JP2000098970A - Plasma display device - Google Patents

Plasma display device

Info

Publication number
JP2000098970A
JP2000098970A JP31109799A JP31109799A JP2000098970A JP 2000098970 A JP2000098970 A JP 2000098970A JP 31109799 A JP31109799 A JP 31109799A JP 31109799 A JP31109799 A JP 31109799A JP 2000098970 A JP2000098970 A JP 2000098970A
Authority
JP
Japan
Prior art keywords
display
frequency
circuit
level
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31109799A
Other languages
Japanese (ja)
Other versions
JP3162040B2 (en
Inventor
Toyoshi Kawada
外与志 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31109799A priority Critical patent/JP3162040B2/en
Publication of JP2000098970A publication Critical patent/JP2000098970A/en
Application granted granted Critical
Publication of JP3162040B2 publication Critical patent/JP3162040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2946Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge by introducing variations of the frequency of sustain pulses within a frame or non-proportional variations of the number of sustain pulses in each subfield
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation

Abstract

PROBLEM TO BE SOLVED: To provide a circuit technique which can limit a circuit scale without worsening the power source efficiency and is adaptable to integration. SOLUTION: A plasma display device which lights a display cell of a display panel 4 synchronizing with a frequency of a maintaining discharge waveform is provided with an integrating means 10 to integrate the number of pixel signals given for a predetermined period by each bit signal for gradation display, and a frequency changing means 11 to change the frequency of the maintaining discharge waveform based on the result of the integration by the integrating means 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フラットパネルディス
プレイ装置、特に、自発光型の表示セルであるPDP
(Plasma Display Panel)を備えるプラズマディスプレ
イ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat panel display device, and more particularly to a PDP which is a self-luminous display cell.
(Plasma Display Panel).

【0002】[0002]

【従来の技術】可搬型パーソナルコンピュータ等の表示
装置に多用されるフラットパネルディスプレイ装置は、
CRT(Cathode Ray Tube)型の表示装置に比べて遥か
に低電力であるが、長時間のバッテリ駆動を実現するた
めに、より一層の消電力化技術が求められている。
2. Description of the Related Art Flat panel display devices frequently used in display devices such as portable personal computers are:
Although the power consumption is much lower than that of a CRT (Cathode Ray Tube) type display device, further power dissipation technology is required in order to achieve long-time battery operation.

【0003】図10は従来のフラットパネルディスプレ
イ装置の概念ブロックである。1は表示信号及びこの表
示信号に付随する各種の制御信号を発生する例えばグラ
フィック・ディスプレイ・コントローラ等の外部表示制
御回路、2は表示に必要な高電位(例えばPDPの場合
で約100V程度の直流電圧)の駆動電圧Vsを発生す
る外部駆動電源、3は画面の水平方向及び垂直方向の走
査周期に合わせて表示タイミングを制御する制御回路、
4は自発光型の多数の表示セルをマトリクス状に配列し
た表示パネル、5は表示パネルを駆動するための各種の
駆動パルスを発生するドライバ、6は駆動電流検出回
路、7はAPC信号発生回路であり、駆動電流検出回路
6及びAPC信号発生回路7は、省電力化対策のために
特別に設けられた回路である。
FIG. 10 is a conceptual block diagram of a conventional flat panel display device. 1 is an external display control circuit such as a graphic display controller for generating a display signal and various control signals accompanying the display signal, and 2 is a high potential necessary for display (for example, a DC voltage of about 100 V in the case of a PDP). 3) a control circuit for controlling display timing in accordance with horizontal and vertical scanning periods of the screen;
Reference numeral 4 denotes a display panel in which a large number of self-luminous display cells are arranged in a matrix, 5 denotes a driver that generates various drive pulses for driving the display panel, 6 denotes a drive current detection circuit, and 7 denotes an APC signal generation circuit. The drive current detection circuit 6 and the APC signal generation circuit 7 are circuits specially provided for power saving measures.

【0004】すなわち、駆動電流検出回路6は、駆動電
圧Vsの伝送経路上に直列挿入された抵抗素子(図示
略)と、この抵抗素子の両端電圧を検出するための能動
素子(高電位のVsに対応した高耐圧のトランジスタ)
とを少なくとも有し、ドライバ5を介して表示パネル4
に供給される電流(以下「駆動電流Is」)の大きさを
抵抗素子の両端電圧として取り出すものである。また、
APC信号発生回路7は、上記の両端電圧(=駆動電流
Is)の大きさに応じてHレベル期間のデューティが変
化する所定のコントロール信号Sapcを出力するもの
である。
That is, the drive current detection circuit 6 includes a resistor (not shown) inserted in series on the transmission path of the drive voltage Vs, and an active element (high potential Vs) for detecting the voltage across the resistor. High-voltage transistors that support
And the display panel 4 via the driver 5
(Hereinafter referred to as “driving current Is”) is taken out as a voltage across the resistance element. Also,
The APC signal generation circuit 7 outputs a predetermined control signal Sapc whose duty in the H-level period changes according to the magnitude of the above-mentioned voltage (= driving current Is).

【0005】図11は駆動電流Isの大きさ(図では便
宜的にIs(L) <Is(M) <Is (H) の3段階)と、
Sapcの所定論理レベル(ここでは便宜的にHレベ
ル)期間のデューティ変化の対応関係を示す図である。
駆動電流Isは、表示パネル4の表示率、すなわち全表
示セル中の発光セルの割合に比例する。従って、表示率
が高くなる程(言い替えれば高輝度表示になる程)、電
力消費が増えて問題となるが、図11の下段に示すよう
に、表示パネル4の駆動波形(例えばPDPの場合の維
持放電波形)の高周波数期間をSapcのHレベル期間
に合わせて変化させれば、表示率が高くなる程、高周波
数期間を減少(低周波数期間を増大)させることがで
き、上記の電力消費問題を解決できる。
FIG. 11 shows the magnitude of the driving current Is (in FIG.
Is(L) <Is(M) <Is (H) Three stages) and
A predetermined logic level of Sapc (here, H level for convenience)
FIG. 7 is a diagram showing a correspondence relationship between duty changes during a period.
The drive current Is is the display rate of the display panel 4, that is,
It is proportional to the ratio of the light emitting cells in the display cells. Therefore, the display rate
Is higher (in other words, higher brightness is displayed),
The problem is that power consumption increases, as shown in the lower part of FIG.
Next, the driving waveform of the display panel 4 (for example, the
High frequency period of the sustaining discharge waveform) is the H level period of Sapc
The higher the display ratio, the higher the frequency
Can reduce several periods (increase low frequency periods)
Thus, the above-described power consumption problem can be solved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、かかる
従来のフラットパネルディスプレイ装置にあっては、駆
動電圧Vsの伝送経路上に抵抗素子を直列挿入し、この
抵抗素子の両端電圧を検出する構成となっていたため、
(1)抵抗素子によって駆動電圧Vsの電源インピーダ
ンスが増加し、電源効率が悪化する、(2)高耐圧のト
ランジスタを作り込む必要があり、回路規模の増大や集
積化への対応が困難になる、といった問題点がある。
However, in such a conventional flat panel display device, a resistance element is inserted in series on the transmission path of the drive voltage Vs, and the voltage across the resistance element is detected. Because
(1) The power supply impedance of the drive voltage Vs is increased by the resistance element, and the power supply efficiency is deteriorated. (2) It is necessary to build a transistor with a high breakdown voltage, which makes it difficult to cope with an increase in circuit scale and integration. And so on.

【0007】[目的]そこで、本発明は、電源効率の悪
化を招くことなく、回路規模に抑えることができ、集積
化に適応した回路技術の提供を目的とする。
[0007] Accordingly, an object of the present invention is to provide a circuit technique which can be suppressed to a circuit scale without deteriorating power supply efficiency and is adapted to integration.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、維持放電波形の周波数に同期させて表示
パネルの表示セルを点灯させるプラズマディスプレイ装
置において、所定期間中に与えられる画素信号数を積算
する積算手段と、該積算手段の積算結果に基づいて前記
維持放電波形の周波数を変更する周波数変更手段とを備
えたことを特徴とする。
According to the present invention, there is provided a plasma display apparatus for lighting a display cell of a display panel in synchronization with the frequency of a sustain discharge waveform. An integrating means for integrating the number of signals, and a frequency changing means for changing the frequency of the sustain discharge waveform based on the integration result of the integrating means.

【0009】前記積算手段は、好ましくは所定期間中に
与えられる画素信号数を階調表示のためのビット信号単
位で積算するとよい。
The integrating means preferably integrates the number of pixel signals applied during a predetermined period in units of bit signals for gradation display.

【0010】さらに、前記ビット信号単位で積算したそ
れぞれの積算結果に、所定の重み付けを付加して加算す
ることを含めて行うようにしてもよい。
[0010] Further, a predetermined weight may be added to each of the integration results obtained by integrating the bit signals, and the results may be added.

【0011】また、前記積算手段は、所定期間中に与え
られる画素信号数を、階調表示のためのビット信号単位
で所定の重み付けを付加した後に積算してもよい。
Further, the integrating means may integrate the number of pixel signals given during a predetermined period after adding a predetermined weight in bit signal units for gradation display.

【0012】[0012]

【作用】本発明では、表示率に直接関係する画素情報に
基づいて表示パネルの維持放電波形の周波数が変更され
る。従って、駆動電圧Vsの伝送経路上における抵抗素
子や高耐圧トランジスタが不要となり、電源効率の悪化
や回路規模の増大が回避され、集積化への対応が容易化
される。
According to the present invention, the frequency of the sustain discharge waveform of the display panel is changed based on the pixel information directly related to the display ratio. Therefore, a resistance element and a high-voltage transistor on the transmission path of the drive voltage Vs are not required, so that deterioration in power supply efficiency and increase in circuit scale are avoided, and integration is facilitated.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図9は本発明に係るプラズマディスプレイ
装置の実施例を説明する図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 9 are views for explaining an embodiment of a plasma display device according to the present invention.

【0014】まず、原理構成を説明する。図1におい
て、1は外部表示制御回路、2は外部駆動電源、3は制
御回路、4は表示パネル、5はドライバであり、これら
の回路1〜5は冒頭の従来例と同一のものである。
First, the principle configuration will be described. In FIG. 1, reference numeral 1 denotes an external display control circuit, 2 denotes an external drive power supply, 3 denotes a control circuit, 4 denotes a display panel, and 5 denotes a driver. These circuits 1 to 5 are the same as those in the first conventional example. .

【0015】また、10は画素数積算回路、11はAP
C信号発生回路であり、これらの回路10、11は、本
実施例に特有なものである。
Reference numeral 10 denotes a pixel number integrating circuit, and 11 denotes an AP.
This is a C signal generation circuit, and these circuits 10 and 11 are unique to this embodiment.

【0016】すなわち、画素数積算回路10は所定期間
に与えられる画像信号の中から所定レベルの画素信号の
数を積算する積算手段としての機能を有し、APC信号
発生回路11は画素数積算回路10の積算結果に基づい
てパネル駆動周波数を変更する周波数変更手段としての
機能を有するものである。
That is, the pixel number accumulating circuit 10 has a function as an accumulating means for accumulating the number of pixel signals of a predetermined level from image signals given in a predetermined period. It has a function as a frequency changing means for changing the panel driving frequency based on the result of integration of 10.

【0017】ここで、上記の所定期間とは、表示パネル
4の画面走査に同期した任意の期間であり、好ましくは
1垂直走査又は1水平走査の期間である。また、上記の
所定レベルの画素信号とは、表示パネル4の選択表示セ
ルを点灯(自発光)させ得るレベルを持つ画素信号であ
り、例えば、白/黒2階調のディジタル画素信号であれ
ば白レベルに相当する所定論理レベル(Hレベル又はL
レベル)である。また、上記のパネル駆動周波数とは、
表示パネル4を駆動するために必要な各種波形の周波数
であり、例えば、PDPの場合の維持放電波形の周波数
である。
Here, the predetermined period is an arbitrary period synchronized with the screen scanning of the display panel 4, and is preferably a period of one vertical scan or one horizontal scan. The above-mentioned pixel signal of a predetermined level is a pixel signal having a level capable of lighting (self-luminous) a selected display cell of the display panel 4. For example, a digital pixel signal of two gray levels of white / black is used. A predetermined logic level (H level or L level) corresponding to the white level
Level). Also, the above-mentioned panel driving frequency is
This is the frequency of various waveforms required to drive the display panel 4, for example, the frequency of a sustain discharge waveform in the case of a PDP.

【0018】駆動電流Isは、表示パネル4の表示率、
すなわち全表示セル中の発光セルの割合に比例し、表示
率は、表示パネル4の選択表示セルを点灯させ得るレベ
ルを持つ画素信号の積算数(例えば1垂直期間中の積算
数)に良く相関する。
The drive current Is is determined by the display rate of the display panel 4,
That is, the display ratio is proportional to the ratio of the light emitting cells in all the display cells, and the display ratio correlates well with the integrated number of pixel signals having a level capable of lighting the selected display cell of the display panel 4 (for example, the integrated number in one vertical period). I do.

【0019】従って、この積算数(以下「積算画素
数」)は、表示に必要な駆動電流Isの大きさを間接的
に表す値であるから、図2に示すように、積算画素数の
値に基づいてSapcのHレベル期間のデューティを変
化させるように構成すれば、駆動電流Isを直接的に検
出する手段(抵抗素子や高耐圧トランジスタ等)を不要
にでき、駆動電圧Vsの電源インピーダンスの増大を招
くことなく、集積化に適した回路構成を実現できるので
ある。
Accordingly, since the integrated number (hereinafter referred to as “integrated pixel number”) is a value indirectly representing the magnitude of the driving current Is required for display, as shown in FIG. , The means for directly detecting the drive current Is (such as a resistance element or a high-voltage transistor) can be dispensed with, and the power supply impedance of the drive voltage Vs can be reduced. Thus, a circuit configuration suitable for integration can be realized without causing an increase.

【0020】次に、実施例の理解を助けるため、上述原
理構成のいくつかの具体例について説明する。まず、上
述原理構成の第1具体例について説明する。
Next, in order to facilitate understanding of the embodiment, some specific examples of the above-described principle configuration will be described. First, a first specific example of the above-described principle configuration will be described.

【0021】図3は画素数積算回路及びAPC信号発生
回路の具体的な構成例である。なお、ここでは説明の簡
単化のために、表示パネル4の全表示セル数を256若
しくはそれ以下としている。図3において、12は画素
信号DATA中のHレベル(表示パネル4の選択表示セ
ルを点灯させ得るレベル)のビットをカウントする8ビ
ット出力(すなわち0(10)から256(10)までの積算値
を出力)のバイナリカウンタであり、このバイナリカウ
ンタ12は、微小な遅延時間を有する遅延回路13を通
過した垂直同期信号Vsyncに同期して1垂直期間毎
にリセット(積算値を0(10)にする)される。バイナリ
カウンタ12の最上位ビットからnビット(nはパネル
駆動波形の周波数可変段階数に対応し例えば図2のよう
に3段階であればn=2、実用的な16段階であればn
=4となる;図では便宜的にn=4としている)は、n
ビットのラッチ14によって1垂直走査の間ラッチさ
れ、ラッチ14のnビット出力(すなわち1垂直走査期
間中におけるHレベル画素信号の積算値;以下、便宜的
に符号Dsで表す)は、コンパレータ15の一方側入力
(nビットのA入力)に与えられる。コンパレータ15
の他方側入力(nビットのB入力)には、任意周波数の
クロック信号CLKstをカウントするnビットのバイ
ナリカウンタ16のnビット出力(0段から16段まで
単調増加を繰り返す周期関数、すなわちディジタル的な
三角波;以下、便宜的に符号Dtで表す)が与えられて
おり、コンパレータ15は、A入力<B入力のとき(D
s<Dtのとき)に出力Q(Sapcとなる)をHレベ
ルにする。
FIG. 3 shows a specific configuration example of the pixel number integrating circuit and the APC signal generating circuit. Here, for simplicity of description, the total number of display cells of the display panel 4 is set to 256 or less. In FIG. 3, reference numeral 12 denotes an 8-bit output (that is, an integrated value from 0 (10) to 256 (10) ) for counting H-level (a level at which a selected display cell of the display panel 4 can be lit) in the pixel signal DATA. The binary counter 12 is reset every one vertical period in synchronization with the vertical synchronization signal Vsync that has passed through the delay circuit 13 having a minute delay time (the integrated value is reset to 0 (10)) . To). From the most significant bit of the binary counter 12 to n bits (n corresponds to the number of frequency variable steps of the panel drive waveform. For example, as shown in FIG. 2, three = n = 2, and practical 16 steps = n
= 4; n = 4 for the sake of convenience in the figure) is n
The n-bit output of the latch 14 (that is, the integrated value of the H level pixel signal during one vertical scan; hereinafter, represented by the symbol Ds for convenience) is latched by the bit latch 14 for one vertical scan. It is provided to one side input (n-bit A input). Comparator 15
The other side input (n-bit B input) has an n-bit output of an n-bit binary counter 16 that counts a clock signal CLKst of an arbitrary frequency (a periodic function that repeats monotonically increasing from 0 to 16 stages, ie, a digital function). A triangular wave; hereinafter, represented by a symbol Dt for convenience), and the comparator 15 outputs (D
When s <Dt), the output Q (becomes Sapc) is set to the H level.

【0022】このような構成によれば、図4にその動作
タイミングチャートを示すように、Vsyncの1周期
中に入力するHレベルの画素信号DATAの数が積算さ
れ、この積算値はVsyncのタイミングでラッチ14
に取り込まれた後、遅延回路13の出力に同期して0
(10)にリセットされる。ここで、ラッチ14に取り込ま
れた積算値Dsは、1垂直走査期間中に入力したHレベ
ル(表示パネル4の選択表示セルを点灯させ得るレベ
ル)の画素信号の総数であり、その最大数は、表示パネ
ル4の全表示セルの数(ここでは256)に相当する。
図4中破線で示す軌跡は、全ての表示セルを点灯させた
場合の積算値軌跡であり、この場合の電力消費が最も大
きい。
According to such a configuration, as shown in the operation timing chart of FIG. 4, the number of H-level pixel signals DATA input during one cycle of Vsync is integrated, and the integrated value is the timing of Vsync. Latch at 14
After that, 0 is synchronized with the output of the delay circuit 13
Reset to (10) . Here, the integrated value Ds taken into the latch 14 is the total number of pixel signals of H level (a level at which the selected display cell of the display panel 4 can be turned on) input during one vertical scanning period. , The number of all display cells of the display panel 4 (here, 256).
A locus indicated by a broken line in FIG. 4 is an integrated value locus when all the display cells are turned on, and the power consumption in this case is the largest.

【0023】図4におけるラッチ14の出力(Ds)
は、点灯セル数が最少のとき(a)、中ぐらいのとき
(b)及び全セル点灯に近い最大のとき(c)の3段階
を表している。
The output (Ds) of the latch 14 in FIG.
Represents three stages: when the number of lit cells is minimum (a), when the number of lit cells is medium (b), and when the number of lit cells is close to the maximum for all cells (c).

【0024】段階aではDsの値が小さいために「Ds
<Dt」の期間が長く、コンパレータ16の出力(Sa
pc)のHレベル期間が最大になる。一方、段階bでは
Dsの値が中程度に大きくなるために「Ds<Dt」の
期間は中程度となり、さらに、段階cではDsの値が最
大又は最大に近付くために「Ds<Dt」の期間は最小
又は最小に近付く。
In step a, since the value of Ds is small, "Ds
The period of <Dt ”is long, and the output of the comparator 16 (Sa
The H level period of pc) becomes maximum. On the other hand, the period of “Ds <Dt” becomes moderate in Step b because the value of Ds becomes medium, and further, in Step c, the value of “Ds <Dt” becomes large or close to the maximum. The time period is at or near a minimum.

【0025】従って、コンパレータの16の出力(Sa
pc)のHレベル期間が1垂直走査期間における画素信
号の積算数に反比例して変化するから、このSapcを
用いて表示パネル4の駆動波形の周波数を変化させれ
ば、従来例のような駆動電流Isの直接的な検出手段
(抵抗素子や高耐圧のトランジスタ等)を要することな
く、表示率に応じた適正な駆動電流Isを得ることがで
き、その結果、駆動電圧Vsの電源インピーダンスや回
路規模の増大問題を解決できるとともに、集積化に適し
た回路構成を提供することができる。
Therefore, the 16 outputs (Sa) of the comparator
Since the H level period of pc) changes in inverse proportion to the number of pixel signals integrated in one vertical scanning period, if the frequency of the driving waveform of the display panel 4 is changed using this Sapc, the driving as in the conventional example will be performed. An appropriate drive current Is corresponding to the display ratio can be obtained without requiring direct detection means (such as a resistive element or a high-voltage transistor) of the current Is. As a result, the power supply impedance of the drive voltage Vs and the circuit It is possible to solve the problem of increase in scale and to provide a circuit configuration suitable for integration.

【0026】次に、上述原理構成の第2具体例について
説明する。図5はアナログ回路で構成した例である。す
なわち、抵抗20、オペアンプ21、コンデンサ22及
びアナログスイッチ23は、画素信号DATAのレベル
を積分する第1の積分器24を構成し、この第1の積分
器24の積分期間は、微小な遅延時間の遅延回路25を
通過したVsyncに応答してオン/オフするアナログ
スイッチ23のオフ期間(1垂直走査期間)に相当す
る。従って、この第1の積分器24からは1垂直走査期
間における画素信号DATAの積算値が出力され、この
積算値は非遅延のVsyncのタイミングでサンプル&
ホールド回路26に保持される。サンプル&ホールド回
路26の出力(すなわち1垂直走査期間における画素信
号DATAの積算値;Ds)は、オペアンプを用いたア
ナログコンパレータ27の一方入力に与えられ、このア
ナログコンパレータ27の他方入力には、抵抗28、オ
ペアンプ29、コンデンサ30及びアナログスイッチ3
1からなる第2の積分器32からの鋸歯状波電圧Dt
(クロック信号CLKswの周期ごとにリセットされる
電圧)が与えられており、アナログコンパレータ27は
Ds<DtのときにHレベルとなる信号(Sapc)を
出力する。
Next, a second example of the above-described principle configuration will be described. FIG. 5 shows an example constituted by an analog circuit. That is, the resistor 20, the operational amplifier 21, the capacitor 22, and the analog switch 23 constitute a first integrator 24 for integrating the level of the pixel signal DATA, and the integration period of the first integrator 24 is a small delay time. Corresponds to the off period (one vertical scanning period) of the analog switch 23 that is turned on / off in response to Vsync that has passed through the delay circuit 25. Therefore, the integrated value of the pixel signal DATA in one vertical scanning period is output from the first integrator 24, and the integrated value is sampled at a non-delayed Vsync timing.
It is held by the hold circuit 26. The output of the sample-and-hold circuit 26 (that is, the integrated value of the pixel signal DATA in one vertical scanning period; Ds) is supplied to one input of an analog comparator 27 using an operational amplifier, and the other input of the analog comparator 27 is connected to a resistor. 28, operational amplifier 29, capacitor 30, and analog switch 3
Sawtooth voltage Dt from the second integrator 32 comprising
(A voltage that is reset every cycle of the clock signal CLKsw), and the analog comparator 27 outputs a signal (Sapc) that goes high when Ds <Dt.

【0027】従って、かかるアナログ的な構成であって
も、1垂直走査期間における画素信号の積算値に反比例
してHレベルデューティが変化する信号(Sapc)を
生成でき、この信号(Sapc)を用いることにより、
従来例のような駆動電流Isの直接的な検出手段(抵抗
素子や高耐圧のトランジスタ等)を要することなく、表
示率に応じた適正な駆動電流Isを得ることができ、駆
動電圧Vsの電源インピーダンスや回路規模の増大問題
を解決できるとともに、集積化に適した回路構成を提供
することができる。
Therefore, even with such an analog configuration, a signal (Sapc) in which the H level duty changes in inverse proportion to the integrated value of the pixel signal in one vertical scanning period can be generated, and this signal (Sapc) is used. By doing
It is possible to obtain an appropriate drive current Is corresponding to the display ratio without requiring direct detection means (such as a resistance element or a high breakdown voltage transistor) of the drive current Is as in the conventional example. It is possible to solve the problem of increasing the impedance and the circuit scale and to provide a circuit configuration suitable for integration.

【0028】次に、上述原理構成の第3具体例について
説明する。上記の第1具体例や第2具体例では、静止表
示画面中の僅かな画素の輝度変化にAPC信号(Sap
c)が応答してしまうという欠点、すなわち、静止表示
画面中で例えばカーソル点滅や強調表示のための反転ブ
リンクを行う場合、点滅やブリンクに応答して画素信号
の積算値が変化し、APC信号(Sapc)が変化する
ことにより、画面全体の輝度がチラツクという欠点があ
る。
Next, a third specific example of the above-described principle configuration will be described. In the first and second specific examples, the APC signal (Sap signal) is applied to a slight change in the luminance of a pixel in the still display screen.
c) responds, that is, for example, in the case of performing a reverse blink for blinking or highlighting a cursor in a still display screen, the integrated value of the pixel signal changes in response to the blink or blink, and the APC signal Due to the change of (Sapc), there is a drawback that the luminance of the entire screen flickers.

【0029】そこで、本具体例では、かかる欠点を解決
するために、要するに、ある時点での画素数とその後に
続いて入力される新しい画素数とを比較し、その差があ
る一定値を上回った場合に、新しい画素数に基づいて表
示パネルの駆動電力を制御しようとするものである。な
お、第1具体例と共通する回路要素には同一の符号を付
すとともにその説明を省略するものとする。
In this embodiment, in order to solve such a drawback, in short, the number of pixels at a certain point in time is compared with the number of new pixels subsequently inputted, and the difference exceeds a certain value. In such a case, the driving power of the display panel is controlled based on the new number of pixels. Note that circuit elements common to the first specific example are denoted by the same reference numerals and description thereof is omitted.

【0030】図6において、8ビットのバイナリカウン
タ12からのnビットの出力は、nビットの減算回路3
0のA入力とnビットのラッチ31に与えられる。ラッ
チ31はアンドゲート32の出力にHレベルが現れたと
きにカウンタ12のnビット出力をラッチし、そのラッ
チ内容を減算回路30のB入力に与える。減算回路30
はA入力とB入力の差値ΔDxを計算してその差値ΔD
xをコンパレータ33のB入力に与え、コンパレータ3
3は、A入力の値(設定レジスタ34の設定値ΔDa;
カーソル点滅や反転ブリンク等の周期的な画素数変化分
に対応した値を上回る値)とB入力の値(ΔDx)とを
比較し、「ΔDa<ΔDx」のときに出力QからHレベ
ルの信号Scを取り出す。信号Scはアンドゲート32
の一方入力に与えられ、このアンドゲート32の他方入
力にはVsyncが与えられている。
In FIG. 6, an n-bit output from an 8-bit binary counter 12 is output from an n-bit subtraction circuit 3.
0 is input to the A input and an n-bit latch 31. Latch 31 latches the n-bit output of counter 12 when the H level appears at the output of AND gate 32, and applies the latched content to B input of subtraction circuit 30. Subtraction circuit 30
Calculates the difference ΔDx between the A input and the B input and calculates the difference ΔD
x is given to the B input of the comparator 33,
3 is the value of the A input (the set value ΔDa of the setting register 34;
A value higher than a value corresponding to a periodic change in the number of pixels such as a blinking cursor or an inverted blink) is compared with a value of the B input (ΔDx). When “ΔDa <ΔDx”, an H level signal from the output Q is output. Take Sc out. The signal Sc is supplied to the AND gate 32
And the other input of the AND gate 32 is supplied with Vsync.

【0031】このような構成において、初期状態では、
コンパレータ33の出力Q(Sc)はLレベルであり、
アンドゲート32の出力もLレベル固定であるから、カ
ウンタ12の出力(積算値)は減算回路32のみに与え
られ、減算回路30からは、その積算値と同値のΔDx
が出力される。ある時間を経過した時点でΔDxの値が
ΔDaを上回ると、コンパレータ33の出力Q(Sc)
がHレベルに変化し、アンドゲート32の出力もHレベ
ルに変化してその時点におけるカウンタ12の出力がラ
ッチ31に取り込まれる。そして、減算回路30は、ラ
ッチ31の保持内容(以下「旧積算値」)と以降のカウ
ンタ12の出力(以下「新積算値」)との差値ΔDxを
演算し、コンパレータ33はその差値ΔDxが設定値Δ
Daを上回るまで出力Q(Sc)をLレベルに固定し続
ける。
In such a configuration, in the initial state,
The output Q (Sc) of the comparator 33 is at L level,
Since the output of the AND gate 32 is also fixed at the L level, the output (integrated value) of the counter 12 is given only to the subtraction circuit 32, and the subtraction circuit 30 outputs ΔDx having the same value as the integrated value.
Is output. If the value of ΔDx exceeds ΔDa after a certain time, the output Q (Sc) of the comparator 33
Changes to the H level, the output of the AND gate 32 also changes to the H level, and the output of the counter 12 at that time is taken into the latch 31. Then, the subtraction circuit 30 calculates a difference value ΔDx between the content held in the latch 31 (hereinafter, “old integrated value”) and the output of the counter 12 (hereinafter, “new integrated value”), and the comparator 33 calculates the difference value. ΔDx is the set value Δ
The output Q (Sc) is kept fixed at the L level until it exceeds Da.

【0032】従って、出力Q(Sc)がLレベルの間、
すなわち図7に示すように、旧積算値と新積算値との差
値ΔDxが設定値ΔDaを上回るまでの間は、ラッチ3
1から同一の積算値(旧積算値)が出力され続けてSa
pcのHレベルデューティが変化しないので、画面全体
の輝度のチラツキを抑えることができ、表示品質を向上
できる。
Therefore, while the output Q (Sc) is at the L level,
That is, as shown in FIG. 7, until the difference value ΔDx between the old integrated value and the new integrated value exceeds the set value ΔDa, the latch 3
The same integrated value (old integrated value) is continuously output from 1 and Sa
Since the H level duty of pc does not change, flickering of the luminance of the entire screen can be suppressed, and the display quality can be improved.

【0033】次に、本発明に係るプラズマディスプレイ
装置の第1実施例について説明する。本実施例は、多階
調表示への適用例である。図8はその構成図であり、第
1カウンタ40は画素信号の第1ビットDATA0
カウントし、第2カウンタ41は画素信号の第2ビット
DATA1 をカウントする。2個のカウンタ40、4
1の各nビット出力は加算回路42によって加算され、
その加算値(すなわち4階調表示画素信号の積算値)は
Vsyncのタイミングでラッチ43に取り込まれ、こ
のラッチ43の出力Dsが第1具体例と同様のコンパレ
ータ15で比較される。
Next, a first embodiment of the plasma display device according to the present invention will be described. This embodiment is an example of application to multi-tone display. FIG. 8 is a diagram showing the configuration. The first counter 40 counts the first bit DATA 0 of the pixel signal, and the second counter 41 counts the second bit DATA 1 of the pixel signal. Two counters 40, 4
The n-bit outputs of 1 are added by an adder circuit 42,
The added value (that is, the integrated value of the four gradation display pixel signals) is taken into the latch 43 at the timing of Vsync, and the output Ds of the latch 43 is compared by the comparator 15 as in the first specific example.

【0034】本実施例における画素数の積算は、複数本
の画像データ信号の階調に対する重み付けに合わせて行
うようにしている。図8は、画像データ信号がDATA
0とDATA1 の2ビット、すなわち4階調の場合であ
り、DATA0 、DATA1 はそれぞれカウンタ4
0、41で積算された後、その積算結果が加算回路42
で加算されるが、カウンタ41の積算値が階調の2ビッ
ト目に対応する値であるため、2倍の重み付けを付加す
る必要がある。本実施例では、階調の1ビット目に対応
するカウンタ40の積算値を1ビットずらして(1/2
倍して)加算回路42に入力することにより、相対的
に、階調の2ビット目に対応する値に2倍の重み付けを
付加している。
In the present embodiment, the integration of the number of pixels is performed in accordance with the weighting of the gradations of a plurality of image data signals. FIG. 8 shows that the image data signal is DATA
This is the case of 2 bits of 0 and DATA 1 , that is, 4 gradations, and DATA 0 and DATA 1 are counters 4 respectively.
After integration at 0 and 41, the integration result is added to an addition circuit 42.
However, since the integrated value of the counter 41 is a value corresponding to the second bit of the gradation, it is necessary to add double weighting. In this embodiment, the integrated value of the counter 40 corresponding to the first bit of the gradation is shifted by one bit (1/2).
The value corresponding to the second bit of the gray scale is relatively weighted twice by inputting it to the addition circuit 42.

【0035】なお、図8では4階調表示の例を示してい
るが、3階調以上の多階調表示に適用する場合には、そ
の画素信号のビット構成に合わせてカウンタの数を増や
すとともに、重み付けを付加して加算するように、複数
の加算回路を階層的に接続すれば良い。
Although FIG. 8 shows an example of four-gradation display, when the present invention is applied to multi-gradation display of three or more gradations, the number of counters is increased in accordance with the bit configuration of the pixel signal. At the same time, a plurality of adder circuits may be hierarchically connected so as to add weights.

【0036】次に、本発明に係るプラズマディスプレイ
装置の第2実施例について説明する。図9は、第1実施
例の構成をアナログ回路で実現した例であり、前記第1
具体例の変形である。
Next, a description will be given of a second embodiment of the plasma display device according to the present invention. FIG. 9 shows an example in which the configuration of the first embodiment is realized by an analog circuit.
This is a modification of the specific example.

【0037】すなわち、第1具体例との相違は、第1の
積分器50の入力抵抗を画素信号のビットDATA
0 、DATA1 ごとに(DATA0 に対して抵抗5
1を、またDATA1 に対して抵抗52)備えるとと
もに、各抵抗の値をビット重みに対応させた(抵抗52
の値は抵抗51の1/2)点にあり、余は第1具体例に
共通する。
That is, the difference from the first specific example is that the input resistance of the first integrator 50 is changed to the bit DATA of the pixel signal.
0, resistance DATA every respect (DATA 0 5
1 and a resistance 52 for DATA 1 and the value of each resistance is made to correspond to the bit weight (resistance 52).
Is at a point (1 /) of the resistance 51, and the remainder is common to the first specific example.

【0038】[0038]

【発明の効果】本発明によれば、所定期間中に与えられ
る画素信号数を積算し、その積算結果に基づいて維持放
電波形の周波数を変更するように構成したので、電源効
率の悪化を招くことなく、回路規模に抑えることがで
き、集積化に適応した回路技術を提供できる。
According to the present invention, the number of pixel signals applied during a predetermined period is integrated, and the frequency of the sustain discharge waveform is changed based on the integrated result, thereby deteriorating the power supply efficiency. The circuit technology can be reduced to the circuit scale without any problem, and a circuit technology suitable for integration can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の原理構成図である。FIG. 1 is a principle configuration diagram of an embodiment.

【図2】実施例の原理波形図である。FIG. 2 is a principle waveform diagram of an embodiment.

【図3】原理構成の具体的な構成図(第1具体例)であ
る。
FIG. 3 is a specific configuration diagram (first specific example) of the principle configuration.

【図4】図3の動作波形図である。FIG. 4 is an operation waveform diagram of FIG.

【図5】原理構成の具体的な構成図(第2具体例)であ
る。
FIG. 5 is a specific configuration diagram (second specific example) of the principle configuration.

【図6】原理構成の具体的な構成図(第3具体例)であ
る。
FIG. 6 is a specific configuration diagram (third specific example) of the principle configuration.

【図7】図6の動作波形図である。FIG. 7 is an operation waveform diagram of FIG. 6;

【図8】実施例の具体的な構成図(第1実施例)であ
る。
FIG. 8 is a specific configuration diagram (first embodiment) of the embodiment.

【図9】実施例の具体的な構成図(第2実施例)であ
る。
FIG. 9 is a specific configuration diagram (second embodiment) of the embodiment.

【図10】従来例の原理構成図である。FIG. 10 is a principle configuration diagram of a conventional example.

【図11】従来例の原理波形図である。FIG. 11 is a principle waveform diagram of a conventional example.

【符号の説明】[Explanation of symbols]

4:表示パネル 10:画素数積算回路(積算手段) 11:APC信号発生回路(周波数変更手段) 4: Display panel 10: Pixel number integrating circuit (integrating means) 11: APC signal generating circuit (frequency changing means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】維持放電波形の周波数に同期させて表示パ
ネルの表示セルを点灯させるプラズマディスプレイ装置
において、 所定期間中に与えられる画素信号数を、階調表示のため
のビット信号単位で積算する積算手段と、該積算手段の
積算結果に基づいて前記維持放電波形の周波数を変更す
る周波数変更手段とを備えたことを特徴とするプラズマ
ディスプレイ装置。
1. A plasma display apparatus for lighting a display cell of a display panel in synchronization with a frequency of a sustain discharge waveform, wherein the number of pixel signals applied during a predetermined period is integrated for each bit signal for gradation display. A plasma display apparatus comprising: an integrating means; and a frequency changing means for changing a frequency of the sustain discharge waveform based on an integration result of the integrating means.
【請求項2】前記積算手段は、前記ビット信号単位で積
算したそれぞれの積算結果に、所定の重み付けを付加し
て加算することを含む請求項1記載のプラズマディスプ
レイ装置。
2. The plasma display device according to claim 1, wherein said integrating means adds a predetermined weight to each of the integrated results obtained in units of said bit signals.
【請求項3】維持放電波形の周波数に同期させて表示パ
ネルの表示セルを点灯させるプラズマディスプレイ装置
において、 所定期間中に与えられる画素信号数を、階調表示のため
のビット信号単位で所定の重み付けを付加した後に積算
する積算手段と、該積算手段の積算結果に基づいて前記
維持放電波形の周波数を変更する周波数変更手段とを備
えたことを特徴とするプラズマディスプレイ装置。
3. A plasma display apparatus for lighting a display cell of a display panel in synchronization with a frequency of a sustain discharge waveform, wherein the number of pixel signals applied during a predetermined period is determined by a predetermined bit signal unit for gradation display. A plasma display apparatus, comprising: integrating means for adding after adding weights; and frequency changing means for changing the frequency of the sustain discharge waveform based on the integration result of the integrating means.
JP31109799A 1993-05-25 1999-11-01 Plasma display device Expired - Fee Related JP3162040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31109799A JP3162040B2 (en) 1993-05-25 1999-11-01 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31109799A JP3162040B2 (en) 1993-05-25 1999-11-01 Plasma display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12181393A Division JP3161870B2 (en) 1993-05-25 1993-05-25 Plasma display device

Publications (2)

Publication Number Publication Date
JP2000098970A true JP2000098970A (en) 2000-04-07
JP3162040B2 JP3162040B2 (en) 2001-04-25

Family

ID=18013112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31109799A Expired - Fee Related JP3162040B2 (en) 1993-05-25 1999-11-01 Plasma display device

Country Status (1)

Country Link
JP (1) JP3162040B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020057502A (en) * 2001-01-05 2002-07-11 엘지전자 주식회사 Apparatus and Method of Driving Plasma Display Panel Using Variable Sustaining Discharge
EP1347435A2 (en) 2002-03-20 2003-09-24 Fujitsu Hitachi Plasma Display Limited Display apparatus
JP2004341481A (en) * 2003-01-10 2004-12-02 Thomson Licensing Sa Method for optimizing brightness in display device and apparatus for implementing same method
US7075560B2 (en) 2002-03-15 2006-07-11 Fujitsu Hitachi Plasma Display Limited Display apparatus that can control power while retaining grayscale continuity, and method for driving the same
JP2006517303A (en) * 2003-02-14 2006-07-20 インテル コーポレイション Real-time dynamic design of LCD panel power management with brightness control

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020057502A (en) * 2001-01-05 2002-07-11 엘지전자 주식회사 Apparatus and Method of Driving Plasma Display Panel Using Variable Sustaining Discharge
US7075560B2 (en) 2002-03-15 2006-07-11 Fujitsu Hitachi Plasma Display Limited Display apparatus that can control power while retaining grayscale continuity, and method for driving the same
EP1746564A2 (en) 2002-03-15 2007-01-24 Fujitsu Hitachi Plasma Display Limited Method of driving a plasma display apparatus
EP2219171A1 (en) 2002-03-15 2010-08-18 Hitachi Plasma Display Limited Plasma display apparatus and subfield driving method therefor
EP1347435A2 (en) 2002-03-20 2003-09-24 Fujitsu Hitachi Plasma Display Limited Display apparatus
KR20030076189A (en) * 2002-03-20 2003-09-26 후지츠 히다찌 플라즈마 디스플레이 리미티드 Display apparatus capable of maintaining high image quality without dependence on display load, and method for driving the same
EP1347435A3 (en) * 2002-03-20 2004-12-22 Fujitsu Hitachi Plasma Display Limited Display apparatus
US6891519B2 (en) 2002-03-20 2005-05-10 Fujitsu Hitachi Plasma Display Limited Display apparatus capable of maintaining high image quality without dependence on display load, and method for driving the same
JP2004341481A (en) * 2003-01-10 2004-12-02 Thomson Licensing Sa Method for optimizing brightness in display device and apparatus for implementing same method
JP2006517303A (en) * 2003-02-14 2006-07-20 インテル コーポレイション Real-time dynamic design of LCD panel power management with brightness control
JP4732171B2 (en) * 2003-02-14 2011-07-27 インテル コーポレイション Real-time dynamic design of LCD panel power management with brightness control

Also Published As

Publication number Publication date
JP3162040B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
KR100903099B1 (en) Method of driving Electro-Luminescence display panel wherein booting is efficiently performed, and apparatus thereof
JP3161870B2 (en) Plasma display device
US7522131B2 (en) Electron emission display (EED) device with variable expression range of gray level
US7277103B2 (en) Image display device, image display method, and image display program
JPH08227283A (en) Liquid crystal display device, its driving method and display system
JP4642456B2 (en) Background luminance reduction type electron emission device
US5329288A (en) Flat-panel display device
JPH11296131A (en) Gradation display method for matrix indication display and display device using the same
KR20020057801A (en) Digitally controlled current integrator for reflective liquid crystal displays
JP3162040B2 (en) Plasma display device
JPH09222871A (en) Driving device of plasma display panel
CN110599951B (en) Image data output circuit, display circuit and method
JP2002189443A (en) Driving method of plasma display panel
CN117524165A (en) Device for improving performance of liquid crystal display device and driving method of liquid crystal display device
JP2002311916A (en) Driving method, display circuit and display device
JP2004145286A (en) Device, method, and program for image display
JP2004347760A (en) Driver for field emission display panel and field emission display device
JPH077246B2 (en) Binary display panel image display device
JP4218616B2 (en) Display device, control circuit thereof, drive circuit, and drive method
KR100280887B1 (en) Driving device of plasma display panel
US20090231237A1 (en) Method for driving plasma display panel
JPH077245B2 (en) Binary display panel image display device
JP2001075072A (en) Liquid crystal display device
KR100433215B1 (en) Electro luminescence panel and driving apparatus and method thereof
JPH06274128A (en) Plasma display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees