JP2003340487A - Method for supplying water to be treated of upflow anaerobic treatment apparatus - Google Patents

Method for supplying water to be treated of upflow anaerobic treatment apparatus

Info

Publication number
JP2003340487A
JP2003340487A JP2002147027A JP2002147027A JP2003340487A JP 2003340487 A JP2003340487 A JP 2003340487A JP 2002147027 A JP2002147027 A JP 2002147027A JP 2002147027 A JP2002147027 A JP 2002147027A JP 2003340487 A JP2003340487 A JP 2003340487A
Authority
JP
Japan
Prior art keywords
treated
treated water
anaerobic treatment
discharge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002147027A
Other languages
Japanese (ja)
Inventor
Shigeo Nakahata
繁夫 中畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2002147027A priority Critical patent/JP2003340487A/en
Publication of JP2003340487A publication Critical patent/JP2003340487A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an upflow anaerobic treatment method by which ballooning of granules and channeling in the up flow of water to be treated are prevented and the occurrence of a possibility of outflow of the granules entrained by the treated water from a means for discharging the treated water is averted. <P>SOLUTION: The method for supplying the water to be treated of an upflow anaerobic treatment apparatus is characterized in that a means for supplying the water to be treated has discharge nozzles arranged apart prescribed intervals within an anaerobic treating vessel of the upflow anaerobic treatment apparatus and that the velocity of discharge flow of the water to be treated from the discharge nozzles is intermittently specified to 3 to 5 times that in ordinary operation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排水を嫌気
性処理槽内に形成された微生物の自己造粒汚泥により形
成された汚泥床(以下単に汚泥床という。)を上向流通
させて、微生物の生物学的作用で排水中の有機物を分解
処理する上向流嫌気性処理装置における被処理水供給方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention upwardly distributes organic wastewater through a sludge bed (hereinafter simply referred to as a sludge bed) formed by self-granulating sludge of microorganisms formed in an anaerobic treatment tank. The present invention relates to a method for supplying water to be treated in an upflow anaerobic treatment apparatus for decomposing and treating organic matter in wastewater by biological action of microorganisms.

【0002】[0002]

【従来の技術】従来、食品加工排水、醗酵工場排水、化
学工場排水及び紙パルプ工場排水などの有機性産業排水
や下水を処理する装置の一つとして上向流嫌気性処理装
置がある。本上向流嫌気性処理装置は、底部に被処理水
供給手段、上部に処理水排出手段及び生成ガス排出手段
を配設し、内部の下方にメタン菌を主体とした嫌気性微
生物が粒子化(以下グラニュールという。)して汚泥床
を形成した嫌気性処理槽が設けられ、汚泥床の下部に被
処理水供給手段から有機性排水を供給して汚泥床を上向
流通させることにより、グラニュールを一定高さで展開
滞留させ、そのグラニュールを構成する嫌気性微生物で
排水中の有機物が生物学的に分解され、発生したメタン
ガスや炭酸ガスなどの生成ガス、処理水およびグラニュ
ールを上部で分離し、処理水は処理水排出手段、生成ガ
スはガス排出手段から排出し、グラニュールは汚泥床に
沈降させて汚泥床を保持させる処理装置である。
2. Description of the Related Art Conventionally, an upflow anaerobic treatment apparatus is one of the apparatuses for treating organic industrial wastewater and sewage such as food processing wastewater, fermentation factory wastewater, chemical factory wastewater and pulp and paper factory wastewater. This upflow anaerobic treatment device is provided with treated water supply means at the bottom, treated water discharge means and generated gas discharge means at the upper part, and anaerobic microorganisms mainly composed of methane bacteria are granulated below inside. By providing an anaerobic treatment tank in which a sludge bed is formed (hereinafter referred to as a granule), and by supplying organic wastewater from the treated water supply means to the lower part of the sludge bed to cause the sludge bed to flow upward, The granules are developed and retained at a certain height, and the anaerobic microorganisms that compose the granules biologically decompose organic matter in the wastewater to generate generated gas such as methane gas and carbon dioxide gas, treated water and granules. It is a treatment device that separates the treated water in the upper part, discharges the treated water from the treated water discharge means and the generated gas from the gas discharge means, and causes the granules to settle in the sludge bed to hold the sludge bed.

【0003】前記上向流嫌気性処理装置は、排水中の有
機物を生物学的に分解する嫌気性微生物が、微生物自体
又は微細粒子を核として粒子化するため、微生物が高密
度で保持でき、高濃度の有機性排水を効率的に処理する
ことができることにより、装置の設置面積の縮小化が図
れ、また、生成するメタンガスを燃料や化学製品製造用
原料などとして利用できる利点があり、多数設置されて
いる。
In the upflow anaerobic treatment apparatus, the anaerobic microorganisms that biologically decompose organic matter in wastewater are granulated with the microorganisms themselves or fine particles as the core, so that the microorganisms can be retained at a high density. Since it is possible to efficiently treat high-concentration organic wastewater, the installation area of the equipment can be reduced, and the methane gas produced can be used as a fuel or a raw material for the production of chemical products. Has been done.

【0004】[0004]

【発明が解決しようとする課題】従来の一般的な上向流
嫌気性処理装置における被処理水供給手段は、嫌気性処
理槽内の底部に配置された格子状や環状の配管に、所定
の間隔で多数の吐出ノズルが具備されたディストリビュ
ータが一般的であり、吐出ノズルからの被処理水吐出流
速は、1〜1.5m/secの一定速度で連続的に吐出
運転され、その吐出速度で形成されるグラニュール径
は、1〜3mm程度に維持される。
The means for supplying water to be treated in the conventional general upward flow anaerobic treatment apparatus has a predetermined shape in a grid or annular pipe arranged at the bottom of the anaerobic treatment tank. Distributors equipped with a large number of discharge nozzles at regular intervals are generally used, and the discharge velocity of the treated water from the discharge nozzles is continuously discharged at a constant speed of 1 to 1.5 m / sec. The formed granule diameter is maintained at about 1 to 3 mm.

【0005】しかし、前記吐出速度では、底部に被処理
水中の浮遊固形分や見掛比重の重いグラニュールが堆積
し、被処理水の上向流にチャンネリング現象を起しやす
いため、局部的に汚泥負荷が過負荷状態になり、グラニ
ュール全体に生物学的に必要な基質が供給されなくな
り、グラニュール表面に酸生成菌が密集増殖し、グラニ
ュールの構造がガスの透過しにくい構造となり、グラニ
ュールの肥大化して比重が軽くなって系外に流出する問
題が生じ、また、上向流速を速めると、攪拌作用は改善
されるが、グラニュールが微細化して、前記と同様に、
系外に流出されやすくなるため、高速、高負荷条件で処
理効率を上げることが困難であった。
However, at the above-mentioned discharge speed, suspended solids in the water to be treated and granules having a large apparent specific gravity are accumulated on the bottom portion, and a channeling phenomenon is likely to occur in the upward flow of the water to be treated, so that the locality is localized. The sludge load becomes overloaded, the biologically necessary substrate is not supplied to the entire granule, acid-producing bacteria are densely grown on the surface of the granule, and the structure of the granule becomes a structure that gas is difficult to permeate. , The specific gravity of the granules becomes large and the specific gravity becomes lighter, causing a problem of flowing out of the system.Also, if the upward flow velocity is increased, the stirring action is improved, but the granules become finer, and as described above,
Since it easily flows out of the system, it is difficult to improve the processing efficiency under high speed and high load conditions.

【0006】従って、本発明は、前記従来技術の問題点
に鑑みて成されたものであり、グラニュールの肥大化や
被処理水の上向流におけるチャンネリングが防止され、
グラニュールが処理水に伴われて処理水排出手段から流
出する恐れも生じない上向流嫌気性処理方法を提供する
ことにより、有機性排水の高効率処理を可能とする目的
で成されたものである。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and prevents enlargement of the granules and channeling in the upward flow of the water to be treated,
It was made for the purpose of enabling highly efficient treatment of organic wastewater by providing an upflow anaerobic treatment method in which there is no risk that granules will accompany the treated water and flow out of the treated water discharge means. Is.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明の要旨は、請求項1に記載の発明においては、
底部に被処理水供給手段、上部に処理水排出手段及び生
成ガス排出手段を配設した嫌気性処理槽にあって、該嫌
気性処理槽内の下方に自己造粒汚泥により形成された汚
泥床、該汚泥床の上方部にガス、液及び汚泥の三層に分
離する三層分離部及び頂上部にガス滞留部が形成され、
有機性排水を上向流通させて処理する上向流嫌気性処理
装置において、前記被処理水供給手段が所定の間隔で配
置された吐出ノズルを有し、該吐出ノズルからの被処理
水吐出流速を間欠的に通常運転時の3〜5倍速とするこ
とを特徴とする上向流嫌気性処理装置の被処理水供給方
法である。
Means for Solving the Problems The gist of the present invention for achieving the above-mentioned object is, in the invention described in claim 1,
A sludge bed formed by self-granulating sludge in the lower part of the anaerobic treatment tank, in which a treated water supply means is provided at the bottom and a treated water discharge means and a generated gas discharge means are provided at the top. , A gas retention part is formed at the top and a three-layer separation part for separating gas, liquid and sludge into three layers in the upper part of the sludge bed,
In an upflow anaerobic treatment apparatus that treats organic wastewater by flowing upward, the treated water supply means has discharge nozzles arranged at predetermined intervals, and the treated water discharge flow velocity from the discharge nozzle. Is intermittently set to 3 to 5 times the speed during normal operation, and the treated water supply method for an upflow anaerobic treatment apparatus is characterized.

【0008】前記吐出ノズルからの被処理水吐出流速を
間欠的に通常運転時の3〜5倍速とすることにより、グ
ラニュールに付着した気泡を剥離除去するとともに、グ
ラニュールを破壊して内封された気泡を分離し、粒子径
を沈降及び接触効率の向上が図れる適宜な大きさに揃え
ることができるため、グラニュール流出による微生物濃
度の減少が防止され、被処理水とグラニュールの接触面
積も大きくなり高効率処理が可能となる。
By intermittently increasing the flow velocity of the water to be treated discharged from the discharge nozzle to 3 to 5 times that of the normal operation, the bubbles adhering to the granules are peeled and removed, and the granules are broken to seal the inside. The generated air bubbles can be separated and the particle size can be adjusted to an appropriate size that can settle and improve the contact efficiency, so the decrease of the microbial concentration due to the outflow of granules can be prevented, and the contact area between the water to be treated and the granules can be prevented. Also becomes large and high efficiency processing becomes possible.

【0009】また、請求項2に記載の方法にあっては、
請求項1における通常運転時の吐出ノズルからの被処理
水吐出流速が1〜1.5m/secであり、間欠的に吐
出流速を速めた時の被処理水吐出流速が3〜5m/se
cである上向流嫌気性処理装置の被処理水供給方法であ
る。
Further, in the method according to claim 2,
The treated water discharge flow rate from the discharge nozzle during normal operation according to claim 1 is 1 to 1.5 m / sec, and the treated water discharge flow rate when the discharge flow rate is intermittently increased is 3 to 5 m / se.
It is a method for supplying untreated water of the upflow anaerobic treatment apparatus which is c.

【0010】前記構成の吐出ノズルからの被処理水吐出
流速を通常運転の1〜1.5m/secから間欠的に3
〜5m/secとする操作により、グラニュールの粒子
径を沈降及び接触効率の向上が図れる適宜な大きさに揃
える効果が向上する。
The flow velocity of the water to be treated discharged from the discharge nozzle having the above construction is intermittently changed from 1 to 1.5 m / sec of the normal operation to 3
By the operation of about 5 m / sec, the effect of adjusting the particle size of the granules to an appropriate size that can settle and improve the contact efficiency is improved.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。図1は本発明の一実施の形態の上向流嫌
気性処理装置の系統図、図2は本発明の一実施の形態の
被処理水供給手段であるディストリビュータの概略平面
図、図3は本発明の被処理水供給方法と従来の被処理水
供給方法におけるグラニュールの粒径分布図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of an upflow anaerobic treatment apparatus according to an embodiment of the present invention, FIG. 2 is a schematic plan view of a distributor that is a means for supplying treated water according to an embodiment of the present invention, and FIG. It is a particle size distribution diagram of a granule in the method for supplying untreated water of the invention and the conventional method for supplying untreated water.

【0012】図1において、1は密閉構造で円筒形状の
嫌気性処理槽(以下単に処理槽という。)であるが、矩
形体形状の処理槽であってもよい。処理槽1の下部に
は、被処理水供給流路10が接続した被処理水供給手段
2が設けられ、上部には、処理水流入口に固形分分離部
材5が具備されたオ−バ−フロ−手段4が設けられ、処
理水排出流路12が接続している。また、頂部には、図
示しないガス吸引装置が具備された生成ガス排出手段1
1が設けられている。
In FIG. 1, reference numeral 1 denotes an anaerobic treatment tank having a closed structure and a cylindrical shape (hereinafter simply referred to as a treatment tank), but it may be a rectangular treatment tank. The treated water supply means 2 connected to the treated water supply passage 10 is provided in the lower part of the treatment tank 1, and the overflow having the solid content separating member 5 at the treated water inlet is provided in the upper part. -Means 4 are provided, to which the treated water discharge channel 12 is connected. Further, the generated gas discharge means 1 having a gas suction device (not shown) at the top
1 is provided.

【0013】前記処理槽1内には、下方に自己造粒汚泥
により形成された汚泥床A、汚泥床Aの上方部にガス、
液及び汚泥の三層に分離する三層分離部B及び頂上部に
ガス滞留部Cが形成されており、三層分離部Bには、下
段に山形衝突板3aと、上段にガスフード3bが上下千
鳥状に配置され、液を蛇行させて上昇させる流路を形成
し、生成ガスを捕集及び浮上グラニュール9を滞留させ
て沈降させるガスコレクタ3が設けられている。また、
ガス滞留部Cには、処理液面に向けて液を噴射し、浮上
グラニュール9に付着した気泡を剥離除去してグラニュ
ールを沈降させることができるスプレ−手段6が配置さ
れている。なお、ガスフード3bで捕集した生成ガスを
ガス滞留部Cに導入する構成となっているが、捕集した
生成ガスを図示しないガスタンクなどへそのまま抜出し
て貯留する構成としてもよい。
In the treatment tank 1, a sludge bed A formed by self-granulating sludge below, a gas above the sludge bed A,
A three-layer separation part B that separates into three layers of liquid and sludge and a gas retention part C are formed at the top. In the three-layer separation part B, a chevron-shaped collision plate 3a in the lower stage and a gas hood 3b in the upper stage are formed. A gas collector 3 is provided which is arranged in a zigzag pattern on the upper and lower sides, forms a flow path for causing the liquid to meander and rise, and collects the generated gas and causes the floating granules 9 to be retained and settled. Also,
In the gas retention part C, a spraying means 6 is arranged which is capable of injecting a liquid toward the surface of the processing liquid and peeling and removing bubbles adhering to the floating granules 9 to settle the granules. Although the generated gas collected by the gas hood 3b is introduced into the gas retention section C, the collected generated gas may be directly extracted and stored in a gas tank or the like (not shown).

【0014】更に、三層分離部Bは、上下に複数のガス
フードを設けたガスコレクタや、そのガスコレクタを上
下に複数設けた構成としてもよい。また、排出された処
理水の一部を貯留する処理水貯留タンク7が設けられ、
処理水供給ポンプ8が付設されて、処理槽1内における
所定の上向流速を維持するための循環水及びスプレ−手
段6のスプレー水として供給される構成となっている。
Further, the three-layer separating section B may be constituted by a gas collector having a plurality of gas hoods provided at the top and bottom, or a configuration having a plurality of gas collectors provided at the top and bottom. Further, a treated water storage tank 7 for storing a part of the discharged treated water is provided,
A treated water supply pump 8 is additionally provided and is supplied as circulating water for maintaining a predetermined upward flow velocity in the treatment tank 1 and as spray water for the spraying means 6.

【0015】前記オ−バ−フロ−手段4の処理水流入口
に具備される固形分分離部材5としては、ノッチ、スリ
ット状、格子状、又は金網などで形成された板状部材を
用いることができるが、処理水に同伴されて浮上してき
た微生物粒子が流出しない構造であればよい。
As the solid content separating member 5 provided at the treated water inlet of the overflow means 4, a plate-like member formed of notches, slits, lattices, wire mesh or the like is used. However, any structure may be used as long as the microbial particles that float along with the treated water do not flow out.

【0016】被処理水供給手段2は、被処理水を処理槽
1の水平断面全体を均一に上向流通させるのが好ましい
ため、処理槽1の底部に同心円状に配置された複数の環
状配管に、所定の間隔で多数の吐出ノズルを配置したデ
ィストリビュータを配設してあるが、格子状ディストリ
ビュータを底面の略全面にわたって配置する構成であっ
てもよく、これらには限定されない。
Since it is preferable that the treated water supply means 2 allows the treated water to uniformly flow upward over the entire horizontal cross section of the treatment tank 1, a plurality of annular pipes arranged concentrically at the bottom of the treatment tank 1. Although the distributor in which a large number of discharge nozzles are arranged at a predetermined interval is provided in the above, the grid-like distributor may be arranged over substantially the entire bottom surface, and the present invention is not limited thereto.

【0017】また、図2において示す、被処理水供給手
段2であるディストリビュータ20の具体的実施の形態
としては、処理槽壁25及び底部から所定の間隔を持っ
て、小径、大径の2つの環状配管23a、23bを同心
円状に配置し、夫々の環状配管には複数の吐出ノズル2
4a、24bが所定の間隔で具備されている。また、小
径の環状配管23aに被処理水を供給するために、被処
理水供給量を制御する電磁弁22bを具備した被処理水
供給管21bが接続し、大径の環状配管23bには、被
処理水供給量を制御する電磁弁22aを具備した被処理
水供給管21a及び電磁弁22cを具備した被処理水供
給管21cが接続している構成となっている。
As a specific embodiment of the distributor 20 which is the means for supplying water to be treated 2 shown in FIG. 2, there are two small diameters and large diameters with a predetermined distance from the treatment tank wall 25 and the bottom. The annular pipes 23a and 23b are arranged concentrically, and each of the annular pipes has a plurality of discharge nozzles 2.
4a and 24b are provided at a predetermined interval. Further, in order to supply the untreated water to the small-diameter annular pipe 23a, the untreated water supply pipe 21b having an electromagnetic valve 22b for controlling the untreated water supply amount is connected, and the large-diameter annular pipe 23b is The treated water supply pipe 21a having an electromagnetic valve 22a for controlling the amount of treated water supplied and the treated water supply pipe 21c having an electromagnetic valve 22c are connected to each other.

【0018】以下に本発明の作用を図に基づいて説明す
る。食品加工排水などの有機性排水の被処理水を、被処
理水供給流路10から被処理水供給手段2を介して処理
槽1内の下部に供給し、処理槽1内を均一な上向流とし
て流通させることにより、初期に充填された下水汚泥な
どを種菌として自己造粒したメタン菌などの微生物によ
るグラニュール9の汚泥床Aが形成されるが、初期に他
の装置からのグラニュール9を充填してもよい。
The operation of the present invention will be described below with reference to the drawings. Treated water of organic wastewater such as food processing wastewater is supplied from the treated water supply flow path 10 to the lower part of the treatment tank 1 through the treated water supply means 2, and the inside of the treatment tank 1 is uniformly upwardly directed. The sludge bed A of the granules 9 is formed by microorganisms such as methane bacteria that are self-granulated by using the initially filled sewage sludge as seeds by circulating it as a stream, but the granules from other devices are initially formed. 9 may be filled.

【0019】処理槽1内に供給された被処理水は、汚泥
床Aを上向流通する間に被処理水中の有機物が微生物の
生物学的作用で分解処理され、メタンガスや炭酸ガスな
どが生成される。なお、被処理水は、図2において、通
常運転時は、電磁弁22a、22b、22cの全部を開
弁し、被処理水供給管21a、21b、21cを介し
て、全部の環状配管23a、23bから供給することに
より、吐出ノズル24a、24bからの遅い吐出流速
(例えば、1〜1.5m/sec)で供給される。
The water to be treated supplied to the treatment tank 1 is decomposed by the biological action of microorganisms in the water to be treated while flowing upward through the sludge bed A to produce methane gas, carbon dioxide gas and the like. To be done. In addition, as for the water to be treated, in normal operation, all the electromagnetic valves 22a, 22b, 22c are opened in FIG. 2, and all the annular pipes 23a, 21b, 21c are passed through the treated water supply pipes 21a, 21b, 21c. By supplying from 23b, it is supplied at a slow discharge flow velocity (for example, 1 to 1.5 m / sec) from the discharge nozzles 24a and 24b.

【0020】また、所定の時間間隔で吐出ノズルからの
吐出流速を約3〜5倍(例えば、3〜7.5m/se
c)にする運転が行われるが、例えば、電磁弁22a、
22bを閉弁し、電磁弁22cのみを開弁することによ
り、被処理水全量を被処理水供給管21cを介して環状
配管23bに供給することにより、吐出ノズル24bか
らの吐出流速を約3〜5倍に上昇させる操作を約15秒
間継続する。
Further, the discharge flow velocity from the discharge nozzle is about 3 to 5 times (for example, 3 to 7.5 m / se) at a predetermined time interval.
Although the operation of c) is performed, for example, the solenoid valve 22a,
22b is closed and only the solenoid valve 22c is opened, so that the total amount of the treated water is supplied to the annular pipe 23b through the treated water supply pipe 21c, so that the discharge flow rate from the discharge nozzle 24b is about 3%. The operation of increasing the volume by 5 times is continued for about 15 seconds.

【0021】次に、所定の時間間隔で電磁弁22b、2
2cを閉弁し、電磁弁22aのみを開弁することによ
り、被処理水全量を被処理水供給管21aを介して環状
配管23bに供給することにより、吐出ノズル24bか
らの吐出流速を約3〜5倍に上昇させる操作を約15秒
間継続する。また次に、所定の時間間隔で電磁弁22
a、22cを閉弁し、電磁弁22bのみを開弁すること
により、被処理水全量を被処理水供給管21bを介して
環状配管23aに供給することにより、吐出ノズル24
aからの吐出流速を約3〜5倍に上昇させる操作を約1
5秒間継続する。なお、前記電磁弁の開閉制御はタイマ
ーによる自動運転が好ましく、前記一連の操作は通常1
回/日程度行われる。
Next, the solenoid valves 22b and 2b are set at predetermined time intervals.
2c is closed and only the solenoid valve 22a is opened, so that the total amount of the treated water is supplied to the annular pipe 23b through the treated water supply pipe 21a, and the discharge flow rate from the discharge nozzle 24b is about 3 The operation of increasing the volume by 5 times is continued for about 15 seconds. Next, at a predetermined time interval, the solenoid valve 22
a and 22c are closed, and only the solenoid valve 22b is opened, so that the entire amount of water to be treated is supplied to the annular pipe 23a through the water to be treated supply pipe 21b.
About 1 to increase the discharge flow rate from a to about 3 to 5 times
Continue for 5 seconds. The solenoid valve opening / closing control is preferably performed automatically by a timer, and the series of operations is usually 1
Held once / day.

【0022】前記の吐出ノズルからの被処理水吐出流速
を通常運転時の1〜1.5m/secから間欠的に約3
〜5倍の3〜7.5m/secとする操作により、グラ
ニュールに付着した気泡を剥離除去するとともに、グラ
ニュールを剪断破壊して内封された気泡を分離し、粒子
径を沈降及び接触効率の向上が図れる適宜な大きさ(例
えば、0.5〜1.0mm)に揃えることができる。
The flow velocity of the water to be treated discharged from the discharge nozzle is intermittently set to about 3 from 1 to 1.5 m / sec in the normal operation.
By 5 times to 3 to 7.5 m / sec, the bubbles adhering to the granules are peeled and removed, and the granules are sheared and broken to separate the enclosed bubbles, and the particle size is settled and contacted. They can be arranged in an appropriate size (for example, 0.5 to 1.0 mm) that can improve efficiency.

【0023】汚泥床Aの微生物で有機物が分解された被
処理水は、更に上昇して三層分離部Bのガスコレクタ3
に至り、下段の山形衝突板3aで浮上グラニュール9が
分離され、汚泥床Aに沈降循環され、また、浮上グラニ
ュール9の一部や生成ガスは処理液に伴なわれて蛇行上
昇し、上段のガスフード3bにより浮上グラニュール9
及び生成ガスが分離される。生成ガスはガスフード3b
で集められてガス滞留部Cに導入され、浮上グラニュー
ル9は滞留する間に汚泥床Aへ沈降される。
The water to be treated, in which the organic matter has been decomposed by the microorganisms in the sludge bed A, further rises and the gas collector 3 in the three-layer separation section B
And the floating granules 9 are separated by the lower mountain-shaped collision plate 3a and settled and circulated in the sludge bed A, and a part of the floating granules 9 and the produced gas meander along with the treatment liquid, Levitation granule 9 by the upper gas hood 3b
And the product gas is separated. The generated gas is the gas hood 3b
Is collected and introduced into the gas retention section C, and the floating granules 9 are settled on the sludge bed A while retaining.

【0024】なお、グラニュールは平均粒径0.5mm
で15〜20m/hrの沈降速度を持っており、高効率
処理における液上昇速度が10m/hrであっても、沈
降速度の方が大きいため、汚泥床を安定して保持でき
る。従って、グラニュールの浮上流出による微生物濃度
の減少が防止され、また、被処理水とグラニュールの接
触面積も大きくなり高効率処理が可能となる。
The granule has an average particle size of 0.5 mm.
The sedimentation speed is 15 to 20 m / hr, and even if the liquid rising speed in the high-efficiency treatment is 10 m / hr, the sedimentation speed is higher, so that the sludge bed can be stably held. Therefore, a decrease in the concentration of microorganisms due to floating outflow of granules is prevented, and the contact area between the water to be treated and the granules becomes large, which enables highly efficient treatment.

【0025】三層分離部Bのガスコレクタ3で生成ガス
とグラニュール9が分離された被処理水は、更に上昇し
てガス滞留部Cに至り、残存する生成ガスが静置分離さ
れ、オ−バ−フロ−手段4の処理水流入口に具備された
固形分分離部材5により残存グラニュール9が分離さ
れ、清澄な処理水として処理水排出流路12から処理槽
外に排出される。また、ガス滞留部Cに分離された生成
ガスは、図示しないガス吸引装置を介して生成ガス排出
手段11からガスタンクなどに回収される。なお、ガス
滞留部に滞留する被処理水は、スプレ−手段6から噴射
される処理水により、残存する浮上グラニュール9に付
着した気泡が剥離除去されるため、効率的にグラニュー
ル9を沈降分離することができる。
The water to be treated from which the generated gas and the granules 9 are separated by the gas collector 3 of the three-layer separation section B further rises to the gas retention section C, and the remaining generated gas is statically separated, The residual granules 9 are separated by the solid content separating member 5 provided at the treated water inlet of the blower means 4, and are discharged from the treated water discharge passage 12 to the outside of the treatment tank as clear treated water. Further, the generated gas separated in the gas retention section C is recovered from the generated gas discharge means 11 to a gas tank or the like via a gas suction device (not shown). In addition, the water to be treated that remains in the gas retaining portion is efficiently ejected from the spraying means 6 because the bubbles adhering to the remaining floating granules 9 are removed by the treated water. Can be separated.

【0026】処理水排出流路12から処理槽1外に排出
された清澄な処理水は系外に排出されるが、その一部
は、処理水貯留タンク7に貯留されたのち、処理水供給
ポンプ8を介して、その一部を処理水循環流路14を介
して処理槽1内における所定の上向流速維持のために、
被処理水供給流路10に合流して被処理水に混合し、処
理槽1内に循環され、残部の処理水はスプレー水供給流
路13を介してスプレ−手段6のスプレー水として供給
される。
The clear treated water discharged from the treated water discharge channel 12 to the outside of the treatment tank 1 is discharged to the outside of the system, and a part of it is stored in the treated water storage tank 7 and then supplied to the treated water. In order to maintain a predetermined upward flow velocity in the treatment tank 1 via the pump 8 and a part of the treatment water circulation flow path 14,
The treated water is joined to the treated water supply channel 10, mixed with the treated water, circulated in the treatment tank 1, and the remaining treated water is supplied as spray water for the spraying means 6 through a spray water supply channel 13. It

【0027】[0027]

【実施例】本発明の被処理水供給方法と従来の被処理水
供給方法におけるグラニュールの粒径分布を測定した。
なお、従来の被処理水供給方法における吐出ノズルから
の吐出流速は、1〜1.5m/sec、本発明の被処理
水供給方法では、吐出流速を、1〜1.5m/secで
通常運転し、1日に1回間欠的に、4m/secで運転
した。その結果、図3の(イ)従来の被処理水供給方
法、(ロ)本発明の被処理水供給方法、に示すグラニュ
ール粒径分布ように、従来方法では、グラニュール粒径
分布は、1.18〜1.00mmをピークとして0.6
〜2.8mmの範囲でばらついていたが、本発明の方法
では、0.6〜0.425mmをピークとして0.6〜
1.7mmの狭い範囲に揃えられた。これにより、グラ
ニュール粒子径が均一化すると共に適宜な沈降状態を保
つことのできる粒径となるため、処理水に伴われて処理
水排出手段から流出する恐れがなく、高効率処理が可能
となった。
[Examples] The particle size distribution of granules in the method for supplying treated water of the present invention and the conventional method for supplying treated water was measured.
The discharge flow rate from the discharge nozzle in the conventional untreated water supply method is 1 to 1.5 m / sec, and in the untreated water supply method of the present invention, the discharge flow rate is 1 to 1.5 m / sec in normal operation. Then, the vehicle was intermittently operated at 4 m / sec once a day. As a result, in the conventional method, the granule particle size distribution is as shown in (a) the conventional untreated water supply method and (b) the untreated water supply method of the present invention, as shown in FIG. 0.6 with a peak at 1.18 to 1.00 mm
However, in the method of the present invention, the peak is 0.6 to 0.425 mm, and the peak is 0.6 to 0.425 mm.
It was arranged in a narrow range of 1.7 mm. As a result, the particle size of the granules becomes uniform and the particle size is such that an appropriate settling state can be maintained, so there is no risk of the granules being discharged along with the treated water from the treated water discharge means, and highly efficient treatment is possible. became.

【0028】[0028]

【発明の効果】本発明は、グラニュールの肥大化や被処
理水の上向流におけるチャンネリングが防止され、グラ
ニュールが処理水に伴われて処理水排出手段から流出す
る恐れも生じないため、有機性排水の高効率処理を可能
とした上向流嫌気性処理方法ある。
INDUSTRIAL APPLICABILITY According to the present invention, the enlargement of granules and the channeling in the upward flow of the water to be treated are prevented, and there is no fear that the granules will accompany the treated water and flow out from the treated water discharge means. , An upflow anaerobic treatment method that enables highly efficient treatment of organic wastewater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の上向流嫌気性処理装置
の系統図
FIG. 1 is a system diagram of an upflow anaerobic treatment apparatus according to an embodiment of the present invention.

【図2】本発明の一実施の形態の被処理水供給手段であ
るディストリビュータの平面図
FIG. 2 is a plan view of a distributor that is a treated water supply unit according to an embodiment of the present invention.

【図3】本発明の一実施の形態の被処理水供給方法と従
来の被処理水供給方法におけるグラニュールの粒径分布
FIG. 3 is a particle size distribution chart of granules in the method for supplying treated water according to one embodiment of the present invention and the conventional method for supplying treated water.

【符号の説明】[Explanation of symbols]

1:嫌気性処理槽 2:被処理水供給手段 3:ガスコレクタ 4:オ−バ−フロ−手段 5:固形分分離部材 6:スプレ−手段 7:処理水貯留タンク 8:処理水供給ポンプ 9:グラニュール 20:ディストリビュータ 21a、21b、21c:被処理水供給管 22a、22b、22c:電磁弁 23a、23b:環状配管 24a、24b:吐出ノズル 1: Anaerobic treatment tank 2: Treated water supply means 3: Gas collector 4: Overflow means 5: Solid content separating member 6: Spraying means 7: Treated water storage tank 8: Treated water supply pump 9: Granule 20: Distributor 21a, 21b, 21c: Treated water supply pipe 22a, 22b, 22c: Solenoid valve 23a, 23b: Ring pipe 24a, 24b: discharge nozzle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】底部に被処理水供給手段、上部に処理水排
出手段及び生成ガス排出手段を配設した嫌気性処理槽に
あって、該嫌気性処理槽内の下方に自己造粒汚泥により
形成された汚泥床、該汚泥床の上方部にガス、液及び汚
泥の三層に分離する三層分離部及び頂上部にガス滞留部
が形成され、有機性排水を上向流通させて処理する上向
流嫌気性処理装置において、前記被処理水供給手段が所
定の間隔で配置された吐出ノズルを有し、該吐出ノズル
からの被処理水吐出流速を間欠的に通常運転時の3〜5
倍速とすることを特徴とする上向流嫌気性処理装置の被
処理水供給方法。
1. An anaerobic treatment tank having a treated water supply means at the bottom and a treated water discharge means and a generated gas discharge means at the top, wherein self-granulated sludge is provided below the anaerobic treatment tank. The formed sludge bed, a three-layer separation section for separating gas, liquid and sludge into three layers in the upper part of the sludge bed and a gas retention section at the top are formed, and the organic wastewater is circulated upward for treatment. In the upflow anaerobic treatment apparatus, the treated water supply means has discharge nozzles arranged at a predetermined interval, and the treated water discharge flow velocity from the discharge nozzle is intermittently 3 to 5 during normal operation.
A method for supplying water to be treated in an upward-flow anaerobic treatment device, which is characterized by a double speed.
【請求項2】通常運転時の吐出ノズルからの被処理水吐
出流速が1〜1.5m/secであり、間欠的に吐出流
速を速めた時の被処理水吐出流速が3〜5m/secで
ある請求項1に記載の上向流嫌気性処理装置の被処理水
供給方法。
2. The treated water discharge flow velocity from the discharge nozzle during normal operation is 1 to 1.5 m / sec, and the treated water discharge flow velocity when the discharge flow velocity is intermittently increased is 3 to 5 m / sec. The method for supplying water to be treated in the upflow anaerobic treatment apparatus according to claim 1, wherein
JP2002147027A 2002-05-22 2002-05-22 Method for supplying water to be treated of upflow anaerobic treatment apparatus Pending JP2003340487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147027A JP2003340487A (en) 2002-05-22 2002-05-22 Method for supplying water to be treated of upflow anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147027A JP2003340487A (en) 2002-05-22 2002-05-22 Method for supplying water to be treated of upflow anaerobic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2003340487A true JP2003340487A (en) 2003-12-02

Family

ID=29766434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147027A Pending JP2003340487A (en) 2002-05-22 2002-05-22 Method for supplying water to be treated of upflow anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JP2003340487A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2009050750A (en) * 2007-08-23 2009-03-12 Ihi Corp Fluidized-bed method and facility for treating waste water aerobically
CN100475716C (en) * 2007-01-12 2009-04-08 浙江大学 Anaerobic bioreacto
CN103145243A (en) * 2013-01-31 2013-06-12 北京工业大学 N2O gas collecting device and method in reaction process of sequencing batch reactor (SBR) method based on process control
WO2013132610A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Microbial reaction tank
WO2013132608A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Microbial reaction tank and wastewater treatment method
CN103837579A (en) * 2014-03-10 2014-06-04 北京工业大学 Device and method for detecting N2O generation amount in short-cut nitrification and denitrification process
JP2015188777A (en) * 2014-03-27 2015-11-02 株式会社クボタ Water treatment apparatus and water treatment method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100475716C (en) * 2007-01-12 2009-04-08 浙江大学 Anaerobic bioreacto
JP2008221181A (en) * 2007-03-15 2008-09-25 Ebara Corp Anaerobic treatment device and treatment method
JP2009050750A (en) * 2007-08-23 2009-03-12 Ihi Corp Fluidized-bed method and facility for treating waste water aerobically
JPWO2013132610A1 (en) * 2012-03-07 2015-07-30 日本アルシー株式会社 Microbial reactor
WO2013132610A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Microbial reaction tank
WO2013132608A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Microbial reaction tank and wastewater treatment method
US9873626B2 (en) 2012-03-07 2018-01-23 Japan Alsi Co., Ltd. Bioreactor
US9573829B2 (en) 2012-03-07 2017-02-21 Japan Alsi Co., Ltd. Bioreactor and the waste water treatment method
JPWO2013132608A1 (en) * 2012-03-07 2015-07-30 日本アルシー株式会社 Microbial reaction tank and waste water treatment method
CN103145243A (en) * 2013-01-31 2013-06-12 北京工业大学 N2O gas collecting device and method in reaction process of sequencing batch reactor (SBR) method based on process control
CN103145243B (en) * 2013-01-31 2014-05-14 北京工业大学 N2O gas collecting device and method in reaction process of sequencing batch reactor (SBR) method based on process control
CN103837579B (en) * 2014-03-10 2016-05-25 北京工业大学 N in a kind of short-cut nitrification and denitrification process2Checkout gear and method that O produces
CN103837579A (en) * 2014-03-10 2014-06-04 北京工业大学 Device and method for detecting N2O generation amount in short-cut nitrification and denitrification process
JP2015188777A (en) * 2014-03-27 2015-11-02 株式会社クボタ Water treatment apparatus and water treatment method

Similar Documents

Publication Publication Date Title
US7731850B2 (en) Apparatus and method for treating wastewater
US5954963A (en) Process for biologically treating water
JP2007307530A (en) Aerationless water treatment apparatus
JP2009195778A (en) Aeration-less water treatment apparatus
KR20120005857A (en) Plant for treatment waste water
CA2458546A1 (en) A process for the anaerobic treatment of flowable and nonflowable organic waste
JP2003340487A (en) Method for supplying water to be treated of upflow anaerobic treatment apparatus
US8337699B2 (en) Reactor inlet
EP3003994B1 (en) A container, series of containers and method for treating liquids
KR101048673B1 (en) External circulating anaerobic digester
JP2002159990A (en) Anaerobic treating vessel
EP0112095A1 (en) Aqueous liquid treatment process and apparatus
JP2001269694A (en) Upflow anaerobic treating device
JPH06254588A (en) Ascending flow anaerobic sludge blanket type reaction chamber and method for preventing outflow of granule sludge in this reaction chamber
AU2017375056A2 (en) Aerated reactor with internal solids separation
KR100569704B1 (en) External circulation anaerobic digester using gas lifting
JP2002263683A (en) Upward stream anaerobic processor
JP4106128B2 (en) Upflow anaerobic treatment apparatus and treatment method
KR100756292B1 (en) Aerobic/anaerobic co-treatment method to high concentrated organic waste water by self-closed air releasing control and bubble reducing layer, and micro air bubble injection
KR101087368B1 (en) Sewage and wastewater treatment equipment
JP2002219486A (en) Anaerobic treatment equipment with upward flow
JP2006095421A (en) Up flow anaerobic treatment method
JP2005205327A (en) Method and device for eliminating floating foreign matter in anaerobic digestion vessel
KR100481821B1 (en) Process and plant for wastewater treatment
JP2020018966A (en) Water treatment method and water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825