JP2009029908A - Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same - Google Patents

Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same Download PDF

Info

Publication number
JP2009029908A
JP2009029908A JP2007194475A JP2007194475A JP2009029908A JP 2009029908 A JP2009029908 A JP 2009029908A JP 2007194475 A JP2007194475 A JP 2007194475A JP 2007194475 A JP2007194475 A JP 2007194475A JP 2009029908 A JP2009029908 A JP 2009029908A
Authority
JP
Japan
Prior art keywords
sheet
woven fabric
conductive elastic
laminated
elastic sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007194475A
Other languages
Japanese (ja)
Inventor
Takeshi Iname
健 稲目
Katsuo Akimoto
勝雄 秋元
Kunio Kaji
邦雄 鍛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIATION KK
ST Sangyo KK
Original Assignee
RADIATION KK
ST Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIATION KK, ST Sangyo KK filed Critical RADIATION KK
Priority to JP2007194475A priority Critical patent/JP2009029908A/en
Publication of JP2009029908A publication Critical patent/JP2009029908A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive elastic sheet using carbon fiber, which has high heat conductivity and sufficiently flexibility to be closely fitted to a heating element or radiator, and excellent economical productivity. <P>SOLUTION: The heat conductive elastic sheet 6 comprises a woven fabric sheet 9 of heat conductive carbon fiber obtained by firing a fabric cloth, and an elastic body 3 filled in pores of the woven fabric sheet 9. The method for manufacturing the heat conductive elastic sheet comprises steps of laminating woven fabric sheets of heat conductive carbon fiber obtained by firing a fabric cloth to form a laminated woven fabric sheet; filling a liquid resin which exhibit elasticity when cured to pores of the laminated woven fabric sheet; curing the liquid resin to form a laminated woven fabric heat conductive elastic sheet; and cutting the laminated woven fabric heat conductive elastic sheet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多種多様に使用される熱伝導性シート及びその製造方法とこれを用いた電子機器に関し、具体的には、相対的に高温の物体(発熱体あるいは高温になっている部材等)と相対的に低温の物体(吸熱体あるいは常温にある部材等)との間に挟持されて熱を伝導する熱伝導性シート及びその製造方法とこれを用いた電子機器に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide variety of thermally conductive sheets and methods for producing the same, and electronic devices using the same, and more specifically, a relatively high temperature object (a heating element or a member having a high temperature). In particular, the present invention relates to a thermally conductive sheet that is sandwiched between a relatively low-temperature object (such as an endothermic body or a member at room temperature) and conducts heat, a manufacturing method thereof, and an electronic device using the same.

近年電子機器の回路基盤に実装される半導体素子や電子部品は一段と集積化が進み高発熱化の傾向にある。それらの発熱部品から発生される熱を放散させる目的で、回路基板にはヒートシンクや冷却ファンなどが装着されるが、放熱性を向上するためにそれらの冷却手段と回路基板との間に熱伝導性シートが装着されることが一般的である。この熱伝導性シートは、現実的には高価である割には熱伝導性の効果は不十分なものでしかない。この実情に対して、以下の公知文献がある。   In recent years, semiconductor elements and electronic components mounted on circuit boards of electronic devices have been increasingly integrated and tend to generate high heat. In order to dissipate the heat generated by these heat-generating components, the circuit board is equipped with a heat sink, cooling fan, etc. In order to improve heat dissipation, heat conduction is performed between these cooling means and the circuit board. In general, a sex sheet is attached. Although this heat conductive sheet is actually expensive, the effect of heat conductivity is only insufficient. The following publicly known documents exist for this situation.

特許文献1には、ゴム状重合体や樹脂状重合体からなるバインダーに繊維の長さが0.2mmの短い炭素繊維(フィラー)を分散させた厚さ0.2mmの熱伝導性シートが開示されている。特許文献2には、接着剤樹脂中に分散された3次元構造を有する炭素繊維が記載されている。このうち文献1の発明は、短い炭素繊維に1本ごとに磁性体を付着させ、バインダーとの分散体に数千ガウスの磁場を数十分間かけてシートの厚み方向にこの炭素繊維を配向させることによって熱伝導性を高めようとするものであり、製造に手間が掛かり、経済的に不利なものである。   Patent Document 1 discloses a 0.2 mm thick thermally conductive sheet in which short carbon fibers (fillers) having a fiber length of 0.2 mm are dispersed in a binder made of a rubbery polymer or a resinous polymer. Has been. Patent Document 2 describes a carbon fiber having a three-dimensional structure dispersed in an adhesive resin. Among these, in the invention of Document 1, a magnetic material is attached to each short carbon fiber, and the carbon fiber is oriented in the thickness direction of the sheet by applying a magnetic field of several thousand gauss to the dispersion with the binder for several tens of minutes. This is intended to increase the thermal conductivity, which is troublesome in production and is economically disadvantageous.

特許文献3には、厚さ1.0mm及び1.2mmの「ピッチ系炭素繊維からなる基布(織布、不織布、クロス、抄紙、フェルト)にシリコーンゴムを含浸させてなる熱伝導性シート」が記載されている。この文献に記載されている実施例は、「不織布」のみであり、従来困難であったピッチ系炭素繊維を織布にすることについての開示はない。   Patent Document 3 discloses that a 1.0 mm and 1.2 mm thick “heat conductive sheet obtained by impregnating a base fabric (woven fabric, non-woven fabric, cloth, papermaking, felt) made of pitch-based carbon fiber with silicone rubber”. Is described. The examples described in this document are only “non-woven fabrics”, and there is no disclosure about making pitch-based carbon fibers that have been difficult in the past into woven fabrics.

一方、実用化はされていないが、分散される短炭素繊維、ピッチ系炭素繊維ではなく、連続する長い炭素繊維のみに着目した文献が特許文献4、5にある。このうち、特許文献4には、炭化綿の強度の低下を解決するために、炭化綿の単体を強度のあるガラス繊維やステンレス製のメッシュに織り込んだシートが開示されている。   On the other hand, although not put into practical use, Patent Documents 4 and 5 focus on only continuous long carbon fibers rather than dispersed short carbon fibers and pitch-based carbon fibers. Among these, Patent Document 4 discloses a sheet in which a single piece of carbonized cotton is woven into a strong glass fiber or stainless mesh in order to solve the decrease in strength of the carbonized cotton.

他方、特許文献5は、ガス拡散性のために、セルロース質の織布を焼成した炭素繊維織布をそのまま用いることが記載されている。特に、この実施例5〜8には、セルロース質の織布を焼成した後に、炭素繊維織布をFEPディスパージョン液に浸漬して、炭素繊維に撥水性のFEP樹脂を10質量%塗布、付着せしめることが記載されている。 On the other hand, Patent Document 5 describes that a carbon fiber woven fabric obtained by baking a cellulosic woven fabric is used as it is for gas diffusibility. In particular, in Examples 5 to 8, after baking the cellulosic woven fabric, the carbon fiber woven fabric was immersed in an FEP dispersion solution, and 10% by mass of a water-repellent FEP resin was applied to and adhered to the carbon fiber. It is described that it can be used.

特開2001−294676号公報JP 2001-294676 A 特開平6−212137号公報JP-A-6-212137 特開2000−228471号公報JP 2000-228471 A 特開2005−350816号公報JP-A-2005-350816 国際公開00/49213号パンフレットInternational Publication No. 00/49213 Pamphlet

しかし、本発明者らは、上記の従来技術における、分散したフィラーとして用いられている短い炭素繊維やピッチ系炭素繊維あるいは3次元炭素繊維においては局部的な高熱伝導性が確保できても、面全体において均一化された熱伝導性を得ることが難しいという課題を見出した。また、一方では、織布を炭化したような連続する長い炭素繊維単体シートでは、密着性を得ることが難しいという課題も見出した。さらには、連続する長い炭素繊維単体シートでは、わずかな圧力には対応でき、わずかな伸縮性があるが、大きな圧力を加えると炭素繊維自体が折れてしまう現象を見出した。   However, the present inventors have been able to obtain a high surface conductivity even in the short carbon fiber, the pitch-based carbon fiber, or the three-dimensional carbon fiber used as the dispersed filler in the above-described prior art. The present inventors have found that it is difficult to obtain uniform thermal conductivity throughout. On the other hand, it has also been found that it is difficult to obtain adhesion with a continuous long carbon fiber single sheet obtained by carbonizing a woven fabric. Furthermore, the continuous long carbon fiber single sheet can cope with a slight pressure and has a slight stretchability. However, when a large pressure is applied, the carbon fiber itself is broken.

本発明の目的は、炭素繊維自体の連続性を維持しながら大きな圧力にも耐え、所望の熱伝導性の機能を均一化できる熱伝導性シート、その製造方法及びこれを用いた熱伝導性シートを提供することである。また、本発明の別の目的は、熱伝導率が高く、柔軟性があって相対的に高温な物体(発熱体あるいは高温になっている部材等:以下単に「高温体」と呼ぶ。)や相対的に低温な物体(吸熱体あるいは常温にある部材等:以下単に「低温体」と呼ぶ。)とよく密着し、経済的にも安価で生産性に優れた熱伝導性シートを提供することである。   An object of the present invention is to provide a thermally conductive sheet that can withstand a large pressure while maintaining the continuity of the carbon fiber itself, and can uniformize a desired thermal conductivity function, a manufacturing method thereof, and a thermally conductive sheet using the same Is to provide. Another object of the present invention is an object having a high thermal conductivity, flexibility and a relatively high temperature (such as a heating element or a member having a high temperature: hereinafter simply referred to as a “high temperature element”). To provide a thermally conductive sheet that is in close contact with a relatively low-temperature object (such as an endothermic body or a member at room temperature: hereinafter simply referred to as a “low-temperature body”), economically inexpensive, and excellent in productivity. It is.

本発明者は、上記の目的を達成するため鋭意検討を行った結果、具体的には、木綿等の織布を焼成した炭素繊維の高い熱伝導率と熱可塑性エラストマーまたはゴム状弾性体等の弾力性を活用し、高温体と低温体との間の密着性を高め接触部の熱伝導に対する抵抗(接触抵抗)を小さくした熱伝導性弾性シートを得ることが出来、本発明を完成するに至った。
即ち本発明は、
(1)織布が焼成された熱伝導性炭素繊維の織布シートと、前記織布シートの空隙に充填された弾性体と、を有することを特徴とする熱伝導性弾性シート。
(2)前記織布シートは木綿の織布を焼成して得られた炭化綿シートである(1)に記載の熱伝導性弾性シート。
(3)前記織布シートは前記織布シートを複数積層した積層体であり、前記弾性体は前記積層体の空隙に充填されていることを特徴とする(1)または(2)に記載の熱伝導性弾性シート。
(4)前記織布は、平織の繊維シートを複数積層し、さらに前記積層方向に織った複数織り織布であることを特徴とする請求項(1)乃至(3)のいずれか1項に記載の熱伝導性弾性シート。
(5)前記熱伝導性弾性シートは、反発弾性(JISK6255)が30%以上60%以下であることを特徴とする(1)乃至(4)のいずれか1項に記載の熱伝導性弾性シート。
(6)織布が焼成された熱伝導性炭素繊維の織布シートを積層する工程と、前記積層織布の空隙に硬化後弾性を発現する液状樹脂を充填する工程と、前記樹脂の硬化後に得られる積層織布熱伝導性弾性シートを所望形状に裁断する工程と、を備えることを特徴とする熱伝導性弾性シートの製造方法。
(7)織布が焼成された熱伝導性炭素繊維の織布シートを積層する工程と、前記積層織布の空隙に硬化後弾性を発現する液状樹脂を減圧充填する工程と、を備えることを特徴とする熱伝導性弾性シートの製造方法。
(8) 前記硬化後弾性を発現する液状樹脂が熱可塑性エラストマー又は液状ゴムであることを特徴とする(6)または(7)に記載の熱伝導性弾性シートの製造方法。
(9)木綿の織布を焼成した炭化綿シートと熱可塑性エラストマーのシートとを交互に積層する工程と、前記積層シートを加熱して前記熱可塑性エラストマーのシートを軟化または溶融せしめて液状化し前記炭化綿シートの空隙に充填する工程と、を備えることを特徴とする熱伝導性弾性シートの製造方法。
(10)発熱部を備えた発熱体基板と、放熱体と、織布が焼成された熱伝導性炭素繊維の織布シート及び前記織布の空隙に充填された弾性体とを有する熱伝導性弾性シートと、を備え、前記熱伝導性弾性シートは、前記発熱体基板と前記放熱体との間に装着され、前記発熱体及び前記放熱体とに密着する密着面を有することを特徴とする電子機器。
(11)前記熱伝導性弾性シートは前記織布シートを複数積層した積層体であり、前記密着面は前記積層の厚み方向に裁断した裁断面であることを特徴とする(10)に記載の電子機器。
(12)前記熱伝導性弾性シートは前記織布シートを複数積層した積層体であり、前記密着面は前記積層の厚み方向と交差する方向の面であることを特徴とする(10)に記載の電子機器。
As a result of intensive studies to achieve the above object, the present inventor, specifically, the high thermal conductivity of carbon fibers obtained by firing a woven fabric such as cotton and the like, such as a thermoplastic elastomer or a rubber-like elastic body, etc. In order to complete the present invention, it is possible to obtain a heat conductive elastic sheet that utilizes elasticity to increase the adhesion between the high temperature body and the low temperature body and reduce the resistance (contact resistance) to the heat conduction of the contact portion. It came.
That is, the present invention
(1) A thermally conductive elastic sheet comprising a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric, and an elastic body filled in a gap of the woven fabric sheet.
(2) The thermally conductive elastic sheet according to (1), wherein the woven fabric sheet is a carbonized cotton sheet obtained by firing a cotton woven fabric.
(3) The woven fabric sheet is a laminated body in which a plurality of the woven fabric sheets are laminated, and the elastic body is filled in a gap of the laminated body. (1) or (2) Thermally conductive elastic sheet.
(4) The woven fabric according to any one of (1) to (3), wherein the woven fabric is a multi-woven fabric woven by laminating a plurality of plain-woven fiber sheets and further woven in the laminating direction. The heat conductive elastic sheet of description.
(5) The heat conductive elastic sheet according to any one of (1) to (4), wherein the heat conductive elastic sheet has a rebound resilience (JISK6255) of 30% or more and 60% or less. .
(6) A step of laminating a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric, a step of filling a void resin of the laminated woven fabric with a liquid resin that exhibits post-curing elasticity, and after curing of the resin And a step of cutting the resulting laminated woven fabric heat conductive elastic sheet into a desired shape.
(7) comprising a step of laminating a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric, and a step of filling the voids of the laminated woven fabric with a liquid resin that exhibits elasticity after curing under reduced pressure. A method for producing a heat conductive elastic sheet.
(8) The method for producing a thermally conductive elastic sheet according to (6) or (7), wherein the liquid resin that exhibits elasticity after curing is a thermoplastic elastomer or liquid rubber.
(9) A step of alternately laminating a carbonized cotton sheet and a thermoplastic elastomer sheet obtained by firing a cotton woven fabric, and heating the laminated sheet to soften or melt the thermoplastic elastomer sheet to liquefy the above And a step of filling the voids of the carbonized cotton sheet. A method for producing a thermally conductive elastic sheet, comprising:
(10) Thermal conductivity having a heating element substrate provided with a heating part, a radiator, a thermally conductive carbon fiber woven fabric sheet obtained by firing the woven fabric, and an elastic body filled in the voids of the woven fabric. An elastic sheet, and the heat conductive elastic sheet is mounted between the heat generating body substrate and the heat radiating body, and has an adhesion surface that is in close contact with the heat generating body and the heat radiating body. Electronics.
(11) The thermal conductive elastic sheet is a laminate in which a plurality of the woven fabric sheets are laminated, and the contact surface is a cut surface cut in a thickness direction of the lamination. Electronics.
(12) The thermal conductive elastic sheet is a laminate in which a plurality of the woven fabric sheets are laminated, and the adhesion surface is a surface in a direction intersecting with the thickness direction of the lamination. Electronic equipment.

本発明の熱伝導性弾性シートによれば、織布が焼成された熱伝導性炭素繊維の織布シートの空隙に充填された弾性体を備えているため、熱伝導性炭素繊維自体の変形による折れの問題を解決し、接触面に対してその弾性で密着できるので、伝熱効果も高く、均一な熱伝導性を発揮できる。したがって、熱伝導性炭素繊維自体の連続性を維持しながら大きな圧力にも耐え、所望の熱伝導性の機能を均一化でき、かつ、熱伝導率が高く、柔軟性があって高温体や低温体とよく密着し、経済的にも安価な熱伝導性シートが提供される。
このシートを用いた電子機器は、さらに、発熱部を有する発熱体基板の温度を実質的に低下できるので、機器全体の昇温問題をも解決できる。
また、本発明の熱伝導性弾性シートの製造方法によれば、弾性体により織布シートが支持されるので熱伝導性炭素繊維自体の変形による折れを防止することができ、高温体や低温体との接触面に対してその弾性で密着でき、伝熱効果も高く、均一な熱伝導性を発揮でき、さらに、所望の厚さに形成することができる熱伝導性弾性シートが製造される。したがって、熱伝導性炭素繊維自体の連続性を維持しながら大きな圧力にも耐え、所望の熱伝導性の機能を均一化でき、かつ、熱伝導率が高く、柔軟性があって高温体や低温体とよく密着し、経済的にも安価で生産性に優れた熱伝導性シートの製造方法が提供される。
According to the heat conductive elastic sheet of the present invention, since the woven fabric is provided with the elastic body filled in the voids of the woven fabric sheet of the baked heat conductive carbon fiber, the heat conductive carbon fiber itself is deformed. Since the problem of bending is solved and the elastic contact with the contact surface is achieved, the heat transfer effect is high and uniform thermal conductivity can be exhibited. Therefore, it can withstand large pressures while maintaining the continuity of the heat conductive carbon fiber itself, can uniform the desired heat conductivity function, and has high heat conductivity, flexibility, high temperature and low temperature A thermally conductive sheet that is in close contact with the body and is economically inexpensive is provided.
Further, the electronic device using this sheet can substantially reduce the temperature of the heat generating substrate having the heat generating portion, so that the temperature rise problem of the entire device can be solved.
Further, according to the method for producing a heat conductive elastic sheet of the present invention, since the woven fabric sheet is supported by the elastic body, it is possible to prevent the heat conductive carbon fiber itself from being bent due to deformation, and a high temperature body or a low temperature body. The heat conductive elastic sheet which can be closely_contact | adhered to the contact surface with the elasticity, has a high heat-transfer effect, can exhibit uniform heat conductivity, and can be formed in desired thickness is manufactured. Therefore, it can withstand large pressures while maintaining the continuity of the heat conductive carbon fiber itself, can uniform the desired heat conductivity function, and has high heat conductivity, flexibility, high temperature and low temperature Provided is a method for producing a heat conductive sheet which is in close contact with the body, economically inexpensive and excellent in productivity.

図1乃至図8を参照して、本発明の実施の形態を、最適な製造方法及び最適な構造及びそれを用いた電子機器を例に、説明する。まず、織布が焼成された熱伝導性炭素繊維の織布シートとして、厚みが0.5mmで、縦横それぞれ30mmの木綿の織布を焼成して得られた炭化綿シート9を10(複数)枚用意する。この10枚の炭化綿シート9を一体化して積層保持(ひも等により縛ったり、治具を用いて挟持しても良く、吸引部で押圧保持しても良い)し、積層炭化綿シート13を形成する(炭化綿の積層工程)。なお、織布を積層保持した上で、焼成し、積層炭化綿シート13を形成してもよい。この積層炭化綿シート13を、硬化後弾性を発現あるいは奏する液状体(液状樹脂:液状ゴムを含む)を供給できる樹脂液供給部15と減圧機構14を備えた密閉容器12内に、前記樹脂液供給部15の密封容器12内のノズル位置より上方に載置する。ここで、密閉容器12内を減圧(実質的に真空が好ましいが、空気を排除できればよい)し、樹脂液供給部15からの液状体の供給を開始する。その結果、前記積層炭化綿シート13のほとんどすべての空隙(繊維間の空間)に前記液状体が空気を残さずに充填されていく(液状樹脂の含浸工程)。この液状体は、積層炭化綿シート13の表面側に比較的多く存在することがある。このため、表面側の液状体を、積層面に沿って削除することが好ましい。なお、表面側の液状体を削除しなくてもよい。本実施例では、液状体が硬化した(樹脂の硬化工程)後で、積層炭化綿シート13の1枚目と2枚目の間及び9枚目と10枚目の間それぞれで、積層方向に沿って裁断する(所望形状形成工程)。この積層間では、それぞれの炭化綿シートが互いに接触しているので、裁断面は、炭化綿シート9の一部が露出した状態になる。これによって得られた熱伝導性弾性シート6は、織布が焼成された熱伝導性炭素繊維の織布シート9と織布シート9の空隙に充填された弾性体3と、を有する。そして、発熱部としての電子機器要素7を備えた発熱体基板5(以降、単に「発熱体5」ともいう。)と、発熱部7で発熱した熱を放熱する放熱体(ヒートシンク)4と、織布が焼成された熱伝導性炭素繊維(経糸1および横糸2)の織布シート9及び織布シート9の空隙に充填された弾性体3とを有する熱伝導性弾性シート6と、を備え、前記熱伝導性弾性シート6は、前記発熱体5と前記放熱体4との間に装着され、前記発熱体5及び前記放熱体4とに密着する密着面23XY(23YZ、23ZX)を有することを特徴とする電子機器21は、上記裁断面をこの密着面23XY(23YZ、23ZX)とすることで容易に得ることができる。密着面23XY(23YZ、23ZX)は必ずしも平坦な面でなくてもよい。発熱体5または放熱体4の面が例えば球形であれば、本熱伝導性弾性シート6の密着面23XY(23YZ、23ZX)もまた球形に密着するような凹面に裁断すればよい。   1 to 8, an embodiment of the present invention will be described by taking an optimal manufacturing method, an optimal structure, and an electronic device using the same as an example. First, 10 (multiple) carbonized cotton sheets 9 obtained by firing a cotton woven fabric of 0.5 mm in thickness and 30 mm in length and width as a woven fabric sheet of thermally conductive carbon fibers obtained by firing the woven fabric. Prepare a sheet. The ten carbonized cotton sheets 9 are integrated and laminated and held (tied with a string or the like, may be clamped with a jig, or may be pressed and held with a suction part), and the laminated carbonized cotton sheet 13 is Form (carbonized cotton lamination process). In addition, after laminating and holding the woven fabric, the laminated carbonized cotton sheet 13 may be formed by firing. The laminated carbonized cotton sheet 13 is placed in a sealed container 12 having a resin liquid supply unit 15 and a pressure reducing mechanism 14 that can supply a liquid material (liquid resin: including liquid rubber) that exhibits or exhibits elasticity after curing. It is placed above the nozzle position in the sealed container 12 of the supply unit 15. Here, the inside of the sealed container 12 is depressurized (substantially vacuum is preferable, but it is sufficient if air can be excluded), and supply of the liquid material from the resin liquid supply unit 15 is started. As a result, almost all the voids (spaces between fibers) of the laminated carbonized cotton sheet 13 are filled with the liquid material without leaving air (liquid resin impregnation step). This liquid material may be present in a relatively large amount on the surface side of the laminated carbonized cotton sheet 13. For this reason, it is preferable to delete the liquid material on the surface side along the laminated surface. Note that the liquid material on the surface side may not be deleted. In this example, after the liquid was cured (resin curing process), the laminated carbonized cotton sheet 13 was laminated in the laminating direction between the first and second sheets and between the ninth and tenth sheets. Cut along (desired shape forming step). Since the carbonized cotton sheets are in contact with each other between the laminated layers, the cut surface is in a state in which a part of the carbonized cotton sheet 9 is exposed. The heat conductive elastic sheet 6 obtained by this has the woven fabric sheet 9 of the heat conductive carbon fiber by which the woven fabric was baked, and the elastic body 3 with which the space | gap of the woven fabric sheet 9 was filled. And the heat generating body board | substrate 5 (henceforth only "heat generating body 5") provided with the electronic device element 7 as a heat generating part, The heat radiator (heat sink) 4 which thermally radiates the heat generated with the heat generating part 7, A thermally conductive elastic sheet 6 having a woven fabric sheet 9 of thermally conductive carbon fibers (warp 1 and weft 2) obtained by firing the woven fabric and an elastic body 3 filled in a gap of the woven fabric sheet 9. The heat conductive elastic sheet 6 has a close contact surface 23XY (23YZ, 23ZX) that is mounted between the heat generating body 5 and the heat radiating body 4 and is in close contact with the heat generating body 5 and the heat radiating body 4. The electronic device 21 characterized by the above can be easily obtained by using the cut surface as the contact surface 23XY (23YZ, 23ZX). The adhesion surface 23XY (23YZ, 23ZX) is not necessarily a flat surface. If the surface of the heat generating body 5 or the heat radiating body 4 is, for example, a spherical shape, the contact surface 23XY (23YZ, 23ZX) of the heat conductive elastic sheet 6 may be cut into a concave surface so as to be in close contact with the sphere.

織布シート9あるいは積層織布シートとしての積層炭化膜シート13に液状体を含浸させる弾性体入り積層炭化綿製造装置11は、成形容器としての密封容器12と、密封容器12の底部に連接する樹脂液供給部15と、密封容器12の頂部付近に連接する減圧機構14とを備える。減圧機構14は、密封容器12の頂部に連接するのがよいが、蓋に連接することになるので、蓋の開閉しやすさを考慮して、胴部分の頂部付近に連接してもよい。減圧機構14と樹脂液供給部15は開閉弁16を備え、密封容器12内の減圧と停止、および、樹脂液の供給と停止を迅速に行うことができる。減圧機構14は典型的には、不図示の真空ポンプと配管とを備える。さらに、熱可塑性エラストマー等を硬化させる(樹脂の硬化工程)ために、密封容器12内を加熱・冷却する機構を備えるのが好ましい。例えば、冷媒又は熱媒入口17および冷媒又は熱媒出口18を備えるジャケットを密封容器12に付属させ、ジャケット中に熱媒・冷媒を流して加熱・冷却してもよい。あるいは、電気ヒータ、その他の周知な加熱装置を用いて加熱してもよい。加熱することにより、熱可塑性エラストマーの粘度が下がり、織布シート9あるいは積層炭化膜シート13のより細かな空隙にも熱可塑性エラストマーが充填され、空隙率(残留する空気の体積の、弾性体入り積層炭化綿全体の体積に対する比)が低くなる。密封容器12が冷媒又は熱媒入口17および冷媒又は熱媒出口18を備えるジャケットを有する場合には、熱媒に変えて、低温の冷媒を熱媒入口17からジャケット、熱媒出口18に流すことにより、例えば常温まで短時間で冷却し、熱可塑性エラストマーを短時間で硬化することができる。冷媒で冷却せずに、例えば、密封容器12内に常温の大気を導入し、あるいは、密封容器12を常温の大気内に放置することにより、冷却してもよい。冷媒又は熱媒入口17および冷媒又は熱媒出口18に開閉弁あるいは三方弁を配設し、熱媒と冷媒の切替や、熱媒・冷媒の流入・流出と停止とを迅速に行えるようにすることが好ましい。   A laminated carbonized cotton manufacturing apparatus 11 containing an elastic body that impregnates a liquid material into a laminated carbonized film sheet 13 as a woven fabric sheet 9 or a laminated woven fabric sheet is connected to a sealed container 12 as a molding container and a bottom portion of the sealed container 12. A resin liquid supply unit 15 and a decompression mechanism 14 connected to the vicinity of the top of the sealed container 12 are provided. The decompression mechanism 14 is preferably connected to the top of the sealed container 12, but is connected to the lid, and may be connected to the vicinity of the top of the body portion in consideration of easy opening and closing of the lid. The decompression mechanism 14 and the resin liquid supply unit 15 include an on-off valve 16, and can quickly reduce and stop the pressure in the sealed container 12 and supply and stop the resin liquid. The decompression mechanism 14 typically includes a vacuum pump (not shown) and piping. Furthermore, it is preferable to provide a mechanism for heating and cooling the inside of the sealed container 12 in order to cure the thermoplastic elastomer or the like (resin curing step). For example, a jacket provided with the refrigerant or heat medium inlet 17 and the refrigerant or heat medium outlet 18 may be attached to the sealed container 12, and the heat medium / refrigerant may flow through the jacket to be heated / cooled. Or you may heat using an electric heater and other well-known heating apparatuses. By heating, the viscosity of the thermoplastic elastomer is lowered, and the finer voids of the woven fabric sheet 9 or the laminated carbonized film sheet 13 are filled with the thermoplastic elastomer, and the porosity (the volume of the remaining air is contained in the elastic body). (Ratio to the volume of the entire laminated carbonized cotton) becomes low. When the sealed container 12 has a jacket having a refrigerant or heat medium inlet 17 and a refrigerant or heat medium outlet 18, a low-temperature refrigerant flows from the heat medium inlet 17 to the jacket and the heat medium outlet 18 instead of the heat medium. Thus, for example, the thermoplastic elastomer can be cooled to room temperature in a short time and the thermoplastic elastomer can be cured in a short time. Instead of cooling with a refrigerant, cooling may be performed, for example, by introducing a normal temperature atmosphere into the sealed container 12 or leaving the sealed container 12 in a normal temperature atmosphere. An on-off valve or a three-way valve is provided at the refrigerant or heat medium inlet 17 and the refrigerant or heat medium outlet 18 so that the heat medium and the refrigerant can be switched, and the heat medium and the refrigerant can be quickly inflow / outflow and stopped. It is preferable.

本発明の熱伝導性弾性シート6は、熱伝導性炭素繊維が連続層を形成しているので熱伝導性が高くかつその連続層の周囲に弾性体3が配されているので、熱伝導性炭素繊維の連続性が崩れ難い。前記熱伝導性炭素繊維の連続層は炭化綿で構成できる。炭化綿は木綿の織布を焼成して得られる炭化綿シート9として本発明に最適に使用される。炭化綿は木綿の炭素繊維が密に絡み合った糸によって形成された織布の炭化体であって、糸の方向に熱伝導性炭素繊維の連続層を形成している。また木綿の炭化体は、木綿の綿毛がもつ自然の撚れがそのまま維持されているので、ピッチ系炭素繊維やPAN系炭素繊維に比べて、良好なしなやかさを備えていて熱伝導性弾性シート6の材料として好適である。さらに、木綿の織布を用いる場合は、安価である。織布としては平織、綾織、朱子織などがあるが、それらを炭化した炭化綿シート9は糸の方向、即ち織布の平面に沿った方向に連続層を形成しているので、いずれの織り方であってもよく、特に限定されるものではない。図2(b)に示すような平織の中でも二重織は、織布の表面と直角な方向にも糸(二重織糸)10が織り込まれているので、その炭化綿からなる本発明の熱伝導性弾性シート6は織布の厚み方向の熱伝導性が改善されるので、好ましい。炭化綿シート9は糸の方向に炭素繊維の連続層があるので、それを含む熱伝導性弾性シート6は、炭化綿シート9の厚み方向に裁断した裁断面を、高温体としての発熱体5及び低温体としての放熱体4との接触面とすることによってより高い熱伝導性が得られる。この本発明に対して、一般の熱伝導性シートは、細かい粒状の金属酸化物や細い炭素繊維などの熱伝導材を熱伝導性の低い樹脂体等に分散したものであって、そのような熱伝導性シートは熱伝導材が不連続に分散しているため、熱伝導性は低い。   The heat conductive elastic sheet 6 of the present invention has high heat conductivity because the heat conductive carbon fiber forms a continuous layer, and the elastic body 3 is disposed around the continuous layer. The continuity of carbon fiber is not easily broken. The continuous layer of thermally conductive carbon fibers can be composed of carbonized cotton. The carbonized cotton is optimally used in the present invention as a carbonized cotton sheet 9 obtained by firing a woven cotton fabric. Carbonized cotton is a carbonized woven fabric formed by yarns in which cotton carbon fibers are intertwined closely, and forms a continuous layer of thermally conductive carbon fibers in the direction of the yarns. In addition, the carbonized body of cotton maintains the natural twist of cotton fluff as it is, so it has better flexibility than pitch-based carbon fiber and PAN-based carbon fiber, and is a heat conductive elastic sheet. 6 is suitable as a material. Furthermore, when a cotton woven fabric is used, it is inexpensive. The woven fabric includes plain weave, twill weave, satin weave, and the carbonized cotton sheet 9 carbonized from these forms a continuous layer in the direction of the yarn, that is, the direction along the plane of the woven fabric. There is no particular limitation. Among the plain weaves as shown in FIG. 2 (b), the double weave has a yarn (double weave yarn) 10 woven in a direction perpendicular to the surface of the woven fabric. The heat conductive elastic sheet 6 is preferable because the heat conductivity in the thickness direction of the woven fabric is improved. Since the carbonized cotton sheet 9 has a continuous layer of carbon fibers in the direction of the yarn, the heat conductive elastic sheet 6 including the carbonized fiber sheet 9 has a cut surface cut in the thickness direction of the carbonized cotton sheet 9 as a high-temperature heating element 5. And by making it into a contact surface with the heat radiator 4 as a low temperature body, higher thermal conductivity is obtained. In contrast to the present invention, a general heat conductive sheet is a material in which a heat conductive material such as fine granular metal oxide or fine carbon fiber is dispersed in a resin body having low heat conductivity. The thermal conductive sheet has low thermal conductivity because the thermal conductive material is discontinuously dispersed.

上記炭化綿シート9一枚の厚みは通常0.2mm〜1mm程度であるので、炭化綿シート9の厚み方向に裁断した裁断面を、発熱体5及び放熱体4との接触面とする場合、熱伝導性弾性シート6の接触面積を大きくするためには、炭化綿シート9を多層に積層すればよい。多層に積層した積層炭化綿シートに熱可塑性エラストマーまたはゴムを含浸させた樹脂体入り積層炭化綿をシートの厚み方向(垂直が好ましいが、面積を稼ぐために斜めに裁断しても良い)に裁断することによって、熱伝導性弾性シート6の接触面積を大きくすることが可能となる。また、裁断することによって所望の形状(面積)に形成された熱伝導性弾性シート6が得られる(所望形状形成工程)が、必ずしも裁断せず(所望形状形成工程を経ず)、用途によっては炭化綿シート9の大きさのまま使用してもよい。   Since the thickness of the carbonized cotton sheet 9 is usually about 0.2 mm to 1 mm, when the cut surface cut in the thickness direction of the carbonized cotton sheet 9 is used as a contact surface with the heating element 5 and the radiator 4, In order to increase the contact area of the heat conductive elastic sheet 6, the carbonized cotton sheet 9 may be laminated in multiple layers. Cut laminated carbonized cotton sheet with resin body impregnated with thermoplastic elastomer or rubber into multi-layer laminated carbonized cotton sheet in the thickness direction of the sheet (preferably vertical, but may be cut obliquely to increase area) By doing so, the contact area of the heat conductive elastic sheet 6 can be increased. Moreover, although the heat conductive elastic sheet 6 formed in the desired shape (area) is obtained by cutting (desired shape forming step), it is not necessarily cut (without the desired shape forming step), and depending on the application. The size of the carbonized cotton sheet 9 may be used as it is.

炭素繊維の連続層を有する熱伝導性弾性シート6の、発熱体5や放熱体4との接触面は、相手の面に対して密着して接触し、その接触面の空気を排除できることが必要である。接触面が密着性を有するためにはその接触面が平滑であることである。裁断面の平滑度(Ra:JIS B0601)は100μm以下であることが好ましく、50μm以下であることがより好ましく、最も好ましくは10μm以下である。   The contact surface of the heat conductive elastic sheet 6 having a continuous layer of carbon fibers with the heating element 5 and the heat radiating element 4 needs to be in close contact with the other surface, and the air on the contact surface can be excluded. It is. In order for a contact surface to have adhesiveness, it is that the contact surface is smooth. The smoothness (Ra: JIS B0601) of the cut surface is preferably 100 μm or less, more preferably 50 μm or less, and most preferably 10 μm or less.

また炭化綿シート9は織布としての表面を有するので、積層された炭化綿シート9同士の隣接面は糸の側面が密に接触しており擬似的な炭素繊維の連続層を形成している。従って、積層炭化綿の厚み方向と直角な方向に裁断した裁断面もまた高い熱伝導性を有し、本発明の一形態である。   Further, since the carbonized cotton sheet 9 has a surface as a woven fabric, the adjacent surfaces of the laminated carbonized cotton sheets 9 are in close contact with the side surfaces of the yarns, forming a continuous layer of pseudo carbon fibers. . Accordingly, a cut surface cut in a direction perpendicular to the thickness direction of the laminated carbonized cotton also has high thermal conductivity, which is an embodiment of the present invention.

本発明の熱伝導性弾性シート6は、織られた糸の方向(横幅方向)の方がそれと直角の方向(即ち厚み方向)よりも熱伝導率は高いが、厚み方向においても、積層された隣接する炭化綿のシートが面で接触しているため、熱は全方位に立体的に拡散する点が特長である。従って、厚み方向、横幅方向いずれの方向にも熱伝導性弾性シート6として使用できる。   The heat conductive elastic sheet 6 of the present invention has a higher thermal conductivity in the direction of the woven yarn (the width direction) than in the direction perpendicular to the direction (that is, the thickness direction), but is also laminated in the thickness direction. Since adjacent carbonized cotton sheets are in contact with each other, heat is sterically diffused in all directions. Therefore, it can be used as the heat conductive elastic sheet 6 in both the thickness direction and the width direction.

本発明で使用される弾性体3としては、熱可塑性エラストマーまたはゴム状弾性体がある。   The elastic body 3 used in the present invention includes a thermoplastic elastomer or a rubber-like elastic body.

本発明で使用される熱可塑性エラストマーとして、スチレン−ブタジエン共重合体及びスチレン−イソプレンブロック共重合体とそれらの水添物、シリコン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。これらのうち、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーは、エステル結合、ウレタン結合、アミド結合などの極性基を有するので、発熱体5や放熱体4の金属製の接触面と親和性があり、本発明の接触面における密着性を弾性に加えて向上させる点において好ましい。また上記シリコン系熱可塑性エラストマーは、シロキサンガスの発生を抑制したものが好ましい。   As the thermoplastic elastomer used in the present invention, a styrene-butadiene copolymer and a styrene-isoprene block copolymer and hydrogenated products thereof, a silicon-based thermoplastic elastomer, a styrene-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, Examples thereof include a vinyl chloride thermoplastic elastomer, a polyester thermoplastic elastomer, a polyurethane thermoplastic elastomer, and a polyamide thermoplastic elastomer. Among these, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers have polar groups such as ester bonds, urethane bonds, and amide bonds. It has affinity with the contact surface, which is preferable in terms of improving the adhesion at the contact surface of the present invention in addition to elasticity. The silicon-based thermoplastic elastomer preferably suppresses generation of siloxane gas.

また本発明に用いられるゴム状弾性体としては、ポリブタジエン、天然ゴム、ポリイソプレン、SBR,NBRなどの共役ジエン系ゴムおよびこれらの水素添加物、スチレンブタジエンジエンブロック共重合体、スチレンイソプレンブロック共重合体などのブロック共重合体およびこれらの水素添加物、クロロプレン、ウレタンゴム、ポリエステル系ゴム、エピクロルヒドリンゴム、シリコーンゴム、エチレンプロピレン共重合体、エチレンプロピレンジエン共重合体などが挙げられる。これらのうち、NBR、ウレタンゴム、ポリエステル系ゴムが、ニトリル結合、ウレタン結合、エステル結合などの極性基を有するので、発熱体5や放熱体4の金属製の接触面と親和性があり、本発明の接触面における密着性を弾性に加えて向上させる点において好ましい。また上記シリコンゴムは、シロキサンガスの発生を抑制したものが好ましい。   The rubbery elastic material used in the present invention includes conjugated diene rubbers such as polybutadiene, natural rubber, polyisoprene, SBR and NBR, and hydrogenated products thereof, styrene butadiene diene block copolymers, styrene isoprene block copolymers. Examples thereof include block copolymers such as coalescence and hydrogenated products thereof, chloroprene, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene propylene copolymer, ethylene propylene diene copolymer, and the like. Of these, NBR, urethane rubber, and polyester rubber have polar groups such as nitrile bond, urethane bond, and ester bond, and thus have an affinity with the metal contact surface of the heating element 5 and the radiator 4. It is preferable in terms of improving the adhesion at the contact surface of the invention in addition to elasticity. The silicone rubber is preferably one that suppresses the generation of siloxane gas.

本発明に用いられる液状ゴムは、前記ゴム状弾性体の未加硫の液状のものを用いることができる。この液状ゴムを炭化綿に含浸し、含浸後加硫することによって硬化させ適切なゴム弾性が得られる。   The liquid rubber used in the present invention may be an unvulcanized liquid rubber-like elastic body. The liquid rubber is impregnated into carbonized cotton and cured by vulcanization after impregnation to obtain appropriate rubber elasticity.

一般に炭素繊維やそれらの織布はそれ単独ではもろく押圧力や曲げに対して容易に崩れたり折れたりするが、本発明の熱伝導性弾性シート6は、溶融状態の熱可塑性エラストマーや液状ゴム等の弾性体3が、炭素繊維の連続層を形成する微細な繊維と繊維の間に充填され、繊維の一本一本を、またそれらによって構成されている糸を、更には糸によって構成されている織布を、補強している。この充填は、積層炭化綿を液状の熱可塑性エラストマーや液状ゴムの中に空気を排除するように浸漬して行う方法や、炭化綿シート9と熱可塑性エラストマーのシートを交互に積層(交互積層炭化綿の製造工程)した交互積層炭化綿を、熱可塑性エラストマーの融点以上に加熱すること(液状樹脂の含浸工程)によって行う方法がある。熱可塑性エラストマーの融点以上に加熱することにより熱可塑性エラストマーが軟化し、あるいは、溶融して、炭化綿シート9の繊維間に充填される。その際に、炭化綿シート9と熱可塑性エラストマーのシートを交互に積層した方向に加圧することにより、より充填が促進され易く空隙率が低くなる。また、積層炭化綿を密閉容器に入れ、容器の上方から吸引して、減圧下で、液状の熱可塑性エラストマーや液状ゴムなどの樹脂を、積層炭化綿の下方から導入することによって行う方法が、積層炭化綿シート中の繊維と繊維の間(空隙)にある空気を下方から上方に追い出しながら樹脂が確実に充填されるので、生成した弾性体入り積層炭化綿の空隙率が低くなるので好ましい。弾性体入り積層炭化綿から形成された熱伝導性弾性シート6の外部から加えられた外力は、弾性のある樹脂体に吸収されて炭素繊維の連続層を形成する繊維にかかる力が緩和される。従って、外力によって炭化綿織布の構造が崩れたりして炭素繊維の連続層が破壊されることは少なく、熱伝導性弾性シート6の高熱伝導性は安定的に保持され、本熱伝導性弾性シート6を実装した場合の耐久性が確保される。また液状の熱可塑性エラストマーや液状ゴムを減圧下で充填することによって熱伝導性弾性シート6の空隙率が大幅に小さくなり、その結果、空気による接触抵抗も排除されて熱伝導率は向上する。   In general, carbon fibers and their woven fabrics are fragile by themselves and easily collapse or break with respect to pressing force and bending. However, the heat conductive elastic sheet 6 of the present invention is a molten thermoplastic elastomer, liquid rubber, or the like. The elastic body 3 is filled between fine fibers that form a continuous layer of carbon fibers, and each of the fibers, yarns constituted by them, and further constituted by yarns. The woven fabric is reinforced. This filling is performed by immersing the laminated carbonized cotton in a liquid thermoplastic elastomer or liquid rubber so as to eliminate air, or by alternately laminating the carbonized cotton sheet 9 and the thermoplastic elastomer sheet (alternate laminated carbonization). There is a method in which the alternately laminated carbonized cotton thus produced is heated to a temperature equal to or higher than the melting point of the thermoplastic elastomer (liquid resin impregnation step). The thermoplastic elastomer is softened by being heated to the melting point or higher of the thermoplastic elastomer or melted and filled between the fibers of the carbonized cotton sheet 9. At that time, by pressurizing in the direction in which the carbonized cotton sheets 9 and the thermoplastic elastomer sheets are alternately laminated, filling is facilitated and the porosity is lowered. In addition, a method in which the laminated carbonized cotton is put into a sealed container, sucked from above the container, and under reduced pressure, a resin such as a liquid thermoplastic elastomer or liquid rubber is introduced from below the laminated carbonized cotton, Since the resin is surely filled while expelling the air between the fibers (gap) between the fibers in the laminated carbonized cotton sheet from below to above, it is preferable because the porosity of the produced laminated carbonized cotton containing elastic body is low. The external force applied from the outside of the heat conductive elastic sheet 6 formed from the laminated carbonized cotton containing the elastic body is absorbed by the elastic resin body and the force applied to the fibers forming the continuous layer of carbon fibers is relieved. . Therefore, the structure of the carbonized cotton woven fabric is not broken by an external force and the continuous layer of carbon fibers is hardly broken, and the high thermal conductivity of the heat conductive elastic sheet 6 is stably maintained, and the heat conductive elasticity Durability when the sheet 6 is mounted is ensured. Further, by filling the liquid thermoplastic elastomer or liquid rubber under reduced pressure, the porosity of the heat conductive elastic sheet 6 is greatly reduced, and as a result, contact resistance due to air is eliminated and the heat conductivity is improved.

一般に、物体の表面には、微視的にみると数μmから数十μmの深さの凹凸があるので、剛直な平板同士を重ね合わせてもその接触面の凹凸は埋まらず、凹凸部に空気が存在し接触抵抗を形成している。従って、物体と物体の接触面におけるよりよい熱移動を図るためには、物体表面の凹凸部に存在する空気を除去する工夫が必要である。本発明の熱伝導性弾性シート6は、発熱体5の接触面と放熱体4の接触面に弾力的に圧接することによって前記接触面の凹凸部に食い込み、空気を排除し、接触面における接触抵抗を除去するものである。本発明の熱伝導性弾性シート6は炭素繊維の連続層に熱可塑性エラストマーまたはゴムを含浸しており弾力性があるので、発熱体5や放熱体4の接触面の微視的な凹凸部に食い込む柔軟性を備えている。   In general, the surface of an object has irregularities with a depth of several μm to several tens of μm when viewed microscopically. Even if rigid flat plates are overlapped, the irregularities of the contact surface are not buried, and the irregularities are not filled. Air is present and forms contact resistance. Therefore, in order to achieve better heat transfer on the contact surface between the objects, it is necessary to devise a method for removing the air present on the uneven portions on the object surface. The heat conductive elastic sheet 6 of the present invention elastically presses the contact surface of the heating element 5 and the contact surface of the heat radiating body 4 so as to bite into the concavo-convex portion of the contact surface, eliminate air, and contact at the contact surface. The resistor is removed. Since the heat conductive elastic sheet 6 of the present invention is elastic because a continuous layer of carbon fiber is impregnated with a thermoplastic elastomer or rubber, it is formed on a microscopic uneven portion on the contact surface of the heating element 5 or the radiator 4. Has the flexibility to bite in.

また、高温体5や低温体4は、実働時には温度変動や振動があって、熱伝導性弾性シート6が挿入されている間隔が変動するので、本発明の熱伝導性弾性シート6は、膨張と収縮に自在に対応して接触面における凹凸に常に食い込める柔軟性と反発弾性を有している。この機能を一層安定的に保持するためには、本発明の熱伝導性弾性シート6の反発弾性(JISK6255)は30%以上60%以下が好ましい。   In addition, the high temperature body 5 and the low temperature body 4 are subject to temperature fluctuation and vibration during actual operation, and the interval at which the heat conductive elastic sheet 6 is inserted fluctuates. Therefore, the heat conductive elastic sheet 6 of the present invention is expanded. It has flexibility and rebound resilience that can always bite into the irregularities on the contact surface in response to shrinkage. In order to maintain this function more stably, the rebound resilience (JIS K6255) of the heat conductive elastic sheet 6 of the present invention is preferably 30% or more and 60% or less.

本発明の熱伝導性弾性シート6はその厚みが0.2mm〜5mmで使用することが出来る。高温体5や低温体4の実働時の温度変動や振動が大きい場合には、熱伝導性弾性シート6の挿入間隔の変動も大きくなるので、熱伝導性弾性シート6の厚みを厚くすることによって対応できる。つまり、高温体5や低温体4の実働時の温度変動や振動が大きい場合は熱伝導性弾性シート6の厚みを大きくし、小さい場合は熱伝導性弾性シート6の厚みを小さくすればよい。熱伝導性弾性シート6の中での熱移動の速さを考慮すれば、熱伝導性弾性シート6は薄い方が好ましい。より好ましくは、熱伝導性弾性シート6の厚みは、0.5〜3.5mmが良い。   The heat conductive elastic sheet 6 of the present invention can be used with a thickness of 0.2 mm to 5 mm. When the temperature fluctuation and vibration at the time of actual operation of the high temperature body 5 and the low temperature body 4 are large, the fluctuation of the insertion interval of the heat conductive elastic sheet 6 also becomes large. Therefore, by increasing the thickness of the heat conductive elastic sheet 6 Yes. That is, when the temperature fluctuation or vibration during actual operation of the high-temperature body 5 or the low-temperature body 4 is large, the thickness of the heat conductive elastic sheet 6 may be increased, and when it is small, the thickness of the heat conductive elastic sheet 6 may be decreased. Considering the speed of heat transfer in the heat conductive elastic sheet 6, the heat conductive elastic sheet 6 is preferably thin. More preferably, the thickness of the heat conductive elastic sheet 6 is 0.5 to 3.5 mm.

上記炭化綿シート9は、木綿の織布を不活性ガス気流中で焼成して製造されることが好ましい。この焼成温度は、高い方が炭化綿の熱伝導率は高くなる。しかし温度が高くなるほど焼成時間が長くなり、焼成のための設備が高価となり、経済的生産性が低下する。一方、焼成温度が高いほど炭化綿の黒鉛化率が高くなり、剛直となりしなやかさが失われる。本発明に使用される木綿の織布を焼成して得られた炭化綿は炭素繊維の連続性を保持できるしなやかさと高い熱伝導性との両方を考慮して、焼成温度は、600℃〜1100℃であり、好ましくは750℃〜950℃である。   The carbonized cotton sheet 9 is preferably produced by firing a cotton woven fabric in an inert gas stream. The higher the firing temperature, the higher the thermal conductivity of the carbonized cotton. However, the higher the temperature, the longer the firing time, the more expensive the equipment for firing, and the lower the economic productivity. On the other hand, the higher the firing temperature, the higher the graphitization rate of the carbonized cotton, and it becomes rigid and loses its flexibility. The carbonized cotton obtained by firing the woven fabric of cotton used in the present invention has a calcination temperature of 600 ° C. to 1100 in consideration of both flexibility capable of maintaining the continuity of carbon fibers and high thermal conductivity. ° C, preferably 750 ° C to 950 ° C.

1)熱伝導率の測定方法
熱伝導性弾性シートを、25mm×25mm×3mmに裁断して、熱伝導率測定用のサンプルとし、25mm×25mmの面を定常法熱伝導率測定装置(アルバック理工株式会社、GH−1)で測定した結果を熱伝導率(W/mK)とする。
1) Measurement method of thermal conductivity The thermal conductive elastic sheet is cut into 25 mm x 25 mm x 3 mm to make a sample for thermal conductivity measurement, and the surface of 25 mm x 25 mm is a steady method thermal conductivity measurement device (ULVAC RIKO) The result measured by a corporation, GH-1) is defined as thermal conductivity (W / mK).

2)反発弾性の測定方法
反発弾性の測定方法はJIS K6255に準拠した。
2) Measuring method of impact resilience The measuring method of impact resilience was based on JIS K6255.

[実施例1]
1)炭化綿シート
20番手の木綿糸を目付量783g/mの平織にした織布0.25m(500mm×500mm)4枚を、焼成炉(株式会社ゼロエミッション製、機種:バッチ式炭化装置 OC)に入れ、窒素気流中にて、室温から400℃までは0.3℃/min、400℃〜750℃の間は1.9℃/min、で昇温し750℃で60分保持した後、室温まで冷却した。生成した炭化綿の目付量は130g/mで、厚み0.5mmであった。この炭化綿を裁断機(メーカー:堀鉄工所株式会社製、機種:HOD型油圧裁断機)にて、幅100mm×長さ100mm×厚み0.5mmの炭化綿シートに裁断した。
2)弾性体入り積層炭化綿
前項1)で製造した炭化綿シート(幅100mm×長さ100mm×厚み0.5mm)100枚を紐で縛って束ねて密閉容器に入れ、減圧下(1kPa:0.01気圧)で、室温で炭化綿全体が浸漬する量のウレタンエラストマー(ウレタン技研工業(株)、品番:セフタックC−7−21、A液とB液の質量比:A/B=75/25)を前記密閉容器に容器の下部から注入した。容器内圧を常圧にした後、容器内部を30分で90℃までに昇温し、60分間静置した後、温度を室温まで下げた。容器内から炭化綿100枚を積層した弾性体入り積層炭化綿が得られた。幅100mm×長さ100mm×厚み50mm、総質量は640gであった。
3)熱伝導性弾性シート
前項2)で製造した弾性体入り積層炭化綿を、裁断して、幅30mm×長さ50mm×厚み50mmの、長さ×厚み面(図1(a)のy−z面23YZ)を密着面とする熱伝導性弾性シートを作成した。上記長さ×厚み面23YZと直交する方向の熱伝導率を測定した結果、5.1W/mKであった。
[Example 1]
1) Carbonized cotton sheet No. 20 cotton yarn of 0.25 m 2 (500 mm × 500 mm) made into plain weave with a fabric weight of 783 g / m 2 was fired into a firing furnace (Zero Emission Co., Ltd., model: batch type carbonization) In the apparatus OC), in a nitrogen stream, the temperature was raised from room temperature to 400 ° C. at 0.3 ° C./min, and between 400 ° C. and 750 ° C., the temperature was raised at 1.9 ° C./min, and held at 750 ° C. for 60 minutes. And then cooled to room temperature. The basis weight of the produced carbonized cotton was 130 g / m 2 and the thickness was 0.5 mm. The carbonized cotton was cut into a carbonized cotton sheet having a width of 100 mm, a length of 100 mm, and a thickness of 0.5 mm using a cutting machine (manufacturer: Hori Iron Works Co., Ltd., model: HOD type hydraulic cutting machine).
2) Laminated carbonized cotton containing elastic body 100 carbonized cotton sheets (width 100 mm × length 100 mm × thickness 0.5 mm) produced in the previous item 1) are tied together with a string and bundled into an airtight container, under reduced pressure (1 kPa: 0 0.01 atm) of urethane elastomer soaked in the whole carbonized cotton at room temperature (Urethane Giken Kogyo Co., Ltd., product number: Ceflac C-7-21, mass ratio of liquid A and liquid B: A / B = 75 / 25) was poured into the sealed container from the bottom of the container. After the internal pressure of the container was changed to normal pressure, the temperature inside the container was raised to 90 ° C. in 30 minutes and allowed to stand for 60 minutes, and then the temperature was lowered to room temperature. A laminated carbonized cotton containing an elastic body in which 100 sheets of carbonized cotton were laminated from inside the container was obtained. The width was 100 mm, the length was 100 mm, the thickness was 50 mm, and the total mass was 640 g.
3) Thermally conductive elastic sheet The laminated carbonized cotton containing elastic body produced in the preceding item 2) is cut to obtain a length × thickness surface (width of 30 mm × length of 50 mm × thickness of 50 mm) (y− in FIG. 1 (a)). A thermally conductive elastic sheet having a z-plane 23YZ) as an adhesive surface was prepared. It was 5.1 W / mK as a result of measuring the heat conductivity of the direction orthogonal to the said length x thickness surface 23YZ.

[実施例2]
上記2)で得られた弾性体入り積層炭化綿(幅100mm×長さ100mm×厚み50mm)を、厚み方向の上下それぞれ10mmを裁断切除して厚み30mmとし、更に幅と長さを裁断して、幅50mm×長さ50mm×厚み30mmの、幅50mm×長さ50mmの面を密着面とする熱伝導性弾性シートを作成した。この熱伝導性弾性シートの密着面(図1(b)のx−y面23XY)と直交する方向の熱伝導率は2.8W/mKであった。
[Example 2]
The laminated carbonized cotton (width 100 mm × length 100 mm × thickness 50 mm) obtained in 2) above is cut and cut 10 mm above and below in the thickness direction to a thickness of 30 mm, and the width and length are further cut. A heat conductive elastic sheet having a width 50 mm × length 50 mm × thickness 30 mm and having a width 50 mm × length 50 mm as an adhesive surface was prepared. The thermal conductivity in the direction orthogonal to the adhesion surface (xy plane 23XY in FIG. 1B) of this thermal conductive elastic sheet was 2.8 W / mK.

[実施例3]
実施例1で製造した幅100mm×長さ100mm×厚み0.5mmの炭化綿シート3枚を紐で縛って束ねて密閉容器に入れ、減圧下(1kPa:0.01気圧)で、室温で炭化綿全体が浸漬する量のウレタンエラストマー(ウレタン技研工業(株)、品番:セフタックC−7−21、A液とB液の質量比:A/B=75/25)を前記密閉容器に容器の下部から注入した。容器内圧を常圧にした後、容器内部を30分で90℃までに昇温し、60分間静置した後、温度を室温まで下げた。容器内から、炭化綿シート3枚を積層した、幅100mm×長さ100mm×厚み1.5mm、総質量137gの弾性体入り積層炭化綿が得られた。この弾性体入り積層炭化綿を裁断して、幅15mm、長さ50mm、厚み1.5mmのシートを作成した。更にこのシート30枚を厚み方向に接着剤で接着して厚み50mmとして、幅15mm、長さ50mm、厚み50mmの熱伝導性弾性シートを作成した。この熱伝導性弾性シートの熱伝導率は、長さ×厚み面(図1のx−z面23ZX)と直交する方向の熱伝導率は3.5W/mKであった。
[Example 3]
Three carbonized cotton sheets having a width of 100 mm, a length of 100 mm and a thickness of 0.5 mm manufactured in Example 1 are tied together with a string and bundled into a sealed container, and carbonized at room temperature under reduced pressure (1 kPa: 0.01 atm). Urethane elastomer (Urethane Giken Kogyo Co., Ltd., product number: ceftac C-7-21, mass ratio of liquid A and liquid B: A / B = 75/25) in an amount of the whole cotton soaked in the sealed container Injected from the bottom. After the internal pressure of the container was changed to normal pressure, the temperature inside the container was raised to 90 ° C. in 30 minutes and allowed to stand for 60 minutes, and then the temperature was lowered to room temperature. From the inside of the container, laminated carbonized cotton containing elastic bodies having a width of 100 mm, a length of 100 mm, a thickness of 1.5 mm, and a total mass of 137 g obtained by laminating three carbonized cotton sheets was obtained. This laminated carbonized cotton containing elastic body was cut to prepare a sheet having a width of 15 mm, a length of 50 mm, and a thickness of 1.5 mm. Further, 30 sheets were bonded with an adhesive in the thickness direction to a thickness of 50 mm, and a heat conductive elastic sheet having a width of 15 mm, a length of 50 mm, and a thickness of 50 mm was prepared. The thermal conductivity of this thermally conductive elastic sheet was 3.5 W / mK in the direction perpendicular to the length × thickness plane (xz plane 23ZX in FIG. 1).

[実施例4]
ウレタンエラストマー(松本技研工業(株)、品番:MG8012)の幅100mm×長さ100mm×厚み0.3mm、のシートと実施例1で製造した、幅100mm×長さ100mm×厚み0.5mmの炭化綿シートを、炭化綿シートを最下段にして交互に夫々10枚重ね、熱プレスで200℃に昇温後、10分間で総厚み5mmまで圧縮した。次いで室温近傍まで冷却して弾性体入り積層炭化綿を得た。この弾性体入り積層炭化綿を、積層方向に裁断して、幅50mm×長さ50mm×厚み5mmの弾性体入り積層炭化綿を作成した。更にこれを厚み方向の上下夫々1mmを裁断切除して、その裁断面(図1のx−y面23XY)を密着面とする幅50mm×長さ50mm×厚み5mmの熱伝導性弾性シートを作成した。このシートの密着面と直交する方向の熱伝導率は、1.2W/mKであった。
[Example 4]
Carbonized with 100 mm width × 100 mm length × 0.5 mm thickness produced in Example 1 and a sheet of urethane elastomer (Matsumoto Giken Kogyo Co., Ltd., product number: MG8012) having a width of 100 mm × length of 100 mm × thickness of 0.3 mm. Ten cotton sheets were alternately stacked with the carbonized cotton sheet at the bottom, heated to 200 ° C. with a hot press, and compressed to a total thickness of 5 mm in 10 minutes. Next, it was cooled to around room temperature to obtain laminated carbonized cotton containing an elastic body. This laminated carbonized cotton containing elastic body was cut in the laminating direction to produce laminated carbonized cotton containing an elastic body having a width of 50 mm × length of 50 mm × thickness of 5 mm. Further, this is cut and cut 1 mm above and below in the thickness direction, and a thermally conductive elastic sheet having a width of 50 mm, a length of 50 mm and a thickness of 5 mm is formed with the cut surface (xy plane 23XY in FIG. 1) as a close contact surface. did. The thermal conductivity in the direction orthogonal to the adhesion surface of this sheet was 1.2 W / mK.

[実施例5]
実施例1で得られた熱伝導性弾性シート6を、図4に示すように発熱体基板5と放熱体4の間に装着し、ビス止め部8で発熱体基板5と放熱体4とを止めることにより熱伝導性弾性シート6を挟持し、発熱体基板5を一定温度に加温した電子機器21を用いて、図4のC点(熱伝導性弾性シートの発熱体側)の温度を測定した。C点は52℃であった。
[Example 5]
The heat conductive elastic sheet 6 obtained in Example 1 is mounted between the heating element substrate 5 and the radiator 4 as shown in FIG. The temperature at the point C in FIG. 4 (the heat generating body side of the heat conductive elastic sheet) is measured by using the electronic device 21 in which the heat conductive elastic sheet 6 is sandwiched and the heat generating substrate 5 is heated to a constant temperature. did. C point was 52 degreeC.

[比較例1]
実施例2において、熱伝導性弾性シートを装着せず、図5に示すように発熱体基板5と放熱体4を直接接触させ、発熱体基板5を一定温度に加温した電子機器22を用いて、図5のD点(熱伝導性弾性シートの発熱体側)の温度を測定した。D点は79℃だった。
[Comparative Example 1]
In Example 2, the electronic device 22 in which the heat generating substrate 5 and the heat dissipating body 4 are directly contacted and the heat generating substrate 5 is heated to a constant temperature as shown in FIG. 5 without using the heat conductive elastic sheet is used. Then, the temperature at the point D in FIG. 5 (the heat generating element side of the heat conductive elastic sheet) was measured. The D point was 79 ° C.

[比較例2]
図4に示す実施例5と同様に、発熱体基板5と放熱体4の間に、従来品の放熱シート(サンワサプライ(株)、品番:TK−215)を装着し、発熱体基板5を一定温度に加温した状態で、図4のC点(熱伝導性弾性シートの発熱体側)の温度を測定した。C点は65℃だった。
[Comparative Example 2]
As in Example 5 shown in FIG. 4, a conventional heat radiating sheet (Sanwa Supply Co., Ltd., product number: TK-215) is mounted between the heat generating substrate 5 and the heat radiating member 4 to keep the heat generating substrate 5 constant. With the temperature heated, the temperature at point C in FIG. 4 (the heat-generating elastic sheet side of the heat conductive elastic sheet) was measured. The C point was 65 ° C.

以上の通り、本発明に係る熱伝導性弾性シートの熱伝導率は高く、比較例1の熱伝導性弾性シートを装着しない場合、および比較例2の従来品の放熱シートを装着した場合に比べ、本発明に係る熱伝導性弾性シートを備えた電子機器21は、放熱効率がよく、電子機器21の温度上昇を抑える効果を有することが確認された。   As described above, the thermal conductivity of the heat conductive elastic sheet according to the present invention is high, compared with the case where the heat conductive elastic sheet of Comparative Example 1 is not mounted and the case where the conventional heat dissipation sheet of Comparative Example 2 is mounted. It has been confirmed that the electronic device 21 provided with the heat conductive elastic sheet according to the present invention has a good heat dissipation efficiency and has an effect of suppressing the temperature rise of the electronic device 21.

即ち本発明は、実施例に対応させると、下記(1)〜(12)にまとめられる。
(1)例えば図1に示すように、織布が焼成された熱伝導性炭素繊維の織布シート9と、前記織布シート9の空隙に充填された弾性体3と、を有することを特徴とする熱伝導性弾性シート6。
(2)前記織布シートは木綿の織布を焼成して得られた炭化綿シートである(1)に記載の熱伝導性弾性シート。
(3)例えば図1に示すように、前記織布シート9を積層し、前記弾性体は前記積層された織布シート9の空隙に充填されていることを特徴とする(1)または(2)に記載の熱伝導性弾性シート6。
(4)例えば図2(a)および(b)に示すように、前記織布は、平織の繊維シートを積層し、さらに前記積層方向に織った複数織り織布であることを特徴とする(1)乃至(3)のいずれか1項に記載の熱伝導性弾性シート。
(5)前記熱伝導性弾性シートは、反発弾性(JISK6255)が30%以上60%以下であることを特徴とする(1)乃至(4)のいずれか1項に記載の熱伝導性弾性シート。
(6)例えば図6に示すように、織布を焼成した熱伝導性炭素繊維の織布シートが積層された積層織布シートを形成する工程(図6では、炭化綿の積層工程)と、前記積層織布シートの空隙に硬化後弾性を発現する液状樹脂を充填する工程(液状樹脂の含浸工程)と、前記液状樹脂を硬化する工程(樹脂の硬化工程)と、を備えることを特徴とする熱伝導性弾性シートの製造方法。
(7)例えば図6および図8に示すように、織布が焼成された熱伝導性炭素繊維の織布シートが積層された積層織布シート13を形成する工程(図6では、炭化綿の積層工程)と、前記積層織布シート13の空隙に硬化後弾性を発現する液状樹脂を減圧充填する工程(液状樹脂の含浸工程)と、前記液状樹脂を硬化する工程(樹脂の硬化工程)とを備えることを特徴とする熱伝導性弾性シートの製造方法。
(8) 前記硬化後弾性を発現する液状樹脂が熱可塑性エラストマー又は液状ゴムであることを特徴とする(6)または(7)に記載の熱伝導性弾性シートの製造方法。
(9)例えば図7に示すように、木綿の織布を焼成した炭化綿シートと熱可塑性エラストマーのシートとを交互に積層する工程と、前記積層したシートを加熱して前記熱可塑性エラストマーのシートを軟化または溶融せしめて前記炭化綿シートの空隙に充填する工程と、前記熱可塑性エラストマーを硬化する工程(樹脂の硬化工程)とを備えることを特徴とする熱伝導性弾性シートの製造方法。
(10)例えば図1および図4に示すように、発熱部7を備えた発熱体基板5と、発熱部7で発熱した熱を放熱する放熱体4と、織布が焼成された熱伝導性炭素繊維の織布シート9及び前記織布シート9の空隙に充填された弾性体3とを有する熱伝導性弾性シート6と、を備え、前記熱伝導性弾性シート6は、前記発熱体基板5と前記放熱体4との間に装着され、前記発熱体基板5及び前記放熱体4とに密着する密着面23XY(23YZ、23ZX)を有することを特徴とする電子機器21。
(11)例えば図1に示すように、前記熱伝導性弾性シート6には前記織布シート9が積層され、前記密着面23YZ(23ZX)は前記織布シート9が積層された厚み方向に裁断した裁断面であることを特徴とする(10)に記載の電子機器。
(12)例えば図1に示すように、前記熱伝導性弾性シート6には前記織布シート9が積層され、前記密着面23XYは前記織布シート9が積層された厚み方向と交差する方向の面であることを特徴とする(10)に記載の電子機器。
That is, the present invention can be summarized as the following (1) to (12) when corresponding to the embodiments.
(1) For example, as shown in FIG. 1, it has a woven fabric sheet 9 of thermally conductive carbon fibers obtained by firing a woven fabric, and an elastic body 3 filled in a gap of the woven fabric sheet 9. A heat conductive elastic sheet 6.
(2) The thermally conductive elastic sheet according to (1), wherein the woven fabric sheet is a carbonized cotton sheet obtained by firing a cotton woven fabric.
(3) For example, as shown in FIG. 1, the woven fabric sheet 9 is laminated, and the elastic body is filled in the gap of the laminated woven fabric sheet 9 (1) or (2) The heat conductive elastic sheet 6 described in the above.
(4) For example, as shown in FIGS. 2 (a) and 2 (b), the woven fabric is a multi-woven fabric woven by laminating plain woven fiber sheets and further woven in the laminating direction ( The heat conductive elastic sheet according to any one of 1) to (3).
(5) The heat conductive elastic sheet according to any one of (1) to (4), wherein the heat conductive elastic sheet has a rebound resilience (JISK6255) of 30% or more and 60% or less. .
(6) For example, as shown in FIG. 6, a step of forming a laminated woven fabric sheet in which woven fabric sheets of thermally conductive carbon fibers obtained by firing the woven fabric are laminated (in FIG. 6, a carbonized cotton laminating step); A step of filling the voids of the laminated woven fabric sheet with a liquid resin that develops elasticity after curing (a liquid resin impregnation step), and a step of curing the liquid resin (resin curing step). A method for producing a thermally conductive elastic sheet.
(7) For example, as shown in FIG. 6 and FIG. 8, a step of forming a laminated woven fabric sheet 13 in which a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric is laminated (in FIG. A laminating step), a step of filling the voids of the laminated woven fabric sheet 13 with a liquid resin exhibiting elasticity after curing under reduced pressure (a liquid resin impregnation step), a step of curing the liquid resin (resin curing step), The manufacturing method of the heat conductive elastic sheet characterized by the above-mentioned.
(8) The method for producing a thermally conductive elastic sheet according to (6) or (7), wherein the liquid resin that exhibits elasticity after curing is a thermoplastic elastomer or liquid rubber.
(9) For example, as shown in FIG. 7, a step of alternately laminating a carbonized cotton sheet obtained by firing a cotton woven fabric and a thermoplastic elastomer sheet, and heating the laminated sheet to form the thermoplastic elastomer sheet A method for producing a thermally conductive elastic sheet, comprising: a step of softening or melting the filler to fill the voids of the carbonized cotton sheet; and a step of curing the thermoplastic elastomer (resin curing step).
(10) For example, as shown in FIG. 1 and FIG. 4, the heat generating substrate 5 having the heat generating portion 7, the heat dissipating member 4 that dissipates the heat generated by the heat generating portion 7, and the thermal conductivity obtained by firing the woven fabric A heat conductive elastic sheet 6 having a carbon fiber woven sheet 9 and an elastic body 3 filled in a gap of the woven sheet 9, and the heat conductive elastic sheet 6 includes the heating element substrate 5. And an electronic device 21 having an adhesion surface 23XY (23YZ, 23ZX) that is attached between the heat radiation body 4 and the heat generation body substrate 5 and the heat radiation body 4.
(11) As shown in FIG. 1, for example, the woven fabric sheet 9 is laminated on the heat conductive elastic sheet 6, and the contact surface 23YZ (23ZX) is cut in the thickness direction where the woven fabric sheet 9 is laminated. The electronic device according to (10), wherein the electronic device has a cut surface.
(12) For example, as shown in FIG. 1, the woven fabric sheet 9 is laminated on the heat conductive elastic sheet 6, and the contact surface 23XY is in a direction intersecting the thickness direction in which the woven fabric sheet 9 is laminated. The electronic device according to (10), wherein the electronic device is a surface.

(a)は、熱伝導性弾性シートの斜視図であり、(b)は、(a)をy軸を軸にして90度左回転した模式図である。(A) is a perspective view of a heat conductive elastic sheet, (b) is the schematic diagram which left rotated (a) 90 degree | times centering on the y-axis. (a)は、平織の炭化綿シートの表面の模式図で、(b)は複数シートの複数織りの側面模式図である。(A) is a schematic diagram of the surface of a plain-woven carbonized cotton sheet, and (b) is a schematic side view of a plurality of sheets of a plurality of sheets. 平織の熱伝導性弾性シートの接触面の上面模式図である。It is an upper surface schematic diagram of the contact surface of a plain-woven heat conductive elastic sheet. 実施例5及び比較例2の実施態様を説明する模式図である。It is a schematic diagram explaining the embodiment of Example 5 and Comparative Example 2. 比較例1実施態様を説明する模式図である。It is a schematic diagram explaining the comparative example 1 embodiment. 熱伝導性弾性シートの第1の製造方法のフローチャートである。It is a flowchart of the 1st manufacturing method of a heat conductive elastic sheet. 熱伝導性弾性シートの第2の製造方法のフローチャートである。It is a flowchart of the 2nd manufacturing method of a heat conductive elastic sheet. 弾性体入り積層炭化綿の製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus of laminated carbonized cotton containing an elastic body.

符号の説明Explanation of symbols

1 経糸
2 横糸
3 弾性体(樹脂体)
4 放熱体(ヒートシンク)(低温体)
5 発熱体基板(高温体、発熱体)
6 熱伝導性弾性シート
7 電子機器要素(発熱部)
8 ビス止め部
9 炭化綿シート(織布シート)
10 二重織糸
11 弾性体入り積層炭化綿製造装置
12 成型容器(密封容器)
13 積層炭化綿シート(積層織布シート)
14 減圧機構
15 樹脂液供給部
16 弁(開閉弁)
17 冷媒又は熱媒入口
18 冷媒又は熱媒出口
21、22 電子機器
23XY、23YZ、23ZX 密着面
1 Warp 2 Weft 3 Elastic body (resin body)
4 Heat dissipation body (heat sink) (low temperature body)
5 Heating element substrate (high temperature element, heating element)
6 Thermally conductive elastic sheet 7 Electronic device element (heat generating part)
8 Screw stop 9 Carbonized cotton sheet (woven fabric sheet)
10 Double Woven Yarn 11 Laminated Carbonated Cotton Production Equipment with Elastic Body 12 Molded Container (Sealed Container)
13 Laminated carbonized cotton sheet (laminated woven fabric sheet)
14 Pressure reducing mechanism 15 Resin liquid supply section 16 Valve (open / close valve)
17 Refrigerant or heat medium inlet 18 Refrigerant or heat medium outlet 21, 22 Electronic equipment 23XY, 23YZ, 23ZX

Claims (12)

織布が焼成された熱伝導性炭素繊維の織布シートと、前記織布シートの空隙に充填された弾性体と、を有することを特徴とする熱伝導性弾性シート。   A thermally conductive elastic sheet comprising a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric, and an elastic body filled in a gap of the woven fabric sheet. 前記織布シートは木綿の織布を焼成して得られた炭化綿シートである請求項1に記載の熱伝導性弾性シート。   The thermally conductive elastic sheet according to claim 1, wherein the woven fabric sheet is a carbonized cotton sheet obtained by firing cotton woven fabric. 前記織布シートを積層し、前記弾性体は前記積層された織布シートの空隙に充填されていることを特徴とする請求項1または請求項2に記載の熱伝導性弾性シート。   The thermally conductive elastic sheet according to claim 1 or 2, wherein the woven fabric sheets are laminated, and the elastic body is filled in a gap of the laminated woven fabric sheets. 前記織布は、平織の繊維シートを積層し、さらに前記積層する方向に織った複数織り織布であることを特徴とする請求項1乃至3のいずれか1項に記載の熱伝導性弾性シート。   The heat conductive elastic sheet according to any one of claims 1 to 3, wherein the woven fabric is a multi-woven fabric woven by laminating plain woven fiber sheets and further woven in the laminating direction. . 前記熱伝導性弾性シートは、反発弾性(JISK6255)が30%以上60%以下であることを特徴とする請求項1乃至4のいずれか1項に記載の熱伝導性弾性シート。   The heat conductive elastic sheet according to any one of claims 1 to 4, wherein the heat conductive elastic sheet has a rebound resilience (JISK6255) of 30% or more and 60% or less. 織布を焼成した熱伝導性炭素繊維の織布シートが積層された積層織布シートを形成する工程と、前記積層織布シートの空隙に硬化後弾性を発現する液状樹脂を充填する工程と、前記液状樹脂を硬化する工程とを備えることを特徴とする熱伝導性弾性シートの製造方法。   A step of forming a laminated woven fabric sheet in which woven fabric sheets of thermally conductive carbon fibers obtained by firing the woven fabric are laminated, a step of filling a liquid resin that exhibits elasticity after curing in the voids of the laminated woven fabric sheet, And a step of curing the liquid resin. A method for producing a heat conductive elastic sheet. 織布を焼成した熱伝導性炭素繊維の織布シートが積層された積層職布シートを形成する工程と、前記積層織布シートの空隙に硬化後弾性を発現する液状樹脂を減圧充填する工程と、前記液状樹脂を硬化する工程とを備えることを特徴とする熱伝導性弾性シートの製造方法。   A step of forming a laminated work cloth sheet in which a woven fabric sheet of thermally conductive carbon fibers obtained by firing a woven fabric is laminated, and a step of filling a void of the laminated woven fabric sheet with a liquid resin that exhibits elasticity after curing under reduced pressure. And a step of curing the liquid resin. A method for producing a heat conductive elastic sheet. 前記硬化後弾性を発現する液状樹脂が熱可塑性エラストマー又は液状ゴムである請求項6または7に記載の熱伝導性弾性シートの製造方法。   The method for producing a thermally conductive elastic sheet according to claim 6 or 7, wherein the liquid resin exhibiting elasticity after curing is a thermoplastic elastomer or liquid rubber. 木綿の織布を焼成した炭化綿シートと熱可塑性エラストマーのシートとを交互に積層する工程と、前記積層したシートを加熱して前記熱可塑性エラストマーのシートを軟化または溶融せしめて前記炭化綿シートの空隙に充填する工程と、前記熱可塑性エラストマーを硬化する工程とを備えることを特徴とする熱伝導性弾性シートの製造方法。   A step of alternately laminating a carbonized cotton sheet obtained by firing a cotton woven fabric and a thermoplastic elastomer sheet, and heating the laminated sheet to soften or melt the thermoplastic elastomer sheet, The manufacturing method of the heat conductive elastic sheet characterized by including the process of filling a space | gap, and the process of hardening | curing the said thermoplastic elastomer. 発熱部を備えた発熱体基板と、前記発熱部で発熱した熱を放熱する放熱体と、織布が焼成された熱伝導性炭素繊維の織布シート及び前記織布シートの空隙に充填された弾性体とを有する熱伝導性弾性シートと、を備え、前記熱伝導性弾性シートは、前記発熱体基板と前記放熱体との間に装着され、前記発熱体基板及び前記放熱体とに密着する密着面を有することを特徴とする電子機器。   A heating element substrate provided with a heating part, a radiator that dissipates heat generated by the heating part, a woven fabric sheet of thermally conductive carbon fiber fired from a woven fabric, and a gap in the woven fabric sheet were filled A heat conductive elastic sheet having an elastic body, and the heat conductive elastic sheet is mounted between the heat generating body substrate and the heat radiating body, and is in close contact with the heat generating body substrate and the heat radiating body. An electronic device having an adhesive surface. 前記熱伝導性弾性シートには前記織布シートが積層され、前記密着面は前記織布シートが積層された厚み方向に裁断した裁断面であることを特徴とする請求項10に記載の電子機器。   11. The electronic apparatus according to claim 10, wherein the woven fabric sheet is laminated on the thermally conductive elastic sheet, and the contact surface is a cut surface cut in a thickness direction in which the woven fabric sheet is laminated. . 前記熱伝導性弾性シートには前記織布シートが積層され、前記密着面は前記織布シートが積層された厚み方向と交差する方向の面であることを特徴とする請求項10に記載の電子機器。   11. The electron according to claim 10, wherein the woven fabric sheet is laminated on the thermally conductive elastic sheet, and the contact surface is a surface in a direction intersecting a thickness direction in which the woven fabric sheet is laminated. machine.
JP2007194475A 2007-07-26 2007-07-26 Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same Withdrawn JP2009029908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194475A JP2009029908A (en) 2007-07-26 2007-07-26 Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194475A JP2009029908A (en) 2007-07-26 2007-07-26 Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same

Publications (1)

Publication Number Publication Date
JP2009029908A true JP2009029908A (en) 2009-02-12

Family

ID=40400775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194475A Withdrawn JP2009029908A (en) 2007-07-26 2007-07-26 Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same

Country Status (1)

Country Link
JP (1) JP2009029908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100123A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Insulating and thermally conductive sheet
JPWO2012029696A1 (en) * 2010-09-03 2013-10-28 旭有機材工業株式会社 Sheet material and manufacturing method thereof
WO2014203955A1 (en) * 2013-06-19 2014-12-24 東洋紡株式会社 Insulating and heat-conductive sheet
JP2015204143A (en) * 2014-04-11 2015-11-16 株式会社ソディック Floodlight
JP2018139273A (en) * 2017-02-24 2018-09-06 富士通株式会社 Electronic apparatus and manufacturing method thereof, heat conduction component
WO2019176344A1 (en) * 2018-03-13 2019-09-19 信越ポリマー株式会社 Heat dissipating structure and battery equipped with same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012029696A1 (en) * 2010-09-03 2013-10-28 旭有機材工業株式会社 Sheet material and manufacturing method thereof
JP5992684B2 (en) * 2010-09-03 2016-09-14 旭有機材株式会社 Sheet material and manufacturing method thereof
WO2013100123A1 (en) * 2011-12-28 2013-07-04 東洋紡株式会社 Insulating and thermally conductive sheet
CN104025290A (en) * 2011-12-28 2014-09-03 东洋纺株式会社 Insulating and thermally conductive sheet
JPWO2013100123A1 (en) * 2011-12-28 2015-05-11 東洋紡株式会社 Insulating heat conductive sheet
WO2014203955A1 (en) * 2013-06-19 2014-12-24 東洋紡株式会社 Insulating and heat-conductive sheet
CN105308105A (en) * 2013-06-19 2016-02-03 东洋纺株式会社 Insulating and heat-conductive sheet
JP2015204143A (en) * 2014-04-11 2015-11-16 株式会社ソディック Floodlight
JP2018139273A (en) * 2017-02-24 2018-09-06 富士通株式会社 Electronic apparatus and manufacturing method thereof, heat conduction component
WO2019176344A1 (en) * 2018-03-13 2019-09-19 信越ポリマー株式会社 Heat dissipating structure and battery equipped with same

Similar Documents

Publication Publication Date Title
JP6325193B2 (en) Carbon fiber reinforced composite material and method for producing the same
JP2009029908A (en) Heat conductive elastic sheet, manufacturing method, and electronic equipment using the same
KR101726969B1 (en) Surface layer material for cushioning material and cushioning material for hot-pressing
JP6571000B2 (en) Thermally conductive composite and method for producing the same
JP2000273196A (en) Heat-conductive resin substrate and semiconductor package
JP5820024B1 (en) Cushion material for heat press and method for manufacturing the same
JP2002046137A (en) Method for manufacturing thermally conductive sheet
US20190329455A1 (en) Three-dimensionally shaped thermally conductive molded body, and manufacturing method thereof
JP2007211182A5 (en)
TW200413166A (en) Cushion material for hot pressing and method for producing the same
JP5913970B2 (en) Cushion material for heat press
JP6677833B2 (en) Cushion material for heat press
CN102837483A (en) Buffering method for thermal lamination and superposed structure for thermal lamination
JPWO2014010106A1 (en) Carbon fiber reinforced composite material and method for producing the same
JP2009220478A (en) Fiber-reinforced sandwich structure composite and composite molding
JP6615650B2 (en) Cushion material for heat press
JP3197305U (en) Hot press molding pad
JP2012245664A (en) Heat conductive sheet
JP2005213469A (en) Reinforced fiber base material, preform and composite material and method of manufacturing the base material
JP5959697B2 (en) Thermally conductive sheet
JP2003191267A (en) Molding cushioning material and method for manufacturing laminated sheet
JP2011091009A (en) Rubber heater
TWI716850B (en) Manufacturing method of functional pad with uneven structure
US20230422355A1 (en) Heating structure and manufacturing method therefor
KR100726858B1 (en) conductive sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005