JP2000093990A - Treatment of sewage by activated sludge - Google Patents

Treatment of sewage by activated sludge

Info

Publication number
JP2000093990A
JP2000093990A JP10272846A JP27284698A JP2000093990A JP 2000093990 A JP2000093990 A JP 2000093990A JP 10272846 A JP10272846 A JP 10272846A JP 27284698 A JP27284698 A JP 27284698A JP 2000093990 A JP2000093990 A JP 2000093990A
Authority
JP
Japan
Prior art keywords
flocculant
activated sludge
turbidity
tank
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10272846A
Other languages
Japanese (ja)
Inventor
Koji Shiga
浩二 志賀
Kenichi Nishida
健一 西田
Motoyoshi Shimomura
元是 下村
Takashi Shiki
貴志 式
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10272846A priority Critical patent/JP2000093990A/en
Publication of JP2000093990A publication Critical patent/JP2000093990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the amount of a flocculant used and to prevent the clogging of a sand filter bed by controlling the addition amt. of the flocculant by an automatic control mechanism measuring the turbidity of waste water and regulating the addition amt. of the flocculant to activated sludge on the basis of the measured result. SOLUTION: The sludge of an excessive sludge tank 5 is drawn out by a pump to be mixed with the flocculant sent from a flocculant tank 9 by a pump and the resulting mixture is mechanically dehydrated by a dehydrator 10. The formed waste water is allowed to flow in a waste water sump 11 and sent out to a supernatant water tank 6 by a pump. A turbidity meter 12 is arranged on the way from the dehydrator 10 to the waste water sump 11 to automatically measure the turbidity of the waste water. The measured result is sent to the control panel of the motor of the pump sending out the flocculant from the flocculant tank 9 and the number of rotations of the motor is regulated to control the addition amt. of the flocculant. The turbidity can be measured continuously and intermittently and the control of the addition amt. of the flocculant based on the measured result can be also performed by an arbitrary method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は活性汚泥による汚水
処理方法に関するものである。詳しくは本発明は、余剰
の活性汚泥を脱水する際に用いる凝集剤の使用量を節減
する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for treating wastewater with activated sludge. More specifically, the present invention relates to a method for reducing the amount of a coagulant used when dehydrating excess activated sludge.

【0002】[0002]

【従来の技術】活性汚泥により汚水を処理することは広
く行われている。その代表的な方法の一つでは、曝気槽
に汚水を連続的に流入させ、活性汚泥の存在下に汚水を
曝気処理して、汚水中の有機物を分解する。曝気処理を
経た汚水は活性汚泥と一緒に沈降槽に流入させて活性汚
泥を沈降させる。沈降槽からは活性汚泥を抜出して曝気
槽に循環する。沈降槽から流出する上澄水は、砂濾過層
を通過させて浮遊物を除去したのち、公共水域に放流す
る。上澄水が着色している場合には、砂濾過層に引続い
て活性炭層を通過させて、脱色したのち公共水域に放流
する。
2. Description of the Related Art The treatment of wastewater with activated sludge is widely practiced. In one of the typical methods, sewage is continuously introduced into an aeration tank, and sewage is aerated in the presence of activated sludge to decompose organic matter in the sewage. The sewage that has undergone aeration treatment flows into a settling tank together with the activated sludge to settle the activated sludge. The activated sludge is extracted from the settling tank and circulated to the aeration tank. The supernatant water flowing out of the settling tank is passed through a sand filtration layer to remove suspended matters, and then discharged into public waters. If the supernatant water is colored, it is passed through a sand filter layer and subsequently through an activated carbon layer, decolorized, and discharged into public waters.

【0003】この方法では余剰の活性汚泥が発生するの
で、沈降槽から曝気槽に循環される活性汚泥の一部を系
外に排出しなければならない。活性汚泥は含水率が極め
て高いので、通常はこれに凝集剤を添加したのち加圧濾
過機、遠心分離機などの脱水装置で脱水して系外に排出
する。活性汚泥から絞り出された排水は、沈降槽からの
上澄水と一緒にして砂濾過層を通過させて、浮遊物を除
去する。
In this method, since excess activated sludge is generated, a part of the activated sludge circulated from the settling tank to the aeration tank must be discharged out of the system. Activated sludge has an extremely high water content, so that a flocculant is usually added to the activated sludge and then dewatered by a dehydrator such as a pressure filter or a centrifugal separator and discharged to the outside of the system. The wastewater squeezed out of the activated sludge is passed through a sand filtration layer together with the supernatant water from the settling tank to remove suspended matters.

【0004】[0004]

【発明が解決しようとする課題】この方法では砂濾過層
の目詰りを防止することが重要である。周知のように活
性汚泥の性状は変化し易いので、余剰の活性汚泥の脱水
に際しては、汚泥に対する凝集剤の添加比率を一定にし
ても、絞り出される排水の浮遊物の含有量は相当に大き
く変化し、場合によっては浮遊物によって砂濾過層が目
詰りを起すことがある。砂濾過層が目詰りすると逆洗し
て目詰りを解消させなければならず、正常な運転が著し
く阻害される。従って通常は、活性汚泥の性状が変化し
ても排水の浮遊物濃度が上限値以上には上昇しないよう
に、凝集剤は運転の安全のために過剰に添加されてい
る。しかし必要以上に凝集剤を添加することは経済的に
不利である。従って本発明は、最少限の凝集剤の添加で
砂濾過層の目詰りを防止する方法を提供しようとするも
のである。
In this method, it is important to prevent clogging of the sand filtration layer. As is well known, the properties of activated sludge are liable to change, so when dewatering excess activated sludge, the content of suspended matter in the squeezed wastewater is considerably large even when the addition ratio of the coagulant to sludge is constant. Changes and, in some cases, suspended matter can cause clogging of the sand filtration layer. If the sand filtration layer is clogged, it must be backwashed to eliminate the clogging, and normal operation is significantly impaired. Therefore, the coagulant is usually added excessively for safety of operation so that the suspended solids concentration of the wastewater does not rise above the upper limit even if the properties of the activated sludge change. However, it is economically disadvantageous to add a coagulant more than necessary. Accordingly, an object of the present invention is to provide a method for preventing clogging of a sand filtration layer by adding a minimum amount of a flocculant.

【0005】[0005]

【課題を解決するための手段】本発明によれば、汚水を
曝気槽で活性汚泥の存在下に曝気処理し、ここから流出
する処理水を沈降槽に流入させて活性汚泥を沈降させ、
沈降槽から活性汚泥と上澄水とを抜出し、前者は曝気槽
に循環し、後者は少くとも砂濾過層を通過させて浮遊物
を除去したのち放流する汚水の処理方法において、沈降
槽から曝気槽に循環される活性汚泥の余剰分に凝集剤を
添加したのち脱水装置で脱水し、排水は沈降槽の上澄水
と一緒にして砂濾過槽を通過させるようになし、かつこ
の排水の濁度を測定し、その測定結果に基いて活性汚泥
への凝集剤の添加量を調節する自動制御機構により凝集
剤の添加量を制御することにより、凝集剤の使用量を最
少限にしてなおかつ砂濾過層の目詰りを防止することが
できる。
According to the present invention, sewage is aerated in an aeration tank in the presence of activated sludge, and treated water flowing out therefrom is allowed to flow into a settling tank to settle activated sludge.
Activated sludge and supernatant water are extracted from the sedimentation tank. After adding a flocculant to the excess of the activated sludge circulated to the dewatering unit, dewatering is performed by using a dewatering device.The wastewater is passed through a sand filtration tank together with the supernatant water of the sedimentation tank, and the turbidity of the wastewater is reduced. The amount of flocculant added is controlled by an automatic control mechanism that measures the amount of flocculant added to the activated sludge based on the measurement results and minimizes the amount of flocculant used. Clogging can be prevented.

【0006】[0006]

【発明の実施の形態】本発明では、活性汚泥を用いる汚
水処理において、余剰の活性汚泥に凝集剤を添加して脱
水するに際し、脱水により絞り出される排水の濁度を測
定し、その測定結果に基いて活性汚泥への凝集剤の添加
比を調節する自動制御機構により、凝集剤の添加を制御
する。これにより凝集剤の使用量を最少限に止めて、な
おかつ後続する砂濾過層の目詰りを防止することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in the treatment of sewage using activated sludge, when a coagulant is added to excess activated sludge and dewatering is performed, the turbidity of the wastewater squeezed out by dehydration is measured, and the measurement result is obtained. The addition of the coagulant is controlled by an automatic control mechanism that adjusts the addition ratio of the coagulant to the activated sludge based on the above. As a result, the amount of the coagulant used can be minimized, and the subsequent sand filtration layer can be prevented from being clogged.

【0007】本発明を更に具体的に説明すると、図1は
本発明を実施する際のフローシートの1例であり、曝気
槽1に導管2を経て汚水、導管3を経て空気を連続的に
供給し、活性汚泥により汚水中の有機物を分解させる。
曝気槽1から流出した処理水は沈降槽4に流入させ、静
置して活性汚泥を沈降させる。沈降した活性汚泥はポン
プで抜出して、大部分は曝気槽1に循環し、余剰分は余
剰汚泥槽5に排出する。沈降槽4の上澄水は上澄水槽6
に流入させ、ポンプで抜出して砂濾過層7及び活性炭層
8を順次通過させ、浮遊物及び着色成分を除去したのち
公共水域に放流する。通常、砂濾過層及び活性炭層は複
数個設置し、定期的に順次再生することにより全体とし
てほぼ連続的に通水できるようにする。一方、余剰汚泥
槽5の汚泥はポンプで抜出し、凝集剤槽9からポンプで
送られてくる凝集剤と混合したのち、脱水装置10で機
械的に脱水する。生成した排水は排水溜11に流入さ
せ、ポンプで上澄水槽6に送り出す。脱水装置も図示の
如く複数設置されていることが多い。脱水装置10から
排水溜11への途中には濁度計12が設置されており、
排水の濁度を自動的に測定するようになっている。測定
結果は凝集剤槽9から凝集剤を送り出すポンプのモータ
ーの制御盤に送られ、モーターの回転数を調節すること
により凝集剤の添加量を制御する。濁度の測定は連続的
にも間欠的にも行うことができ、また測定結果に基づく
凝集剤の添加量の制御も任意の方法で行うことができ
る。好ましくは脱水装置として遠心分離機を用い、かつ
凝集剤を汚泥を遠心分離機に供給する供給導管内で汚泥
に添加することにより、汚泥に対する凝集剤の添加量の
増減の影響を排水の濁度として直ちに検出し得るように
する。また凝集剤の添加量の調節を、排水の濁度を測定
し、その測定結果を予じめ定めた基準濁度範囲と比較
し、この範囲を上廻っていれば添加量を減少させ、下廻
っていれば添加量を増加させる濁度測定−添加量調節を
短時間、例えば30秒〜1分毎に反復して排水の濁度を
基準濁度範囲内に誘導することにより行うのが好まし
い。本発明の好ましい一態様では、このような凝集剤の
添加量の調節を所定時間行う制御時間帯と、この時間帯
の最後に選択された添加速度で凝集剤を所定時間添加す
る非制御時間帯とからなるサイクルを反復する。制御時
間帯は5〜15分間で十分であり、また非制御時間帯は
30分間以内であれば排水中の浮遊物の増加により後続
する砂濾過層の通水に障害となることは殆んどない。こ
のようにすると複数台の脱水装置からの排水の濁度の測
定を、対象排水を順次切替えることにより1台の濁度計
で行うことができる。
More specifically, the present invention will be described with reference to FIG. 1 which shows an example of a flow sheet when the present invention is carried out. In the aeration tank 1, sewage is continuously supplied through a conduit 2, and air is continuously supplied through a conduit 3. The organic matter in the sewage is decomposed by activated sludge.
The treated water flowing out of the aeration tank 1 is allowed to flow into the settling tank 4, where it is allowed to stand still to settle the activated sludge. The settled activated sludge is extracted by a pump, and most of the sludge is circulated to the aeration tank 1, and the excess is discharged to the excess sludge tank 5. The supernatant water in the settling tank 4 is the supernatant water tank 6
, And is drawn out by a pump, sequentially passed through a sand filtration layer 7 and an activated carbon layer 8 to remove suspended matters and coloring components, and then discharged into public waters. Usually, a plurality of sand filtration layers and activated carbon layers are provided and periodically regenerated one after another so that water can be passed almost continuously as a whole. On the other hand, the sludge in the surplus sludge tank 5 is extracted by a pump, mixed with a flocculant sent from the flocculant tank 9 by a pump, and then mechanically dewatered by a dewatering device 10. The generated wastewater is allowed to flow into the drainage reservoir 11 and sent out to the supernatant water tank 6 by a pump. In many cases, a plurality of dehydrators are installed as shown in the figure. A turbidity meter 12 is installed on the way from the dehydrating device 10 to the drainage reservoir 11,
The turbidity of the wastewater is automatically measured. The measurement result is sent to the control panel of the motor of the pump that sends out the flocculant from the flocculant tank 9, and the addition amount of the flocculant is controlled by adjusting the rotation speed of the motor. The turbidity can be measured continuously or intermittently, and the amount of the flocculant added can be controlled based on the measurement result by any method. Preferably, a centrifuge is used as the dewatering device, and the coagulant is added to the sludge in a supply conduit for supplying the sludge to the centrifuge. As soon as possible. In addition, the amount of coagulant to be added is measured by measuring the turbidity of the wastewater and comparing the measurement result with a predetermined reference turbidity range. If so, it is preferable to repeat the turbidity measurement-addition amount adjustment for a short time, for example, every 30 seconds to 1 minute so as to induce the turbidity of the wastewater into the reference turbidity range. In a preferred embodiment of the present invention, a control time period in which such adjustment of the amount of the coagulant is performed for a predetermined time and a non-control time period in which the coagulant is added for a predetermined time at an addition rate selected at the end of this time period Is repeated. The control time period of 5 to 15 minutes is sufficient, and the non-control time period of 30 minutes or less is unlikely to hinder the passage of water through the subsequent sand filtration layer due to the increase of suspended solids in the wastewater. Absent. In this way, the turbidity of wastewater from a plurality of dehydrators can be measured by one turbidity meter by sequentially switching the target wastewater.

【0008】本発明をコークス製造工場で発生する廃水
の処理に適用したところ、数時間毎に運転員が排水の濁
度をチェックして凝集剤の添加量を手動で調節していた
ときに比較して、凝集剤の使用量を約60%節減するこ
とができた。コークス製造工場では、発生するコークス
炉ガス中に原料の石炭に付着していた水や石炭の分解に
より生じた水が含まれており、コークス炉ガスを冷却・
精製する過程で、着色したBODの高い汚水が排出され
る。またコークス炉ガス中のコールタールを回収する過
程でも汚水が排出される。従ってコークス製造工場で
は、これらの廃水を活性汚泥処理−砂濾過−活性炭吸着
の各処理を経て公共水域に放流しており、この処理に要
する費用及び労力を軽減させることは大いに意義のある
ことである。
When the present invention is applied to the treatment of wastewater generated in a coke manufacturing plant, it is compared with a case where the operator checks the turbidity of the wastewater every few hours and manually adjusts the amount of the coagulant added. As a result, the use amount of the flocculant could be reduced by about 60%. In a coke manufacturing plant, the coke oven gas generated contains water adhering to the raw material coal and water generated by the decomposition of the coal, and the coke oven gas is cooled and cooled.
During the purification process, colored BOD-rich wastewater is discharged. Sewage is also discharged during the process of collecting coal tar in coke oven gas. Therefore, in a coke manufacturing plant, these wastewaters are discharged into public waters through activated sludge treatment, sand filtration, and activated carbon adsorption, and it is very significant to reduce the cost and labor required for this treatment. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する際のフローシートの1例であ
る。
FIG. 1 is an example of a flow sheet when implementing the present invention.

【符号の説明】[Explanation of symbols]

1 曝気槽 2 汚水供給管 3 空気供給管 4 沈降槽 5 余剰汚泥槽 6 上澄水槽 7 砂濾過層 8 活性炭層 9 凝集剤槽 10 脱水装置 11 排水溜 12 濁度計 Reference Signs List 1 aeration tank 2 sewage supply pipe 3 air supply pipe 4 settling tank 5 excess sludge tank 6 supernatant water tank 7 sand filtration layer 8 activated carbon layer 9 coagulant tank 10 dehydrator 11 drainage tank 12 turbidity meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下村 元是 香川県坂出市番の州町1番地 三菱化学株 式会社坂出事業所内 (72)発明者 式 貴志 香川県坂出市番の州町1番地 三菱化学株 式会社坂出事業所内 Fターム(参考) 4D028 AA01 AB05 AC01 AC09 BE02 BE08 CA00 CA12 CB01 CB03 CC00 CD05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Motoyoshi Shimomura 1st Bancho-cho, Sakaide City, Kagawa Prefecture Mitsubishi Chemical Corporation Sakaide Office (72) Inventor Kishi 1st Bancho-cho, Sakaide City, Kagawa Prefecture Mitsubishi Chemical Corporation 4D028 AA01 AB05 AC01 AC09 BE02 BE08 CA00 CA12 CB01 CB03 CC00 CD05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 汚水を曝気槽で活性汚泥の存在下に曝気
し、ここから流出する処理水を沈降槽に流入させて活性
汚泥を沈降させ、沈降槽から活性汚泥と上澄水とを抜出
し、前者は曝気槽に循環し、後者は少くとも砂濾過層を
通過させて浮遊物を除去したのち放流する汚水の処理方
法において、沈降槽から曝気槽に循環される活性汚泥の
余剰分に凝集剤を添加したのち脱水装置で脱水し、排水
は沈降槽の上澄水と一緒にして砂濾過層を通過させるよ
うになし、かつこの排水の濁度を測定し、その測定結果
に基いて脱水装置に供する活性汚泥への凝集剤の添加量
を調節する自動制御機構により凝集剤の添加量を制御す
ることを特徴とする方法。
1. Aeration of sewage in an aeration tank in the presence of activated sludge, treated water flowing out therefrom is allowed to flow into a settling tank to settle activated sludge, and activated sludge and supernatant water are extracted from the settling tank. The former is circulated to an aeration tank, and the latter is a method of treating wastewater that is at least passed through a sand filtration layer to remove suspended matter and then discharged. After the addition of water, the water is dehydrated with a dehydrator, and the wastewater is passed through a sand filtration layer together with the supernatant water of the sedimentation tank, and the turbidity of the wastewater is measured. A method characterized in that the amount of coagulant added is controlled by an automatic control mechanism for adjusting the amount of coagulant added to the activated sludge to be provided.
【請求項2】 脱水装置として遠心分離機を用い、かつ
凝集剤を活性汚泥を遠心分離機に供給する供給導管内で
活性汚泥に添加することを特徴とする請求項1記載の方
法。
2. The method according to claim 1, wherein a centrifugal separator is used as the dewatering device, and the flocculant is added to the activated sludge in a supply conduit for supplying the activated sludge to the centrifuge.
【請求項3】 活性汚泥への凝集剤の添加を、排水の濁
度を測定し、その測定結果と予じめ定めた基準濁度範囲
とを比較して凝集剤の添加速度を増減させることを反復
して排水の濁度を基準濁度範囲に誘導する制御時間帯
と、制御時間帯の最後に選択された添加速度で凝集剤を
添加する非制御時間帯とからなるサイクルを反復するこ
とにより行うことを特徴とする請求項2記載の方法。
3. The method of adding a flocculant to activated sludge by measuring the turbidity of wastewater and comparing the measurement result with a predetermined reference turbidity range to increase or decrease the rate of addition of the flocculant. A cycle consisting of a control period during which the turbidity of the wastewater is guided to the reference turbidity range by repeating the above, and a non-control period during which the flocculant is added at the addition rate selected at the end of the control period. 3. The method according to claim 2, wherein the method is performed by:
【請求項4】 曝気槽に供給される汚水が、コークス製
造工場で発生する着色した汚水を主体とするものである
ことを特徴とする請求項1ないし3のいずれかに記載の
方法。
4. The method according to claim 1, wherein the sewage supplied to the aeration tank is mainly colored sewage generated in a coke plant.
JP10272846A 1998-09-28 1998-09-28 Treatment of sewage by activated sludge Pending JP2000093990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272846A JP2000093990A (en) 1998-09-28 1998-09-28 Treatment of sewage by activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272846A JP2000093990A (en) 1998-09-28 1998-09-28 Treatment of sewage by activated sludge

Publications (1)

Publication Number Publication Date
JP2000093990A true JP2000093990A (en) 2000-04-04

Family

ID=17519599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272846A Pending JP2000093990A (en) 1998-09-28 1998-09-28 Treatment of sewage by activated sludge

Country Status (1)

Country Link
JP (1) JP2000093990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135596B1 (en) * 2009-04-28 2012-04-17 국민대학교산학협력단 Method and apparatus for automatic control of injection of coagulation agent
JP2015073951A (en) * 2013-10-09 2015-04-20 神鋼環境メンテナンス株式会社 Method for operating organic waste water treatment plant
CN113428957A (en) * 2021-06-29 2021-09-24 长沙榔梨自来水有限公司 Polyaluminum chloride adding method suitable for river water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135596B1 (en) * 2009-04-28 2012-04-17 국민대학교산학협력단 Method and apparatus for automatic control of injection of coagulation agent
JP2015073951A (en) * 2013-10-09 2015-04-20 神鋼環境メンテナンス株式会社 Method for operating organic waste water treatment plant
CN113428957A (en) * 2021-06-29 2021-09-24 长沙榔梨自来水有限公司 Polyaluminum chloride adding method suitable for river water

Similar Documents

Publication Publication Date Title
KR960013340B1 (en) Two-stage waste water treatment
KR960013341B1 (en) Two-stage water treatment
KR960004304B1 (en) Method for purification of waste water
RU2004113443A (en) METHOD AND INSTALLATION FOR WASTE WATER TREATMENT
KR20050075948A (en) Leachate treating system and method of the same
US6793823B2 (en) Wastewater solids removal methods
JP2000093990A (en) Treatment of sewage by activated sludge
US4981599A (en) Method of treating waste water
JPH06237B2 (en) Wastewater treatment method and apparatus
CN106430549A (en) Sewage ordered treatment method
JP3181521B2 (en) Water treatment method and water treatment device
US2021679A (en) Treating sewage
US3300401A (en) Process for dewatering organic sludge which has been separated during treatment of waste water
KR100189091B1 (en) Apparatus for the treatment of waste water and sewage
JPS62191097A (en) Raw sewage treatment method
JPH10249329A (en) Water treating method and device therefor
JP7474718B2 (en) Wastewater treatment method and wastewater treatment device
JPH0649197B2 (en) Organic wastewater treatment method
DE102007032125B4 (en) Process for wastewater treatment with a wastewater treatment plant
JPS59206092A (en) Treating process of waste water
JPH03262599A (en) Purification for removing nitrogen and phosphorus in polluted water
KR960037587A (en) Advanced biological and chemical circulation treatment of sewage and wastewater using integrated reactor and water quality control tank
JP4543246B2 (en) Method and apparatus for treating wastewater containing organic matter
KR200267141Y1 (en) equipment for advanced wastewater-treatment with a function of control according to the composition
JP2002086156A (en) Waste water treating device