JP2000102937A - Method for transferring minute shape and production of binary lens - Google Patents

Method for transferring minute shape and production of binary lens

Info

Publication number
JP2000102937A
JP2000102937A JP10275295A JP27529598A JP2000102937A JP 2000102937 A JP2000102937 A JP 2000102937A JP 10275295 A JP10275295 A JP 10275295A JP 27529598 A JP27529598 A JP 27529598A JP 2000102937 A JP2000102937 A JP 2000102937A
Authority
JP
Japan
Prior art keywords
mold
curable resin
resin
fine shape
transferring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10275295A
Other languages
Japanese (ja)
Inventor
Makoto Soyama
誠 楚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Original Assignee
Arisawa Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP10275295A priority Critical patent/JP2000102937A/en
Publication of JP2000102937A publication Critical patent/JP2000102937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for transferring a minute shape which can mass- produce a product having a minute shape accurately and is excellent in utility and mass productivity and a method for producing a binary lens. SOLUTION: The first mold 1 made of a base material of glass such as quartz in which a minute shape A is formed and a semiconductor forming material such as a germanium or silicon wafer is mounted on a support material so that a minute shape surface A comes to the downside, a room temperature curable resin 4 is cast around the first mold 1, the resin 4 is cured, the second mold 3 of structure in which the first mold 1 is embedded in the resin 4 with the minute shape A exposed on the same level with the surrounding surface is formed, after the second mold 3 being peeled off from the support material, a UV curable resin 5 is set on the surface to which the minute shape of the second mold 3 is exposed, and the resin 5, after being cured, is peeled off from the second mold 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バイナリーレンズ
などを製造するための微細形状の転写する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transferring a fine shape for manufacturing a binary lens or the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】光情報
通信やハードスキャナーなどに使用されるバイナリーレ
ンズは、石英等のガラスで構成され、例えば、長さ10
cm,巾3mm程度のレンズ体(このレンズ体はフレネ
ルレンズを2値化(バイナリー化,段差化したもの))
に、長さ0.3mm,巾0.1mm程度の微細なレンズを
数十箇所設けて構成され、このレンズ体を通過する光の
回折現象を利用して対象物を読み取るために使用される
ものである。
2. Description of the Related Art Binary lenses used for optical information communication and hard scanners are made of glass such as quartz and have a length of, for example, 10 mm.
cm, a lens body with a width of about 3 mm (this lens body is a binarized (binary, stepped) Fresnel lens)
Tens of fine lenses having a length of about 0.3 mm and a width of about 0.1 mm are used to read an object by utilizing the diffraction phenomenon of light passing through the lens body. It is.

【0003】ところで、バイナリーレンズは回折される
光の波長により強め合う回折波を利用する為、高い透明
性及び寸法精度が要求される。従来は、石英等のガラス
の表面を直接フォトリソグラフィなどによって加工して
レンズ形状を形成し、所定のサイズにカットしている。
[0003] By the way, since a binary lens uses a diffracted wave that reinforces with the wavelength of light to be diffracted, high transparency and dimensional accuracy are required. Conventionally, the surface of glass such as quartz is directly processed by photolithography or the like to form a lens shape and cut into a predetermined size.

【0004】しかし、石英等のガラスのようにフォトリ
ソグラフィで加工できる素材は非常に高価であり、レン
ズ形状を形成する作業はマスクの位置合わせや露光,エ
ッチング処理等当然のことながら非常に時間のかかる厄
介な作業であり、よって、バイナリーレンズの量産は非
常に困難である。
However, materials that can be processed by photolithography, such as glass such as quartz, are very expensive, and the operation of forming a lens shape requires a very long time, such as mask positioning, exposure, and etching. This is a cumbersome task, and mass production of binary lenses is very difficult.

【0005】また、上述のフォトリソグラフィで加工し
たものを型として転写し量産することも考えられるが、
フォトリソグラフィで使用できる素材は脆く、しかも、
サイズや形状なども限定されることから、型として使用
するにはそのままでは取り扱いが非常に厄介である。
It is also conceivable to transfer the photo-lithographically processed product as a mold for mass production.
Materials that can be used in photolithography are brittle,
Since the size and shape are also limited, it is very troublesome to use as a mold as it is.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、バイナリーレンズのような微細な形状を有する製
品を精度良く大量に製造することができる実用性,量産
性に秀れた微細形状の転写方法及びバイナリーレンズの
製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a practical and mass-produced fine shape capable of accurately and mass-producing products having a fine shape such as a binary lens. And a method for manufacturing a binary lens.

【0007】[0007]

【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。
The gist of the present invention will be described with reference to the accompanying drawings.

【0008】微細形状Aが形成された石英等のガラス基
材や,ゲルマニウム若しくはシリコンウエハー等の半導
体形成素材から成る第一型1を、微細形状A面が下側と
なるようにして支持材2に載置し、この支持材2に載置
された第一型1の周囲に、常温で硬化する常温硬化性樹
脂4を流し込み、続いて、該常温硬化性樹脂4を硬化さ
せて前記第一型1が微細形状A面が露出した状態且つ該
微細形状A面が周囲と面一状態で常温硬化性樹脂4中に
埋め込まれた構造の第二型3を形成し、この第二型3を
前記支持材2から剥離した後、該第二型3の微細形状A
面が露出している面上にUV硬化性樹脂5を設け、続い
て、該UV硬化性樹脂5を硬化させた後、該UV硬化性
樹脂5を前記第二型3から剥離することを特徴とする微
細形状の転写方法に係るものである。
A first mold 1 made of a glass base material such as quartz on which a fine shape A is formed, or a semiconductor forming material such as germanium or a silicon wafer is placed on a support member 2 with the fine shape A surface facing down. And the room temperature curable resin 4 that cures at room temperature is poured around the first mold 1 placed on the support member 2, and then the room temperature curable resin 4 is cured to cure the first mold 1. The mold 1 forms a second mold 3 having a structure in which the fine shape A surface is exposed and the fine shape A surface is flush with the surroundings and is embedded in the room temperature curable resin 4. After peeling from the support material 2, the fine shape A of the second mold 3
UV curing resin 5 is provided on the surface where the surface is exposed. Subsequently, after curing the UV curing resin 5, the UV curing resin 5 is separated from the second mold 3. And a method for transferring a fine shape.

【0009】また、請求項1記載の微細形状の転写方法
において、第二型3の微細形状面が露出している面上に
UV硬化性樹脂5を設けた際、更に、該UV硬化性樹脂
5上に透明板若しくは透明シートから成る透明支持材7
を設け、続いて、該UV硬化性樹脂5を硬化させてUV
硬化性樹脂5と透明支持材7とが一体化された透明支持
材7付UV硬化性樹脂5を第二型3から剥離することを
特徴とする微細形状の転写方法に係るものである。
In the method of transferring a fine shape according to claim 1, when the UV curable resin 5 is provided on the surface of the second mold 3 where the fine shape surface is exposed, the UV curable resin is further provided. A transparent support member 7 made of a transparent plate or a transparent sheet on 5
Is provided, and then the UV curable resin 5 is cured to form a UV
The present invention relates to a method for transferring a fine shape, wherein the UV curable resin 5 with the transparent support 7 in which the curable resin 5 and the transparent support 7 are integrated is separated from the second mold 3.

【0010】また、請求項1,2いずれか1項に記載の
微細形状の転写方法において、常温硬化性樹脂4として
硬化後に柔軟性を有する樹脂を使用したことを特徴とす
る微細形状の転写方法に係るものである。
The method for transferring a fine shape according to any one of claims 1 and 2, wherein a resin having flexibility after curing is used as the room-temperature-curable resin 4. It is related to.

【0011】また、請求項1,2いずれか1項に記載の
微細形状の転写方法において、常温硬化性樹脂4として
シリコーン樹脂,ウレタン樹脂,アミン系の硬化剤を使
用したエポキシ樹脂若しくはこれらの樹脂に第一型1の
線膨張係数に近づける為のフィラーを添加した樹脂を使
用したことを特徴とする微細形状の転写方法に係るもの
である。
Further, in the method for transferring a fine shape according to any one of claims 1 and 2, an epoxy resin using a silicone resin, a urethane resin, an amine-based curing agent as the room-temperature-curable resin 4, or these resins. Further, the present invention relates to a method for transferring a fine shape, wherein a resin to which a filler for bringing the coefficient of linear expansion closer to that of the first mold 1 is added is used.

【0012】また、請求項1〜4いずれか1項に記載の
微細形状の転写方法において、常温硬化性樹脂4を20
〜60℃で硬化することを特徴とする微細形状の転写方
法に係るものである。
Further, in the method for transferring a fine shape according to any one of claims 1 to 4, the room-temperature-curable resin 4 may contain
The present invention relates to a method for transferring a fine shape, wherein the method is cured at a temperature of up to 60 ° C.

【0013】また、請求項1〜5いずれか1項に記載の
微細形状の転写方法によってバイナリーレンズを製造す
ることを特徴とするバイナリーレンズの製造方法に係る
ものである。
Further, the present invention relates to a method for manufacturing a binary lens, wherein a binary lens is manufactured by the method for transferring a fine shape according to any one of claims 1 to 5.

【0014】[0014]

【発明の作用及び効果】第一型1の周囲に配される常温
硬化性樹脂4によって型の取り扱いが容易となり、よっ
て、UV硬化性樹脂5への微細形状Aの転写が容易に行
え、製造効率が高まる。
The operation of the mold is facilitated by the cold-setting resin 4 disposed around the first mold 1, so that the fine shape A can be easily transferred to the UV-curable resin 5. Increases efficiency.

【0015】本発明は上述のようにするから、バイナリ
ーレンズのような微細な形状を有する製品を精度良く大
量に製造することができる実用性,量産性にすぐれた微
細形状の転写方法及びバイナリーレンズの製造方法とな
る。
[0015] As described above, the present invention provides a practical and mass-producing transfer method of a fine shape and a binary lens which are capable of accurately and mass-producing products having a fine shape such as a binary lens. Production method.

【0016】[0016]

【発明の実施の形態】図面は本発明の一実施例を図示し
たものであり、以下に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS The drawings illustrate one embodiment of the present invention and will be described below.

【0017】本実施例はバイナリーレンズの製造方法に
おける微細形状の転写方法に係るものである。
The present embodiment relates to a method for transferring a fine shape in a method for manufacturing a binary lens.

【0018】先ず、バイナリーレンズを製造するための
転写型を作成する。
First, a transfer mold for manufacturing a binary lens is prepared.

【0019】石英等のガラス,ゲルマニウム若しくはシ
リコンウエハー等の半導体形成素材から成る基材に、フ
ォトリソグラフィ,エッチングなどの適宜な手段によ
り、転写後にバイナリーレンズのレンズ面となる微細形
状Aを形成して第一型1を形成する。尚、この第一型1
の素材は、フォトリソグラフィ工程などの各工程での温
度変化によって可及的に寸法変化しない素材を使用す
る。
A fine shape A that becomes a lens surface of a binary lens after transfer is formed on a substrate made of a semiconductor forming material such as glass such as quartz, germanium, or a silicon wafer by appropriate means such as photolithography and etching. The first mold 1 is formed. In addition, this first type 1
As a material for, a material that does not change its dimensions as much as possible due to a temperature change in each process such as a photolithography process is used.

【0020】続いて、第一型1を、微細形状A面が下側
となるようにして支持材2に載置し、この支持材2に仕
切板6を設け、この仕切板6間にして第一型1上に常温
硬化性樹脂4として、例えば、シリコーン樹脂4を流し
込む(図1参照)。この際、硬化前のシリコーン樹脂4
の上面は表面張力によって略水平となる。
Subsequently, the first mold 1 is placed on the support 2 so that the fine shape A surface is on the lower side, and a partition plate 6 is provided on the support 2, and the first die 1 is placed between the partition plates 6. For example, a silicone resin 4 is poured onto the first mold 1 as the room temperature curable resin 4 (see FIG. 1). At this time, the silicone resin 4 before curing
Is approximately horizontal due to surface tension.

【0021】続いて、シリコーン樹脂4を硬化させ、そ
の後、該シリコーン樹脂4を支持材2から剥離し、前記
第一型1の微細形状A面が露出した状態且つ該微細形状
A面が周囲(シリコーン樹脂4)と面一状態となった第
二型3を形成する(図2参照)。即ち、第一型1は第二
型3に埋め込まれた状態となっている。
Subsequently, the silicone resin 4 is cured, and thereafter, the silicone resin 4 is peeled off from the support member 2 so that the fine shape A surface of the first mold 1 is exposed and the fine shape A surface is surrounded by The second mold 3 which is flush with the silicone resin 4) is formed (see FIG. 2). That is, the first mold 1 is embedded in the second mold 3.

【0022】支持材2は、上面(第一型1との当接面)
が10μm以下の平滑度に設定されている。この支持材
2はコストの面からガラス板2aを使用することが望ま
しいが、ガラス板2aとシリコーン樹脂4とはシリコー
ン樹脂4が有する自着性や同じケイ素化合物であること
故に接着し易いので、ガラス板2a上に、シリコーン樹
脂4と接着しない素材であるPETシートやPCシート
2bを載置して支持材2を構成すると良い。また、この
ように設定することでシリコーン樹脂4が硬化した後、
第二型3を支持材2より脱型する際、シート2bをめく
るようにして剥がすことで脱型作業が容易となる。尚、
ガラス板2a等の平滑な治具を使用せず、PETシート
やPCシート等のプラスチック板のみで支持材2を構成
しても良い(ガラス板と異なり、プラスチック板のみで
も平滑で且つ曲げることができる為、該プラスチック板
をめくるように剥がすことができる。)。
The support member 2 has an upper surface (a contact surface with the first mold 1).
Is set to a smoothness of 10 μm or less. It is desirable to use a glass plate 2a for the support material 2 from the viewpoint of cost. However, since the glass plate 2a and the silicone resin 4 are easily adhered to each other due to the self-adhesiveness of the silicone resin 4 and the same silicon compound, It is preferable that the support member 2 is formed by placing a PET sheet or a PC sheet 2b, which is a material that does not adhere to the silicone resin 4, on the glass plate 2a. Also, by setting in this manner, after the silicone resin 4 is cured,
When the second mold 3 is released from the support member 2, the sheet 2b is peeled off and peeled off to facilitate the release operation. still,
Instead of using a smooth jig such as the glass plate 2a, the support member 2 may be composed of only a plastic plate such as a PET sheet or a PC sheet. The plastic plate can be peeled off as it can.)

【0023】常温硬化性樹脂4は硬化後において柔軟性
を有し且つ常温で硬化する性質を有したものを使用す
る。常温硬化性樹脂4の特性を限定したのは、樹脂が
柔軟性を有していないと第二型3を取り扱う際に第一型
1が破損し易い(第一型1は脆い素材で構成されている
から、第二型3を使用して製造を行う際、ラミロール加
工等により荷重が負荷されると第一型1は歪みに追従で
きないが、本実施例においては常温硬化性樹脂4が応力
を緩和させる為、第一型1の破損を防止することができ
る。)、樹脂が加熱硬化性樹脂であると、該樹脂が硬
化後冷却される際に収縮してしまい、熱膨張係数の違い
により第一型1を破損してしまうおそれがある。また、
破損しないまでも前記収縮により第二型3の平面性を損
ねてしまう(即ち、平滑に保ったままでの樹脂の硬化を
高温(60℃以上)で行うと実際のバイナリーレンズの
製造時に使用する温度(40℃程度)との差が大きくな
るため、第一型1と支持材(常温硬化性樹脂4)との熱
膨張係数の違いにより接する界面で応力が発生し、第一
型1の微細形状面とその周囲との平行度が悪くなる。ま
た、型(第二型3)に内部応力が残ったままで転写製造
を行うとラミネート工程や機械振動等で破損し易くな
る)、の2つの理由による。
As the room temperature curable resin 4, a resin which has flexibility after curing and has a property of curing at room temperature is used. The reason for limiting the properties of the cold-setting resin 4 is that the first mold 1 is easily damaged when handling the second mold 3 if the resin does not have flexibility (the first mold 1 is made of a brittle material). Therefore, when manufacturing using the second mold 3, the first mold 1 cannot follow the distortion when a load is applied by a laminating process or the like. The first mold 1 can be prevented from being damaged in order to alleviate the heat.) If the resin is a thermosetting resin, the resin contracts when cooled after being cured, resulting in a difference in the coefficient of thermal expansion. Therefore, the first mold 1 may be damaged. Also,
The shrinkage impairs the planarity of the second mold 3 even if it is not damaged (that is, if the resin is cured at a high temperature (60 ° C. or more) while maintaining the smoothness, the temperature used in the manufacture of the actual binary lens is reduced. (Approximately 40 ° C.), a stress is generated at the interface where the first mold 1 and the support material (room temperature curable resin 4) contact each other due to a difference in thermal expansion coefficient, and the fine shape of the first mold 1 In addition, the parallelism between the surface and the periphery thereof deteriorates, and if the transfer manufacturing is performed while the internal stress remains in the mold (second mold 3), the mold is likely to be damaged in the laminating process, mechanical vibration, etc.). by.

【0024】また、この常温硬化性樹脂4は、シリコー
ン樹脂以外にも、ウレタン樹脂やアミン系の硬化剤を使
用したエポキシ樹脂若しくはこれらの樹脂に第一型1の
線膨張係数に近づける目的でフィラーを添加した樹脂を
使用しても良い。
In addition to the silicone resin, the room-temperature-curable resin 4 may be made of a urethane resin or an epoxy resin using an amine-based curing agent, or a filler for the purpose of bringing the linear expansion coefficient of the first mold 1 closer to those resins. May be used.

【0025】また、本実施例で使用したシリコーン樹脂
はゴム質であるため、一般には線膨張係数が大きく温度
変化に敏感に作用し易い。この場合、バイナリーレンズ
の製造時の温度条件を考慮し、常温より高めの環境であ
る20〜60℃、好ましくは23〜50℃で硬化させる
ことで製造時の温度環境でも型の平行度を損ねることな
く第二型3を使用することができる。このとき使用する
シリコーン樹脂は液状から固体へ変化する際に可及的に
硬化収縮が無い、付加タイプを使用すると良い。また、
仮に縮合タイプを使用しシリコーン樹脂に内部応力等が
残っていても、該シリコーン樹脂のゴムの性質で応力を
吸収する為、第一型1の破損等は生じない。
Further, since the silicone resin used in the present embodiment is rubbery, it generally has a large linear expansion coefficient and easily acts sensitively to a temperature change. In this case, considering the temperature conditions at the time of manufacturing the binary lens, the mold is cured at 20 to 60 ° C., preferably 23 to 50 ° C., which is an environment higher than normal temperature, thereby impairing the parallelism of the mold even in the temperature environment at the time of manufacturing. The second mold 3 can be used without the need. At this time, it is preferable to use an additional type of silicone resin which has as little curing shrinkage as possible when changing from a liquid state to a solid state. Also,
Even if the condensation type is used and the internal stress or the like remains in the silicone resin, the stress is absorbed by the rubber property of the silicone resin, so that the first mold 1 is not damaged.

【0026】次に、前記第二型3(転写型)を使用して
UV(紫外線)硬化性樹脂製のバイナリーレンズを製造
する。
Next, a binary lens made of a UV (ultraviolet) curable resin is manufactured using the second mold 3 (transfer mold).

【0027】第二型3を第一型1の微細形状A面が上側
となるように位置させ、該第二型3上にUV硬化性樹脂
5を敷設状態に配設し、続いて、該UV硬化性樹脂5上
にPET製やPC製などの透明板や透明シートなどの透
明支持板7を載置し、続いて、該透明支持板7上からロ
ールなどの適宜な押圧荷重を負荷してUV硬化性樹脂5
層の厚さを調節しながら、該透明支持板7と第二型3と
の間にUV硬化性樹脂5を行き渡らせる(図3参照)。
尚、実施したロールは金属製で3kg,長さ30cmの
もので、該ロールの自重のみで0.5m/minのスピ
ードで一定速度でラミネートを行ったが、この時、第二
型3の表面が略水平となっている(第一型1の表面とシ
リコーン樹脂部の表面との間に段差がない)ためラミネ
ート後の樹脂厚さムラは殆ど発生せず、手動でロールを
転がした後、硬化後のUV硬化性樹脂5の厚さを測定し
ても5μm以下のバラツキであった。
The second mold 3 is positioned such that the fine shape A surface of the first mold 1 is on the upper side, and the UV curable resin 5 is laid on the second mold 3 in a laid state. A transparent support plate 7 such as a transparent plate or a transparent sheet made of PET or PC is placed on the UV-curable resin 5, and then an appropriate pressing load such as a roll is applied from above the transparent support plate 7. UV curable resin 5
While adjusting the thickness of the layer, the UV curable resin 5 is spread between the transparent support plate 7 and the second mold 3 (see FIG. 3).
The roll used was a metal roll of 3 kg and a length of 30 cm. Lamination was performed at a constant speed of 0.5 m / min using only the weight of the roll. Is substantially horizontal (there is no step between the surface of the first mold 1 and the surface of the silicone resin portion), so that the resin thickness unevenness after lamination hardly occurs, and after the roll is manually rolled, When the thickness of the cured UV-curable resin 5 was measured, the variation was 5 μm or less.

【0028】また、この際に使用する透明支持板7は、
アニール処理後、温度及び湿度の管理された定寸カット
品を使用しなければならない。なぜなら、透明支持板7
をロール形状に巻いた状態にする場合など、温度,湿
度,内部応力が異なった状態で使用される場合があり、
高寸法精度の製品が得られないおそれが生じるからであ
る。
The transparent support plate 7 used at this time is
After the annealing treatment, a fixed-size cut product in which the temperature and the humidity are controlled must be used. Because the transparent support plate 7
If the temperature, humidity, and internal stress are different, such as when the product is wound into a roll,
This is because a product with high dimensional accuracy may not be obtained.

【0029】また、透明支持材7は紫外線を透過させ且
つUV硬化性樹脂5と接着する透明な素材を使用するこ
とが望ましく、本実施例においてはプライマー付PET
(ポリエステル)やPC(ポリカーボネート)のアニー
ル処理品若しくはプライマー付ガラス板を使用してい
る。
It is desirable that the transparent support member 7 be made of a transparent material that transmits ultraviolet rays and adheres to the UV-curable resin 5. In this embodiment, a PET with a primer is used.
An annealed product of (polyester) or PC (polycarbonate) or a glass plate with a primer is used.

【0030】続いて、該第二型3上に設けたUV硬化性
樹脂5に透明支持材7を透過させる形で紫外線を照射し
て該UV硬化性樹脂5を硬化させる。
Subsequently, the UV-curable resin 5 provided on the second mold 3 is irradiated with ultraviolet rays so as to pass through the transparent support member 7 to cure the UV-curable resin 5.

【0031】また、この紫外線照射工程において、紫外
線を照射する前に透明支持板7の温度を測定し(放射型
温度計を使用すると良い)、所定の温度(レンズ製造工
程時の温度±5℃)であることを確認した後で紫外線照
射を行うと良い。なぜなら、透明支持板7の線膨張係数
と転写する形状の寸法の精度とを管理した方が精度の高
い製品が得られるからである。具体的には、実際使用さ
れる第一型1の線膨張係数は10-6以下で温度に対して
寸法はそれ程大きく影響しないが、ガラス以外の例えば
プラスチック材を使用する場合、該プラスチック材は1
-5オーダーの線膨張係数であるため、転写精度に大き
く影響が及ぼされる。しかし、紫外線硬化時の温度を前
記のように±5℃以下に管理することで0.02%以下
の転写精度が計算上得られることになる。尚、実際に
は、UV硬化性樹脂5の硬化収縮,硬化発熱等の内部応
力の発生,湿度膨張係数の問題などもあるため高品質,
高寸法精度の成型品を得るためには温度管理を±0.2
℃以下にした方が良い。
In this ultraviolet irradiation step, the temperature of the transparent support plate 7 is measured before irradiation with ultraviolet rays (a radiation thermometer is preferably used), and a predetermined temperature (temperature ± 5 ° C. during the lens manufacturing step) is obtained. After confirming that the condition (1) is satisfied, ultraviolet irradiation is preferably performed. This is because a product with higher accuracy can be obtained by managing the linear expansion coefficient of the transparent support plate 7 and the accuracy of the dimension of the shape to be transferred. Specifically, the linear expansion coefficient of the first mold 1 that is actually used is 10 −6 or less, and the dimension does not significantly affect the temperature. However, when a plastic material other than glass is used, for example, the plastic material is 1
Since the linear expansion coefficient is on the order of 0 -5 , the transfer accuracy is greatly affected. However, by controlling the temperature at the time of ultraviolet curing to ± 5 ° C. or less as described above, a transfer accuracy of 0.02% or less can be calculated. Actually, there is a problem of internal stress such as curing shrinkage and curing heat of the UV curable resin 5 and a problem of humidity expansion coefficient.
Temperature control of ± 0.2 to obtain molded products with high dimensional accuracy
It is better to keep the temperature below ° C.

【0032】続いて、硬化したUV硬化性樹脂5と透明
支持材7とが一体になった透明支持材7付UV硬化性樹
脂5を第二型3から剥離する。
Subsequently, the UV-curable resin 5 with the transparent support 7 in which the cured UV-curable resin 5 and the transparent support 7 are integrated is separated from the second mold 3.

【0033】続いて、硬化した透明支持材7付UV硬化
性樹脂5を切削などの適宜な加工手段によって型抜きす
ると、該型抜きされた透明支持材7付UV硬化性樹脂5
がバイナリーレンズとなる。
Subsequently, when the cured UV-curable resin 5 with transparent support 7 is die-cut by an appropriate processing means such as cutting, the UV-curable resin 5 with transparent support 7 is die-cut.
Becomes a binary lens.

【0034】また、今回使用したUV硬化性樹脂5の主
成分は、レンズ性能を考慮し、また、第二型3の外周部
(シリコーン樹脂4部分)の劣化の少ないものとして、
ラクトン変性された多官能タイプである日本化薬製カラ
ヤッドDPCA−120を使用した。このような理由に
よって適宜UV硬化性樹脂5の種類は決定されるが、シ
リコーン樹脂4以外を使用する場合など、他の種類のU
V硬化性樹脂5が最適となる場合も当然ある。
The main component of the UV-curable resin 5 used in this case is considered to be one with less deterioration of the outer peripheral portion (the silicone resin 4 portion) of the second mold 3 in consideration of lens performance.
Nippon Kayaku Karayad DPCA-120, which is a lactone-modified polyfunctional type, was used. Although the type of the UV-curable resin 5 is appropriately determined for such a reason, other types of U-curable resin 5 may be used, for example, when the silicone resin 4 is used.
Of course, the V-curable resin 5 may be optimal.

【0035】また、ラミネート工程のスピードアップの
ため(樹脂の型へのヌレ性の向上や樹脂の粘度低下が目
的である)、UV硬化性樹脂5の樹脂温度を高くする方
法がある。しかし、あまりに高温ではUV硬化性樹脂5
による第二型3へのダメージ、特にガラス転移温度Tg
の低い常温硬化型性樹脂4(例えばシリコーン樹脂のよ
うなゴム材)を第一型1の周囲に配設した場合などにお
いては該常温硬化型性樹脂4がダメージを受け、劣化速
度が早まってしまう。この点、本実施例では、UV硬化
性樹脂5の温度を40〜50℃に設定して第一型1の周
辺部の劣化を早めることなく成形サイクルを向上させて
いる。
In order to speed up the laminating process (the purpose is to improve the wetting of the resin into the mold and to lower the viscosity of the resin), there is a method of increasing the resin temperature of the UV-curable resin 5. However, if the temperature is too high, the UV curable resin 5
Damage to the second mold 3 due to heat, especially the glass transition temperature Tg
When a low-temperature-setting resin 4 (for example, a rubber material such as silicone resin) is disposed around the first mold 1, the low-temperature-setting resin 4 is damaged, and the deterioration speed is increased. I will. In this regard, in the present embodiment, the temperature of the UV curable resin 5 is set at 40 to 50 ° C. to improve the molding cycle without hastening the deterioration of the peripheral portion of the first mold 1.

【0036】本実施例は上述のようにするから、UV硬
化性樹脂5は硬化時における硬化収縮は一般的には大き
いが、該UV硬化性樹脂5と一体となる透明支持材7の
保持力により収縮や伸長などの寸法誤差が極めて少なく
なり、バイナリーレンズのようなサブミクロン(0.1
μm)レベルでの転写精度,寸法精度を要求される微細
形状Aでも、UV硬化時の硬化温度や透明支持板7の線
膨張係数(熱膨張係数,湿度膨張係数の両方を含む)を
考慮することで第一型1(第二型3)からの正確な転写
が可能となり、寸法精度を要求される製品を精度良く製
造できることになる実用性に秀れた微細形状の転写方法
となる。
In the present embodiment, as described above, the UV curable resin 5 generally has a large curing shrinkage during curing, but the holding force of the transparent support member 7 integrated with the UV curable resin 5 is large. As a result, dimensional errors such as shrinkage and elongation become extremely small, and submicron (0.1
Even in the case of the fine shape A requiring transfer accuracy and dimensional accuracy at the level of μm), the curing temperature during UV curing and the linear expansion coefficient (including both the thermal expansion coefficient and the humidity expansion coefficient) of the transparent support plate 7 are taken into consideration. As a result, accurate transfer from the first mold 1 (second mold 3) becomes possible, and a transfer method of a fine shape excellent in practicability, which enables accurate manufacture of a product requiring dimensional accuracy.

【0037】また、常温硬化性樹脂4が第二型3の応力
を吸収できる性質であるから、第二型3の平行度が損な
われていても均一な厚さの製品を製造することができる
より一層実用性に秀れた微細形状の転写方法となる。
Further, since the cold-setting resin 4 has the property of absorbing the stress of the second mold 3, a product having a uniform thickness can be manufactured even if the parallelism of the second mold 3 is impaired. This is a transfer method of a fine shape that is more practical.

【0038】また、第二型3は繰り返して使用すること
ができ、従来のバイナリーレンズの製造方法のような石
英等のガラスやシリコンウエハー等を一枚づつ加工して
微細形状を形成する方法と異なり、第二型3にUV硬化
性樹脂5を流し込んで硬化させた後該UV硬化性樹脂5
を剥離するだけで微細形状Aを形成することができるか
ら、必然的にバイナリーレンズを簡単に量産することが
できる実用性,量産性に秀れた微細形状の転写方法とな
る。
The second mold 3 can be used repeatedly, and a method of processing a glass such as quartz or a silicon wafer one by one to form a fine shape one by one as in a conventional method of manufacturing a binary lens. Differently, after the UV curable resin 5 is poured into the second mold 3 and cured, the UV curable resin 5
Since the fine shape A can be formed simply by peeling off the fine shape, a method for transferring a fine shape excellent in practicality and mass productivity in which binary lenses can be easily mass-produced inevitably.

【0039】また、第一型1の微細形状A面は常温硬化
性樹脂4によって支持材2の周囲と面一であり、且つ、
常温硬化性樹脂4は応力を吸収する性質を持つものであ
るから、第二型3に段差がないことになり、UV硬化性
樹脂5を第二型3上に設けて透明支持材7を載せて均一
なラミネート工程を行うことができ、それだけ高精度の
バイナリーレンズ等を製造することができるより一層実
用性に秀れた微細形状の転写方法となる。
The surface A of the fine shape of the first mold 1 is flush with the periphery of the support 2 by the room temperature curable resin 4 and
Since the room temperature curable resin 4 has a property of absorbing stress, there is no step in the second mold 3. The UV curable resin 5 is provided on the second mold 3, and the transparent support 7 is placed thereon. This makes it possible to perform a uniform laminating step and to produce a highly accurate binary lens or the like.

【0040】また、第一型1の周囲に常温硬化性樹脂4
を配置した構成となっているから、小さなバイナリーレ
ンズを製造するための転写型を周辺部の支持材(常温硬
化性樹脂4)部位を大きく設定することで転写型の取り
扱いが容易となる実用性,作業性に秀れた微細形状の転
写方法となる。
A room temperature curable resin 4 is provided around the first mold 1.
The practicality that the transfer mold for manufacturing a small binary lens is easy to handle by setting the area of the support material (room temperature curable resin 4) of the peripheral part to be large. This is a method for transferring a fine shape with excellent workability.

【0041】また、転写型を全て石英等のガラス若しく
はシリコンウエハーとすると、該石英等のガラス若しく
はシリコンウエハーが脆いために該転写型が脆くて取り
扱いに注意を払わなければならなくなるが、転写型(即
ち、第二型3)は脆い第一型1の周囲に硬化後において
柔軟性を有する常温硬化性樹脂4、例えばシリコーン樹
脂を配置した構成となっているから、常温硬化性樹脂4
が温度,湿度,製造工程中のラミネート工程等により歪
んでも、該常温硬化性樹脂4が歪みの応力を吸収するこ
とによって第一型1が破損したりしないことになる実用
性,作業性に秀れた微細形状の転写方法となる。
If the transfer mold is made of glass or silicon wafer such as quartz, the transfer mold is brittle because the quartz glass or silicon wafer is brittle. Since the second mold 3 has a configuration in which the room temperature curable resin 4 having flexibility after curing, for example, a silicone resin, is disposed around the brittle first mold 1, the room temperature curable resin 4 is provided.
Even if the first mold 1 is distorted due to temperature, humidity, laminating step in the manufacturing process, etc., the first mold 1 is not broken by the room-temperature-curable resin 4 absorbing the stress of distortion. This is a method for transferring a fine shape.

【0042】また、常温硬化性樹脂4がゴム材の場合、
第一型1は第二型3より容易に取り出すことが可能な
為、第一型1がUV硬化性樹脂5等により汚れた場合、
第一型1の洗浄、交換等が簡易に出来、それだけ実用性
に秀れた微細形状の転写方法となる。
When the room temperature curable resin 4 is a rubber material,
Since the first mold 1 can be more easily taken out than the second mold 3, when the first mold 1 is contaminated with the UV curable resin 5 or the like,
The first mold 1 can be easily cleaned, replaced, and the like, so that it becomes a practically excellent transfer method of a fine shape.

【0043】本実施例によりバイナリーレンズを製造し
たところ、従来のフォトリソグラフィ法と同様の精度の
ものを得ることができた。尚、製造実験は、各部材の厚
さを、図3において、第一型1は0.3〜0.6mm、シ
リコーン樹脂4層は1cm、UV硬化性樹脂5層は10
μm、透明支持材7は250μmとして行った。
When a binary lens was manufactured according to the present embodiment, a lens having the same accuracy as that of the conventional photolithography method could be obtained. In the manufacturing experiment, the thickness of each member was 0.3 to 0.6 mm for the first mold 1, 4 cm for the silicone resin 1 cm, and 10 cm for the 5 UV curable resin in FIG.
μm, and the transparent support 7 was 250 μm.

【0044】尚、本実施例はシリコーン樹脂4に第一型
1を1個埋め込んた場合であるが、複数の第一型1を埋
め込めばそれだけ量産性が上がることになる。
In this embodiment, a single first mold 1 is embedded in the silicone resin 4, but if a plurality of first molds 1 are embedded, the mass productivity is increased accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の説明側断面図である。FIG. 1 is an explanatory side sectional view of this embodiment.

【図2】本実施例の第二型3の説明平面図及び説明側断
面図である。
FIG. 2 is an explanatory plan view and an explanatory side sectional view of a second mold 3 of the present embodiment.

【図3】本実施例の説明側断面図である。FIG. 3 is an explanatory side sectional view of the present embodiment.

【符号の説明】[Explanation of symbols]

A 微細形状 1 第一型 2 支持材 3 第二型 4 常温硬化性樹脂 5 UV硬化性樹脂 7 透明支持材 A Fine shape 1 First mold 2 Support material 3 Second mold 4 Room temperature curable resin 5 UV curable resin 7 Transparent support material

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 AA04 AA14 AA39 AA43 AA45 AA46 4F205 AA31 AA33 AA36 AA39 AA44 AB03 AB11 AC05 AD03 AD04 AD10 AF16 AH74 AR06 GA07 GB01 GC04 GC06 GF01 GF24 GN13 GN24 GN28 GN29 GW21 GW34  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H049 AA04 AA14 AA39 AA43 AA45 AA46 4F205 AA31 AA33 AA36 AA39 AA44 AB03 AB11 AC05 AD03 AD04 AD10 AF16 AH74 AR06 GA07 GB01 GC04 GC06 GF01 GF24 GN13 GN24 GN28 GN29

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微細形状が形成された石英等のガラス基
材や,ゲルマニウム若しくはシリコンウエハー等の半導
体形成素材から成る第一型を、微細形状面が下側となる
ようにして支持材に載置し、この支持材に載置された第
一型の周囲に、常温で硬化する常温硬化性樹脂を流し込
み、続いて、該常温硬化性樹脂を硬化させて前記第一型
が微細形状面が露出した状態且つ該微細形状面が周囲と
面一状態で常温硬化性樹脂中に埋め込まれた構造の第二
型を形成し、この第二型を前記支持材から剥離した後、
該第二型の微細形状面が露出している面上にUV硬化性
樹脂を設け、続いて、該UV硬化性樹脂を硬化させた
後、該UV硬化性樹脂を前記第二型から剥離することを
特徴とする微細形状の転写方法。
1. A first mold made of a glass base material such as quartz on which a fine shape is formed, or a semiconductor forming material such as germanium or a silicon wafer is placed on a support material such that the fine shape surface is on the lower side. Placed, around the first mold placed on this support material, poured a room temperature curable resin that cures at room temperature, and then cured the room temperature curable resin, the first mold has a fine shape surface After forming a second mold having a structure in which the exposed state and the micro-shaped surface are flush with the surroundings and embedded in the room temperature curable resin, and after peeling off the second mold from the support material,
A UV-curable resin is provided on the surface where the second mold is exposed, and after the UV-curable resin is cured, the UV-curable resin is peeled off from the second mold. A method for transferring a fine shape.
【請求項2】 請求項1記載の微細形状の転写方法にお
いて、第二型の微細形状面が露出している面上にUV硬
化性樹脂を設けた際、更に、該UV硬化性樹脂上に透明
板若しくは透明シートから成る透明支持材を設け、続い
て、該UV硬化性樹脂を硬化させてUV硬化性樹脂と透
明支持材とが一体化された透明支持材付UV硬化性樹脂
を第二型から剥離することを特徴とする微細形状の転写
方法。
2. The method of transferring a fine shape according to claim 1, wherein when a UV-curable resin is provided on a surface of the second mold where the fine-shaped surface is exposed, the UV-curable resin is further provided on the UV-curable resin. A transparent support member made of a transparent plate or a transparent sheet is provided, and then the UV-curable resin is cured to form a UV-curable resin with a transparent support material in which the UV-curable resin and the transparent support material are integrated. A method for transferring a fine shape, characterized in that it is separated from a mold.
【請求項3】 請求項1,2いずれか1項に記載の微細
形状の転写方法において、常温硬化性樹脂として硬化後
に柔軟性を有する樹脂を使用したことを特徴とする微細
形状の転写方法。
3. The method for transferring a fine shape according to claim 1, wherein a resin having flexibility after curing is used as the room-temperature-curable resin.
【請求項4】 請求項1,2いずれか1項に記載の微細
形状の転写方法において、常温硬化性樹脂としてシリコ
ーン樹脂,ウレタン樹脂,アミン系の硬化剤を使用した
エポキシ樹脂若しくはこれらの樹脂に第一型の線膨張係
数に近づける為のフィラーを添加した樹脂を使用したこ
とを特徴とする微細形状の転写方法。
4. The method for transferring a fine shape according to claim 1, wherein the room-temperature-curable resin is a silicone resin, a urethane resin, an epoxy resin using an amine-based curing agent, or an epoxy resin using these resins. A method for transferring a fine shape, characterized by using a resin to which a filler is added so as to approach the linear expansion coefficient of the first type.
【請求項5】 請求項1〜4いずれか1項に記載の微細
形状の転写方法において、常温硬化性樹脂を20〜60
℃で硬化することを特徴とする微細形状の転写方法。
5. The method for transferring a fine shape according to claim 1, wherein the room-temperature-curable resin is 20 to 60.
A method for transferring a fine shape, characterized by curing at a temperature of ° C.
【請求項6】 請求項1〜5いずれか1項に記載の微細
形状の転写方法によってバイナリーレンズを製造するこ
とを特徴とするバイナリーレンズの製造方法。
6. A method for manufacturing a binary lens, comprising manufacturing a binary lens by the method for transferring a fine shape according to claim 1. Description:
JP10275295A 1998-09-29 1998-09-29 Method for transferring minute shape and production of binary lens Pending JP2000102937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275295A JP2000102937A (en) 1998-09-29 1998-09-29 Method for transferring minute shape and production of binary lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275295A JP2000102937A (en) 1998-09-29 1998-09-29 Method for transferring minute shape and production of binary lens

Publications (1)

Publication Number Publication Date
JP2000102937A true JP2000102937A (en) 2000-04-11

Family

ID=17553450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275295A Pending JP2000102937A (en) 1998-09-29 1998-09-29 Method for transferring minute shape and production of binary lens

Country Status (1)

Country Link
JP (1) JP2000102937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001091A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001091A (en) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc Method of manufacturing optical element

Similar Documents

Publication Publication Date Title
JP4642897B2 (en) Imprint method and imprint apparatus
JP2001277260A (en) Micro-lens array, its production method, and original board and display for producing it
JP6198016B2 (en) Manufacturing method of optical member and manufacturing method of lens
KR20150063148A (en) Releasable substrate on a carrier
US7796337B2 (en) Optical microstructure plate and fabrication mold thereof
JPH0764033B2 (en) Junction type optical member and manufacturing method thereof
TWI706505B (en) Mounting of semiconductor-on-diamond wafers for device processing
CN100457433C (en) Method and apparatus for producing optical disk and substrate producing method
WO2003090993A1 (en) Method of forming compound lens
US20080318170A1 (en) Method of making an optical disc
JP2000102937A (en) Method for transferring minute shape and production of binary lens
JP2007331205A (en) Method for producing thermoplastic resin sheet
KR100436699B1 (en) Replication mold
JP3384757B2 (en) Method for manufacturing fine shape transfer product and method for manufacturing optical member
US7826148B2 (en) Aspheric lens structures and fabrication methods thereof
JP3566635B2 (en) Optical article manufacturing method
US8641934B2 (en) Method for fabricating light guide plate
US20240165870A1 (en) Method for facilitating demolding upon pattern transfer
JP2006177994A (en) Replica optical element
JP2003222708A (en) Optical element and its manufacturing method
JP3545796B2 (en) Optical device and optical device manufacturing method
JPH08124223A (en) Production of optical disc
JP2003266450A (en) Optical element and manufacturing method therefor
JPH02217233A (en) Production of roll-type stamper for 2p
JP2006220816A (en) Method of manufacturing optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080119

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090119

LAPS Cancellation because of no payment of annual fees