JP2000105920A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JP2000105920A
JP2000105920A JP10276146A JP27614698A JP2000105920A JP 2000105920 A JP2000105920 A JP 2000105920A JP 10276146 A JP10276146 A JP 10276146A JP 27614698 A JP27614698 A JP 27614698A JP 2000105920 A JP2000105920 A JP 2000105920A
Authority
JP
Japan
Prior art keywords
layer
magnetic
recording medium
magnetic recording
nip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10276146A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uwazumi
洋之 上住
Naoki Takizawa
直樹 滝澤
Toyoji Ataka
豊路 安宅
Noboru Kurata
昇 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10276146A priority Critical patent/JP2000105920A/en
Publication of JP2000105920A publication Critical patent/JP2000105920A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a magnetic recording medium using a glass substrate, having good magnetic characteristics, capable of reducing the levitation height of a magnetic head and also having good durability. SOLUTION: A Cr layer 2 and an NiP layer 3 are successively formed on a glass substrate 1 by sputtering and the surface of the NiP layer 3 is subjected to texturing so as to form fine grooves mainly along the circumferential direction. A Cr alloy underlayer 4, a Co alloy type magnetic layer 5 and a protective layer 6 are successively formed on the NiP layer 3 by sputtering and a liquid lubricant layer 7 is formed on the protective layer 6 by coating to produce the objective magnetic recording medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁気記録装置,
特にハードディスクドライブなどに搭載される磁気記録
媒体およびその製造方法に関する。
[0001] The present invention relates to a magnetic recording device,
In particular, the present invention relates to a magnetic recording medium mounted on a hard disk drive and the like and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ハードディスクドライブなどに搭載され
る磁気記録媒体(以下、単に媒体と称する)は、非磁性
基体上に、例えばスパッタ法で、Crなどからなる非磁
性金属下地層,CoまたはCo合金からなる磁性層,C
などからなる保護層などが順次形成され、その上に液体
潤滑剤層が設けられてなる。
2. Description of the Related Art A magnetic recording medium (hereinafter, simply referred to as a medium) mounted on a hard disk drive or the like is formed on a non-magnetic substrate by, for example, a non-magnetic metal underlayer made of Cr or the like by a sputtering method, Co or a Co alloy. Magnetic layer composed of C
And the like, and a liquid lubricant layer is provided thereon.

【0003】ハードディスクドライブなどの磁気記録装
置は高密度化,高転送速度化および小型化が進められ、
それに用いられる媒体には、基体として化学強化ガラス
や結晶化ガラスが用いられるようになってきた。これら
のガラスからなる基体は、従来のAl合金からなる基体
に比して強度が高いため、耐衝撃性に優れるとともに1
0000rpmを超えるような高速回転での使用が可能
になるなどの利点がある上、表面の平滑性が高く高記録
密度化に必要な磁気ヘッド浮上量の低減を実現し易い。
しかしながら、媒体の耐久性を確保するために基体表面
に施される,一般にテクスチャリングと呼ばれる,主と
して円周方向に沿った微細な溝を形成する粗面化が困難
であり、また、媒体の保磁力Hc,角型比S,保磁力角
型比S*などの磁気特性がAl合金からなる基体を用い
た媒体に比して劣るという欠点があった。さらに、ガラ
スは金属に比して熱容量が大きく製造時の基体加熱が困
難であること,基体が絶縁体であるために基体バイアス
が印加できないことなどのためにAl合金からなる基体
を用いた媒体に比して磁気特性の向上が困難であった。
[0003] Magnetic recording devices such as hard disk drives have been developed to have higher densities, higher transfer speeds and smaller sizes.
Chemically strengthened glass and crystallized glass have come to be used as a medium for the medium. Substrates made of these glasses have higher strength than conventional substrates made of Al alloys, so they have excellent impact resistance and
In addition to the advantages of being able to be used at a high speed rotation of more than 0000 rpm, the surface smoothness is high and the magnetic head flying height required for high recording density can be easily reduced.
However, it is difficult to roughen the surface of the substrate to form fine grooves mainly along the circumferential direction, which is generally called texturing, which is applied to the surface of the substrate to secure the durability of the medium. The magnetic properties such as the magnetic force Hc, the squareness ratio S, and the coercive force squareness ratio S * are inferior to those of a medium using a substrate made of an Al alloy. Further, glass has a large heat capacity as compared with metal, making it difficult to heat the substrate during manufacture, and because a substrate bias cannot be applied because the substrate is an insulator, a medium using a substrate made of an Al alloy. It was difficult to improve the magnetic characteristics as compared with the above.

【0004】このような問題点を解決する方法として、
特開平3−125322号公報において、表面平滑なガ
ラス基板上に蒸着法またはスパッタ法によりNiP,T
i,Al,Cr,Cu,Mo,Ta,W,ステンレス鋼
などあるいはこれらを主成分とする合金などからなる非
磁性金属薄膜を設けて基体とし、その表面にテクスチャ
リングを施した後に、この基体上に金属または合金から
なる下地層,磁性層,保護層を順次形成して媒体とする
方法が開示されている。非磁性金属薄膜の膜厚は0.0
3μm以上5μm以下が好適とされている。
[0004] As a method of solving such a problem,
In Japanese Patent Application Laid-Open No. 3-125322, NiP, T is deposited on a glass substrate having a smooth surface by vapor deposition or sputtering.
A non-magnetic metal thin film made of i, Al, Cr, Cu, Mo, Ta, W, stainless steel, or an alloy containing these as a main component is provided as a substrate, and after texturing the surface thereof, the substrate is subjected to texturing. A method is disclosed in which an underlayer, a magnetic layer, and a protective layer made of a metal or an alloy are sequentially formed thereon to form a medium. The thickness of the nonmagnetic metal thin film is 0.0
3 μm or more and 5 μm or less are considered suitable.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
方法では、ガラス基板と非磁性金属薄膜との密着性,ぬ
れ性が不充分で、均一な厚さの非磁性金属薄膜の形成が
難しかった。また、非磁性金属薄膜の膜厚は0.03μ
m以上5μm以下と薄くされるが、ガラス本来の表面平
滑性が若干の程度にしろ損なわれることにり、磁気ヘッ
ドの極低浮上量(例えば、1μインチ程度以下)を実現
するためには問題となってくる。
However, in the above-mentioned method, the adhesion and wettability between the glass substrate and the non-magnetic metal thin film were insufficient, and it was difficult to form a non-magnetic metal thin film having a uniform thickness. The thickness of the nonmagnetic metal thin film is 0.03 μm.
m and 5 μm or less, but the surface smoothness inherent to the glass is impaired to a certain extent, and there is a problem in realizing an extremely low flying height of the magnetic head (for example, about 1 μ inch or less). It becomes.

【0006】この発明は、上述の欠点を除去して、ガラ
スからなる基体を用い、磁気特性良好で、かつ、磁気ヘ
ッド浮上量が大幅に低減でき、耐久性も良好な磁気記録
媒体およびその製造方法を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks, uses a glass substrate, has good magnetic properties, can greatly reduce the flying height of a magnetic head, and has good durability, and its production. The aim is to provide a method.

【0007】[0007]

【課題を解決するための手段】上記の課題は、この発明
によれば、非磁性基体上に少なくとも非磁性金属下地
層,磁性層,保護層が順次積層されてなる磁気記録媒体
において、前記非磁性基体がガラス基板からなり、その
上にCr層,NiP層が順次形成されており、かつ、前
記NiP層の表面にテクスチャリング処理により主とし
て円周方向に沿った溝が形成されている磁気記録媒体と
することによって解決される。
According to the present invention, there is provided a magnetic recording medium comprising at least a non-magnetic metal base layer, a magnetic layer, and a protective layer sequentially laminated on a non-magnetic substrate. Magnetic recording in which a magnetic substrate is made of a glass substrate, a Cr layer and a NiP layer are sequentially formed thereon, and a groove mainly along the circumferential direction is formed on the surface of the NiP layer by texturing. It is solved by using a medium.

【0008】ガラス基体上に、まずCr層を形成し、そ
の上にNiP層を形成することにより、ガラス基体上に
極薄膜のNiP層を密着性良く極めて均一に設けること
ができる。Cr層,NiP層はそれぞれ極薄膜として形
成されるので、これらの層を設けたためにガラス基体の
表面平滑性が損なわれる程度は極めて小さい。ガラス基
板としては、化学強化ガラス,または結晶化ガラスが好
適に用いられる。
[0008] By first forming a Cr layer on a glass substrate and then forming a NiP layer thereon, an extremely thin NiP layer can be provided very uniformly on the glass substrate with good adhesion. Since the Cr layer and the NiP layer are each formed as an extremely thin film, the degree of impairing the surface smoothness of the glass substrate due to the provision of these layers is extremely small. As the glass substrate, chemically strengthened glass or crystallized glass is preferably used.

【0009】ガラス基体上に設けられるCr層の膜厚は
3nm以上30nm以下の範囲内であると好適である。
NiP層の密着性を向上させる機能を果たすためには、
3nm未満では不充分であり、一方あまり厚くする必要
はなく30nm以下で充分である。NiP層の膜厚は2
0nm以上200nm以下の範囲内であると好適であ
る。膜厚20nm未満では薄すぎてテクスチャリング処
理を施すことができず、また、膜厚が200nmを超え
るとスパッタ後のNiP層表面粗さが大きくなるうえ、
製造コストの増大を招くことにもなるので好ましくな
い。
It is preferable that the thickness of the Cr layer provided on the glass substrate is in the range of 3 nm to 30 nm.
In order to fulfill the function of improving the adhesion of the NiP layer,
If it is less than 3 nm, it is insufficient, while it is not necessary to make it too thick, and 30 nm or less is enough. The thickness of the NiP layer is 2
It is preferable that the thickness be in the range of 0 nm or more and 200 nm or less. If the film thickness is less than 20 nm, the texturing process cannot be performed because the film thickness is too thin, and if the film thickness exceeds 200 nm, the NiP layer surface roughness after sputtering increases, and
It is not preferable because the production cost is increased.

【0010】また、NiP層のP濃度は15原子%以上
30原子%以下の範囲内であることが望ましい。濃度1
5原子%未満ではNiP層が磁性を有し易く、磁性層の
磁気特性に影響を及ぼす可能性があり、30原子%を超
えるとNiP層の硬度が高くなり、テクスチャリング処
理が困難となると同時に、リン酸イオンの溶出が起こり
易くなり不適当である。
The P concentration of the NiP layer is desirably in the range of 15 at% to 30 at%. Concentration 1
If it is less than 5 atomic%, the NiP layer tends to have magnetism and may affect the magnetic properties of the magnetic layer, and if it exceeds 30 atomic%, the hardness of the NiP layer becomes high, making texturing difficult. In addition, phosphate ions are easily eluted, which is inappropriate.

【0011】また、テクスチャリング処理後のNiP層
の表面粗さは中心線平均粗さRa で3Å以上15Å以下
の範囲内であると好適である。Ra が3Å未満では媒体
の耐久性が低下するので好ましくなく、15Åを超えて
くると磁気ヘッドの浮上量を充分に小さくする(例え
ば、1μインチ以下)ことが出来なくなる。このような
磁気記録媒体は、非磁性基体上に少なくとも非磁性金属
下地層,磁性層,保護層が順次積層されてなる磁気記録
媒体の製造方法において、前記非磁性基体としてガラス
基板を用い、その上にスパッタ法で極薄層のCr層,N
iP層を形成し、前記NiP層表面に主として円周方向
に沿った溝を形成するテクスチャリング処理を施した
後、非磁性金属下地層,磁性層、保護層を順次形成する
ことにより得られる。
Further, it is preferable and the surface roughness of the NiP layer after texturing treatment is within 15Å the range over 3Å center line average roughness R a. If Ra is less than 3 [deg.], The durability of the medium is reduced, which is not preferable. If Ra exceeds 15 [deg.], The flying height of the magnetic head cannot be sufficiently reduced (for example, 1 [mu] inch or less). In such a magnetic recording medium, in a method for manufacturing a magnetic recording medium in which at least a nonmagnetic metal underlayer, a magnetic layer, and a protective layer are sequentially laminated on a nonmagnetic substrate, a glass substrate is used as the nonmagnetic substrate. An ultra-thin Cr layer, N
It is obtained by forming an iP layer, performing a texturing process for forming a groove mainly along the circumferential direction on the surface of the NiP layer, and then sequentially forming a nonmagnetic metal base layer, a magnetic layer, and a protective layer.

【0012】また、テクスチャリング処理に、酸性溶液
を研磨促進剤として使用し、アルミナ砥粒またはダイヤ
モンド砥粒を用いて研磨するメカノケミカル加工工程が
含まれることが望ましく、このような研磨促進剤を用い
ることにより、異常突起のない,より均一にあれた表面
を得ることができる。例えば、テクスチャリング処理を
2段階に分けて行い、1段目ではアルミナ砥粒またはダ
イヤモンド砥粒を用いて研削を行い、2段目では1段目
よりも小粒径のアルミナ砥粒またはダイヤモンド砥粒を
用い、かつ、酸性溶液を研磨促進剤として使用するメカ
ノケミカル加工を行うと好適である。酸性溶液としては
硝酸アルミニウム溶液が好適に用いられる。
Preferably, the texturing treatment includes a mechanochemical processing step in which an acidic solution is used as a polishing accelerator and polishing is performed using alumina abrasive grains or diamond abrasive grains. By using this, a more uniform surface without abnormal projections can be obtained. For example, the texturing process is divided into two stages, the first stage is ground using alumina abrasive grains or diamond abrasive grains, and the second stage is alumina abrasive grains or diamond abrasive grains having a smaller particle size than the first stage. It is preferable to perform mechanochemical processing using granules and using an acidic solution as a polishing accelerator. As the acidic solution, an aluminum nitrate solution is preferably used.

【0013】[0013]

【発明の実施の形態】図1に、この発明に係わる媒体の
模式的断面図を示す。非磁性基体1上にCr層2,Ni
P層3が順次設けられ、その上に、Cr合金下地層4,
Co合金系磁性層5,保護層6,液体潤滑剤層7が順次
形成されてなる。非磁性基体1としては、結晶化ガラス
や化学強化ガラスが用いられる。
FIG. 1 is a schematic sectional view of a medium according to the present invention. Cr layer 2, Ni on non-magnetic substrate 1
A P layer 3 is sequentially provided, on which a Cr alloy underlayer 4 is provided.
A Co alloy magnetic layer 5, a protective layer 6, and a liquid lubricant layer 7 are sequentially formed. As the nonmagnetic substrate 1, crystallized glass or chemically strengthened glass is used.

【0014】この非磁性基体1上にスパッタ法でCr層
2,NiP層3が順次成膜される。Cr層2の膜厚は3
nm以上30nm以下が好適である。また、NiP層3
の膜中のP濃度は15原子%以上30原子%以下とする
ことが必要であり、膜厚は20nm以上200nm以下
の範囲内が望ましく、より望ましくは40nm以上10
0nm以下の範囲内である。このNiP層3の表面に直
接,すなわちポリッシングなどの精密研磨を行うことな
しにテクスチャリング処理を施して、主として円周方向
に沿って微細な溝を形成する。テクスチャリング処理後
の表面粗さは、中心線平均粗さRa で5Å以上15Å以
下の範囲内とすることが望ましい。テクスチャリング処
理はアルミナ砥粒またはダイヤモンド砥粒を研磨砥粒と
するスラリーを用いて研磨するが、異常突起の少ないよ
り均一な表面粗さを形成するためには、スラリーに酸性
溶液を研磨促進剤として添加して研磨するメカノテミカ
ル加工を行うと好適である。
A Cr layer 2 and a NiP layer 3 are sequentially formed on the non-magnetic substrate 1 by a sputtering method. The thickness of the Cr layer 2 is 3
The thickness is preferably from 30 nm to 30 nm. Also, the NiP layer 3
It is necessary to set the P concentration in the film of 15 to 30 atomic% or less, and the film thickness is preferably in the range of 20 to 200 nm, more preferably 40 to 10 nm.
It is within the range of 0 nm or less. The surface of the NiP layer 3 is subjected to texturing directly, that is, without performing precision polishing such as polishing, and fine grooves are formed mainly along the circumferential direction. Surface roughness after texturing treatment is preferably in the range of 5Å or 15Å or less in the center line average roughness R a. In the texturing process, polishing is performed using a slurry in which alumina abrasive grains or diamond abrasive grains are used as polishing abrasive grains. However, in order to form a more uniform surface roughness with few abnormal projections, an acidic solution is added to the slurry to a polishing accelerator. It is preferable to carry out a mechano-thematic process of adding and polishing.

【0015】このようにして、非磁性基体上のテクスチ
ャリング処理まで施されたNiP層上に、スパッタ法
で、Cr合金下地層4,Co合金系磁性層5,カーボン
保護層6を形成し、その上にパーフルオロポリエーテル
系の潤滑剤を塗布して液体潤滑剤層7を形成して媒体を
得る。
In this manner, a Cr alloy underlayer 4, a Co alloy magnetic layer 5, and a carbon protective layer 6 are formed by sputtering on the NiP layer which has been subjected to the texturing treatment on the nonmagnetic substrate. A liquid lubricant layer 7 is formed by applying a perfluoropolyether-based lubricant thereon to obtain a medium.

【0016】[0016]

【実施例】以下、具体的な実施例について説明する。 実施例1 非磁性基体として外径2.5インチ,厚さ0.635m
mのディスク状の化学強化ガラスを用い、これを洗浄後
スパッタ装置内に導入して、アルゴンガス圧5mTor
r下でDCマグネトロンスパッタ法により膜厚10nm
のCr薄膜を成膜し、その後連続して、膜厚80nmの
NiP薄膜を成膜した。このとき、NiPターゲットの
組成を変化させてNiP薄膜のP濃度の異なるNiP薄
膜を成膜し、微小硬度計でNiP薄膜の硬度を測定し、
また、NiP薄膜成膜後の基体を80℃の純水中に浸し
た時に抽出されたリン酸イオン濃度を測定して溶出リン
酸量を評価し、両者のNiP薄膜のP濃度に対する依存
性を調べた。
Embodiments Hereinafter, specific embodiments will be described. Example 1 Non-magnetic substrate having an outer diameter of 2.5 inches and a thickness of 0.635 m
m of a disk-shaped chemically strengthened glass, which was introduced into the sputtering apparatus after cleaning, and was supplied with an argon gas pressure of 5 mTorr.
film thickness of 10 nm by DC magnetron sputtering under
Then, a NiP thin film having a thickness of 80 nm was continuously formed. At this time, the composition of the NiP target was changed to form a NiP thin film having a different P concentration in the NiP thin film, and the hardness of the NiP thin film was measured using a microhardness meter.
In addition, the phosphate ion concentration extracted when the substrate after forming the NiP thin film was immersed in pure water at 80 ° C. was measured to evaluate the amount of eluted phosphoric acid, and the dependence of both on the P concentration of the NiP thin film was determined. Examined.

【0017】その結果を図2の線図に示す。図2より、
P濃度が30原子%を超えると膜硬度が急激に増加し、
かつ、溶出リン酸量も増大することが判る。また、P濃
度が15原子%以下では、成膜直後でもNiP薄膜が磁
化してしまうことが判った。なお、このような傾向は非
磁性基体として結晶化ガラスを用いた場合でも同様に見
られた。
The results are shown in the diagram of FIG. From FIG.
When the P concentration exceeds 30 atomic%, the film hardness sharply increases,
In addition, it can be seen that the amount of eluted phosphoric acid also increases. Also, it was found that when the P concentration was 15 atomic% or less, the NiP thin film was magnetized even immediately after film formation. Such a tendency was similarly observed when crystallized glass was used as the nonmagnetic substrate.

【0018】実施例2 非磁性基体として外径2.5インチ,厚さ0.635m
mのディスク状の化学強化ガラスを用い、これを洗浄後
スパッタ装置内に導入して、アルゴンガス圧5mTor
r下でDCマグネトロンスパッタ法により膜厚10nm
のCr薄膜を成膜し、その後連続して、Ni−25原子
%Pターゲットを用いてP濃度約25原子%のNiP薄
膜をその膜厚を10nmから400nmまで変化させて
成膜した。
Example 2 A non-magnetic substrate having an outer diameter of 2.5 inches and a thickness of 0.635 m
m of a disk-shaped chemically strengthened glass, which was introduced into the sputtering apparatus after cleaning, and was supplied with an argon gas pressure of 5 mTorr.
film thickness of 10 nm by DC magnetron sputtering under
Then, a NiP thin film having a P concentration of about 25 atomic% was continuously formed using a Ni-25 atomic% P target while changing the film thickness from 10 nm to 400 nm.

【0019】このようにして得られたNiP薄膜の表面
の中心線平均粗さRa を原子間力顕微鏡(AFM)を用
いて測定し、Ra のNiP膜厚依存性を調べた。その結
果を図3の線図に示す。図3より、NiP膜厚が200
nmまでは表面粗さがRa で1nm以下と平滑である
が、膜厚が200nmを超えるとRa が急激に増大する
ことが判る。このような傾向は、NiP膜の組成を変更
しても同様に認められた。
[0019] Thus the center line average roughness R a of the surface of the NiP film thus obtained was measured using an atomic force microscope (AFM), was examined NiP film thickness dependence of R a. The results are shown in the diagram of FIG. From FIG. 3, the NiP film thickness is 200
It can be seen that up to nm, the surface roughness is as smooth as 1 nm or less in Ra , but when the film thickness exceeds 200 nm, Ra rapidly increases. Such a tendency was similarly observed even when the composition of the NiP film was changed.

【0020】実施例3 非磁性基体として外径2.5インチ,厚さ0.635m
mのディスク状の化学強化ガラスを用い、これを洗浄後
スパッタ装置内に導入して、アルゴンガス圧5mTor
r下でDCマグネトロンスパッタ法により膜厚10nm
のCr薄膜を成膜し、その後連続して、Ni−25原子
%Pターゲットを用いてP濃度約25原子%のNiP薄
膜を膜厚50nmに成膜した。
Example 3 A non-magnetic substrate having an outer diameter of 2.5 inches and a thickness of 0.635 m
m of a disk-shaped chemically strengthened glass, which was introduced into the sputtering apparatus after cleaning, and was supplied with an argon gas pressure of 5 mTorr.
film thickness of 10 nm by DC magnetron sputtering under
Then, a NiP thin film having a P concentration of about 25 atomic% was continuously formed to a film thickness of 50 nm using a Ni-25 atomic% P target.

【0021】その後、基体をスパッタ装置から取り出
し、NiP薄膜表面にテクスチャリング処理を行う。こ
のとき、テクスチャリング処理は通常の一段階処理では
なく2段階に分けて行い、1段目ではダイヤモンド砥粒
を用いて研削を行い、2段目では平均粒径0.5μmの
ダイヤモンド砥粒を用い,かつ,酸性の硝酸アルミニウ
ム溶液を研磨促進剤として使用するメカノケミカル加工
を行って、主に円周方向に沿った溝からなる表面形状を
形成する。このとき、1段目に用いるダイヤモンド砥粒
の粒径やテクスチャ条件を変更してテクスチャリング処
理後の表面粗さを変化させた。
Thereafter, the substrate is taken out of the sputtering apparatus, and the surface of the NiP thin film is subjected to texturing. At this time, the texturing process is not a normal one-step process but is divided into two stages, the first stage is performed using diamond abrasive grains, and the second stage is performed using diamond abrasive grains having an average particle size of 0.5 μm. A mechanochemical process using an acidic aluminum nitrate solution as a polishing accelerator is performed to form a surface shape mainly composed of grooves along the circumferential direction. At this time, the surface roughness after the texturing treatment was changed by changing the particle size and texture conditions of the diamond abrasive used in the first stage.

【0022】テクスチャリング処理後、洗浄を行った
後、基体をスパッタ装置内に導入し、アルゴンガス圧5
mTorr下で、膜厚30nmのCrMo下地層,膜厚
20nmのCoCrTaPt磁性層,膜厚10nmのD
LC保護層を順次成膜積層した後、スパッタ装置から取
り出し、その後、保護層表面にパーフルオロポリエーテ
ル系の液体潤滑剤を膜厚2nmになるように塗布して潤
滑層を形成して、図1に示した構成の媒体を作製した。
After the texturing process and the cleaning, the substrate is introduced into a sputtering apparatus, and an argon gas pressure of 5% is applied.
Under mTorr, a 30-nm thick CrMo underlayer, a 20-nm thick CoCrTaPt magnetic layer, and a 10-nm thick D
After the LC protective layer is sequentially formed and laminated, it is taken out from the sputtering apparatus, and then a liquid lubricant of perfluoropolyether is applied to the protective layer surface to a thickness of 2 nm to form a lubricating layer. A medium having the structure shown in FIG.

【0023】このようにして得られた媒体の最低磁気ヘ
ッド浮上量(GH)(μインチ)と媒体の保磁力角型比
* との媒体表面粗さとして中心線平均粗さRa (Å)
(先端曲率半径0.5μmの触針を用いた接触式表面粗
さ計で測定した値)に対する変化を調べた。その結果を
図4に示す。図4には、比較のために、上述のNiP層
表面のテクスチャリング処理だけを省いた工程で作製し
た媒体についての測定値をRa =0の軸上に示した。図
4に見られるように、テクスチャリング処理を行わない
媒体では保磁力角型比S* が0.65程度と小さいが、
テクスチャリング処理を行うことにより0.8以上の大
きい保磁力角型比S* の媒体が得られることが判る。
The center line average roughness Ra (Å) is defined as the medium surface roughness between the minimum magnetic head flying height (GH) (μ inch) of the medium and the coercive force squareness ratio S * of the medium thus obtained. )
(A value measured with a contact-type surface roughness meter using a stylus having a tip curvature radius of 0.5 μm) was examined. FIG. 4 shows the results. In FIG. 4, for comparison, measured values of a medium manufactured in a process in which only the above-described texturing of the NiP layer surface is omitted are shown on the axis of R a = 0. As can be seen from FIG. 4, the coercivity squareness ratio S * is as small as about 0.65 in the medium not subjected to texturing,
It can be seen that a medium having a large coercive force squareness ratio S * of 0.8 or more can be obtained by performing the texturing process.

【0024】比較例 実施例3において、基体のテクスチャリング処理として
通常の処理,すなわち,酸性溶液の研磨促進剤を用いな
い一段階だけの研削を行ったこと以外は、実施例3と同
様にして媒体を作製した。この場合、磁気特性は良好
で、最低ヘッド浮上量も小さかったが、媒体表面のRa
が15Å以下と小さくなっても、最低ヘッド浮上量は1
μインチ以下までにはならなかった。最低ヘッド浮上量
を大きく低減するためには、テクスチャリング処理にメ
カノケミカル加工を適用することが効果的であることが
判る。
COMPARATIVE EXAMPLE In the same manner as in Example 3, except that the normal texturing was performed as the texturing treatment of the substrate, that is, the grinding was performed only in one step without using the polishing accelerator of the acidic solution. A medium was prepared. In this case, the magnetic properties are good, but was small minimum head flying height, the medium surface R a
Is less than 15 °, the minimum head flying height is 1
It did not go below μ inch. It can be seen that it is effective to apply mechanochemical processing to texturing in order to greatly reduce the minimum head flying height.

【0025】[0025]

【発明の効果】この発明によれば、ガラス基体上にスパ
ッタ法でCr層,NiP層を形成し、このNiP層表面
に主として円周方向に沿った溝を形成するテクスチャリ
ング処理を施した後、非磁性金属下地層,磁性層,保護
層を順次積層して磁気記録媒体を作製することにより、
磁気特性良好で、かつ、磁気ヘッド浮上量が大幅に低減
でき、耐久性も良好な磁気記録媒体を得ることができ
る。
According to the present invention, a Cr layer and a NiP layer are formed on a glass substrate by a sputtering method, and the NiP layer is subjected to a texturing process for forming a groove mainly along the circumferential direction on the surface thereof. By sequentially laminating a non-magnetic metal underlayer, a magnetic layer and a protective layer to produce a magnetic recording medium,
It is possible to obtain a magnetic recording medium having good magnetic properties, a significantly reduced flying height of the magnetic head, and good durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係わる媒体の一例の模式的断面図FIG. 1 is a schematic sectional view of an example of a medium according to the present invention.

【図2】NiP層の膜中P濃度に対する膜硬度,抽出リ
ン酸量の関係を示す線図
FIG. 2 is a diagram showing the relationship between the film hardness and the amount of extracted phosphoric acid with respect to the P concentration in the film of the NiP layer.

【図3】NiP層膜厚とNiP層表面粗さRa との関係
を示す線図
FIG. 3 is a diagram showing a relationship between a NiP layer thickness and a NiP layer surface roughness Ra.

【図4】媒体の表面粗さRa に対する保磁力角型比
* ,最低ヘッド浮上量の関係を示す線図
[4] the coercive force squareness ratio with respect to the surface roughness R a of the medium S *, graph showing the relationship between minimum head flying height

【符号の説明】[Explanation of symbols]

1 非磁性基体 2 Cr層 3 NiP層 4 Cr合金下地層 5 Co合金系磁性層 6 保護層 7 液体潤滑剤層 DESCRIPTION OF SYMBOLS 1 Non-magnetic base 2 Cr layer 3 NiP layer 4 Cr alloy base layer 5 Co alloy magnetic layer 6 Protective layer 7 Liquid lubricant layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安宅 豊路 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 倉田 昇 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5D006 CB04 CB07 CB08 DA03 FA02 FA09 5D112 AA02 AA11 AA24 BA03 BA05 GA02 GA14 GA26  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toyoji Ataka 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Noboru Kurata 1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-ku, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. F term (reference) 5D006 CB04 CB07 CB08 DA03 FA02 FA09 5D112 AA02 AA11 AA24 BA03 BA05 GA02 GA14 GA26

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】非磁性基体上に少なくとも非磁性金属下地
層,磁性層,保護層が順次積層されてなる磁気記録媒体
において、前記非磁性基体がガラス基板からなり、その
上にCr層,NiP層が順次形成されており、かつ、前
記NiP層の表面にテクスチャリング処理により主とし
て円周方向に沿った溝が形成されていることを特徴とす
る磁気記録媒体。
1. A magnetic recording medium comprising at least a non-magnetic metal underlayer, a magnetic layer, and a protective layer sequentially laminated on a non-magnetic substrate, wherein the non-magnetic substrate comprises a glass substrate, and a Cr layer, NiP A magnetic recording medium, wherein layers are sequentially formed, and grooves are formed on the surface of the NiP layer by texturing mainly along a circumferential direction.
【請求項2】基体が化学強化ガラス,または結晶化ガラ
スからなることを特徴とする請求項1記載の磁気記録媒
体。
2. The magnetic recording medium according to claim 1, wherein the substrate is made of chemically strengthened glass or crystallized glass.
【請求項3】Cr層の膜厚が3nm以上30nm以下の
範囲内であることを特徴とする請求項1または2記載の
磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the thickness of the Cr layer is in the range of 3 nm to 30 nm.
【請求項4】NiP層のP濃度が15原子%以上30原
子%以下の範囲内であることを特徴とする請求項1,2
または3記載の磁気記録媒体。
4. The NiP layer according to claim 1, wherein the P concentration is in the range of 15 at% to 30 at%.
Or the magnetic recording medium according to 3.
【請求項5】NiP層の膜厚が20nm以上200nm
以下の範囲内であることを特徴とする請求項1,2,3
または4記載の磁気記録媒体。
5. The NiP layer has a thickness of not less than 20 nm and not more than 200 nm.
4. The method according to claim 1, wherein the distance is within the following range.
Or the magnetic recording medium according to 4.
【請求項6】テクスチャリング処理後のNiP層の表面
粗さが中心線平均粗さRa で3Å以上15Å以下の範囲
内であることを特徴とする請求項1,2,3,4または
5記載の磁気記録媒体。
6. The NiP layer after texturing has a surface roughness within a range of not less than 3 ° and not more than 15 ° in center line average roughness Ra . The magnetic recording medium according to the above.
【請求項7】非磁性基体上に少なくとも非磁性金属下地
層,磁性層,保護層が順次積層されてなる磁気記録媒体
の製造方法において、前記非磁性基体がガラス基板から
なり、その上にスパッタ法でCr層,NiP層が形成さ
れ、前記NiP層表面に主として円周方向に沿った溝を
形成するテクスチャリング処理が施された後、非磁性金
属下地層,磁性層,保護層が順次積層されて作製される
ことを特徴とする磁気記録媒体の製造方法。
7. A method for manufacturing a magnetic recording medium comprising a non-magnetic substrate and a non-magnetic metal underlayer, a magnetic layer, and a protective layer sequentially laminated on the non-magnetic substrate, wherein the non-magnetic substrate comprises a glass substrate, and A Cr layer and a NiP layer are formed by a method, and a texturing process for forming a groove mainly along the circumferential direction is performed on the surface of the NiP layer. Then, a nonmagnetic metal base layer, a magnetic layer, and a protective layer are sequentially laminated. A method for manufacturing a magnetic recording medium, characterized by being manufactured by:
【請求項8】テクスチャリング処理に、酸性溶液を研磨
促進剤として使用し、アルミナ砥粒またはダイヤモンド
砥粒を用いて研磨するメカノケミカル加工工程が含まれ
ることを特徴とする請求項7記載の磁気記録媒体の製造
方法。
8. The magnetic treatment according to claim 7, wherein the texturing includes a mechanochemical processing step of polishing using an alumina solution or a diamond abrasive using an acidic solution as a polishing accelerator. Manufacturing method of recording medium.
【請求項9】テクスチャリング処理が2段階に分けて行
われ、1段目ではアルミナ砥粒またはダイヤモンド砥粒
を用いて研削を行い、2段目では1段目よりも小粒径の
アルミナ砥粒またはダイヤモンド砥粒を用い、かつ、酸
性溶液を研磨促進剤として使用するメカノケミカル加工
を行うことを特徴とする請求項8記載の磁気記録媒体の
製造方法。
9. A texturing process is performed in two stages, the first stage grinding using alumina abrasive grains or diamond abrasive grains, and the second stage alumina grinding having a smaller particle size than the first stage. 9. The method for producing a magnetic recording medium according to claim 8, wherein mechanochemical processing is performed using grains or diamond abrasive grains and using an acidic solution as a polishing accelerator.
【請求項10】酸性溶液が硝酸アルミニウム溶液である
ことを特徴とする請求項8または9記載の磁気記録媒体
の製造方法。
10. The method for manufacturing a magnetic recording medium according to claim 8, wherein the acidic solution is an aluminum nitrate solution.
JP10276146A 1998-09-29 1998-09-29 Magnetic recording medium and its production Withdrawn JP2000105920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276146A JP2000105920A (en) 1998-09-29 1998-09-29 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276146A JP2000105920A (en) 1998-09-29 1998-09-29 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JP2000105920A true JP2000105920A (en) 2000-04-11

Family

ID=17565417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276146A Withdrawn JP2000105920A (en) 1998-09-29 1998-09-29 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JP2000105920A (en)

Similar Documents

Publication Publication Date Title
JP4208035B2 (en) Glass substrate for information recording medium, magnetic recording medium, and method for manufacturing glass substrate for information recording medium
JPH06215345A (en) Magnetic recording medium and production thereof
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
JPH05143972A (en) Metal thin film magnetic recording medium and its production
US5599632A (en) Carbon seedlayer on non-metallic substrates for magnetic recording media
JP2000105920A (en) Magnetic recording medium and its production
JPH029016A (en) Thin film magnetic disk
JPS61220119A (en) Magnetic disk
JP2547994B2 (en) Magnetic recording media
JP2967698B2 (en) Manufacturing method of magnetic recording medium
JPH07272263A (en) Magnetic disk
JPH10283626A (en) Magnetic recording medium and production thereof
JP2834391B2 (en) Method of manufacturing magnetic recording medium substrate and method of manufacturing magnetic recording medium using the substrate
JPH0352130B2 (en)
JPH08273139A (en) Magnetic recording medium
WO1994015720A1 (en) Magnetic recording media on non-metallic substrates and methods for their production
JPH08339538A (en) Production of magnetic recording medium
JPH08273160A (en) Production of magnetic recording medium
WO1999045537A1 (en) Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same
JPH01251313A (en) Magnetic recording medium
JPH0793738A (en) Magnetic recording medium
JPH04172617A (en) Manufacture of magnetic disc
JPH08273159A (en) Production of magnetic recording medium
JPH0546975A (en) Method for texturing titanium magnetic disk substrate
JPH03125322A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040726