ド下方に位置するよ
うに三又状の下部ガス抜き管を設け、上段ガスコレクタ
の上方の処理槽内を水面位置よりも高く延設した区画部
材で、水平方向にガス上昇ゾ−ンと処理水上昇ゾ−ンに
区画し、上段ガスコレクタのガス回収フ−ドに、上端が
ガス上昇ゾ−ンの下方に位置する上部ガス抜き管及び処
理水上昇ゾ−ンの下方に位置して頂部から上方へ突設し
たバッフルを設け、処理水上昇ゾ−ンの上部に、処理水
排出手段を設けたことを特徴とする上向流嫌気性処理装
置。
1. An anaerobic treatment tank having a treated water supply means in a lower part, a treated water discharge means and a gas discharge means in an upper part, and a sludge bed formed by self-agglomerated sludge below the inside. In an upward flow anaerobic treatment apparatus for processing by circulating upward, a lower gas collector in which a plurality of gas recovery hoods are arranged at predetermined intervals in a horizontal direction in an upper part of an anaerobic processing tank and a plurality of gas recovery fins. A hood for separating gas, liquid and sludge formed in two stages with an upper gas collector which is located above the opening which is an upward flow passage of the lower gas collector and which is horizontally arranged at a predetermined interval; A phase separation means is provided, and the ends of two pipes are respectively connected to the gas recovery hood of the lower gas collector and the adjacent gas recovery hood, and the other one of the pipes is connected to the upper gas collector. A three-pronged lower guard is located below the gas recovery hood. A draft pipe is provided, and the inside of the processing tank above the upper gas collector is extended above the water surface position, and is horizontally partitioned into a gas rising zone and a treated water rising zone. The gas recovery hood is provided with an upper degassing pipe whose upper end is located below the gas rise zone and a baffle located below the treated water rise zone and projecting upward from the top to raise the treated water. An upflow anaerobic treatment apparatus characterized in that treated water discharging means is provided above the zone.
【請求項2】上部ガス抜き管がガス回収フ−ドの内部か
ら頂部を貫通して設けられ、下端に切欠部を設けたこと
を特徴とする請求項1記載の上向流嫌気性処理装置。
2. An upflow anaerobic treatment apparatus according to claim 1, wherein an upper gas vent pipe is provided from the inside of the gas recovery hood so as to penetrate the top, and a notch is provided at a lower end. .
JP2000077531A 2000-03-21 2000-03-21 Upward flow anaerobic treating device Pending JP2001259681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077531A JP2001259681A (en) 2000-03-21 2000-03-21 Upward flow anaerobic treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077531A JP2001259681A (en) 2000-03-21 2000-03-21 Upward flow anaerobic treating device

Publications (1)

Publication Number Publication Date
JP2001259681A true JP2001259681A (en) 2001-09-25

Family

ID=18595084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077531A Pending JP2001259681A (en) 2000-03-21 2000-03-21 Upward flow anaerobic treating device

Country Status (1)

Country Link
JP (1) JP2001259681A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
CN102874921A (en) * 2012-10-25 2013-01-16 蔡志武 Up-flow anaerobic sludge bed reactor and operation method
US10829399B2 (en) 2016-06-13 2020-11-10 Woxford Environmental Technologies (Uk) Ltd. Anaerobic reactor
CN114455700A (en) * 2022-01-20 2022-05-10 扬州大学 Anaerobic reactor baffled water outlet device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
CN102874921A (en) * 2012-10-25 2013-01-16 蔡志武 Up-flow anaerobic sludge bed reactor and operation method
US10829399B2 (en) 2016-06-13 2020-11-10 Woxford Environmental Technologies (Uk) Ltd. Anaerobic reactor
CN114455700A (en) * 2022-01-20 2022-05-10 扬州大学 Anaerobic reactor baffled water outlet device
CN114455700B (en) * 2022-01-20 2023-12-08 扬州大学 Anaerobic reactor baffling water outlet device

Similar Documents

Publication Publication Date Title
US7731850B2 (en) Apparatus and method for treating wastewater
KR101397780B1 (en) Process and reactor for anaerobic waste water purification
KR100398774B1 (en) Method and device for anaerobic purification of waste water using the UASB method
JP4920700B2 (en) Method and reactor for anaerobic wastewater purification
KR101225579B1 (en) Anaerobic purification device
JP4312858B2 (en) Upstream anaerobic treatment apparatus and treatment method
RU2522105C2 (en) Upward flow reactor with controlled circulation of biomass
CA1038090A (en) Reactor for biological water treatment
JP2001269694A (en) Upflow anaerobic treating device
CN102471109B (en) Reactor for anaerobically purifying waste water comprising multi-phase separator devices
JP2002159990A (en) Anaerobic treating vessel
JP2001259681A (en) Upward flow anaerobic treating device
KR20100092115A (en) External circulation anaerobic digester
JP4162234B2 (en) Anaerobic treatment equipment
CN214528605U (en) Reactor and processing system of fungus algae coprocessing waste water
JP4106128B2 (en) Upflow anaerobic treatment apparatus and treatment method
JP2002263683A (en) Upward stream anaerobic processor
JP2002219486A (en) Anaerobic treatment equipment with upward flow
CN212315694U (en) Aerobic tank
JP2003340487A (en) Method for supplying water to be treated of upflow anaerobic treatment apparatus
JP4765041B2 (en) Water treatment equipment
CN106587337B (en) A kind of immersion aerobic activated sludge granulation process
JP2006136783A (en) Apparatus and method for treating waste water
JP2002239589A (en) Anaerobic treatment apparatus by ascending flow
CN215756921U (en) Air-lift circulation reaction device