JP2000094009A - Manufacture of steel tube - Google Patents

Manufacture of steel tube

Info

Publication number
JP2000094009A
JP2000094009A JP10267732A JP26773298A JP2000094009A JP 2000094009 A JP2000094009 A JP 2000094009A JP 10267732 A JP10267732 A JP 10267732A JP 26773298 A JP26773298 A JP 26773298A JP 2000094009 A JP2000094009 A JP 2000094009A
Authority
JP
Japan
Prior art keywords
rolling
tube
less
strength
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267732A
Other languages
Japanese (ja)
Inventor
Takaaki Toyooka
高明 豊岡
Akira Yorifuji
章 依藤
Masanori Nishimori
正徳 西森
Motoaki Itaya
元晶 板谷
Yuji Hashimoto
裕二 橋本
Yoshitomo Okabe
能知 岡部
Taro Kanayama
太郎 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10267732A priority Critical patent/JP2000094009A/en
Publication of JP2000094009A publication Critical patent/JP2000094009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel tube excellent in strength-ductility balance by executing specified stretch reduction after heating or soaking the steel tube having specified componential composition to specified temp. and successively, rapidly cooling the tube to normal temp. at a specified cooling rate. SOLUTION: The componental composition of the steel tube is defined as, by weight, 0.005-0.70% C, 0.01-3.0% Si, 0.01-4.0% Mn and 0.001-0.10% Al. The tube stock 1 for this steel tube is heated or soaked to the transformation point Ac3 to 400 deg.C in a heating and soaking furnace 4. After that, the stretch reduction where, the cumulative diameter reducing rate is >=20%, is executed at the transformation point Ac3 to 400 deg.C with a reducer (stretch reducer) 5. Successively, using a rapidly cooling device 7 or a rapidly cooling box 8, the tube stock is rapidly cooled to the normal temp. at the cooling rate of >=1.5 deg.C/s. It is permitted to add one or more kinds which are selected from among <=1% Cu, <=2% Ni, <=2% Cr and <=1% Mo.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼管の製造方法に
関し、特に、鋼管に優れた機械的性質と良好な真直形状
を付与できる鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a steel pipe, and more particularly to a method of manufacturing a steel pipe capable of imparting excellent mechanical properties and a good straight shape to the steel pipe.

【0002】[0002]

【従来の技術】鋼材の強度を増加させるためには、Mn、
Si等の合金元素の添加や、さらに、制御圧延、制御冷
却、焼入れ焼戻し等の熱処理あるいは、Nb、V等の析出
硬化型元素の添加などが利用されている。しかし、鋼材
には、強度のみでなく延性・靱性が高いことが必要で、
以前から、強度と延性・靱性がバランスよく向上した鋼
材が要望されている。
2. Description of the Related Art In order to increase the strength of steel, Mn,
Addition of alloy elements such as Si, heat treatment such as controlled rolling, controlled cooling, quenching and tempering, and addition of precipitation hardening elements such as Nb and V are utilized. However, steel materials need to have high ductility and toughness as well as strength.
For some time, there has been a demand for a steel material in which strength, ductility, and toughness are improved in a well-balanced manner.

【0003】結晶粒の微細化は、強度、延性・靱性を共
に向上させうる数少ない手段として重要である。結晶粒
を微細化する方法としては、オーステナイト粒の粗大化
を防止して、微細オーステナイトからオーステナイト−
フェライト変態を利用しフェライト粒を微細化する方
法、加工によりオーステナイト粒を微細化しフェライト
粒を微細化する方法、あるいは焼入れ焼戻し処理による
マルテンサイト、下部べイナイトを利用する方法などが
ある。
[0003] Refinement of crystal grains is important as a few means capable of improving both strength, ductility and toughness. As a method for refining crystal grains, coarse austenite grains are prevented, and fine austenite is converted to austenite-.
There are a method of making ferrite grains fine by utilizing ferrite transformation, a method of making austenite grains fine by working to make ferrite grains fine, and a method of using martensite and lower bainite by quenching and tempering.

【0004】なかでも、オーステナイト域における強加
工とそれに続くオーステナイト−フェライト変態により
フェライト粒を微細化する制御圧延が、鋼材製造に広く
利用されている。また、微量のNbを添加しオーステナイ
ト粒の再結晶を抑制してフェライト粒を一層微細化する
ことも行われている。オーステナイトの未再結晶温度域
で加工を施すことにより、オーステナイト粒が伸長して
粒内に変形帯が生成し、この変形帯からフェライト粒が
生成して、フェライト粒が一層微細化される。さらにフ
ェライト粒を微細化するために、加工の途中あるいは加
工後に冷却を行う工程、すなわち制御冷却も利用される
ようになっている。
[0004] Above all, controlled rolling in which ferrite grains are refined by strong working in the austenite region and subsequent austenite-ferrite transformation is widely used in the production of steel products. Further, a small amount of Nb is added to suppress recrystallization of austenite grains to further refine ferrite grains. By processing in the austenite non-recrystallization temperature range, the austenite grains elongate and deformed bands are formed in the grains, and ferrite grains are generated from the deformed bands, and the ferrite grains are further refined. In order to further refine the ferrite grains, a step of cooling during or after the processing, that is, a controlled cooling is also used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た方法では、フェライト粒径で4〜5μm 程度までの微
細化が限度であり、また、鋼管の製造に適用するには工
程が複雑すぎる。このようなことから、鋼管の靱性・延
性の向上のために、簡素な工程でフェライト結晶粒径の
さらなる微細化が要望されていた。
However, in the above-mentioned method, the size reduction of the ferrite grain size to about 4 to 5 μm is a limit, and the process is too complicated to apply to the production of a steel pipe. For these reasons, in order to improve the toughness and ductility of the steel pipe, further refinement of the ferrite crystal grain size by a simple process has been demanded.

【0006】この要望に対し、本発明者らは鋭意検討を
重ね、特定の化学組成を有する鋼管素材を温間絞り圧延
することにより、粒径3μm 以下の微細組織を有し延性
−強度バランスに優れる製品管が得られるという知見を
得た。しかし、温間絞り圧延を行っても、圧延終了から
常温まで冷却される間の冷却速度が遅いと結晶粒が粗大
化し、製品管の延性が低下するという問題が生じた。
[0006] In response to this demand, the present inventors have conducted intensive studies, and hot-rolled a steel pipe material having a specific chemical composition to obtain a fine structure having a grain size of 3 μm or less and to achieve a balance between ductility and strength. The knowledge that an excellent product pipe can be obtained was obtained. However, even when warm drawing rolling is performed, if the cooling rate during cooling from the end of rolling to normal temperature is low, there is a problem that crystal grains are coarsened and ductility of a product tube is reduced.

【0007】このような問題を解決するための従来方法
としては、圧延終了温度を下げる、累積縮径率を増大す
る、などがある。しかし、圧延終了温度を下げる方法
は、結晶粒の微細化には有効であるが、材料が加工硬化
してかえって延性が低下する問題があり、また、累積縮
径率を増大する方法は、圧延時に焼付きが発生しやすく
なる問題や圧延スタンドが増加する問題がある。
[0007] Conventional methods for solving such problems include lowering the rolling end temperature and increasing the cumulative diameter reduction rate. However, although the method of lowering the rolling end temperature is effective for refining the crystal grains, there is a problem that the material is work-hardened and the ductility is reduced, and the method of increasing the cumulative diameter reduction rate is the method of rolling. There is a problem that seizure easily occurs and a problem that the number of rolling stands increases.

【0008】本発明は、上記従来技術の問題を解決し、
圧延後の結晶粒粗大化を有利に抑制できて延性−強度の
バランスに優れる鋼管が得られる鋼管の製造方法を提供
することを目的とする。
The present invention solves the above-mentioned problems of the prior art,
An object of the present invention is to provide a method for manufacturing a steel pipe capable of advantageously suppressing coarsening of crystal grains after rolling and obtaining a steel pipe excellent in ductility-strength balance.

【0009】[0009]

【課題を解決するための手段】本発明は、重量%で、
C:0.005 〜0.70%、Si:0.01〜3.0 %、Mn:0.01〜4.
0 %、Al:0.001 〜0.10%を含有し、あるいはさらに、
Cu:1%以下、Ni:2%以下、Cr:2%以下、Mo:1%
以下のうちから選ばれた1種又は2種以上、および/ま
たは、Nb:0.1 %以下、V:0.3 %以下、Ti:0.2 %以
下、B:0.004 %以下のうちから選ばれた1種又は2種
以上、および/または、REM :0.02%以下、Ca:0.01%
以下のうちから選ばれた1種又は2種を含有し、残部Fe
及び不可避的不純物からなる化学組成を有する鋼管を、
Ac3変態点〜400 ℃に加熱または均熱した後、Ac3変態
点〜400 ℃で累積縮径率20%以上の絞り圧延を行い、引
き続き、冷却速度1.5 ℃/s以上で常温まで急冷すること
を特徴とする鋼管の製造方法である。
SUMMARY OF THE INVENTION The present invention provides, in weight percent,
C: 0.005 to 0.70%, Si: 0.01 to 3.0%, Mn: 0.01 to 4.
0%, Al: 0.001 to 0.10%, or
Cu: 1% or less, Ni: 2% or less, Cr: 2% or less, Mo: 1%
One or more selected from the following, and / or one or more selected from Nb: 0.1% or less, V: 0.3% or less, Ti: 0.2% or less, B: 0.004% or less 2 or more, and / or REM: 0.02% or less, Ca: 0.01%
One or two selected from the following, with the balance Fe
And a steel pipe having a chemical composition consisting of unavoidable impurities,
After heating the heating or soaking the Ac 3 transformation point to 400 ° C., Ac 3 performs cumulative radial contraction rate of 20% or more of the reducing rolling in transformation point to 400 ° C., subsequently quenched to room temperature at a cooling rate of 1.5 ° C. / s or higher A method for producing a steel pipe, characterized in that:

【0010】[0010]

【発明の実施の形態】本発明では、特定の化学組成(以
下単に「組成」ともいう)になる鋼管を圧延素材(素
管)として用いるが、この素管を製造する手段(造管
法)は特に限定されない。冷間または熱間での高周波電
流を利用した電気抵抗溶接法(素管名称:電縫管、熱間
の場合は熱間電縫管)、オープン管両エッジ部を固相圧
接温度域に加熱し圧接接合する固相圧接法(素管名称:
固相圧接管)、鍛接法(素管名称:鍛接管)、およびマ
ンネスマン式穿孔圧延法(素管名称:継目無管)のいず
れも好適に使用できる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a steel pipe having a specific chemical composition (hereinafter simply referred to as "composition") is used as a rolled material (raw pipe). Is not particularly limited. Electric resistance welding method using cold or hot high-frequency current (element name: ERW pipe, hot ERW pipe in case of hot), heating both edges of open pipe to solid-state pressure welding temperature range Solid-state pressure welding method (pipe name:
Any of solid-state pressure welded pipe), forged welding method (base pipe name: forged pipe), and Mannesmann piercing and rolling method (base pipe name: seamless pipe) can be suitably used.

【0011】次に、素管の組成の限定理由を説明する。 C:0.005 〜0.70% Cは、基地中に固溶しあるいは炭化物として析出し、鋼
の強度を増加させる元素であり、また、硬質な第2相と
して析出したセメンタイト、パーライト、べイナイト、
マルテンサイトが高強度化と延性(一様伸び)向上に寄
与する。所望の強度を確保し、第2相として析出したセ
メンタイト等による延性向上の効果を得るためには、C
は0.005 %以上、より好ましくは0.04%以上の含有を必
要とするが、0.70%を超えて含有すると延性が劣化す
る。このため、Cは0.005 〜0.70%の範囲に限定した。
Next, the reasons for limiting the composition of the raw tube will be described. C: 0.005 to 0.70% C is an element that increases the strength of steel by forming a solid solution in the matrix or precipitating as carbides, and also precipitates cementite, pearlite, bainite, as a hard second phase.
Martensite contributes to high strength and ductility (uniform elongation). In order to secure the desired strength and obtain the effect of improving ductility due to cementite and the like precipitated as the second phase, C
Is required to be contained at least 0.005%, more preferably at least 0.04%, but if it exceeds 0.70%, the ductility deteriorates. For this reason, C is limited to the range of 0.005 to 0.70%.

【0012】Si:0.01〜3.0 % Siは、脱酸剤として作用するとともに、基地中に固溶し
鋼の強度を増加させる。この効果は、0.01%以上、好ま
しくは0.1 %以上、の含有で認められるが、3.0 %を超
える含有は延性を劣化させる。このことから、Siは0.01
〜3.0 %の範囲に限定した。なお、好ましくは、強度延
性バランスの点から0.10〜1.5 %の範囲である。
Si: 0.01-3.0% Si acts as a deoxidizing agent and forms a solid solution in the matrix to increase the strength of steel. This effect is observed when the content is 0.01% or more, preferably 0.1% or more, but the content exceeding 3.0% deteriorates the ductility. From this, Si is 0.01
Limited to the range of ~ 3.0%. Preferably, it is in the range of 0.10 to 1.5% from the viewpoint of strength-ductility balance.

【0013】Mn:0.01〜4.0 % Mnは、鋼の強度を増加させる元素であり、第2相として
のセメンタイトの微細析出、あるいはマルテンサイト、
べイナイトの析出を促進させる。このような効果は0.01
%以上の含有で認められるが、4.0 %を超える含有は延
性を劣化させる。このため、Mnは0.01〜4.0 %の範囲に
限定した。なお、強度−伸びバランスの観点から、Mnは
0.2 〜1.3 %の範囲が好ましく、より好ましくは0.6 〜
1.3 %の範囲である。
Mn: 0.01 to 4.0% Mn is an element that increases the strength of steel, and includes fine precipitation of cementite as a second phase or martensite.
Promotes bainite precipitation. Such an effect is 0.01
% Or more, but content exceeding 4.0% deteriorates ductility. For this reason, Mn was limited to the range of 0.01 to 4.0%. From the viewpoint of strength-elongation balance, Mn is
The range is preferably from 0.2 to 1.3%, more preferably from 0.6 to 1.3%.
The range is 1.3%.

【0014】Al:0.001 〜0.10% Alは、結晶粒を微細化する作用を有している。結晶粒微
細化のためには、少なくとも0.001 %以上の含有を必要
とするが、0.10%を超えると酸化物系介在物量が増加し
清浄度が劣化する。このため、Alは0.001 〜0.10%の範
囲に限定した。なお、好ましくは0.015 〜0.06%であ
る。
Al: 0.001 to 0.10% Al has an effect of making crystal grains fine. To refine the crystal grains, the content must be at least 0.001% or more. However, if the content exceeds 0.10%, the amount of oxide-based inclusions increases and the cleanliness deteriorates. For this reason, Al was limited to the range of 0.001 to 0.10%. Incidentally, the content is preferably 0.015 to 0.06%.

【0015】上記した基本組成に加えて、次に述べる合
金元素群を単独あるいは複合して添加してもよい。 Cu:1%以下、Ni:2%以下、Cr:2%以下、Mo:1%
以下のうちから選ばれる1種又は2種以上 Cu、Ni、Cr、Moはいずれも強度を増加させる元素であ
り、必要に応じ1種または2種以上を添加できる。これ
ら元素は、変態点を低下させ、フェライト粒あるいは第
2相を微細化する効果を有している。しかし、Cuは多量
添加すると熱間加工性が劣化するため、1%を上限とし
た。Niは強度増加とともに靱性をも改善するが2%を超
えて添加しても効果が飽和しコスト高になるため、2%
を上限とした。Cr、Moは多量添加すると溶接性、延性が
劣化するうえコスト高となるため、それぞれ2%、1%
を上限とした。なお、好ましくはCu:0.1 〜0.6 %、N
i:0.1 〜1.0 %、Cr:0.1 〜1.5 %、Mo:0.05〜0.5
%である。
In addition to the above basic composition, the following alloying element group may be added alone or in combination. Cu: 1% or less, Ni: 2% or less, Cr: 2% or less, Mo: 1%
One or more selected from the following Cu, Ni, Cr, and Mo are all elements that increase the strength, and one or more may be added as necessary. These elements have the effect of lowering the transformation point and miniaturizing the ferrite grains or the second phase. However, the hot workability deteriorates when a large amount of Cu is added, so the upper limit is 1%. Ni improves toughness with increasing strength, but adding more than 2% saturates the effect and increases cost, so 2%
Was set as the upper limit. If large amounts of Cr and Mo are added, the weldability and ductility will deteriorate and the cost will increase.
Was set as the upper limit. Preferably, Cu: 0.1-0.6%, N
i: 0.1 to 1.0%, Cr: 0.1 to 1.5%, Mo: 0.05 to 0.5
%.

【0016】Nb:0.1 %以下、V:0.3 %以下、Ti:0.
2 %以下、B:0.004 %以下のうちから選ばれる1種ま
たは2種以上 Nb、V、Ti、Bは、炭化物、窒化物または炭窒化物とし
て析出し、結晶粒の微細化と高強度化に寄与する元素で
あり、特に高温に加熱される接合部を有する鋼管では、
接合時の加熱過程での粒の微細化や、冷却過程でフェラ
イトの析出核として作用し、接合部の硬化を防止する効
果もあり、必要に応じ1種または2種以上添加できる。
しかし、多量添加すると、溶接性、靱性とも劣化するた
め、Nbは0.1 %、Vは0.3 %、Tiは0.2 %、Bは0.004
%をそれぞれ上限とした。なお、好ましくはNb:0.005
〜0.05%、V:0.05〜0.1 %、Ti:0.005 〜0.10%、
B:0.0005〜0.002 %である。
Nb: 0.1% or less, V: 0.3% or less, Ti: 0.
2% or less, B: one or more selected from among 0.004% or less Nb, V, Ti, and B precipitate as carbides, nitrides, or carbonitrides, and refine crystal grains and increase strength. Element, especially in steel pipes with joints heated to high temperatures,
There is also an effect of miniaturizing grains in a heating process at the time of joining and a precipitation nucleus of ferrite in a cooling process to prevent hardening of a joined portion, and one or more kinds can be added as necessary.
However, when added in large amounts, both weldability and toughness deteriorate, so that Nb is 0.1%, V is 0.3%, Ti is 0.2%, and B is 0.004%.
% Was the upper limit. Preferably, Nb: 0.005
~ 0.05%, V: 0.05 ~ 0.1%, Ti: 0.005 ~ 0.10%,
B: 0.0005 to 0.002%.

【0017】REM :0.02%以下、Ca:0.01%以下のうち
から選ばれる1種または2種 REM 、Caは、いずれも介在物の形状を調整し加工性を向
上させる作用を有しており、さらに、硫化物、酸化物ま
たは硫酸化物として析出し、接合部を有する鋼管での接
合部の硬化を防止する作用をも有し、必要に応じ1種以
上添加できる。REM が0.02%を超え、あるいは、Caが0.
01%を超えると介在物が多くなりすぎ清浄度が低下し、
延性が劣化する。なお、REM が0.004 %未満、Caが0.00
1 %未満ではこの作用による効果が少ないため、REM :
0.004 %以上、Ca:0.001 %以上とするのが好ましい。
One or two kinds of REM and Ca selected from REM: 0.02% or less and Ca: 0.01% or less, both have an effect of adjusting the shape of inclusions and improving workability. Furthermore, it has the effect of preventing sulphide, oxide or sulphate oxide from being hardened at the joint part in the steel pipe having the joint part, and one or more kinds can be added as necessary. REM exceeds 0.02% or Ca is 0.
If it exceeds 01%, the amount of inclusions becomes too large and the cleanliness decreases,
Ductility deteriorates. REM is less than 0.004% and Ca is less than 0.004%.
Below 1%, the effect of this effect is small, so REM:
The content is preferably 0.004% or more and Ca: 0.001% or more.

【0018】上記成分元素以外の組成部分(残部)は、
Feおよび不可避的不純物からなる。不可避的不純物とし
ては、N:0.010 %以下、O:0.006 %以下、P:0.02
5%以下、S:0.020 %以下が許容される。 N:0.010 %以下 Nは、Alと結合して結晶粒を微細化するに必要な量、0.
010 %までは許容できるが、それ以上の含有は延性を劣
化させるため、0.010 %以下に低減するのが好ましい。
なお、より好ましくは、Nは0.002 〜0.006 %である。
The composition part (remaining part) other than the above component elements is:
Consists of Fe and inevitable impurities. As inevitable impurities, N: 0.010% or less, O: 0.006% or less, P: 0.02%
5% or less, S: 0.020% or less is allowable. N: 0.010% or less N is an amount necessary for bonding with Al and refining crystal grains.
Up to 010% is acceptable, but more than 10% will reduce ductility, so it is preferred to reduce it to 0.010% or less.
More preferably, N is 0.002 to 0.006%.

【0019】O:0.006 %以下 Oは、酸化物として清浄度を劣化させるため、できるだ
け低減するのが好ましいが、0.006 %までは許容でき
る。 P:0.025 %以下 Pは、粒界に偏析し、靱性を劣化させるため、できるだ
け低減するのが好ましいが、0.025 %までは許容でき
る。
O: 0.006% or less O deteriorates cleanliness as an oxide, so it is preferable to reduce O as much as possible, but up to 0.006% is acceptable. P: 0.025% or less P segregates at grain boundaries and degrades toughness, so it is preferable to reduce P as much as possible, but up to 0.025% is acceptable.

【0020】S:0.020 %以下 Sは、硫化物を増加し清浄度を劣化させるため、できる
だけ低減するのが好ましいが、0.020 %までは許容でき
る。次に、本発明の絞り圧延工程について説明する。絞
り圧延は、3ロール式の絞り圧延機(レデューサ)によ
り行うのが好ましいが、3ロール式に限定されるもので
はない。レデューサは複数のスタンドをタンデムに配置
した連続圧延可能なものがよい。スタンド数は被圧延管
のレデューサ入側および出側での目標寸法により適宜定
められる。
S: not more than 0.020% S is preferably reduced as much as possible because it increases sulfides and degrades cleanliness. However, S is allowable up to 0.020%. Next, the reduction rolling step of the present invention will be described. The reduction rolling is preferably performed by a three-roll type reduction mill (reducer), but is not limited to the three-roll type. The reducer is preferably one that can be continuously rolled with a plurality of stands arranged in tandem. The number of stands is appropriately determined according to the target dimensions at the reducer entrance side and exit side of the rolled tube.

【0021】本発明では、上記組成を有する鋼管(素
管)を、Ac3変態点〜400 ℃に加熱または均熱した後、
Ac3変態点〜400 ℃で累積縮径率20%以上の絞り圧延を
行い、引き続き、冷却速度1.5 ℃/s以上で常温まで急冷
する。加熱または均熱温度(以下、加熱温度と総称す
る)がAc3変態点を超えると、表面性状が劣化するとと
もに、結晶粒が粗大化する。このため素管の加熱温度は
はAc3変態点以下、好ましくは(Ac1+50℃)以下、よ
り好ましくは750 ℃以下とするのがよい。加熱温度が40
0 ℃未満では、好適な圧延温度を確保することが困難に
なるため、加熱温度は400 ℃以上とするのが好ましい。
In the present invention, a steel pipe (base pipe) having the above composition is heated or soaked to an Ac 3 transformation point to 400 ° C.
Rolling is performed at a transformation temperature of Ac 3 to 400 ° C. and a cumulative reduction ratio of 20% or more, followed by rapid cooling to room temperature at a cooling rate of 1.5 ° C./s or more. If the heating or soaking temperature (hereinafter collectively referred to as the heating temperature) exceeds the Ac 3 transformation point, the surface properties deteriorate and the crystal grains become coarse. For this reason, the heating temperature of the raw tube should be lower than the Ac 3 transformation point, preferably lower than (Ac 1 + 50 ° C.), and more preferably lower than 750 ° C. Heating temperature is 40
If the temperature is lower than 0 ° C., it is difficult to secure a suitable rolling temperature. Therefore, the heating temperature is preferably set to 400 ° C. or higher.

【0022】加熱または均熱された素管の絞り圧延は、
3ロール式絞り圧延機を用いて行うのが好ましいがこれ
に限定されるものではない。絞り圧延機は、複数のスタ
ンドをタンデムに配置した連続圧延可能なものが好まし
い。スタンド数は素管および製品管の寸法により適宜決
定できる。絞り圧延の圧延温度は、フェライト回復・再
結晶温度域のAc3〜400 ℃、好ましくは(Ac1+50℃)
〜400 ℃、より好ましくは750 〜400 ℃の範囲とする。
The rolling of the heated or soaked raw tube is performed by
It is preferable to use a three-roll type rolling mill, but the present invention is not limited to this. It is preferable that the rolling mill be capable of continuous rolling in which a plurality of stands are arranged in tandem. The number of stands can be appropriately determined according to the dimensions of the raw tube and the product tube. The rolling temperature of the reduction rolling is Ac 3 to 400 ° C. in the ferrite recovery / recrystallization temperature range, preferably (Ac 1 + 50 ° C.).
To 400 ° C, more preferably 750 to 400 ° C.

【0023】圧延温度がAc3変態点を超えると、再結晶
後のフェライト粒の成長が著しくなり、強度低下のわり
には延性が向上しない。このため、圧延温度はAc3変態
点以下、好ましくは(Ac1+50℃)以下、さらに好まし
くは750 ℃以下とする。一方、圧延温度が400 ℃未満で
は青熱脆性により脆化し圧延中に材料が破断するおそれ
がある。さらに圧延温度が400 ℃未満では材料の変形抵
抗が増大し圧延が困難となるほか、再結晶が不十分とな
り加工歪が残存しやすくなる。このため、絞り圧延の圧
延温度は、Ac3〜400 ℃、好ましくは(Ac1+50℃)〜
400 ℃、さらに好ましくは750 ℃〜400 ℃の範囲に限定
した。なかでも好ましいのは700 〜600℃の範囲であ
る。
When the rolling temperature exceeds the Ac 3 transformation point, ferrite grains after recrystallization grow remarkably, and ductility does not improve at the expense of strength. Therefore, the rolling temperature is set to the Ac 3 transformation point or lower, preferably (Ac 1 + 50 ° C.) or lower, more preferably 750 ° C. or lower. On the other hand, if the rolling temperature is lower than 400 ° C., the material becomes brittle due to blue embrittlement and the material may be broken during rolling. Further, when the rolling temperature is lower than 400 ° C., the deformation resistance of the material increases and rolling becomes difficult. In addition, recrystallization becomes insufficient and processing strain tends to remain. For this reason, the rolling temperature of the reduction rolling is from Ac 3 to 400 ° C., preferably (Ac 1 + 50 ° C.).
It was limited to 400 ° C, more preferably in the range of 750 ° C to 400 ° C. Particularly preferred is a range of 700 to 600 ° C.

【0024】絞り圧延における累積縮径率は20%以上と
する。累積縮径率(={(素管外径−製品管外径)/
(素管外径)}×100 %)が20%未満では、回復・再結
晶による結晶粒の微細化が不十分であり、延性に富む鋼
管とならない。また、圧延速度も遅く生産性が悪い。こ
のため累積縮径率は20%以上とする必要がある。なお、
累積縮径率が60%以上では、加工硬化による強度増加に
加えて組織の微細化が顕著となり、上記した組成範囲の
合金添加量が低い低成分系の鋼管でも強度と延性のバラ
ンスに優れ、強度、延性ともに優れた鋼管が得られる。
このことから、累積縮径率は60%以上とするのがより好
ましい。
The cumulative diameter reduction ratio in the reduction rolling is set to 20% or more. Cumulative diameter reduction rate (= {(base tube outside diameter-product tube outside diameter) /
If (the outer diameter of the base tube) x 100%) is less than 20%, the refinement of the crystal grains by recovery and recrystallization is insufficient, and the steel tube does not become highly ductile. Also, the rolling speed is low and productivity is poor. Therefore, the cumulative diameter reduction rate needs to be 20% or more. In addition,
When the cumulative diameter reduction rate is 60% or more, the microstructure becomes remarkable in addition to the increase in strength due to work hardening, and the balance between strength and ductility is excellent even in a low-component steel pipe with a low alloy addition amount in the above composition range. A steel pipe excellent in both strength and ductility can be obtained.
For this reason, the cumulative diameter reduction rate is more preferably set to 60% or more.

【0025】絞り圧延においては、1パス当たりの縮径
率が6%以上の圧延パスを少なくとも1パス以上含む圧
延とするのが好ましい。これが6%未満では、回復・再
結晶による結晶粒の微細化が不十分である。また、6%
以上では、加工発熱による温度上昇が認められ圧延温度
の低下を防止できる。なお、結晶粒のさらなる微細化の
ためには1パス当たりの縮径率は8%以上が殊更好まし
い。
In the reduction rolling, it is preferable that the rolling includes at least one rolling pass having a diameter reduction ratio of 6% or more per pass. If it is less than 6%, the crystal grains are not sufficiently refined by recovery / recrystallization. Also, 6%
In the above, the temperature rise due to the heat generated by the processing is recognized, and the reduction of the rolling temperature can be prevented. In order to further refine the crystal grains, the diameter reduction ratio per pass is particularly preferably 8% or more.

【0026】上記条件で絞り圧延された製品管を、図1
(c) に示すように圧延後の冷却速度αを大きくして常温
まで急冷することにより、結晶粒の粗大化を抑制でき、
強度−延性バランスに優れる鋼管を得ることができる。
冷却速度αの下限としては、次式で定義される結晶粒粗
大化率βが1.05以下となる値とするのが好ましく、本発
明では、その下限値は1.5 ℃/sである。
The product tube drawn and rolled under the above conditions is shown in FIG.
As shown in (c), by increasing the cooling rate α after rolling and rapidly cooling to room temperature, coarsening of crystal grains can be suppressed,
A steel pipe excellent in strength-ductility balance can be obtained.
The lower limit of the cooling rate α is preferably a value such that the crystal grain coarsening rate β defined by the following equation is 1.05 or less. In the present invention, the lower limit is 1.5 ° C./s.

【0027】β=(Df −Di )/Di ここに、Df :製品粒径、Di :圧延直後粒径。 前記急冷を行うには、素管1を絞り圧延後、直管2に切
断して冷却床で移送する場合には冷却床に水、エア、ミ
スト等のスプレーノズルで構成される急冷装置7(図1
(a) )を配設するのが好適であり、また、コイル3に巻
き取る場合には、前記スプレーノズルを配設した急冷ボ
ックス8(図1(b) )でコイル3を覆うのが好適であ
る。なお、図1において、4は加熱・均熱炉、5はレデ
ューサ(絞り圧延機)、6は切断機である。
Β = (D f −D i ) / D i where D f : product particle size, D i : particle size immediately after rolling. In order to perform the rapid cooling, when the raw tube 1 is drawn and rolled, cut into the straight tube 2 and transferred by a cooling floor, the cooling floor is provided with a quenching device 7 (e.g., a spray nozzle of water, air, mist, etc.). FIG.
(a)) is preferably disposed, and when winding is performed around the coil 3, it is preferable to cover the coil 3 with a quenching box 8 (FIG. 1 (b)) provided with the spray nozzle. It is. In FIG. 1, reference numeral 4 denotes a heating / soaking furnace, 5 denotes a reducer (reducing mill), and 6 denotes a cutting machine.

【0028】[0028]

【実施例】(実施例1)表1に組成を示す鋼のうちA鋼
〜E鋼を表2の素管(φ62.0mm×T5.0 mm(φ:外径,
T:肉厚、以下同じ))に加工(造管)し、これら素管
を、705 ℃に加熱後、16スタンド・タンデム配置の3ロ
ール式レデューサにより圧延温度700 〜655 ℃、圧延速
度(最終スタンド出側)400m/minの条件下で絞り圧延し
て、φ25.4mm×T4.5mm の製品管とし、圧延後は図1
(b) のように急冷ボックス内でコイルに巻き取り、表2
に示す冷却条件にて常温まで冷却した。
EXAMPLES (Example 1) Among steels having compositions shown in Table 1, steels A to E were used as raw tubes (φ62.0 mm × T5.0 mm (φ: outer diameter,
T: wall thickness, the same shall apply hereinafter)), and after heating these blanks to 705 ° C., a rolling temperature of 700 to 655 ° C. and a rolling speed (final) by a three-roll reducer arranged in a 16-stand tandem arrangement. (Outside of stand) Rolling under 400m / min condition to produce product tube of φ25.4mm × T4.5mm.
As shown in (b), it is wound into a coil in a quenching box, and Table 2
Was cooled to room temperature under the cooling conditions shown in (1).

【0029】なお、表2の素管欄に「固相」と記した固
相圧接管は、熱延鋼帯を予熱炉で600 ℃に予熱後、複数
の成形ロールで連続的に管状に成形し、その継目部を誘
導加熱により1000℃に予熱後未溶融温度域の1450℃まで
加熱し、スクイズロールによりアプセットして造管し
た。「ERW」と記した電縫管は、熱延鋼帯を複数の成
形ロールで連続的に管状に成形しその継目部を誘導加熱
により溶融温度域に加熱後スクイズロールによりアプセ
ットする常法により造管した。
In the solid-state pressure-welded pipe described in Table 2 as "solid phase", a hot-rolled steel strip is preheated to 600 ° C. in a preheating furnace and then continuously formed into a tube by a plurality of forming rolls. Then, the joint was preheated to 1000 ° C. by induction heating, heated to 1450 ° C. in an unmelting temperature range, and upset with a squeeze roll to form a tube. The ERW tube described as "ERW" is formed by a conventional method in which a hot-rolled steel strip is continuously formed into a tubular shape with a plurality of forming rolls, the joint is heated to a melting temperature range by induction heating, and then upset by a squeeze roll. Piped.

【0030】絞り圧延・冷却後の製品について、引張特
性、結晶粒径を調査した結果を表2に示す。なお、引張
試験にはJIS 11号試験片を用い、伸びの値は、試験片サ
イズ効果を考慮して、換算式El=El0(√(a0/a))0.4(こ
こに、El0 :実測伸び,a0:定数292mm2,a :試験片断
面積(mm2) )による換算値で評価した。結晶粒径は、鋼
管長手方向に直角な断面をナイタール液で腐食し、光学
顕微鏡または電子顕微鏡で組織観察し、200 個以上の粒
の円相当径を求め、その平均値を用いた。なお、フェラ
イト以外の組織の粒径に関し、パーライトの場合はパー
ライトコロニー境界、べイナイト、マルテンサイトの場
合はパケット境界を粒界として粒径を測定した。
Table 2 shows the results of investigation on the tensile properties and the crystal grain size of the product after drawing rolling and cooling. The tensile test uses a JIS No. 11 test piece, and the elongation value is calculated in consideration of the effect of the test piece size by the conversion formula El = El 0 (√ (a 0 / a)) 0.4 (where El 0 : Actual elongation, a 0 : constant 292 mm 2 , a: test piece cross-sectional area (mm 2 )). As for the crystal grain size, a cross section perpendicular to the longitudinal direction of the steel pipe was corroded with a nital solution, the structure was observed with an optical microscope or an electron microscope, the equivalent circle diameter of 200 or more grains was obtained, and the average value was used. With respect to the grain size of the structure other than ferrite, the grain size was measured with the pearlite colony boundary in the case of pearlite, and the packet boundary in the case of bainite and martensite.

【0031】表2より、圧延後の急冷により結晶粒粗大
化率βを1.05以下とした本発明例の製品管は強度−延性
バランスに優れるのに対し、圧延後急冷しなかった比較
例の製品管は延性が低下している。 (実施例2)表1に組成を示す鋼のうちF鋼〜J鋼につ
いて、連続鋳造製ビレットを加熱しマンネスマンマンド
レルミルにて穿孔圧延することにより表3に「SML」
と記した継目無素管(φ71.5mm×T11.0mm×長さ15m)
に造管し、穿孔圧延後560 ℃まで冷却した後、680 ℃に
加熱し、18スタンド・タンデム配置の3ロール式レデュ
ーサにより圧延温度680 〜645 ℃、圧延速度(最終スタ
ンド出側)500m/minの条件下で絞り圧延して、φ33.0mm
×T10.0mmの製品管とし、圧延後は図1(a) のように所
定長さの直管に切断後急冷ボックス内でウォーキングビ
ームにて搬送する際に、表3に示す冷却条件にて冷却し
た。
From Table 2, it can be seen that the product tube of the present invention in which the crystal grain coarsening rate β was 1.05 or less by quenching after rolling was excellent in the strength-ductility balance, whereas the product of the comparative example which was not quenched after rolling. The tube is less ductile. (Example 2) For steels F to J among the steels having the compositions shown in Table 1, a billet made of continuous casting was heated and pierced and rolled with a Mannes mandrel mill to obtain "SML" in Table 3.
Seamless pipe (φ71.5mm x T11.0mm x length 15m)
After piercing and rolling, it was cooled to 560 ° C, heated to 680 ° C, and rolled at a temperature of 680-645 ° C with a three-roll reducer in a tandem arrangement of 18 stands at a rolling speed of 500m / min.絞 り 33.0mm
× T10.0mm product tube, after rolling, cut into a straight pipe of a predetermined length as shown in Fig. 1 (a), and then transported by a walking beam in a quench box under cooling conditions shown in Table 3. Cool.

【0032】絞り圧延・冷却後の製品について、実施例
1と同様に引張特性、結晶粒径を調査した結果を表3に
示す。表3より、圧延後の急冷により結晶粒粗大化率β
を1.05以下とした本発明例の製品管は強度−延性バラン
スに優れるのに対し、圧延後急冷しなかった比較例の製
品管は延性が低下している。
Table 3 shows the results of investigation of the tensile properties and the crystal grain size of the product after the rolling and cooling in the same manner as in Example 1. From Table 3, it can be seen that the crystal grain coarsening rate β
Is 1.05 or less, the product tube of the present invention is excellent in strength-ductility balance, whereas the product tube of the comparative example, which is not quenched after rolling, has a reduced ductility.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】かくして本発明によれば、絞り圧延後の
結晶粒粗大化を効果的に抑制できて強度−延性バランス
に優れる鋼管が得られるという優れた効果を奏する。
As described above, according to the present invention, there is an excellent effect that a steel pipe having an excellent balance between strength and ductility can be obtained by effectively suppressing coarsening of grains after drawing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の急冷実施形態を示す模式図である。FIG. 1 is a schematic diagram showing a rapid cooling embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 素管 2 直管 3 コイル 4 加熱・均熱炉 5 レデューサ(絞り圧延機) 6 切断機 7 急冷装置 8 急冷ボックス DESCRIPTION OF SYMBOLS 1 Raw pipe 2 Straight pipe 3 Coil 4 Heating / soaking furnace 5 Reducer (reducing mill) 6 Cutting machine 7 Rapid cooling device 8 Rapid cooling box

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/06 C22C 38/06 (72)発明者 西森 正徳 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 橋本 裕二 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 岡部 能知 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 金山 太郎 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA05 AA06 AA08 AA11 AA12 AA14 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA26 AA27 AA29 AA31 AA32 AA35 AA36 AA40 BA03 CB01 CC01 CC02 CD02 CD06 4K042 AA06 BA01 BA02 BA10 CA02 CA03 CA05 CA06 CA08 CA09 CA10 CA12 CA13 CA14 DC02 DD02 DE05 DE06 DF01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/06 C22C 38/06 (72) Inventor Masanori Nishimori 1-1-1 Kawasaki-cho, Handa-shi, Aichi, Kawasaki Inside the Chita Works of Iron Corporation (72) Inventor Motoaki Itaya 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Inside of the Chita Works Ironworks Corporation (72) Inventor Yuji Hashimoto 1-1-1, Kawasaki-cho, Handa-city, Aichi Prefecture Kawasaki (72) Inventor Nochika Okabe 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture Inventor Taro Kanayama 1-1-1, Kawasaki-cho, Handa-shi, Aichi Prefecture 4K032 AA01 AA02 AA04 AA05 AA06 AA08 AA11 AA12 AA14 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA26 AA 27 AA29 AA31 AA32 AA35 AA36 AA40 BA03 CB01 CC01 CC02 CD02 CD06 4K042 AA06 BA01 BA02 BA10 CA02 CA03 CA05 CA06 CA08 CA09 CA10 CA12 CA13 CA14 DC02 DD02 DE05 DE06 DF01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.005 〜0.70%、Si:0.01〜3.0 %、Mn:0.01〜4.
0 %、Al:0.001 〜0.10%を含有する鋼管を、 Ac3変態点〜400 ℃に加熱または均熱した後、Ac3変態
点〜400 ℃で累積縮径率20%以上の絞り圧延を行い、引
き続き、冷却速度1.5 ℃/s以上で常温まで急冷すること
を特徴とする鋼管の製造方法。
C. 0.005 to 0.70%, Si: 0.01 to 3.0%, Mn: 0.01 to 4.
A steel pipe containing 0% and Al: 0.001 to 0.10% is heated or soaked to an Ac 3 transformation point to 400 ° C., and then drawn and rolled at an Ac 3 transformation point to 400 ° C. with a cumulative reduction ratio of 20% or more. A method for producing a steel pipe, wherein the steel pipe is rapidly cooled to room temperature at a cooling rate of 1.5 ° C./s or more.
JP10267732A 1998-09-22 1998-09-22 Manufacture of steel tube Pending JP2000094009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267732A JP2000094009A (en) 1998-09-22 1998-09-22 Manufacture of steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10267732A JP2000094009A (en) 1998-09-22 1998-09-22 Manufacture of steel tube

Publications (1)

Publication Number Publication Date
JP2000094009A true JP2000094009A (en) 2000-04-04

Family

ID=17448811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267732A Pending JP2000094009A (en) 1998-09-22 1998-09-22 Manufacture of steel tube

Country Status (1)

Country Link
JP (1) JP2000094009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231398A (en) * 2010-04-09 2011-11-17 Nippon Steel Corp Electric resistance welded steel tube with excellent machinability
WO2015080618A1 (en) * 2013-11-26 2015-06-04 Закрытое акционерное общество "Омутнинский металлургический завод" Alloyed construction steel having increased strength and method for heat strengthening a hot-rolled product
CN104911502A (en) * 2015-05-29 2015-09-16 武钢集团昆明钢铁股份有限公司 1080MPa grade high strength prestressed finish rolled threaded reinforcing bar and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231398A (en) * 2010-04-09 2011-11-17 Nippon Steel Corp Electric resistance welded steel tube with excellent machinability
WO2015080618A1 (en) * 2013-11-26 2015-06-04 Закрытое акционерное общество "Омутнинский металлургический завод" Alloyed construction steel having increased strength and method for heat strengthening a hot-rolled product
CN104911502A (en) * 2015-05-29 2015-09-16 武钢集团昆明钢铁股份有限公司 1080MPa grade high strength prestressed finish rolled threaded reinforcing bar and preparation method thereof

Similar Documents

Publication Publication Date Title
US6290789B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
KR100351791B1 (en) Steel pipe having high ductility and high strength and process for production thereof
CN101328559B (en) Steel for low yield ratio petroleum case pipe, petroleum case pipe and manufacturing method thereof
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP2001355046A (en) Steel tube for reinforcing automobile door and its production method
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
JP3375554B2 (en) Steel pipe with excellent strength-ductility balance
JP2000104117A (en) Production of seamless steel pipe for linepipe excellent in toughness and uniformity of strength
JP3760640B2 (en) Steel pipe manufacturing method
CN111655892B (en) Hot-rolled steel sheet for continuous pipe and method for producing same
JP3622499B2 (en) Steel pipe manufacturing method
JP3785828B2 (en) Steel pipe drawing method
CN114729426B (en) Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP2004292922A (en) Method for manufacturing high tensile strength steel pipe of excellent combined secondary workability
JP2001262275A (en) High tensile strength seamless steel pipe excellent in toughness, ductility and weldability and its producing method
JP2000094009A (en) Manufacture of steel tube
JP6747623B1 (en) ERW steel pipe
JP3760641B2 (en) Steel pipe manufacturing method
KR100330432B1 (en) Ultrafine-grain steel pipe and process for manufacturing the same
JP3330522B2 (en) Manufacturing method of high fatigue strength steel pipe
JP3896647B2 (en) Manufacturing method of high-strength steel pipe with excellent workability
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
JP3683378B2 (en) Manufacturing method of high toughness and high ductility steel pipe
JP2000169913A (en) Production of seamless steel pipe for linepipe excellent in strength and toughness

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717