JP2000096114A - Method for predicting furnace condition in blast furnace - Google Patents

Method for predicting furnace condition in blast furnace

Info

Publication number
JP2000096114A
JP2000096114A JP10269117A JP26911798A JP2000096114A JP 2000096114 A JP2000096114 A JP 2000096114A JP 10269117 A JP10269117 A JP 10269117A JP 26911798 A JP26911798 A JP 26911798A JP 2000096114 A JP2000096114 A JP 2000096114A
Authority
JP
Japan
Prior art keywords
furnace
frequency
blast furnace
condition
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10269117A
Other languages
Japanese (ja)
Other versions
JP3521760B2 (en
Inventor
Shuichi Yamamoto
修一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP26911798A priority Critical patent/JP3521760B2/en
Publication of JP2000096114A publication Critical patent/JP2000096114A/en
Application granted granted Critical
Publication of JP3521760B2 publication Critical patent/JP3521760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a predicting method of the furnace condition in a blast furnace, by which the abnormal condition in the blast furnace can suitablly be predicted. SOLUTION: In the blast furnace, in which the furnace top pressure and the blasting flow rate are controlled to the constant, respectively, the blasting pressure and the pressure in the furnace are detected and these data with time are analyzed with a time frequency. Then, (1) an indexing is executed by emphasizing that the high frequency component in the vibration becomes higher in comparison with the stable time of the furnace condition, (2) an indexing is executed by emphasizing the imbalance degree in the ranges of the lower frequency and the higher frequency than a feature frequency generated at the stable operation time as the center or (3) an indexing is executed by recognising that the intensity of the vibration is wholly changed in comparison with the stable operation time, and these indexes are used the feature values and the abnormal condition is beforehand prediced based on the feature values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炉頂圧力及び送風流
量がそれぞれ一定に制御される高炉の炉況予知方法、特
に、送風圧力又は炉内圧力の時系列データによる異常炉
況予知に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a furnace condition in a blast furnace in which a furnace top pressure and a blown air flow rate are controlled to be constant, and more particularly, to a method for predicting an abnormal furnace condition based on time-series data of a blown pressure or a furnace pressure.

【0002】[0002]

【従来の技術】従来、この種の高炉炉況予知方法として
は、特公昭60−41123号公報、特開平3−126
806号公報、「鉄と鋼 72〔10〕(1986)、
高炉異常炉況予知システムの開発 P1545」に開示
されているものがある。これらの予知方法は、炉体に設
置された多くのセンサからの情報について、オペレータ
が目視で判断できるパターン(レベルが高い、円周方向
の差が拡大、上昇傾向等)で管理し、設定基準値又は理
論値との比較により炉の状態を判定し、そして、全セン
サの判断結果を総合評価することにより炉況の良し悪し
を判断している。
2. Description of the Related Art Conventionally, this kind of blast furnace condition prediction method has been disclosed in Japanese Patent Publication No. 60-41123 and Japanese Patent Laid-Open No. 3-126.
806, "Iron and Steel 72 [10] (1986),
Development of Blast Furnace Abnormal Furnace Condition Prediction System P1545 ". These prediction methods manage information from many sensors installed in the furnace body in a pattern (high level, large difference in the circumferential direction, increasing tendency, etc.) that can be visually judged by an operator, and set a reference standard. The state of the furnace is determined by comparing with a value or a theoretical value, and the quality of the furnace condition is determined by comprehensively evaluating the determination results of all the sensors.

【0003】また、特開昭10−60510号公報にお
いても「高炉異常炉況予知方法」が提案されており、こ
の予知方法はセンサ信号の時間推移を目視で監視しただ
けでは判断できない時系列信号の周波数分布を評価する
ものである。具体的には特定周波数のパワーの2次モー
メント(一種のバラツキ)を評価している。
[0003] Japanese Unexamined Patent Publication No. 10-60510 also proposes a "method for predicting an abnormal blast furnace condition". This predicting method is based on a time-series signal which cannot be determined only by visually monitoring the time transition of a sensor signal. Is evaluated. Specifically, the second moment (a kind of variation) of the power of the specific frequency is evaluated.

【0004】[0004]

【発明が解決しようとする課題】上記の特公昭60−4
1123号公報、特開平3−126806号公報、「鉄
と鋼 72〔10〕(1986)、高炉異常炉況予知シ
ステムの開発 P1545」に開示されている予知方法
は、オペレータが目視で判断できるパターン(レベルが
高い、円周方向の差が拡大、上昇傾向等)をシステム化
したものであり、目視で判断できないような時系列デー
タ列に存在する微妙な変化(時間領域で観察した場合の
変化)までは扱っていない。このため、異常炉況の検出
は、人間が判断できる程度にパターンが大きく変化した
場合に限られるという問題点がある。
SUMMARY OF THE INVENTION The above mentioned Japanese Patent Publication No. Sho 60-4
No. 1123, Japanese Unexamined Patent Application Publication No. 3-126806, and "Development of a system for predicting abnormal furnace conditions in blast furnaces P1545" in "Iron and Steel 72 [10] (1986)" (A high level, a difference in the circumferential direction is enlarged, a rising trend, etc.), and it is a systematization, and a subtle change (change when observed in the time domain) existing in a time-series data sequence that cannot be judged visually ) Is not dealt with. For this reason, there is a problem that the detection of the abnormal furnace condition is limited to a case where the pattern is largely changed to such an extent that a human can judge.

【0005】また、特開昭10−60510号公報の予
知方法は、上記のような問題点を解決しているが、炉況
を次式に基づいて判断しているために、後述の図5に示
されるような周波数分布の変化には対応できない、とい
う問題点がある。即ち、この予知方法は、正規化された
周波数分布のバラツキのみを評価しており、周波数分布
のバラツキは変わらないが、図5に示されるように、周
波数分布の形状及び振幅が変化する場合には感度が低く
なる。
[0005] The prediction method disclosed in Japanese Patent Application Laid-Open No. 10-60510 solves the above-mentioned problems. However, since the furnace condition is determined based on the following equation, the prediction method shown in FIG. However, there is a problem that it cannot cope with a change in the frequency distribution as shown in FIG. That is, this prediction method evaluates only the variation of the normalized frequency distribution, and the variation of the frequency distribution does not change. However, as shown in FIG. 5, when the shape and the amplitude of the frequency distribution change, Decreases the sensitivity.

【0006】[0006]

【数1】 (Equation 1)

【0007】炉況異常時における特徴の一つは、操業安
定時に現れる特定周波数f0 以外の周波数成分が増加・
減少してくる(周波数分布の形状が変化する)という現
象であり、その特徴的なパターンを時系列推移図及び周
波数分布図として、図5(A)(B)に示す。図5
(A)は炉況安定時と比較して、振動の高周波成分が強
くなった場合の例であり、そして、図5(B)は操業安
定時に現れる特徴周波数を中心として、それよりも高周
波の領域とそれよりも低周波の領域とのバランスが変化
した場合の例である。
One of the characteristics when the furnace condition is abnormal is that the frequency components other than the specific frequency f 0 appearing when the operation is stable increase.
It is a phenomenon that the frequency distribution decreases (the shape of the frequency distribution changes), and characteristic patterns thereof are shown in FIGS. 5A and 5B as a time series transition diagram and a frequency distribution diagram. FIG.
FIG. 5A shows an example in which the high-frequency component of the vibration becomes stronger than that in the case where the furnace condition is stabilized, and FIG. This is an example where the balance between the region and the region of lower frequency than that has changed.

【0008】炉況異常時における他の特徴は周波数分布
の振幅(パワー)が変化するという現象であり、その特
徴的なパターンを時系列推移図及び周波数分布図とし
て、図5(C)に示す。図5(C)は炉況安定時と比較
して、全体的に振動の強さが増加・減少を繰り返す場合
の例である。
Another characteristic when the furnace condition is abnormal is that the amplitude (power) of the frequency distribution changes. The characteristic pattern is shown in FIG. 5C as a time series transition diagram and a frequency distribution diagram. . FIG. 5 (C) shows an example in which the vibration intensity repeats an increase / decrease as a whole as compared with the time when the reactor condition is stable.

【0009】本発明は、このような状況に鑑みてなされ
たものであり、高炉の異常炉況を適切に予知することを
可能にした高炉炉況予知方法を提供することを目的とす
る。
The present invention has been made in view of such a situation, and an object of the present invention is to provide a blast furnace furnace condition prediction method which can appropriately predict an abnormal furnace condition of a blast furnace.

【0010】[0010]

【課題を解決するための手段】本発明に係る高炉炉況予
知方法は、炉頂圧力及び送風流量がそれぞれ一定に制御
される高炉において、送風圧力又は炉内圧力を検出し、
その時系列データを時間周波数解析し、その解析結果か
ら周波数分布の形状又は振幅の変動を求めてそれを特徴
量とし、その特徴量に基づいても異常炉況を事前予知す
るものである。
A method for predicting a blast furnace condition according to the present invention detects a blowing pressure or a pressure in a blast furnace in which a furnace top pressure and a blowing flow rate are controlled to be constant, respectively.
The time-series data is subjected to time-frequency analysis, and the shape or amplitude of the frequency distribution is determined from the analysis result, which is used as a characteristic amount, and an abnormal reactor condition is predicted in advance based on the characteristic amount.

【0011】本発明においては周波数分析結果から例え
ば次のように特徴量1〜3を算出して、その特徴量を基
準値と比較して判別する。なお、以下の式において用い
られる符号は次のように定義される。 Fi(t):特徴量 P(t,f):パワー Dt(t,f):時間微分 Dt(t,f)=P(t,f)−P(t−1,f) …(2) Df(t,f):周波数微分 Df(t,f)=P(t,f)−P(t,f−1) …(3) t:時刻 f:周波数
In the present invention, for example, feature values 1 to 3 are calculated from the result of the frequency analysis as follows, and the feature values are compared with a reference value for determination. The symbols used in the following equations are defined as follows. Fi (t): feature amount P (t, f): power Dt (t, f): time derivative Dt (t, f) = P (t, f) -P (t-1, f) (2) Df (t, f): frequency derivative Df (t, f) = P (t, f) -P (t, f-1) (3) t: time f: frequency

【0012】(1)特徴量1(F1(t)) この特徴量1は、図1(A)に示されるよう、炉況安定
時と比較して、振動の高周波成分が強くなったことを強
調して指数値化したものであり、低周波領域における成
分の減量と高周波領域における成分の増加量との合計を
求めることで得られる。
(1) Feature 1 (F1 (t)) As shown in FIG. 1A, this feature 1 indicates that the high-frequency component of the vibration has become stronger as compared to when the reactor condition is stable. It is an exponential value with emphasis, and is obtained by calculating the sum of the amount of decrease in the component in the low frequency region and the amount of increase in the component in the high frequency region.

【0013】[0013]

【数2】 (Equation 2)

【0014】上記の演算式においては、図1(A)の実
線(安定時の状態)と波線(異常時の状態)との差の面
積A1,A2の合計を求めている。ここで、高周波領域
における成分の増加量(A1)だけでなく、低周波領域
における成分の減量(A2)との合計を求めているが、
これは、振動の高周波成分が強くなった場合には必然的
に低周波領域における成分が減少することになるから、
これら(A1,A2)の合計を求めることで、振動の高
周波成分の増加を強調し、炉況悪化時の周期的変動を強
調している。
In the above equation, the sum of the areas A1 and A2 of the difference between the solid line (state in a stable state) and the dashed line (state in an abnormal state) in FIG. Here, not only the increase amount (A1) of the component in the high frequency region but also the sum of the decrease amount (A2) of the component in the low frequency region is obtained.
This is because if the high frequency component of the vibration becomes strong, the component in the low frequency region will inevitably decrease,
By calculating the sum of (A1, A2), the increase of the high frequency component of the vibration is emphasized, and the periodic fluctuation at the time of the deterioration of the furnace condition is emphasized.

【0015】(2)特徴量2(F2(t)) この特徴量2は、図1(B)に示されるように、操業安
定時に現れる特徴周波数を中心として、それよりも高周
波の領域とそれよりも低周波の領域とのアンバランス度
を強調して指数値化したものであり、次式により得られ
る。なお、操業安定時に現れる特徴周波数は、原料装入
周期に対応するものであり、原料装入間隔を実績管理す
ることで正確に特定することができる。
(2) Feature 2 (F2 (t)) As shown in FIG. 1B, this feature 2 is centered on a feature frequency that appears when the operation is stable, and a region of higher frequency than that is shown. This is an exponential value obtained by emphasizing the degree of imbalance with a lower frequency region, and is obtained by the following equation. The characteristic frequency that appears when the operation is stable corresponds to the raw material charging cycle, and can be accurately specified by managing the raw material charging intervals.

【0016】[0016]

【数3】 (Equation 3)

【0017】上記の演算式においては、図1(B)の特
徴周波数f0 を中心として、それよりも高周波の領域と
それよりも低周波の領域において、特徴周波数f0 との
差分(f−f0 )とパワー(P(t,f))とを乗算し
てそれを積算しているが、このように計算することによ
り、特徴周波数f0 から離れた周波数成分の変化が強調
されるととなり、炉況悪化時の周期的変動を強調してい
る。
In the above equation, the difference (f−f) between the characteristic frequency f 0 and the characteristic frequency f 0 in the higher frequency region and the lower frequency region is centered on the characteristic frequency f 0 in FIG. f 0 ) and the power (P (t, f)) are multiplied and integrated, but by calculating in this way, a change in the frequency component apart from the characteristic frequency f 0 is emphasized. And emphasizes the periodic fluctuations when the reactor condition deteriorates.

【0018】(3)特徴量3(F3(t)) この特徴量3は、図1(C)に示されるように、炉況安
定時と比較して、全体的に振動の強さが増加(減少)し
たことを指数値化したものであり、次式により各周波数
の振幅(パワー)の変化量の合計値(増加量と減少値の
合計値)を求めることで得られる。
(3) Feature 3 (F3 (t)) As shown in FIG. 1 (C), the feature 3 has an overall increase in vibration intensity compared to when the reactor condition is stable. This is an exponential value obtained by (decrease), and can be obtained by calculating the total value (total value of increase and decrease) of the change amount of the amplitude (power) of each frequency by the following equation.

【0019】[0019]

【数4】 (Equation 4)

【0020】[0020]

【発明の実施の形態】図2は本発明の対象となっている
高炉の炉内を示した説明図である。図示のように、高炉
10の炉内にはコークスと鉱石が層状に装入されて、コ
ークス層11及び鉱石層12が交互に形成される。炉内
原料は炉下部のコークス燃焼と鉱石の溶融により、安定
時は一定の降下速度で炉下部に向かって降下している。
炉内の温度分布は炉下部で約2000度、炉上部で数百
度というように下部に向かって上昇する。約1000〜
1100度の領域では鉱石が溶融しはじめ、通気抵抗が
コークス層の数百倍になる溶融帯13が存在する。この
コークス層11・鉱石層12の層厚分布や、溶融帯13
の形状、特に溶融帯13のコークス層のスリット14の
数は炉内通気抵抗に大きく影響する。高炉は炉頂圧力一
定、送風流量一定制御を行っているため、炉内通気抵抗
の変化は送風圧力センサ15の出力やシャフト圧力セン
サ16の出力、即ち送風圧力やシャフト圧力によって管
理できる。
FIG. 2 is an explanatory view showing the inside of a blast furnace to which the present invention is applied. As shown in the drawing, coke and ore are charged into the furnace of the blast furnace 10 in layers, and coke layers 11 and ore layers 12 are formed alternately. The raw material in the furnace is descending toward the lower part of the furnace at a constant descending speed when stable due to coke combustion and ore melting in the lower part of the furnace.
The temperature distribution in the furnace rises toward the lower part, such as about 2,000 degrees at the lower part of the furnace and several hundred degrees at the upper part of the furnace. About 1000-
In the 1100 degree region, the ore begins to melt, and there is a molten zone 13 in which the ventilation resistance is several hundred times that of the coke layer. The thickness distribution of the coke layer 11 and the ore layer 12 and the melting zone 13
, Especially the number of slits 14 in the coke layer of the molten zone 13 greatly affects the ventilation resistance in the furnace. Since the blast furnace performs constant control of the furnace top pressure and the constant flow rate of the blast, the change in the ventilation resistance in the furnace can be managed by the output of the blast pressure sensor 15 and the output of the shaft pressure sensor 16, that is, the blast pressure and the shaft pressure.

【0021】図3は本発明の実施の形態に係る高炉炉況
予知方法が適用されたシステムの構成を示すブロック図
である。高炉10は、上述のように、その炉頂圧力及び
送風流量がそれぞれ一定に制御されているものとし、こ
れらの制御は従来から行われていることなのでその詳細
は省略する。そして、この高炉10には、図示のよう
に、送風圧力を検出する送風圧力センサ15及びシャフ
ト圧力を検出するシャフト圧力センサ16がそれぞれ取
り付けられており、データ収集部25はこれらのセンサ
15,16にて検出されたデータを定周期に収集し、蓄
積する。時間周波数解析部26では、収集蓄積された圧
力データの最新値から過去一定期間内のデータの時間周
波数解析を行う。
FIG. 3 is a block diagram showing a configuration of a system to which a method for predicting a blast furnace condition according to an embodiment of the present invention is applied. As described above, it is assumed that the blast furnace 10 is controlled so that the furnace top pressure and the flow rate of the blast are kept constant. Since these controls have been performed conventionally, the details thereof are omitted. As shown in the figure, the blast furnace 10 is provided with a blast pressure sensor 15 for detecting a blast pressure and a shaft pressure sensor 16 for detecting a shaft pressure. The data detected at is collected at regular intervals and stored. The time-frequency analysis unit 26 performs a time-frequency analysis of the data within the past fixed period from the latest value of the collected and accumulated pressure data.

【0022】更に、周波数解析部26は、時間周波数解
析されたデータP(t,f)に基づいて、上記の(2)
式〜(8)式の演算を行って、特徴量1〜3(F1〜F
3)をそれぞれ求め、その特徴量1〜3(F1〜F3)
をそれぞれに対応した基準値と比較して、異常炉況を事
前に予知する。この特徴量1〜3(F1〜F3)及びそ
の予知の結果は監視モニタ27に表示される。
Further, the frequency analysis unit 26 performs the above-mentioned (2) based on the data P (t, f) subjected to the time-frequency analysis.
Expressions (8) to (8) are calculated, and feature amounts 1 to 3 (F1 to F
3) are obtained, and their characteristic amounts 1 to 3 (F1 to F3) are obtained.
Is compared with the reference value corresponding to each of them to predict the abnormal reactor condition in advance. The feature values 1 to 3 (F1 to F3) and the result of the prediction are displayed on the monitor monitor 27.

【0023】なお、周波数解析部26は、センサ毎に上
述の演算を行って特徴量1〜3を求めるようにしてお
り、従来のように、炉体に設置された多くのセンサ情報
から空間的パターン(円周分布、半径方向分布、垂直方
向分布等)を求めてそれらの変化を監視する必要もない
ため、例えばセンサ情報として送風圧力1点あれば事前
予知が可能であり、センサが十分に設置されていない高
炉(海外の高炉に多い)にも適用できる。また、特徴量
1〜3についても必ずしもこれらを全てを求める必要は
なく、少なくとも1つの特徴量を求めればよい。
The frequency analysis unit 26 performs the above-described calculation for each sensor to obtain the characteristic quantities 1 to 3, and obtains spatial information from a large amount of sensor information installed in the furnace body as in the related art. It is not necessary to determine patterns (circumferential distribution, radial distribution, vertical distribution, etc.) and monitor their changes. For example, if there is only one blowing pressure as sensor information, it is possible to foresee in advance, and the sensor will be sufficient It can also be applied to blast furnaces that are not installed (many blast furnaces overseas). Also, it is not always necessary to obtain all of the feature amounts 1 to 3, but it is sufficient to obtain at least one feature amount.

【0024】図4は図3のシステムにおいて吹き抜け発
生時及び安定時の特徴量1〜3の推移を示したタイミン
グチャートである。吹き抜け発生データは吹き抜け発生
より過去10時間前からのデータを示している。吹き抜
け発生データは、安定時データと比較して数時間前から
特徴量が変動し、又は増加する傾向を示しており、特量
1〜3ともに吹き抜け発生の危険性が高いことを示す基
準値を超えていた。
FIG. 4 is a timing chart showing the transition of the feature values 1 to 3 when the blow-by occurs and when the system is stable in the system of FIG. The blow-by occurrence data indicates data from the past 10 hours before the occurrence of the blow-by. The blow-by occurrence data shows a tendency that the feature amount fluctuates or increases several hours before compared with the stable time data, and the reference values indicating that there is a high risk of occurrence of the blow-through for all of the special quantities 1 to 3 are set. Was exceeded.

【0025】高炉の操業においては、吹き抜けを防止す
るための操業アクションは数時間前から開始しなければ
ならないため、吹き抜け直前に警報が出されても防止を
するための手段をとるには遅すぎる。従って、吹き抜け
予知は発生の数時間前になされるのが望ましいが、吹き
抜けそのものはそれが発生する数時間前からの高炉内の
原料の不均一分布、棚吊の発生、原料の荷下がり不均一
などが原因となって発生するものであるため、原理的に
事前予知が可能であると考えられる。従って、特徴量1
〜3はこのような事前の炉内の異常状態をとらえている
と判断できる。このように特徴量1〜3によって吹き抜
けの事前予知が可能であるため、操作者はこれらの特徴
量1〜3を監視して吹き抜け発生の危険性が高い場合に
は、吹き抜けを回避するための操業アクションをとるこ
とが可能になった。
In the operation of a blast furnace, the operation action to prevent blow-by must start several hours before, so it is too late to take measures to prevent even if an alarm is issued immediately before blow-through. . Therefore, it is desirable that the blow-through is predicted several hours before the occurrence, but the blow-through itself is uneven distribution of the raw material in the blast furnace several hours before it occurs, occurrence of shelf hanging, unevenness of raw material unloading Since it occurs due to such factors, it is considered that prior prediction is possible in principle. Therefore, the feature amount 1
3 can be determined to have captured such an abnormal state in the furnace in advance. As described above, advance prediction of the blow-by is possible by the feature values 1 to 3, and the operator monitors these feature values 1 to 3 and avoids blow-by when there is a high risk of occurrence of the blow-by. It is now possible to take operational actions.

【0026】[0026]

【発明の効果】以上のように本発明によれば、送風圧力
又は炉内圧力を検出し、その時系列データを時間周波数
解析し、その解析結果に現れる周期的な変動に基づいて
異常炉況を事前予知するようにしたので、通常オペレー
タが行っている推移図の目視監視等による方法では判断
できないような時系列データ列に存在する異常炉況前の
微妙な変化までを検出することができる。また、従来検
出できなかった周波数分布の形状又は振幅の変動を検出
してそれに基づいて事前予知をするようにしたことか
ら、異常炉況が発生する前の現象を適切に検出すること
になり、事前予知の高精度化が図られる。
As described above, according to the present invention, the blowing pressure or the pressure in the furnace is detected, the time-series data is subjected to time-frequency analysis, and the abnormal furnace condition is determined based on the periodic fluctuations appearing in the analysis result. Because the prediction is made in advance, it is possible to detect even a subtle change before the abnormal furnace condition existing in the time-series data sequence, which cannot be determined by a method such as visual monitoring of a transition diagram normally performed by an operator. In addition, since the fluctuations in the shape or amplitude of the frequency distribution that could not be detected conventionally were detected and the prior prediction was performed based on the fluctuations, the phenomenon before the abnormal reactor condition occurred was appropriately detected, The accuracy of advance prediction is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において特徴量を求めるための説明図で
ある。
FIG. 1 is an explanatory diagram for obtaining a feature amount in the present invention.

【図2】本発明の適用対象となっている高炉の炉内を示
した説明図である
FIG. 2 is an explanatory view showing the inside of a blast furnace to which the present invention is applied.

【図3】本発明の実施の形態に係る高炉の高炉炉況予知
方法が適用されたシステムの構成を示すブロック図であ
る。
FIG. 3 is a block diagram showing a configuration of a system to which a method for predicting a blast furnace condition of a blast furnace according to an embodiment of the present invention is applied.

【図4】図3のシステムにより求められた特徴量の推移
を示した図である。
FIG. 4 is a diagram showing a transition of a feature amount obtained by the system of FIG. 3;

【図5】高炉の異常炉況の説明図である。FIG. 5 is an explanatory view of an abnormal furnace condition of a blast furnace.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炉頂圧力及び送風流量がそれぞれ一定に
制御される高炉において、送風圧力又は炉内圧力を検出
し、その時系列データを時間周波数解析し、その解析結
果から周波数分布の形状又は振幅の変動を求めてそれを
特徴量とし、該特徴量に基づいて異常炉況を事前予知す
ることを特徴とする高炉炉況予知方法。
In a blast furnace in which a furnace top pressure and a blowing flow rate are controlled to be respectively constant, a blowing pressure or a pressure in the furnace is detected, time-series data thereof is subjected to time-frequency analysis, and a shape or amplitude of a frequency distribution is obtained from the analysis result. A blast furnace condition prediction method, wherein a variation of the blast furnace condition is obtained, and the variation is used as a feature value, and an abnormal furnace condition is predicted in advance based on the feature value.
【請求項2】 前記特徴量は、炉況安定時と比較して振
動の高周波成分が高くなったことを強調して指数値化し
たものであることを特徴とする請求項1記載の高炉炉況
予知方法。
2. The blast furnace furnace according to claim 1, wherein the characteristic amount is an index value that emphasizes that a high-frequency component of the vibration is higher than that in a time when the furnace condition is stable. Condition prediction method.
【請求項3】 前記特徴量は、操業安定時に現れる特徴
周波数を中心として、それよりも低周波と高周波の領域
間のアンバランス度を強調して指数値化したものである
ことを特徴とする請求項1記載の高炉炉況予知方法。
3. The characteristic amount is an index value obtained by emphasizing the degree of imbalance between a low frequency region and a high frequency region centering on a characteristic frequency appearing during stable operation. A method for predicting a blast furnace condition according to claim 1.
【請求項4】 前記特徴量は、操業安定時と比較して全
体的に振動の強さが変化したことを指数値化したもので
あることを特徴とする請求項1記載の高炉炉況予知方
法。
4. The blast furnace condition prediction according to claim 1, wherein the characteristic amount is an index value indicating that the vibration intensity has changed as a whole as compared with when the operation is stable. Method.
JP26911798A 1998-09-24 1998-09-24 Blast furnace condition prediction method Expired - Fee Related JP3521760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26911798A JP3521760B2 (en) 1998-09-24 1998-09-24 Blast furnace condition prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26911798A JP3521760B2 (en) 1998-09-24 1998-09-24 Blast furnace condition prediction method

Publications (2)

Publication Number Publication Date
JP2000096114A true JP2000096114A (en) 2000-04-04
JP3521760B2 JP3521760B2 (en) 2004-04-19

Family

ID=17467925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26911798A Expired - Fee Related JP3521760B2 (en) 1998-09-24 1998-09-24 Blast furnace condition prediction method

Country Status (1)

Country Link
JP (1) JP3521760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065843B1 (en) 2004-12-29 2011-09-20 주식회사 포스코 system estimate pre-reduce wind in shaft furnace
KR101370219B1 (en) 2012-12-24 2014-03-06 재단법인 포항산업과학연구원 Prediction technology of blast furnace internal condition by analysis of ph for dust scrubbing water
JP2018009224A (en) * 2016-07-14 2018-01-18 株式会社神戸製鋼所 Operation condition evaluation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101065843B1 (en) 2004-12-29 2011-09-20 주식회사 포스코 system estimate pre-reduce wind in shaft furnace
KR101370219B1 (en) 2012-12-24 2014-03-06 재단법인 포항산업과학연구원 Prediction technology of blast furnace internal condition by analysis of ph for dust scrubbing water
JP2018009224A (en) * 2016-07-14 2018-01-18 株式会社神戸製鋼所 Operation condition evaluation system

Also Published As

Publication number Publication date
JP3521760B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
RU2509811C2 (en) Method of operating arc furnace with at least one electrode, adjustment and/or control device, machine-readable program code, data carrier and arc furnace to this end
JPH049843B2 (en)
RU2526641C2 (en) Method for determination of time of fusion material loading in arc furnace, data processing device, machine-readable programme code, stored data carrier and arc furnace
CN112111618B (en) Blast furnace burden descending uniformity judgment and early warning method and system
JPH1177264A (en) Method and device for detecting molten metal leakage at early time at the time of continuously casting steel material by using oscillating mold
JP2000096114A (en) Method for predicting furnace condition in blast furnace
JP3319297B2 (en) Blast furnace abnormal furnace condition prediction method
JP3487203B2 (en) Blast furnace condition prediction method
JP6940030B2 (en) Blast furnace abnormality judgment device, blast furnace abnormality judgment method, blast furnace operation method and hot metal manufacturing method
JP5220458B2 (en) Output value prediction method, apparatus, and program for the method
JPS596888B2 (en) Method for detecting deposits on blast furnace walls
KR101312526B1 (en) Method for measuring arc stability of electric furnaces and operating method of electric arc furnace using the same
JP2001254111A (en) Method of controlling furnace heat in blast furnace and guidance device
JP2696114B2 (en) Blast furnace operation management method
JP2733564B2 (en) Slip prediction method in blast furnace operation
JP6944393B2 (en) Plant condition evaluation system, plant condition evaluation method, and program
JP2978027B2 (en) Electric furnace condition detection method
JP2678767B2 (en) Blast furnace operation method
JP7485247B1 (en) METHOD FOR DETECTING MELT HEIGHT, DEVICE FOR DETECTING MELT HEIGHT, AND MELT PRODUCTION METHOD
JPH07120160A (en) Furnace state-detecting method for direct current electric furnace
JPH10310807A (en) Operation of blast furnace
JPH0751263B2 (en) Breakout prediction method in continuous casting mold
KR19980019613A (en) Furnace level diagnosis device using expert system and its method
JP2017165999A (en) Operation method of blast furnace
JPH0726129B2 (en) Blast furnace heat prediction system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees