JP2017165999A - Operation method of blast furnace - Google Patents

Operation method of blast furnace Download PDF

Info

Publication number
JP2017165999A
JP2017165999A JP2016050028A JP2016050028A JP2017165999A JP 2017165999 A JP2017165999 A JP 2017165999A JP 2016050028 A JP2016050028 A JP 2016050028A JP 2016050028 A JP2016050028 A JP 2016050028A JP 2017165999 A JP2017165999 A JP 2017165999A
Authority
JP
Japan
Prior art keywords
furnace
pressure
blast furnace
correlation coefficient
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016050028A
Other languages
Japanese (ja)
Other versions
JP6617619B2 (en
Inventor
浩樹 西岡
Hiroki Nishioka
浩樹 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016050028A priority Critical patent/JP6617619B2/en
Publication of JP2017165999A publication Critical patent/JP2017165999A/en
Application granted granted Critical
Publication of JP6617619B2 publication Critical patent/JP6617619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To specify an operation abnormal place of a blast furnace.SOLUTION: An operation method of a blast furnace includes: specifying an operation abnormal place of a blast furnace in which pressure sensors for detecting furnace internal pressure are installed in a plurality of places; and changing an operation condition of the blast furnace so as to remove abnormal factors for the operation abnormal place. Furthermore, the operation method for the blast furnace includes: a first step of obtaining individually a correlation coefficient between first furnace internal pressure detected with the one pressure sensor among the plurality of pressure sensors, and second furnace internal pressure detected with the all the remaining pressure sensors; and a second step of specifying an operation abnormal place based on the correlation coefficient thereof.SELECTED DRAWING: Figure 4

Description

本発明は、高炉の操業異常個所を特定し、当該操業異常個所の異常原因を除去するように高炉を操業する高炉の操業方法に関するものである。   The present invention relates to a method for operating a blast furnace in which an abnormal operation location of the blast furnace is specified and the blast furnace is operated so as to eliminate the cause of the abnormal operation.

高炉を安定して操業するため、高炉には、各方位、各レベルに複数のセンサーが設置されており、これらの情報に基づき炉況を判断している。しかし、各センサー情報を監視・管理するだけでは、炉況を判断するには困難な場合が多い。   In order to operate the blast furnace stably, a plurality of sensors are installed in each direction and each level in the blast furnace, and the furnace condition is judged based on these information. However, it is often difficult to judge the furnace status by simply monitoring and managing each sensor information.

ここで、特許文献1には、送風圧力または炉内圧力を検出し、その時系列データを時間周波数解析し、高炉原料装入の時間間隔に対応した周波数成分を中心とする周波数分布を求め、その周波数分布に基づいて炉の異常を事前予知する方法が開示されている。   Here, in Patent Document 1, the blast pressure or the pressure in the furnace is detected, the time series data is subjected to time frequency analysis, and the frequency distribution centering on the frequency component corresponding to the time interval of the blast furnace raw material charging is obtained, A method for predicting furnace abnormalities in advance based on frequency distribution is disclosed.

特許文献2には、送風圧力または炉内圧力を検出し、その時系列データを時間周波数解析し、その解析結果から周波数分布の形状または振幅の変動を求めてそれを特徴量とし、特徴量に基づいて異常炉況を事前予知する方法が開示されている。   In Patent Document 2, the blast pressure or the pressure in the furnace is detected, the time-series data is subjected to time-frequency analysis, the shape of the frequency distribution or the fluctuation of the amplitude is obtained from the analysis result, and this is used as the feature amount. A method for predicting abnormal furnace conditions in advance is disclosed.

特許文献3には、送風圧力または炉内圧力を検出し、その時系列データを時間周波数解析し、その解析結果から、基準となる周波数分布に対する周波数分布の変位およびパワー変動指数の少なくとも1つを、特定の周波数におけるパワースペクトルからなる線形微分方程式から求めて、その求められたものに基づいて高炉の炉況を予知する方法が開示されている。   In Patent Document 3, the blast pressure or the pressure in the furnace is detected, the time series data thereof is analyzed by time frequency, and from the analysis result, at least one of the displacement of the frequency distribution and the power fluctuation index with respect to the reference frequency distribution, There is disclosed a method for predicting a furnace condition of a blast furnace based on a linear differential equation including a power spectrum at a specific frequency and based on the obtained linear differential equation.

特許文献4には、排ガス温度、炉体を含めた設備温度、溶融金属温度、送風圧、炉内壁での圧力、炉内堆積表面の変位のうちの少なくとも1つの操業データを周波数解析し、操業因子の周期に対応するピークを操業不調の原因として特定する方法が開示されている。   In Patent Document 4, frequency analysis is performed on at least one operation data among exhaust gas temperature, equipment temperature including the furnace body, molten metal temperature, blowing pressure, pressure on the inner wall of the furnace, and displacement of the deposition surface in the furnace. A method for specifying a peak corresponding to a cycle of a factor as a cause of malfunction is disclosed.

特許第3319297号公報明細書Japanese Patent No. 3319297 特許第3521760号公報明細書Japanese Patent No. 3521760 特許第3487203号公報明細書Japanese Patent No. 3487203 特許第5277636号公報明細書Japanese Patent No. 5277636

しかしながら、特許文献1〜3の方法では炉況の悪化を早期に検知できても、操業変動の部位を特定することはできなかった。特許文献4の方法では、事前に想定された操業因子の周期に対応していない操業変動については、変動が生じている部位を特定することができなかった。さらに、特許文献1〜4では、周期が変化しない操業変動については、操業変動の発生部位を特定することができなかった。   However, even if the deterioration of the furnace condition can be detected at an early stage by the methods of Patent Documents 1 to 3, it has not been possible to identify the site of operation fluctuation. In the method of Patent Document 4, it is not possible to identify the site where the fluctuation occurs for the operation fluctuation that does not correspond to the cycle of the operation factor assumed in advance. Furthermore, in patent documents 1-4, about the operation fluctuation | variation whose period does not change, the generation | occurrence | production site | part of operation fluctuation | variation was not able to be specified.

上記課題を解決するために、本願発明に係る高炉の操業方法は、(1)炉内圧力を検出する圧力センサーが複数個所に設置された高炉の操業異常個所を特定して、この特定した前記操業異常個所の異常原因を除去するように高炉の操業条件を変更する高炉の操業方法であって、
前記複数の圧力センサーのうちいずれか一つの前記圧力センサーによって検出される第1の炉内圧力と残りの全ての前記圧力センサーによって検出される第2の炉内圧力との相関係数を個々に求める第1のステップと、これらの相関係数の大小に基づき、操業異常個所を特定する第2のステップと、を有することを特徴とする。
In order to solve the above-mentioned problems, the operation method of the blast furnace according to the present invention is as follows: (1) identifying an abnormal operation location of the blast furnace in which a plurality of pressure sensors for detecting the pressure in the furnace are installed, A method of operating a blast furnace that changes the operating conditions of the blast furnace so as to eliminate the cause of the abnormality in the operation abnormal part,
A correlation coefficient between the first furnace pressure detected by any one of the plurality of pressure sensors and the second furnace pressure detected by all the remaining pressure sensors is individually determined. It has the 1st step to obtain | require, and the 2nd step which specifies an operation abnormal part based on the magnitude of these correlation coefficients, It is characterized by the above-mentioned.

(2)前記第1のステップで求めた複数の相関係数のうち一つの相関係数が操業異常に対応した閾値よりも小さい場合には、この相関係数に対応する前記第2の炉内圧力を検出した個所を操業異常個所と特定することを特徴とする(1)に記載の高炉の操業方法。   (2) When one correlation coefficient among the plurality of correlation coefficients obtained in the first step is smaller than a threshold value corresponding to the operation abnormality, the second furnace corresponding to the correlation coefficient The method for operating a blast furnace according to (1), wherein a location where the pressure is detected is identified as an abnormal operation location.

(3)前記第1のステップで求めた複数の相関係数のうち二つ以上の相関係数が操業異常に対応した閾値よりも小さい場合には、これらの相関係数に対応する前記第2の炉内圧力を検出した全ての個所を操業異常個所と特定することを特徴とする(1)に記載の高炉の操業方法。   (3) When two or more correlation coefficients among the plurality of correlation coefficients obtained in the first step are smaller than a threshold value corresponding to an operation abnormality, the second corresponding to these correlation coefficients The method for operating a blast furnace according to (1), wherein all locations where the pressure in the furnace is detected are identified as abnormal operation locations.

(4)前記第1のステップで求めた複数の相関係数のうち二つ以上の相関係数が操業異常に対応した閾値よりも小さい場合には、これらの相関係数に対応する前記第2の炉内圧力を検出した全ての個所のうち最も相関係数が小さい個所を操業異常個所と特定することを特徴とする(1)に記載の高炉の操業方法。   (4) When two or more correlation coefficients among the plurality of correlation coefficients obtained in the first step are smaller than a threshold value corresponding to the operation abnormality, the second corresponding to these correlation coefficients The method for operating a blast furnace according to (1), wherein a location having the smallest correlation coefficient among all locations where the in-furnace pressure is detected is specified as an abnormal operation location.

本願発明によれば、互いに異なる検出位置で取得される炉内圧力の相関係数を用いて、高炉の操業異常個所を特定することができる。すなわち、炉況が悪化したことに加えて、操業異常個所を特定することができるため、より正確な操業異常回復アクションを実施することができる。   According to the present invention, it is possible to identify an abnormal operation location of the blast furnace using the correlation coefficient of the in-furnace pressure acquired at different detection positions. That is, in addition to the deterioration of the furnace condition, it is possible to identify an abnormal operation location, and thus it is possible to perform a more accurate operational abnormality recovery action.

高炉の概略図である。It is the schematic of a blast furnace. nの値に応じて変化する炉内圧力の相関係数のグラフである。It is a graph of the correlation coefficient of the furnace pressure which changes according to the value of n. 送風圧力と炉内圧力との相関係数のグラフである(比較例)It is a graph of the correlation coefficient of blowing pressure and furnace pressure (comparative example) 基準となる位置での炉内圧力と他の位置での炉内圧力とにおける個々の相関係数を調べたグラフである(実施例)。It is the graph which investigated each correlation coefficient in the furnace pressure in the position used as a reference | standard, and the furnace pressure in another position (Example).

(操業異常個所の特定)
図1は本発明が適用可能な高炉の概略図であり、炉内に装入された高炉原料の層構造を模式的に示している。黒色で示す層が鉱石層であり、白抜きで示す層がコークス層である。高炉1は、炉頂部11に旋回シュート12を備えるベルレス式高炉であり、高炉原料である鉄鉱石とコークスを炉頂から互いに層状に装入し、炉下部から吹き上げる熱風によってコークスを燃焼させ、燃焼で発生する高温の還元ガスによって鉄鉱石中の酸化鉄を還元・溶解し、銑鉄を製造するものである。ただし、本願発明は、昇降移動可能な大ベル及び小ベルを含むベル式高炉にも適用することができる。
(Identification of abnormal operation location)
FIG. 1 is a schematic view of a blast furnace to which the present invention can be applied, and schematically shows a layer structure of a blast furnace raw material charged in the furnace. A black layer is an ore layer, and a white layer is a coke layer. The blast furnace 1 is a bell-less blast furnace having a swirl chute 12 at the furnace top 11, in which iron ore and coke, which are raw materials for the blast furnace, are charged in layers from the top of the furnace, and coke is burned by hot air blown up from the bottom of the furnace. The iron oxide in iron ore is reduced and dissolved by the high-temperature reducing gas generated in the process to produce pig iron. However, the present invention can also be applied to a bell-type blast furnace including a large bell and a small bell that can move up and down.

高炉1の炉壁には、複数の炉内圧力センサー13が設けられている。各炉内圧力センサー13の設置位置は、方位及び設置高さ(以下、レベルという)に基づき特定することができる。本実施形態では、炉内圧力センサー13が合計16か所に設置されており、NW、SE、NE、SWからなる方位と、B2、S1、S2及びS3からなるレベルによってそれぞれの炉内圧力センサー13の設置位置を定義することができる。B2、S1、S2及びS3はこの順序で、炉下部から炉頂部11に向かって並んでいる。なお、炉内圧力センサー13は、通常、高炉1に少なくとも16以上設置されている。炉内圧力センサー13には、周知の構成を用いることができる。   A plurality of in-furnace pressure sensors 13 are provided on the furnace wall of the blast furnace 1. The installation position of each in-furnace pressure sensor 13 can be specified based on the direction and the installation height (hereinafter referred to as a level). In this embodiment, the in-furnace pressure sensors 13 are installed at a total of 16 locations, and each in-furnace pressure sensor is determined according to the direction composed of NW, SE, NE, SW and the level composed of B2, S1, S2, and S3. Thirteen installation positions can be defined. B2, S1, S2, and S3 are arranged in this order from the bottom of the furnace toward the top 11 of the furnace. The in-furnace pressure sensor 13 is usually installed in the blast furnace 1 at least 16 or more. A well-known configuration can be used for the furnace pressure sensor 13.

炉下部には数十本の羽口14が炉周方向に配置されており、羽口14から高温のガスが還元ガスとして吹き込まれる。羽口14から吹き込まれるガスの送風圧力は、送風圧力センサー15によって検出される。炉下部には、融着帯と呼ばれる鉱石が軟化融着した通気抵抗の大きな鉱石融着層と、コークス由来の比較的通気抵抗が小さいコークススリットとが混在する領域が存在する。吹き込まれた還元ガスは、矢印で示す方向に流れる。   Dozens of tuyere 14 are disposed in the lower part of the furnace in the circumferential direction of the furnace, and hot gas is blown from the tuyere 14 as a reducing gas. The blowing pressure of the gas blown from the tuyere 14 is detected by the blowing pressure sensor 15. In the lower part of the furnace, there is a region where an ore fusion layer having a large ventilation resistance softened and fused, called a cohesive zone, and a coke slit having a relatively small ventilation resistance derived from coke are mixed. The reducing gas that has been blown flows in the direction indicated by the arrow.

上述の高炉1において、炉況が安定している場合には、高炉原料は一定の速度で、層構造及び融着帯形状を乱すことなく降下していると考えられる。高炉原料の降下速度が安定していれば、高炉原料の装入周期も一定となるため、炉内圧力も高炉原料の装入周期に対応して変動する。   In the above-described blast furnace 1, when the furnace condition is stable, it is considered that the blast furnace raw material descends at a constant speed without disturbing the layer structure and the cohesive zone shape. If the descending speed of the blast furnace raw material is stable, the charging period of the blast furnace raw material becomes constant, so that the pressure in the furnace also varies according to the charging period of the blast furnace raw material.

ここで、何らかの原因により高炉原料の降下速度に局所的な乱れが生じた場合、層構造も局所的に乱れるため、その場所の炉内圧力の変動周期が変化する、もしくは周期は変化しなくても位相が変化する等何らかの変化が生じる。   Here, if there is a local disturbance in the descending speed of the blast furnace raw material for some reason, the layer structure is also locally disturbed, so the fluctuation cycle of the furnace pressure at that location changes, or the period does not change. However, some change occurs, such as a phase change.

そこで、本実施形態では、各方位・各レベルの炉内圧力の時系列データを取得し、基準となる一つの炉内圧力センサー13により検出される炉内圧力と残りの炉内圧力センサー13により検出される炉内圧力との個々の組み合わせについて、2組の数値からなるデータ列を作成し、それぞれの2組のデータ列の相関係数を計算する(第1のステップに相当する)。計算された相関係数の値により、操業変動の発生部位を特定することが出来る。基準となる一つの炉内圧力センサー13は、任意であり、複数の炉内圧力センサー13の中から適宜選択することができる。   Therefore, in this embodiment, time series data of the furnace pressure of each direction and each level is acquired, and the furnace pressure detected by one reference furnace pressure sensor 13 and the remaining furnace pressure sensors 13 are used. For each combination with the detected furnace pressure, a data string consisting of two sets of numerical values is created, and the correlation coefficient of each of the two sets of data strings is calculated (corresponding to the first step). From the calculated correlation coefficient value, it is possible to identify the occurrence site of the operational fluctuation. One in-furnace pressure sensor 13 serving as a reference is arbitrary, and can be appropriately selected from a plurality of in-furnace pressure sensors 13.

相関係数について、簡単に説明する。2組の数値からなるデータ列(x,y)={x,y}が与えられたとき、次の式(1)により、2組のデータ列の相関係数を求めることが出来る。ただし
相関係数とは、2組のデータ列の間における相関を示す指標である。相関係数は−1〜1の間の値をとり、1に近いときは2つのデータ列には正の相関があり、−1に近ければ負の相関がある。
The correlation coefficient will be briefly described. When a data string (x, y) = {x i , y i } composed of two sets of numerical values is given, the correlation coefficient of the two sets of data strings can be obtained by the following equation (1). However,
The correlation coefficient is an index indicating a correlation between two sets of data strings. The correlation coefficient takes a value between −1 and 1, when the value is close to 1, the two data strings have a positive correlation, and when it is close to −1, there is a negative correlation.

例えば、検出位置NW―B2において其々検出される時刻t1〜tnでの炉内圧力をx1〜xn、検出位置NW―S1において其々検出される時刻y1〜ynでの炉内圧力をy1〜ynとしたとき、データ列(x,y)として{x1,y1},{x2,y2}・・・・・{xn,yn}が与えられる。これらのデータ列からx,yの上述の相加平均を求めて、これを式(1)に代入することにより、検出位置NW―B2及び検出位置NW―S1における炉内圧力の相関係数が求められる。炉内圧力の検出周期は、例えば、1分とすることができる。例えば、炉内圧力の検出周期を1分とし、かつ、n=5回とした場合には、5分周期で相関係数が順次得られる。   For example, the furnace pressures at times t1 to tn detected at the detection positions NW-B2 at times t1 to tn, respectively, and the furnace pressures at times y1 to yn detected at the detection positions NW-S1 respectively at y1 to yn. When yn, {x1, y1}, {x2, y2}... {xn, yn} is given as the data string (x, y). By calculating the above-mentioned arithmetic mean of x and y from these data strings and substituting this into equation (1), the correlation coefficient of the in-furnace pressure at the detection position NW-B2 and the detection position NW-S1 is obtained. Desired. The detection period of the furnace pressure can be set to 1 minute, for example. For example, when the detection period of the furnace pressure is 1 minute and n = 5 times, correlation coefficients are sequentially obtained at a 5-minute period.

ここで、検出位置NW―B2の炉内圧力(第1の炉内圧力に相当する)と検出位置NW―S1における炉内圧力(第2の炉内圧力に相当する)との相関係数が操業異常に対応した閾値よりも小さい場合には、検出位置NW―B2及び検出位置NW―S1のいずれか一方で操業異常が発生しているものと認められる。この場合、基準である検出位置NW―B2の炉内圧力(第1の炉内圧力に相当する)と他の全ての検出位置における炉内圧力(第2の炉内圧力に相当する)との相関係数が前記閾値以上である場合には、検出位置NW―S1を操業異常個所として特定することができる。一方、基準である検出位置NW―B2の炉内圧力(第1の炉内圧力に相当する)と他の全ての検出位置における炉内圧力(第2の炉内圧力に相当する)との相関係数が前記閾値より小さい場合には、基準である検出位置NW―B2を操業異常個所として特定することができる。   Here, the correlation coefficient between the furnace pressure at the detection position NW-B2 (corresponding to the first furnace pressure) and the furnace pressure at the detection position NW-S1 (corresponding to the second furnace pressure) is If it is smaller than the threshold value corresponding to the operational abnormality, it is recognized that an operational abnormality has occurred at either the detection position NW-B2 or the detection position NW-S1. In this case, the in-furnace pressure (corresponding to the first in-furnace pressure) at the detection position NW-B2, which is the reference, and the in-furnace pressures (corresponding to the second in-furnace pressure) at all other detection positions. When the correlation coefficient is equal to or greater than the threshold value, the detection position NW-S1 can be specified as an operation abnormality point. On the other hand, the phase of the in-furnace pressure (corresponding to the first in-furnace pressure) at the detection position NW-B2, which is the reference, and the in-furnace pressure (corresponding to the second in-furnace pressure) at all other detection positions. When the number of relations is smaller than the threshold value, the reference detection position NW-B2 can be specified as an abnormal operation location.

ここで、層構造が乱れることなく安定的に高炉原料が降下している場合は、2組の数値からなるデータ列の相関係数は、何れの組み合わせにおいても、常に1に近い値をとることになる。局所的に層構造が乱れた場合は、特定の組み合わせの相関係数が1から大きく乖離することになる。よって、炉内圧力の時系列データに対して、相関係数を求め、1から乖離している部位を検出することにより、操業変動の発生部位を特定することができる。   Here, when the blast furnace raw material is falling stably without disturbing the layer structure, the correlation coefficient of the data string composed of two sets of values always takes a value close to 1 in any combination. become. When the layer structure is locally disturbed, the correlation coefficient of a specific combination greatly deviates from 1. Therefore, by obtaining a correlation coefficient with respect to the time-series data of the in-furnace pressure and detecting a part deviating from 1, it is possible to specify the part where the operation fluctuation occurs.

具体的には、相関係数の前記閾値を、好ましくは0.3〜0.6、より好ましくは0.35〜0.5の範囲内の値とすることで、精度良く操業異常個所を特定することができる。   Specifically, the abnormal point of the operation is specified with high accuracy by setting the threshold value of the correlation coefficient to a value within the range of preferably 0.3 to 0.6, more preferably 0.35 to 0.5. can do.

式(1)の基礎となるデータの数、すなわちnの値が小さいほどシャープな波形が得られ易くなる一方で、ノイズの影響を受け易くなる。またnの値が大きいほどノイズの影響を受け難くなる一方で、シャープな波形が得られなくなる。したがって、式(1)の基礎となるデータの数、すなわちnの値には適切な範囲が存在する。図2は、時々刻々と変化する相関係数のグラフであり、横軸が時間、縦軸が相関係数である。図2(a)〜(f)はそれぞれn=5〜10に対応しており、期間T1において操業異常が生じているものとする。なお、それぞれの測定時間は1時間としている。   The smaller the number of data serving as the basis of Equation (1), that is, the value of n, the easier it is to obtain a sharp waveform, but the more susceptible to noise. Also, the larger the value of n, the less affected by noise, but a sharp waveform cannot be obtained. Therefore, there is an appropriate range for the number of data serving as the basis of the equation (1), that is, the value of n. FIG. 2 is a graph of the correlation coefficient that changes from moment to moment, with the horizontal axis representing time and the vertical axis representing the correlation coefficient. 2A to 2F correspond to n = 5 to 10, respectively, and it is assumed that an operation abnormality has occurred in the period T1. Each measurement time is 1 hour.

同図を参照して、nの値が大きくなるに従い波形がブロードに変化し、n≧8では、相関係数の変化が小さく、相関がある場合と無い場合の区別が困難である。よって式(1)を適用するデータの数、すなわちnの値はn=5〜8程度に設定するのが好ましい。nの値をn=5〜8程度に設定することにより、ノイズの影響を抑えつつ、変動部位を精度良く特定することができる。ただし適切なnの値は、炉内圧力の検出周期、炉頂からの高炉原料の装入周期により変化すると考えられるため、対象とするデータに応じて適切な値を設定すれば良い。   Referring to the figure, the waveform changes broadly as the value of n increases. When n ≧ 8, the change in the correlation coefficient is small, and it is difficult to distinguish between cases where there is a correlation and cases where there is no correlation. Therefore, the number of data to which the formula (1) is applied, that is, the value of n is preferably set to about n = 5-8. By setting the value of n to about n = 5 to 8, it is possible to specify the fluctuation site with high accuracy while suppressing the influence of noise. However, since an appropriate value of n is considered to change depending on the detection period of the pressure in the furnace and the charging period of the blast furnace raw material from the top of the furnace, an appropriate value may be set according to the target data.

また、相関係数は、必ずしも式(1)により求める必要は無く、下記の式(2)に示すスピアマンの順位相関係数を使用することもできる。
ここで、X、Yは、それぞれx、yを昇順に並べかえたものである。nについては、式(1)と同様であるから、詳細な説明を省略する。
Further, the correlation coefficient does not necessarily have to be obtained by the equation (1), and Spearman's rank correlation coefficient represented by the following equation (2) can also be used.
Here, X i and Y i are obtained by rearranging x i and y i in ascending order, respectively. About n, since it is the same as that of Formula (1), detailed description is abbreviate | omitted.

さらに、相関係数は、下記の式(3)のケンドールの順位相関係数を使用することもできる。
ここで、Pはn組のデータから任意の2組のデータを取り出した場合に、2組のXとYの大小関係が一致する組の個数を表す。Qはn組のデータから任意の2組のデータを取り出した場合に、2組のXとYの大小関係が一致しない組の個数を表す。X、Y、nについては、上述したので詳細な説明を省略する。
Further, the Kendall rank correlation coefficient of the following equation (3) can also be used as the correlation coefficient.
Here, P represents the number of pairs in which the magnitude relationship between two sets of X i and Y i matches when two arbitrary sets of data are extracted from n sets of data. Q represents the number of pairs in which the magnitude relationship between two sets of X i and Y i does not match when two arbitrary sets of data are extracted from n sets of data. Since X i , Y i , and n have been described above, a detailed description thereof will be omitted.

ここで、相関係数に基づき操業異常個所を特定する方法は、上述以外の方法であってもよい。例えば、前記閾値よりも相関係数の小さい検出位置の組み合わせが二通り以上発生した場合には、相関係数が最も小さい検出位置だけを操業異常個所と特定してもよいし、閾値よりも小さい全ての検出位置を操業異常個所と特定してもよい。そのいずれが好ましいかは、次に述べるように複数個所の異常を同時に解消可能なアクションの有無による。   Here, a method other than the above may be used as the method for specifying the operation abnormality location based on the correlation coefficient. For example, when two or more combinations of detection positions with a correlation coefficient smaller than the threshold value occur, only the detection position with the smallest correlation coefficient may be identified as an operation abnormality location, or smaller than the threshold value. You may identify all the detection positions as an operation abnormal part. Which of these is preferable depends on the presence or absence of an action capable of simultaneously eliminating abnormalities at a plurality of locations as described below.

(異常解消アクション)
炉内圧力の変動は種々の原因に起因する。たとえば、炉頂装入物分布の円周方向偏差、炉壁付着物、炉壁レンガの欠損、羽口毎のPC吹き込み量の円周方向偏差、羽口毎の送風量の円周方向偏差等と多岐に亘る。操業異常解消のアクションの採択に当っては、操業推移を勘案して適宜適切なアクション(第3のステップに相当する)を採用する。このとき、炉内圧力の変動だけでなく、炉壁温度の変化を考慮することが好ましい。前述のように閾値よりも相関係数の小さい検出位置の組み合わせが二通り以上発生した場合には、複数個所の異常を同時に解消可能なアクションを優先して採択するのがよい。その適切なアクションが見当たらない場合には、相関係数が小さい検出位置から順に対応アクションを採択するのがよい。
(Abnormality resolution action)
The fluctuation of the pressure in the furnace is caused by various causes. For example, circumferential deviation of furnace top charge distribution, furnace wall deposits, defect of furnace wall bricks, circumferential deviation of PC blowing rate per tuyere, circumferential deviation of blowing rate per tuyere, etc. And a wide range. In adopting the action for eliminating the operation abnormality, an appropriate action (corresponding to the third step) is adopted as appropriate in consideration of the operation transition. At this time, it is preferable to consider not only the fluctuation in the furnace pressure but also the change in the furnace wall temperature. As described above, when two or more combinations of detection positions having a correlation coefficient smaller than the threshold value occur, it is preferable to preferentially select an action that can simultaneously resolve abnormalities at a plurality of locations. If the appropriate action is not found, it is preferable to adopt the corresponding action in order from the detection position with the smallest correlation coefficient.

実施例を示して、本発明についてより具体的に説明する。
(実施例)
炉内容積3700mの高炉を対象として本手法を適用し、操業異常個所を特定した。当該高炉には4方位(NW、SE、NE、SW)、4レベル(B2、S1、S2、S3)、合計16個の炉内圧力センサーが設置されている。操業変動が確認された期間を対象として、送風圧と各炉内圧力の組み合わせについて相関係数を求めた結果を比較例として図3に示す。また、S2―NW(S2レベル、NW方位)の炉内圧力とその他の炉内圧力の組み合わせについて相関係数を求めた結果を実施例として図4に示す。
An Example is shown and this invention is demonstrated more concretely.
(Example)
We applied this method to blast furnace capacity 3700 m 3 as the target, and identify the operating abnormal location. The blast furnace is provided with a total of 16 in-furnace pressure sensors in four directions (NW, SE, NE, SW) and four levels (B2, S1, S2, S3). FIG. 3 shows the result of obtaining the correlation coefficient for the combination of the blowing pressure and the pressure in each furnace for the period in which the operation fluctuation is confirmed as a comparative example. In addition, FIG. 4 shows an example of the result of obtaining the correlation coefficient for the combination of the furnace pressure of S2-NW (S2 level, NW orientation) and other furnace pressures.

送風圧力と炉内圧力の相関係数は、装入周期である約11分周期で1から大きく乖離しているが、全ての相関係数が同じような動きをしており、操業異常個所を特定するのは困難であった。すなわち、炉内圧力は、おおよそ装入周期で変動しているが、送風圧力は装入周期とは無関係に変動しているため、操業異常個所を特定することができなかったと考えられる。   The correlation coefficient between the blast pressure and the furnace pressure is greatly different from 1 in the charging period of about 11 minutes, but all the correlation coefficients are moving in the same way, It was difficult to identify. That is, although the pressure in the furnace fluctuates approximately with the charging period, the blowing pressure fluctuates regardless of the charging period, so it is considered that the abnormal operation location could not be identified.

S2―NWの炉内圧力とその他の炉内圧力の組み合わせについては、S1〜S3レベルの炉内圧力との相関は非常に強く、B2レベルの炉内圧力との相関が非常に低いことが分かった。特に、S2―NWの炉内圧力とB2―NWの炉内圧力の相関が低い。このことから、B2レベルNW方位近傍が、操業異常個所であると特定することができた。   Regarding the combination of S2-NW furnace pressure and other furnace pressures, the correlation between the S1-S3 level furnace pressure is very strong and the correlation with the B2 level furnace pressure is very low. It was. In particular, the correlation between the S2-NW furnace pressure and the B2-NW furnace pressure is low. From this, it was possible to specify that the vicinity of the B2 level NW azimuth was an abnormal operation location.

そこで、炉頂旋回シュートの正・逆回転の切り替えタイミング、旋回スタート位置を調整する、装入物の円周方向偏差を小さくする異常解消アクションを実施した。その結果、S2―NWの炉内圧力とB2―NWの炉内圧力の相関が強くなるととともに操業異常が消失し、安定した高炉操業を行うことが出来た。   Therefore, we performed an action to eliminate the abnormality to reduce the deviation in the circumferential direction of the charge, adjusting the switching timing of the forward / reverse rotation of the furnace top turning chute and the turning start position. As a result, the correlation between the S2-NW furnace pressure and the B2-NW furnace pressure became stronger, and the operation abnormality disappeared, and stable blast furnace operation could be performed.

1 高炉
11 炉頂部
12 旋回シュート
13 炉内圧力センサー
14 羽口
15 送風圧力センサー
DESCRIPTION OF SYMBOLS 1 Blast furnace 11 Furnace top part 12 Turning chute 13 Furnace pressure sensor 14 tuyere 15 Blower pressure sensor

Claims (4)

炉内圧力を検出する圧力センサーが複数個所に設置された高炉の操業異常個所を特定して、この特定した前記操業異常個所の異常原因を除去するように高炉の操業条件を変更する高炉の操業方法であって、
前記複数の圧力センサーのうちいずれか一つの前記圧力センサーによって検出される第1の炉内圧力と残りの全ての前記圧力センサーによって検出される第2の炉内圧力との相関係数を個々に求める第1のステップと、
これらの相関係数の大小に基づき、操業異常個所を特定する第2のステップと、
を有することを特徴とする高炉の操業方法。
Blast furnace operation that identifies the abnormal operation location of the blast furnace where multiple pressure sensors that detect the pressure in the furnace are installed, and changes the operating conditions of the blast furnace so as to eliminate the cause of the abnormal operation of the specified abnormal operation location A method,
A correlation coefficient between the first furnace pressure detected by any one of the plurality of pressure sensors and the second furnace pressure detected by all the remaining pressure sensors is individually determined. A first step to find,
On the basis of the magnitude of these correlation coefficients, a second step of identifying an abnormal operation location;
A method of operating a blast furnace, comprising:
前記第1のステップで求めた複数の相関係数のうち一つの相関係数が操業異常に対応した閾値よりも小さい場合には、この相関係数に対応する前記第2の炉内圧力を検出した個所を操業異常個所と特定することを特徴とする請求項1に記載の高炉の操業方法。   When one correlation coefficient of the plurality of correlation coefficients obtained in the first step is smaller than a threshold value corresponding to the operation abnormality, the second furnace pressure corresponding to the correlation coefficient is detected. 2. The method of operating a blast furnace according to claim 1, wherein the specified location is identified as an abnormal operation location. 前記第1のステップで求めた複数の相関係数のうち二つ以上の相関係数が操業異常に対応した閾値よりも小さい場合には、これらの相関係数に対応する前記第2の炉内圧力を検出した全ての個所を操業異常個所と特定することを特徴とする請求項1に記載の高炉の操業方法。   In a case where two or more correlation coefficients among the plurality of correlation coefficients obtained in the first step are smaller than a threshold value corresponding to an operation abnormality, the second furnace corresponding to these correlation coefficients is used. 2. The method for operating a blast furnace according to claim 1, wherein all locations where pressure is detected are identified as abnormal operation locations. 前記第1のステップで求めた複数の相関係数のうち二つ以上の相関係数が操業異常に対応した閾値よりも小さい場合には、これらの相関係数に対応する前記第2の炉内圧力を検出した全ての個所のうち最も相関係数が小さい個所を操業異常個所と特定することを特徴とする請求項1に記載の高炉の操業方法。
In a case where two or more correlation coefficients among the plurality of correlation coefficients obtained in the first step are smaller than a threshold value corresponding to an operation abnormality, the second furnace corresponding to these correlation coefficients is used. The method for operating a blast furnace according to claim 1, characterized in that, among all locations where pressure is detected, a location having the smallest correlation coefficient is identified as an abnormal operation location.
JP2016050028A 2016-03-14 2016-03-14 Blast furnace operation method Active JP6617619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016050028A JP6617619B2 (en) 2016-03-14 2016-03-14 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050028A JP6617619B2 (en) 2016-03-14 2016-03-14 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2017165999A true JP2017165999A (en) 2017-09-21
JP6617619B2 JP6617619B2 (en) 2019-12-11

Family

ID=59912665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050028A Active JP6617619B2 (en) 2016-03-14 2016-03-14 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6617619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825753B1 (en) * 2019-04-03 2021-02-03 Jfeスチール株式会社 Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6825753B1 (en) * 2019-04-03 2021-02-03 Jfeスチール株式会社 Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method

Also Published As

Publication number Publication date
JP6617619B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
Zhou et al. Process monitoring of iron-making process in a blast furnace with PCA-based methods
US20120136629A1 (en) Apparatus abnormality monitoring method and system
JP2018009224A (en) Operation condition evaluation system
JP2019019385A (en) Method and device for predicting molten iron temperature, operation method of blast furnace, operation guidance device, and method and device for controlling molten iron temperature
CN102758032B (en) Method for real-time predication of blast furnace pipeline fault probability
JP6617619B2 (en) Blast furnace operation method
JP5585519B2 (en) Evaluation method of furnace wall deposits and blast furnace operation method
Kamo et al. Method for predicting gas channeling in blast furnace
CN107858466B (en) Method for predicting charge level depth of blast furnace during charge level lowering and blowing out
JP5935828B2 (en) Unmelted ore detection method and blast furnace operation method
JP3487203B2 (en) Blast furnace condition prediction method
JP5277636B2 (en) How to operate a vertical furnace
TWI435936B (en) Method for predicting channeling phenomenon of blast furnace
JP7485918B2 (en) Reactor state evaluation device, reactor state evaluation method, reactor state evaluation program, and trained model generation method
EP4170441B1 (en) Method and system for ironmaking plant optimization
US20230130462A1 (en) Method and system for ironmaking plant optimization
JP6575467B2 (en) Blast furnace operation method
JP6331709B2 (en) Slapping prediction method in converter blowing.
JP5862612B2 (en) Unmelted ore detection method and blast furnace operation method
KR101185330B1 (en) Method of detecting distribution of gas stream in blast furnace
JP2696114B2 (en) Blast furnace operation management method
Mora et al. Hybrid approach based on temporal representation and classification techniques used to determine unstable conditions in a blast furnace
WO2022044816A1 (en) Blast furnace condition determination device, operation method of blast furnace, and manufacturing method for molten iron
KR101125965B1 (en) Apparatus for measuring level of pig iron in blast furnice and method for performing the same
Govindsamy et al. Leak Detection at Anglo Platinum Converting Process Using Digital Twins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R151 Written notification of patent or utility model registration

Ref document number: 6617619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151