JP2000101003A - Reduction structure of contact heat resistance, and its reduction method - Google Patents

Reduction structure of contact heat resistance, and its reduction method

Info

Publication number
JP2000101003A
JP2000101003A JP10264100A JP26410098A JP2000101003A JP 2000101003 A JP2000101003 A JP 2000101003A JP 10264100 A JP10264100 A JP 10264100A JP 26410098 A JP26410098 A JP 26410098A JP 2000101003 A JP2000101003 A JP 2000101003A
Authority
JP
Japan
Prior art keywords
carbon
solid
contact
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10264100A
Other languages
Japanese (ja)
Inventor
Ryoji Okada
良治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10264100A priority Critical patent/JP2000101003A/en
Publication of JP2000101003A publication Critical patent/JP2000101003A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact heat resistance reduction structure with satisfactory resistance which can be used even under high-temperature environment and can be arranged uniformly on a solid contact face. SOLUTION: This reduction structure is equipped with a plurality of solid bodies A and B with temperature difference where a carbon adhesive 5 is applied on their contact faces 2a and 2b, and a carbon cloth 1 which is caught between these solid bodies A and B. The structure is constituted so as to conduct heat from the solid body A at a high temperature to the solid body B at a low temperature through the carbon adhesive 5, the carbon cloth 1, and the carbon adhesive 5. As a result, the heat resistance in this heat conduction setup is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温又は低温環境
下における、複数の固体間の接触熱抵抗を低減させる接
触熱抵抗の低減構造及びその低減方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for reducing the contact thermal resistance between a plurality of solids in a high or low temperature environment and a method for reducing the same.

【0002】[0002]

【従来の技術】通常、温度差を有する2つの固体を接触
させると、高温の固体から低温の固体に熱が伝導する。
これらの固体11,12は、図5に示すように、たと
え、鏡面に近い仕上げであっても面が一致することはま
ずなく、その接触面13,14がそれぞれ凹凸形状にな
っているため、接触面13,14の間には隙間15が形
成される。この隙間15には、空気等の気体が介在して
おり、該気体は、固体よりも熱伝導が悪いので、熱が伝
導される場合には抵抗となる。よって、図5の場合は、
主に、2つの固体11,12の接触部16である接触点
又は接触線を介して高温の固体11から低温の固体12
に熱が流れるので熱伝導性が低く、よって熱抵抗が高
い。
2. Description of the Related Art Generally, when two solids having a temperature difference are brought into contact with each other, heat is conducted from a high-temperature solid to a low-temperature solid.
As shown in FIG. 5, the surfaces of the solids 11 and 12 hardly coincide with each other, even if the surfaces are almost mirror-finished, and the contact surfaces 13 and 14 have irregular shapes, respectively. A gap 15 is formed between the contact surfaces 13 and 14. A gas such as air is interposed in the gap 15, and the gas has a lower heat conduction than a solid, so that when the heat is conducted, the gas becomes a resistance. Therefore, in the case of FIG.
Mainly, from the high temperature solid 11 to the low temperature solid 12 through a contact point or a contact line which is a contact portion 16 of the two solids 11 and 12.
As heat flows, the heat conductivity is low and the heat resistance is high.

【0003】そこで、図6に示すように、固体11,1
2の接触面13,14にサーマルコンパウンド17を塗
布し、2つの固体11,12の接触面13,14に形成
された隙間15をなくしている。しかし、該サーマルコ
ンパウンド17の耐熱温度は、100℃程度と低く、1
000℃程度の高温用がなく、これ以上の高温では接触
熱抵抗の低減を図ることができなかった。また、サーマ
ルコンパウンド17は、接触面13,14に均一に塗布
することは非常に難しく、接触熱抵抗を一定に再現させ
るのは困難であった。
[0003] Therefore, as shown in FIG.
The thermal compound 17 is applied to the contact surfaces 13 and 14 of the two solids, and the gap 15 formed in the contact surfaces 13 and 14 of the two solids 11 and 12 is eliminated. However, the heat resistant temperature of the thermal compound 17 is as low as about 100 ° C.
There was no use for a high temperature of about 000 ° C., and at a higher temperature, contact thermal resistance could not be reduced. Further, it is very difficult to apply the thermal compound 17 uniformly to the contact surfaces 13 and 14, and it is difficult to reproduce the contact thermal resistance uniformly.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
問題点に鑑みてなされたものであって、その目的とする
ところは、耐熱性が良好で、高温の環境下においても使
用することができ、固体接触面に均一に配設することが
できる接触熱抵抗低減構造及びその低減方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a device which has good heat resistance and can be used in a high-temperature environment. It is an object of the present invention to provide a contact thermal resistance reduction structure and a method for reducing the same, which can be uniformly disposed on a solid contact surface.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る接触熱抵抗の低減構造は、温度差を有
する複数の固体と、これら固体の接触面の間に挟持され
た、耐熱性を有する炭素系材料とを備えている。上記固
体は、例えば、電子部品等で発生した熱をヒートシンク
等の放熱部に流す場合の高温と低温の接続部に適用する
ことができる。上記炭素系材料には、耐熱性を有し、熱
伝導性が良好で、固体の接触面に形成された凹凸による
隙間を埋めるのに好適な、例えばカーボンクロス等が好
ましい。また、従来は、固体間の接触形式の大部分が点
接触や線接触であったが、本発明によれば、固体と固体
の接触面の間に隙間がなくなって面接触となり、接触面
積が大幅に増加する。従って、高温の固体から低温の固
体への熱伝導も、広い面積の部分から一様に伝わるよう
になり、この熱伝導における熱抵抗も低減する。本発明
に係る接触熱抵抗の低減構造は、上記炭素系材料として
カーボンクロスを用いている。このカーボンクロスは、
耐熱性を有し、熱伝導性が良好なため、接触面の押し付
け圧力でカーボンクロスのファイバーが接触面の隙間を
埋め、熱伝導を良くする。よって、その厚さは、固体の
接触面の粗さに関係するが、例えば0.2mm〜0.3mm
が好ましい。なお、この低減構造は、低温環境下にも有
効である。本発明に係る接触熱抵抗の低減構造は、上記
炭素系材料としてカーボン接着剤を用いている。本発明
に係る接触熱抵抗の低減構造は、その接触面にカーボン
接着剤を塗布した、温度差を有する複数の固体と、これ
ら固体の間に挟持されたカーボンクロスとを備えてい
る。上記構造によれば、高温の固体からカーボン接着
剤、カーボンクロス、及びカーボン接着剤を介して低温
の固体に熱を伝導させるように構成されており、上記カ
ーボン接着剤とカーボンクロスは、熱伝導性が良好であ
る。これら固体の接触面同士の押付圧力により、上記カ
ーボン接着剤が、カーボンクロスのファイバー及び接触
面の隙間に埋まり、更に熱抵抗が低減する。
In order to achieve the above object, a structure for reducing contact thermal resistance according to the present invention comprises a plurality of solids having a temperature difference, and a heat resistant structure sandwiched between contact surfaces of these solids. And a carbon-based material having properties. The solid can be applied to, for example, a high-temperature and low-temperature connection portion in a case where heat generated by an electronic component or the like is caused to flow to a heat radiation portion such as a heat sink. The carbon-based material is preferably, for example, carbon cloth, which has heat resistance and good thermal conductivity and is suitable for filling gaps formed by irregularities formed on the solid contact surface. Also, in the past, most of the types of contact between solids were point contact or line contact, but according to the present invention, there is no gap between the contact surfaces of the solid and solid, resulting in surface contact, and the contact area is reduced. Increase significantly. Therefore, heat conduction from a high-temperature solid to a low-temperature solid is also transmitted uniformly from a large area, and the thermal resistance in this heat conduction is reduced. The structure for reducing contact thermal resistance according to the present invention uses a carbon cloth as the carbon-based material. This carbon cloth is
Since it has heat resistance and good thermal conductivity, the fibers of the carbon cloth fill the gaps in the contact surface with the pressing pressure of the contact surface, thereby improving heat conduction. Thus, the thickness is related to the roughness of the solid contact surface, for example, 0.2 mm to 0.3 mm
Is preferred. This reduction structure is effective even in a low-temperature environment. The structure for reducing contact thermal resistance according to the present invention uses a carbon adhesive as the carbon-based material. The structure for reducing contact thermal resistance according to the present invention includes a plurality of solids having a temperature difference, each having a contact surface coated with a carbon adhesive, and a carbon cloth sandwiched between these solids. According to the above structure, the heat is transferred from the high-temperature solid to the low-temperature solid through the carbon adhesive, the carbon cloth, and the carbon adhesive. The properties are good. Due to the pressing pressure between these solid contact surfaces, the carbon adhesive is buried in the gap between the fibers of the carbon cloth and the contact surfaces, and the thermal resistance is further reduced.

【0006】本発明に係る接触熱抵抗の低減方法は、温
度差を有する複数の固体の間に、耐熱性を有する炭素系
材料を挟持し、高温の固体から該炭素系材料を介して低
温の固体に熱を伝導させている。上記低減方法によれ
ば、固体と固体の接触面の間に隙間がなくなって接触面
積が大幅に増加し、高温の固体から低温の固体への熱伝
導も、広い面積の部分から一様に伝わるようになるの
で、この熱伝導における熱抵抗も低減する。本発明に係
る接触熱抵抗の低減方法は、上記炭素系材料としてカー
ボンクロスを用いている。本発明に係る接触熱抵抗の低
減方法は、上記炭素系材料としてカーボン接着剤を用い
ている。本発明に係る接触熱抵抗の低減方法は、温度差
を有する複数の固体の接触面にカーボン接着剤を塗布
し、これらの固体の間にカーボンクロスを挟持し、高温
の固体からカーボン接着剤、カーボンクロス、及びカー
ボン接着剤を介して低温の固体に熱を伝導させている。
上記低減方法によれば、固体の接触面同士の押付圧力に
より、上記カーボン接着剤が、カーボンクロスのファイ
バー及び接触面の隙間に埋まり、更に熱抵抗が低減す
る。
In the method for reducing contact thermal resistance according to the present invention, a carbon-based material having heat resistance is sandwiched between a plurality of solids having a temperature difference, and a low-temperature solid is transferred from a high-temperature solid through the carbon-based material. Conducts heat to solids. According to the above-described reduction method, there is no gap between the contact surfaces of the solid and the solid, and the contact area is greatly increased, and the heat conduction from the high-temperature solid to the low-temperature solid is also transmitted uniformly from a large area portion. Therefore, the thermal resistance in this heat conduction is also reduced. In the method for reducing contact thermal resistance according to the present invention, a carbon cloth is used as the carbon-based material. In the method for reducing contact thermal resistance according to the present invention, a carbon adhesive is used as the carbon-based material. The method for reducing contact thermal resistance according to the present invention is to apply a carbon adhesive to a contact surface of a plurality of solids having a temperature difference, sandwich a carbon cloth between these solids, and use a carbon adhesive from a high-temperature solid. Heat is conducted to a low-temperature solid through a carbon cloth and a carbon adhesive.
According to the above-described reduction method, the carbon adhesive is buried in the gap between the fiber of the carbon cloth and the contact surface due to the pressing pressure between the solid contact surfaces, and the thermal resistance is further reduced.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて詳細に説明する。第1の実施の形態 図1は、第1の実施の形態に係るカーボンクロス1を用
いた接触熱抵抗の低減構造を示す断面図である。この低
減構造は、例えば、電子部品等で発生した熱をヒートシ
ンク等の放熱部に流す場合の高温と低温の接続部に適用
することができる。図1に示した2つの固体A,Bは温
度差を有しており、第1の固体Aが高温で、第2の固体
Bが低温になっているので、この第1の固体Aから第1
の固体Bに熱が伝導されるように構成されている。これ
ら固体A,Bの接触面2a,2bは、各々凹凸形状にな
っているので、これらの接触面同士2a,2bは、点接
触又は線接触をしており、これらの接触面2a,2bの
間には隙間が形成される。
Embodiments of the present invention will be described below in detail with reference to the drawings. First Embodiment FIG. 1 is a sectional view showing a structure for reducing contact thermal resistance using a carbon cloth 1 according to a first embodiment. This reduction structure can be applied to, for example, a high-temperature and low-temperature connection portion in a case where heat generated by an electronic component or the like flows to a heat radiating portion such as a heat sink. The two solids A and B shown in FIG. 1 have a temperature difference, and the first solid A has a high temperature and the second solid B has a low temperature. 1
Is configured to conduct heat to the solid B. Since the contact surfaces 2a and 2b of the solids A and B are each in an uneven shape, the contact surfaces 2a and 2b are in point contact or line contact with each other. A gap is formed between them.

【0008】この隙間を埋めるために、第1の固体Aと
第2の固体Bとの間に、図2に示すようなカーボンクロ
ス1を挟む。このカーボンクロス1は、数多くの炭素繊
維(カーボンファイバーファイバー)から構成されてお
り、耐熱温度が、大気中では約400℃、真空中では約
2000℃であり、良好な耐熱性と熱伝導性を備えてい
る。一般に、カーボンクロス1は炭素繊維織物と呼ば
れ、炭素繊維により構成された織物で、形態としては織
物と不織布(フェルト)とがあるが、第1実施形態に係
るカーボンクロス1は織物を用いている。上記炭素繊維
は、レーヨン、ポリアクリロニトリル等の有機高分子繊
維を一連の段階的加熱処理によって、もとの繊維形状を
保ったまま炭素化するか、紡糸したピッチを熱処理する
ことによって得られる。つまり、上記カーボンクロス1
は、上記炭素繊維を多数集めて糸3,4を構成し、縦及
び横方向に複数編み込むことによって作製する。該カー
ボンクロス1の外観は黒色で、比重は1.5〜2.1で
あり、繊維径は5〜120μmである。さらに、厚さは
0.2〜0.3mmが好ましく、2つの固体A,Bの接触
面2a,2bの粗さに応じて、適宜決定することが好ま
しい。なお、図2においては、理解しやすくするため、
縦糸3を黒色に、横糸4を白色に色分けしている。
To fill the gap, a carbon cloth 1 as shown in FIG. 2 is sandwiched between the first solid A and the second solid B. This carbon cloth 1 is composed of many carbon fibers (carbon fiber fibers), and has a heat resistant temperature of about 400 ° C. in the air and about 2000 ° C. in a vacuum, and has good heat resistance and thermal conductivity. Have. In general, the carbon cloth 1 is called a carbon fiber woven fabric, which is a woven fabric composed of carbon fibers. There are a woven fabric and a non-woven fabric (felt) as forms, but the carbon cloth 1 according to the first embodiment uses a woven fabric. I have. The carbon fibers are obtained by carbonizing organic polymer fibers such as rayon and polyacrylonitrile while maintaining the original fiber shape by a series of stepwise heat treatments, or heat-treating spun pitches. That is, the carbon cloth 1
Is produced by collecting a large number of the carbon fibers to form yarns 3 and 4 and weaving a plurality of them in the vertical and horizontal directions. The appearance of the carbon cloth 1 is black, the specific gravity is 1.5 to 2.1, and the fiber diameter is 5 to 120 μm. Further, the thickness is preferably 0.2 to 0.3 mm, and it is preferable to appropriately determine the thickness according to the roughness of the contact surfaces 2a and 2b of the two solids A and B. In FIG. 2, for easy understanding,
The warp 3 is colored black and the weft 4 is colored white.

【0009】上記構成を有する接触熱抵抗の低減構造に
よる作用を以下に説明する。第1の固体Aと第2の固体
Bの接触面2a,2bの間にカーボンクロス1を配設
し、これらの固体A,B同士を押し付けると、その押付
圧力で上記カーボンクロス1を圧縮し、固体A,Bの接
触面2a,2bに形成された隙間を埋めることができ
る。つまり、従来は、第1の固体Aと第2の固体Bとの
接触形式が主に点接触や線接触であったが、第1実施形
態によれば、第1の固体Aと第2の固体Bが面接触とな
り、接触面積が増大する。これにより、高温の第1の固
体Aからカーボンクロス1を介して低温の第2の固体B
に効率良く熱が伝導され、接触熱抵抗を低減することが
できる。2つの固体A,Bの間にカーボンクロス1を挟
んだ場合、何も挟まないときに比べ、約20%接触熱抵
抗の低減が図れた。
The operation of the contact thermal resistance reducing structure having the above configuration will be described below. When the carbon cloth 1 is disposed between the contact surfaces 2a and 2b of the first solid A and the second solid B and these solids A and B are pressed together, the carbon cloth 1 is compressed by the pressing pressure. The gaps formed on the contact surfaces 2a and 2b of the solids A and B can be filled. That is, conventionally, the contact type between the first solid A and the second solid B is mainly point contact or line contact, but according to the first embodiment, the first solid A and the second solid B are in contact with each other. The solid B comes into surface contact, and the contact area increases. As a result, the low-temperature second solid B is converted from the high-temperature first solid A via the carbon cloth 1.
The heat is efficiently conducted to the contact, and the contact thermal resistance can be reduced. When the carbon cloth 1 was sandwiched between the two solids A and B, the contact thermal resistance was reduced by about 20% as compared with the case where nothing was sandwiched.

【0010】第2の実施の形態 第2の実施の形態は、第1の固体Aの接触面2aにカー
ボン接着剤5を塗布する一方、第2の固体Bの接触面2
bにカーボン接着剤5を塗布し、これら第1の固体Aと
第2の固体Bとの間にカーボンクロス1を挟み込んでい
る。つまり、この接触熱抵抗の低減構造では、図3に示
すように、高温の第1の固体Aとカーボンクロス1との
間、及び低温の第2の固体Bとカーボンクロス1との間
に、耐熱性の良いカーボン接着剤5を追加している。上
記カーボンクロス1は第1実施形態で用いたものと同様
であるので、その説明を省略する。また、上記カーボン
接着剤5は、例えば、日清紡のカーボン接着剤ST−2
01が好ましく、その成分として黒鉛粉末と樹脂などが
含まれている。
Second Embodiment In a second embodiment, a carbon adhesive 5 is applied to a contact surface 2a of a first solid A, while a contact surface 2a of a second solid B is applied.
b, a carbon adhesive 5 is applied, and the carbon cloth 1 is sandwiched between the first solid A and the second solid B. In other words, in this structure for reducing the contact thermal resistance, as shown in FIG. 3, between the high-temperature first solid A and the carbon cloth 1 and between the low-temperature second solid B and the carbon cloth 1 Carbon adhesive 5 with good heat resistance is added. Since the carbon cloth 1 is the same as that used in the first embodiment, the description is omitted. The carbon adhesive 5 is, for example, Nisshinbo's carbon adhesive ST-2.
01 is preferable, and contains graphite powder and resin as its components.

【0011】上記第2の実施の形態によれば、上記第1
実施形態とほぼ同様の作用と効果が得られるのに加え、
固体A,Bとカーボンクロス1の間に耐熱性の良いカー
ボン接着剤5を追加しているので、接触面2a,2b同
士の押付圧力により、カーボンクロス1を構成するカー
ボンファイバー及び固体A,Bの接触面2a,2bの隙
間に上記カーボン接着剤5が埋まり、第1実施形態より
も熱伝導性が向上し、よって熱抵抗が低減する。2つの
固体A,Bの間にカーボンクロス1及びカーボン接着剤
5を挟んだ場合は、何も挟まない場合に比較して、接触
熱抵抗の低減が約30%図れた。なお、上記カーボン接
着剤5は高温用であるが、該接着剤5を低温用にすれ
ば、低温環境下にも有効となる。
According to the second embodiment, the first embodiment
In addition to obtaining substantially the same operation and effect as the embodiment,
Since the carbon adhesive 5 having good heat resistance is added between the solids A and B and the carbon cloth 1, the carbon fibers constituting the carbon cloth 1 and the solids A and B are pressed by the pressing pressure between the contact surfaces 2a and 2b. The carbon adhesive 5 is buried in the gap between the contact surfaces 2a and 2b, and the thermal conductivity is improved as compared with the first embodiment, and the thermal resistance is reduced. When the carbon cloth 1 and the carbon adhesive 5 were sandwiched between the two solids A and B, the contact thermal resistance was reduced by about 30% as compared with the case where nothing was sandwiched. Although the carbon adhesive 5 is used for a high temperature, if the adhesive 5 is used for a low temperature, it is effective even in a low temperature environment.

【0012】第3の実施の形態 第3の実施の形態は、上述した第1実施形態で使用した
カーボンクロス1に替えて、耐熱性の良好なカーボン接
着剤5を用いている。つまり、図4に示すように、第1
の固体Aと第2の固体Bの接触面2a,2bにカーボン
接着剤5を塗布し、双方の固体A,Bを押し付けること
により、高温の第1の固体Aと低温の第2の固体Bの接
触面2a,2b間に形成されている隙間が埋められる。
上記第3実施形態によれば、第1実施形態とほぼ同様の
作用と効果が得られ、2つの固体A,Bの間にカーボン
接着剤5を挟持した場合は、何も挟まない場合に比較し
て、接触熱抵抗の低減が約15〜20%図れた。
Third Embodiment In a third embodiment, a carbon adhesive 5 having good heat resistance is used instead of the carbon cloth 1 used in the first embodiment. That is, as shown in FIG.
The carbon adhesive 5 is applied to the contact surfaces 2a and 2b of the solid A and the second solid B, and the solids A and B are pressed to form the first solid A at high temperature and the second solid B at low temperature. The gap formed between the contact surfaces 2a and 2b is filled.
According to the third embodiment, substantially the same operation and effect as those of the first embodiment can be obtained, and when the carbon adhesive 5 is sandwiched between the two solids A and B, compared with the case where nothing is sandwiched. As a result, the contact thermal resistance was reduced by about 15 to 20%.

【0013】[0013]

【発明の効果】上述の如く、本発明に係る接触熱抵抗の
低減構造及びその低減方法によれば、以下のような効果
を奏する。 (1) 本発明は、固体の接触面の間に、耐熱性を有する炭
素系材料を挟持しているので、接触面間の隙間が埋ま
り、高温の固体から低温の固体に熱が伝わる際の熱伝導
性が向上し、これに伴って熱抵抗が低減する。 (2) 本発明は、上記炭素系材料としてカーボンクロスや
カーボン接着剤を用いているので、 (3) 本発明は、温度差を有する固体の接触面にカーボン
接着剤を塗布し、これら固体の間にカーボンクロスを挟
持しているので、高温の固体から低温の固体に熱が伝わ
る際の熱抵抗が更に低減する。
As described above, according to the structure for reducing contact thermal resistance and the method for reducing the same according to the present invention, the following effects can be obtained. (1) In the present invention, since a carbon-based material having heat resistance is sandwiched between solid contact surfaces, gaps between the contact surfaces are filled, and heat is transferred from a high-temperature solid to a low-temperature solid. The thermal conductivity is improved, and the thermal resistance is accordingly reduced. (2) The present invention uses a carbon cloth or a carbon adhesive as the carbon-based material. (3) The present invention applies a carbon adhesive to a solid contact surface having a temperature difference, and Since the carbon cloth is interposed therebetween, the thermal resistance when heat is transferred from the high-temperature solid to the low-temperature solid is further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態に係る接触熱抵抗の低減構造
を示す断面図である。
FIG. 1 is a cross-sectional view showing a structure for reducing contact thermal resistance according to a first embodiment.

【図2】図1のカーボンクロスを示す平面図である。FIG. 2 is a plan view showing the carbon cloth of FIG.

【図3】第2の実施の形態に係る接触熱抵抗の低減構造
を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a structure for reducing contact thermal resistance according to a second embodiment.

【図4】第3の実施の形態に係る接触熱抵抗の低減構造
を示す断面図である。
FIG. 4 is a cross-sectional view showing a structure for reducing contact thermal resistance according to a third embodiment.

【図5】2つの固体の接触面を示す断面図である。FIG. 5 is a sectional view showing two solid contact surfaces.

【図6】従来の接触熱抵抗の低減構造を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing a conventional structure for reducing contact thermal resistance.

【符号の説明】[Explanation of symbols]

1 カーボンクロス 2a,2b 接触面 3 縦糸 4 横糸 5 カーボン接着剤 A 第1の固体 B 第2の固体 DESCRIPTION OF SYMBOLS 1 Carbon cloth 2a, 2b Contact surface 3 Warp 4 Weft 5 Carbon adhesive A 1st solid B 2nd solid

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 温度差を有する複数の固体と、これら固
体の接触面の間に挟持された、耐熱性を有する炭素系材
料とを備え、高温の固体から該炭素系材料を介して低温
の固体に熱を伝導させるように構成することにより、こ
の熱伝導における熱抵抗を低減させたことを特徴とする
接触熱抵抗の低減構造。
1. A solid material having a temperature difference and a heat-resistant carbon-based material sandwiched between contact surfaces of the solids, wherein a high-temperature solid is cooled through a low-temperature material through the carbon-based material. A structure for reducing heat resistance in contact heat resistance, wherein the structure is configured to conduct heat to a solid to reduce heat resistance in the heat conduction.
【請求項2】 上記炭素系材料としてカーボンクロスを
用いたことを特徴とする請求項1に記載の接触熱抵抗の
低減構造。
2. The structure according to claim 1, wherein a carbon cloth is used as the carbon-based material.
【請求項3】 上記炭素系材料としてカーボン接着剤を
用いたことを特徴とする請求項1に記載の接触熱抵抗の
低減構造。
3. The structure according to claim 1, wherein a carbon adhesive is used as the carbon-based material.
【請求項4】 その接触面にカーボン接着剤を塗布し
た、温度差を有する複数の固体と、これら固体の間に挟
持されたカーボンクロスとを備え、高温の固体からカー
ボン接着剤、カーボンクロス、及びカーボン接着剤を介
して低温の固体に熱を伝導させるように構成することに
より、この熱伝導における熱抵抗を低減させたことを特
徴とする接触熱抵抗の低減構造。
4. A solid having a temperature difference between a plurality of solids coated with a carbon adhesive on a contact surface thereof, and a carbon cloth sandwiched between the solids. And a structure for conducting heat to a low-temperature solid through a carbon adhesive, thereby reducing the thermal resistance in the heat conduction.
【請求項5】 温度差を有する複数の固体の間に、耐熱
性を有する炭素系材料を挟持し、高温の固体から該炭素
系材料を介して低温の固体に熱を伝導させることによ
り、この熱伝導における熱抵抗を低減させることを特徴
とする接触熱抵抗の低減方法。
5. A heat-resistant carbon-based material is sandwiched between a plurality of solids having a temperature difference, and heat is conducted from a high-temperature solid to a low-temperature solid through the carbon-based material. A method for reducing contact thermal resistance, characterized by reducing thermal resistance in heat conduction.
【請求項6】 上記炭素系材料としてカーボンクロスを
用いることを特徴とする請求項5に記載の接触熱抵抗の
低減方法。
6. The method according to claim 5, wherein a carbon cloth is used as the carbon-based material.
【請求項7】 上記炭素系材料としてカーボン接着剤を
用いることを特徴とする請求項5に記載の接触熱抵抗の
低減方法。
7. The method according to claim 5, wherein a carbon adhesive is used as the carbon-based material.
【請求項8】 温度差を有する複数の固体の接触面にカ
ーボン接着剤を塗布し、これらの固体の間にカーボンク
ロスを挟持し、高温の固体からカーボン接着剤、カーボ
ンクロス、及びカーボン接着剤を介して低温の固体に熱
を伝導させることにより、この熱伝導における熱抵抗を
低減させることを特徴とする接触熱抵抗の低減方法。
8. A carbon adhesive is applied to contact surfaces of a plurality of solids having a temperature difference, a carbon cloth is sandwiched between these solids, and a carbon adhesive, a carbon cloth, and a carbon adhesive are formed from a high-temperature solid. A method for reducing contact thermal resistance, comprising: conducting heat to a low-temperature solid through a substrate to reduce thermal resistance in the heat conduction.
JP10264100A 1998-09-18 1998-09-18 Reduction structure of contact heat resistance, and its reduction method Withdrawn JP2000101003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10264100A JP2000101003A (en) 1998-09-18 1998-09-18 Reduction structure of contact heat resistance, and its reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10264100A JP2000101003A (en) 1998-09-18 1998-09-18 Reduction structure of contact heat resistance, and its reduction method

Publications (1)

Publication Number Publication Date
JP2000101003A true JP2000101003A (en) 2000-04-07

Family

ID=17398520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10264100A Withdrawn JP2000101003A (en) 1998-09-18 1998-09-18 Reduction structure of contact heat resistance, and its reduction method

Country Status (1)

Country Link
JP (1) JP2000101003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
WO2015000449A1 (en) * 2013-07-01 2015-01-08 浙江百特电器有限公司 Heat conducting mechanism for personal care device and personal care device
GB2570820A (en) * 2018-08-13 2019-08-07 Jiangxi Eastern Leopard Fastener Co Ltd Macromolecular conductive wear-resistant composite board and manufacturing process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186241A (en) * 2011-03-04 2012-09-27 Railway Technical Research Institute Heat conductive sheet
WO2015000449A1 (en) * 2013-07-01 2015-01-08 浙江百特电器有限公司 Heat conducting mechanism for personal care device and personal care device
GB2570820A (en) * 2018-08-13 2019-08-07 Jiangxi Eastern Leopard Fastener Co Ltd Macromolecular conductive wear-resistant composite board and manufacturing process thereof
GB2570820B (en) * 2018-08-13 2021-07-07 Jiangxi Eastern Leopard Fastener Co Ltd Macromolecular conductive wear-resistant composite board and manufacturing process thereof

Similar Documents

Publication Publication Date Title
US10918212B2 (en) Heating chair using carbon fiber heating element having multi-layered thermal layer
JP2002352807A (en) Gas diffuser and manufacturing method therefor
KR950002100B1 (en) Press pad for high pressure press
JP5121709B2 (en) Multi-layer diffusion media substrate
US6703640B1 (en) Spring element for use in an apparatus for attaching to a semiconductor and a method of attaching
JP2000101003A (en) Reduction structure of contact heat resistance, and its reduction method
KR102333477B1 (en) Method of manufacturing and modularizing assembled thermal management material based on diamond-graphene hybrid structure
JPH05209157A (en) Adhesive electronic device
JP2008541362A (en) GAS DIFFUSION LAYER, ITS DEVICE, AND ITS MANUFACTURING METHOD
JP2009029908A (en) Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same
JP2001194022A (en) Thermal stress relaxing pad and thermoelectric conversion system using it and peltier cooling system
CN207084292U (en) A kind of running shoes of graphene-containing composite
KR102199069B1 (en) Apparatus of Hanji flooring heating element by block replacement technique
JPH07263013A (en) Fuel cell
CN214196899U (en) Carbon-carbon screw
JP4257004B2 (en) Heat resistant sealing material
KR100726858B1 (en) conductive sheet
JPS60154630A (en) Semiconductor device
CN210337158U (en) Teflon high-temperature cloth of compound graphite alkene
KR102149991B1 (en) Graphite sheet derived from coated polymeric resin particles and method for preparing same
CN210491220U (en) Nanometer heating and drying line
JPH03277538A (en) Heat insulating material
CN216968886U (en) High-elasticity non-woven fabric composite fabric
JPH045314Y2 (en)
CN215551494U (en) High heat conduction graphite alkene composite pad piece

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110