JP7474718B2 - Wastewater treatment method and wastewater treatment device - Google Patents

Wastewater treatment method and wastewater treatment device Download PDF

Info

Publication number
JP7474718B2
JP7474718B2 JP2021004431A JP2021004431A JP7474718B2 JP 7474718 B2 JP7474718 B2 JP 7474718B2 JP 2021004431 A JP2021004431 A JP 2021004431A JP 2021004431 A JP2021004431 A JP 2021004431A JP 7474718 B2 JP7474718 B2 JP 7474718B2
Authority
JP
Japan
Prior art keywords
membrane
tank
sludge
activated sludge
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021004431A
Other languages
Japanese (ja)
Other versions
JP2022109088A (en
Inventor
惇太 高橋
甬生 葛
秀人 金子
嘉行 唯木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2021004431A priority Critical patent/JP7474718B2/en
Publication of JP2022109088A publication Critical patent/JP2022109088A/en
Priority to JP2024018856A priority patent/JP2024036698A/en
Application granted granted Critical
Publication of JP7474718B2 publication Critical patent/JP7474718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、廃水処理方法及び排水処理装置に関し、特に、膜分離活性汚泥法を利用した廃水処理方法及び排水処理装置に関する。 The present invention relates to a wastewater treatment method and a wastewater treatment device, and in particular to a wastewater treatment method and a wastewater treatment device that utilizes the membrane separation activated sludge process.

従来のし尿・浄化槽汚泥処理においては、夾雑物を除去した汚泥を活性汚泥法等により直接生物処理し、有機物及び窒素を除去する手法が主流であり、膜分離活性汚泥法もその処理方式の1つとして採用されてきた。膜分離活性汚泥法は、固液分離を膜分離により行うために、生物処理槽内のMLSS(活性汚泥浮遊物:Mixed Liquor Suspended Solids)濃度を高め、敷地面積を削減することができるという利点を有している。 Conventionally, the mainstream method for treating sewage and septic tank sludge is to directly biologically treat the sludge from which impurities have been removed using methods such as the activated sludge process to remove organic matter and nitrogen, and the membrane separation activated sludge process has been adopted as one of the treatment methods. The membrane separation activated sludge process has the advantage of increasing the MLSS (mixed liquor suspended solids) concentration in the biological treatment tank and reducing the site area, because solid-liquid separation is performed using membrane separation.

また、近年では、し尿・浄化槽汚泥をあらかじめ脱水し、脱水ケーキを固形物燃料等として再利用し、かつ生物処理対象を脱水分離液のみとすることで、生物処理の負荷を低減させる手法が主流になりつつある。更に、近年増加している汚泥や生ごみ等のバイオマスを嫌気性消化し、メタンガスを回収する設備においても、嫌気性消化汚泥を脱水後に生物処理する必要がある。このようなケースでも、生物処理に膜分離活性汚泥法を採用し、敷地面積を削減することが多い。 In recent years, a method that reduces the burden of biological treatment by dehydrating sewage and septic tank sludge in advance, reusing the dehydrated cake as solid fuel, etc., and limiting the biological treatment to the separated liquid from the dehydration, is becoming mainstream. Furthermore, even in facilities that anaerobically digest biomass such as sludge and food waste, which have been increasing in number in recent years, and recover methane gas, it is necessary to biologically treat the anaerobic digestion sludge after dehydration. Even in such cases, the membrane separation activated sludge method is often used for biological treatment, reducing the site area.

膜分離活性汚泥法を利用した技術として、例えば、特許第5868217号公報(特許文献1)には、被処理水を生物反応槽内で活性汚泥により生物処理し、生物反応槽の槽内混合液を膜分離装置で固液分離して分離膜を透過した膜ろ過水を槽外に取り出す膜分離活性汚泥処理方法において、COD(化学的酸素要求量)、BOD(生物学的酸素要求量)、TOC(全酸素要求量)、全糖濃度、タンパク質濃度、ウロン酸濃度、E260(波長260nmでの紫外線吸光度)の何れかに基づいて有機物濃度を求め、槽内混合液中の液相の有機物濃度と膜ろ過水の有機物濃度との濃度差、または槽内混合液中の液相の有機物濃度と膜ろ過水の有機物濃度との濃度比率を調整指標として、調整指標が増加したときに生物反応槽内の活性汚泥量を増加させ、調整指標が減少したときに生物反応槽内の活性汚泥量を減少させて、分離膜のファウリングを抑制することを特徴とする膜分離活性汚泥処理方法が記載されている。 For example, Japanese Patent No. 5868217 (Patent Document 1) describes a membrane separation activated sludge treatment method in which the water to be treated is biologically treated with activated sludge in a biological reaction tank, the mixed liquid in the biological reaction tank is solid-liquid separated in a membrane separation device, and the membrane-filtered water that has permeated the separation membrane is taken out of the tank. The method determines the organic matter concentration based on any one of COD (chemical oxygen demand), BOD (biological oxygen demand), TOC (total oxygen demand), total sugar concentration, protein concentration, uronic acid concentration, and E260 (ultraviolet light absorbance at a wavelength of 260 nm), and uses the concentration difference between the organic matter concentration in the liquid phase of the mixed liquid in the tank and the organic matter concentration in the membrane-filtered water, or the concentration ratio between the organic matter concentration in the liquid phase of the mixed liquid in the tank and the organic matter concentration in the membrane-filtered water as an adjustment index, and increases the amount of activated sludge in the biological reaction tank when the adjustment index increases, and decreases the amount of activated sludge in the biological reaction tank when the adjustment index decreases, thereby suppressing fouling of the separation membrane.

特許第4046661号公報(特許文献2)には、生物処理槽において有機性汚水を活性汚泥処理し、生物処理槽内に浸漬設置した第1分離手段をなす浸漬型膜分離装置で活性汚泥混合液を固液分離し、活性汚泥処理により生物処理槽内に蓄積される生物由来ポリマーを含むCODを第2分離手段によって適時に活性汚泥混合液から固液分離して、生物処理槽内の活性汚泥量を高濃度に維持しつつ、活性汚泥混合液中の生物由来ポリマー量を低濃度に維持するのに際して、浸漬型膜分離装置を透過した膜ろ液中のCODを測定し、浸漬型膜分離装置のろ過膜の細孔より大きい所定口径の細孔を有するろ過手段で生物処理槽内の活性汚泥混合液をろ過したろ過手段ろ液中のCODを測定し、ろ過手段ろ液中のCODから膜ろ液中のCODを減算したCOD差値が所定値以上であるときに、第2分離手段によって活性汚泥混合液から生物由来ポリマーを含むCODを分離することを特徴とする汚水の処理方法が記載されている。 Patent Publication No. 4046661 (Patent Document 2) describes a wastewater treatment method in which organic wastewater is treated with activated sludge in a biological treatment tank, the activated sludge mixed liquid is solid-liquid separated by a submerged membrane separation device that constitutes a first separation means submerged in the biological treatment tank, and COD containing biological polymers accumulated in the biological treatment tank by the activated sludge treatment is solid-liquid separated from the activated sludge mixed liquid at appropriate times by a second separation means, and while maintaining the amount of activated sludge in the biological treatment tank at a high concentration, the amount of biological polymers in the activated sludge mixed liquid is maintained at a low concentration. In this case, the COD in the membrane filtrate that permeates the submerged membrane separation device is measured, and the COD in the filtration means filtrate obtained by filtering the activated sludge mixed liquid in the biological treatment tank with a filtration means having a predetermined diameter of pores larger than the pores of the filtration membrane of the submerged membrane separation device is measured, and when the COD difference value obtained by subtracting the COD in the membrane filtrate from the COD in the filtration means filtrate is equal to or greater than a predetermined value, the COD containing biological polymers is separated from the activated sludge mixed liquid by the second separation means.

特許第5822264号公報(特許文献3)には、活性汚泥中で被処理液に散気する散気手段が浸漬配置された曝気槽と、活性汚泥中の被処理液から透過液を得る膜分離装置が浸漬配置された膜分離槽を備えた膜分離活性汚泥処理装置の運転方法であって、活性汚泥中の被処理液の上澄み液中の有機物濃度とBOD/SS負荷の値に基づいて、有機物濃度が所定値以上であるときに、BOD/SS負荷の値が所定値以上である場合には散気手段の単位時間当たりの散気量を増加させ、BOD/SS負荷の値が所定値未満である場合には散気手段の単位時間当たりの散気量を減少させるように、散気手段の単位時間当たりの散気量を調整する膜分離活性汚泥処理装置の運転方法が記載されている。 Patent Publication No. 5822264 (Patent Document 3) describes a method for operating a membrane separation activated sludge treatment device equipped with an aeration tank in which an aeration means is submerged to diffuse aeration into the liquid being treated in the activated sludge, and a membrane separation tank in which a membrane separation device is submerged to obtain a permeate from the liquid being treated in the activated sludge, and the method describes an operation method for a membrane separation activated sludge treatment device that adjusts the amount of aeration per unit time of the aeration means based on the organic matter concentration in the supernatant liquid of the liquid being treated in the activated sludge and the BOD/SS load value, so that when the organic matter concentration is equal to or greater than a predetermined value, the amount of aeration per unit time of the aeration means is increased when the BOD/SS load value is equal to or greater than the predetermined value, and the amount of aeration per unit time of the aeration means is decreased when the BOD/SS load value is less than the predetermined value.

特開2014-193452号公報(特許文献4)には、活性汚泥を収容した被処理水収容槽に有機性汚水を流入させ、生物処理し、被処理水収容槽又はその後段に設置した膜分離装置によって固液分離を行って処理水を得る有機性汚水の処理方法であって、活性汚泥中の細胞外ATP量または活性汚泥中の細胞外ATP量の増加速度が所定の基準値に達した際、膜分離装置に供給する散気量、膜分離装置の洗浄条件、被処理水収容槽に凝集剤を注入する凝集剤注入条件、膜分離装置のろ過流束、及び、被処理水収容槽からの活性汚泥の引き抜き量、から選ばれる少なくとも1つの条件を制御する有機性汚水の処理方法が記載されている。 JP 2014-193452 A (Patent Document 4) describes a method for treating organic wastewater in which organic wastewater is introduced into a tank containing activated sludge, biologically treated, and treated water is obtained by performing solid-liquid separation using a membrane separation device installed in the tank or downstream thereof, and when the amount of extracellular ATP in the activated sludge or the rate of increase in the amount of extracellular ATP in the activated sludge reaches a predetermined reference value, the method controls at least one condition selected from the amount of diffused air supplied to the membrane separation device, the cleaning conditions of the membrane separation device, the coagulant injection conditions for injecting a coagulant into the tank containing the water to be treated, the filtration flux of the membrane separation device, and the amount of activated sludge withdrawn from the tank containing the water to be treated.

特許第5868217号公報Patent No. 5868217 特許第4046661号公報Japanese Patent No. 4046661 特許第5822264号公報Japanese Patent No. 5822264 特開2014-193452号公報JP 2014-193452 A

し尿・浄化槽汚泥、嫌気性消化汚泥等の有機性汚泥の脱水処理の際には、無機凝集剤及び高分子凝集剤(ポリマー)を汚泥に添加することで、汚泥を凝集させてから脱水処理を行う。この際、高分子凝集剤の添加率は、凝集フロックの状態等により決定されるが、汚泥の性状の変化により過不足が生じると、脱水分離液中の浮遊物質(SS)濃度の増加及びろ液中の残存ポリマーの増加を招き、生物処理原水中に含まれる高分子凝集剤の濃度が増加する。 When dehydrating organic sludge such as sewage, septic tank sludge, and anaerobic digestion sludge, inorganic coagulants and polymer coagulants (polymers) are added to the sludge to coagulate it before dehydration. The rate of polymer coagulant added is determined by the state of the coagulated flocs, but if there is an excess or deficiency due to changes in the properties of the sludge, this will lead to an increase in the concentration of suspended solids (SS) in the dehydrated separation liquid and an increase in residual polymers in the filtrate, and the concentration of polymer coagulant in the raw biological treatment water will increase.

高分子凝集剤は難分解性であることが多いため、微生物による分解がされにくく、その分子量は100万以上である。このような高分子凝集剤は、通常、膜分離活性汚泥法で使用される分離膜で捕捉されるが、高分子凝集剤の槽内濃度が高くなるにつれて分離膜上にゲル層と呼ばれる層が形成されてファウリングが進行するおそれがある。そのため、ファウリングを適切に抑制するための対策が必要となる。 Polymer flocculants are often resistant to degradation and are difficult to decompose by microorganisms, with molecular weights of 1 million or more. Such polymer flocculants are usually captured by the separation membrane used in the membrane separation activated sludge method, but as the concentration of the polymer flocculant in the tank increases, a layer called a gel layer may form on the separation membrane, causing fouling to progress. Therefore, measures to appropriately suppress fouling are necessary.

引用文献1に記載された発明では、槽内混合液中の有機物濃度と膜ろ過水の有機物濃度の濃度差を適用し、濃度差が増大したときに、生物反応槽内の活性汚泥量を増大させる処理を行うことを提案している。しかしながら、このような処理方法では、生物反応槽内で増大した活性汚泥又はその細胞外物質と高分子凝集剤とが生物反応槽内で更に結合し、ゲル層を分離膜上に更に堆積させる恐れがあり、その結果、ファウリングを適切に抑制できなくなる場合がある。 The invention described in Reference 1 proposes to apply the difference in concentration between the organic matter concentration in the mixed liquid in the tank and the organic matter concentration in the membrane-filtered water, and to carry out a treatment to increase the amount of activated sludge in the biological reactor when the concentration difference increases. However, with such a treatment method, there is a risk that the activated sludge or its extracellular material that has increased in the biological reactor will further bind to the polymer flocculant in the biological reactor, causing further deposition of a gel layer on the separation membrane, which may result in failure to adequately suppress fouling.

特許文献2に記載されるような第2分離手段を用いたファウリング抑制手法では、第1分離手段だけでなく、第2分離手段の膜閉塞の問題も考慮する必要があるため、メンテナンス処理が煩雑になる。特許文献3に記載されるような活性汚泥中の被処理液の上澄み液中の有機物濃度とBOD/SS負荷の値に基づく曝気風量の調整手法、或いは、特許文献4に記載されるような細胞外ATP量に基づくファウリング制御方法によっても、他の従来技術と同様に、分離膜の閉塞の兆候を迅速に検出し、ファウリングを抑制して長期間の安定的な排水処理を行う観点からはまだ十分な処理であるとはいえない。 In the fouling suppression method using the second separation means as described in Patent Document 2, it is necessary to consider not only the first separation means but also the problem of membrane clogging of the second separation means, which makes maintenance processing cumbersome. The method of adjusting the aeration air volume based on the organic matter concentration and BOD/SS load value in the supernatant liquid of the treated liquid in activated sludge as described in Patent Document 3, or the fouling control method based on the amount of extracellular ATP as described in Patent Document 4, like other conventional technologies, cannot be said to be sufficient treatment from the perspective of quickly detecting signs of clogging of the separation membrane, suppressing fouling, and performing stable wastewater treatment for a long period of time.

上記課題を鑑み、本発明は、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことが可能な排水処理方法及び排水処理装置を提供する。 In view of the above problems, the present invention provides a wastewater treatment method and wastewater treatment device that can quickly detect signs of clogging of a separation membrane and perform stable and efficient wastewater treatment while appropriately suppressing fouling.

上記課題を解決するために本発明者らが鋭意検討した結果、膜分離活性汚泥装置の膜ろ過原水の液相の有機物濃度と膜ろ過で得られる膜ろ過水(膜透過水)の有機物濃度との差分をモニタリング指標とし、このモニタリング指標に基づいて、特定の処理を行うことが有効であることを見出した。 As a result of intensive research by the inventors to solve the above problems, they discovered that it is effective to use the difference between the organic matter concentration in the liquid phase of the raw water from the membrane separation activated sludge device and the organic matter concentration in the membrane filtered water (membrane permeate water) obtained by membrane filtration as a monitoring index, and to carry out specific treatment based on this monitoring index.

以上の知見を基礎として完成した本発明の実施の形態は一側面において、膜分離活性汚泥法を用いた排水処理方法において、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように運転条件を調整することを含む排水処理方法である。 In one aspect, an embodiment of the present invention, which has been completed based on the above findings, is a wastewater treatment method using a membrane bioreactor, which includes measuring the organic matter concentration in the liquid phase of the membrane-filtered raw water in the membrane bioreactor tank and the organic matter concentration in the membrane-filtered water, using the difference as a monitoring index, and adjusting the operating conditions to perform one or more of the following when the monitoring index increases: increasing the amount of cleaning air supplied to the membrane bioreactor tank, shortening the filtration duration, or increasing the amount of sludge extracted from the membrane bioreactor tank.

本発明の実施の形態に係る排水処理方法は一実施態様において、モニタリング指標が第1の基準値を超える場合に、膜分離活性汚泥槽からの引抜汚泥量の増加の処理を行い、モニタリング指標が第1の基準値よりも高い第2の基準値を超える場合に、膜分離活性汚泥槽へ供給する洗浄空気量の増加又はろ過継続時間の短縮のいずれか1以上の処理を行う。 In one embodiment of the wastewater treatment method according to the present invention, when the monitoring index exceeds a first reference value, a process is performed to increase the amount of sludge extracted from the membrane bioreactor activated sludge tank, and when the monitoring index exceeds a second reference value that is higher than the first reference value, one or more processes are performed, either increasing the amount of cleaning air supplied to the membrane bioreactor activated sludge tank or shortening the filtration duration.

本発明の実施の形態は別の一側面において、膜分離活性汚泥法を用いた排水処理方法において、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定し、その差分をモニタリング指標とし、膜分離活性汚泥槽の汚泥滞留時間が6日以上でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の増加を行うように運転条件を調整し、膜分離活性汚泥槽の汚泥滞留時間が6日未満でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の低減を行うように運転条件を調整することを含む排水処理方法である。 In another aspect, an embodiment of the present invention is a wastewater treatment method using a membrane bioreactor, which includes measuring the organic matter concentration in the liquid phase of membrane-filtered raw water in a membrane bioreactor tank and the organic matter concentration in the membrane-filtered water, using the difference as a monitoring index, adjusting the operating conditions to increase the amount of sludge withdrawn from the membrane bioreactor tank when the sludge retention time in the membrane bioreactor tank is 6 days or more and the monitoring index increases, and adjusting the operating conditions to reduce the amount of sludge withdrawn from the membrane bioreactor tank when the sludge retention time in the membrane bioreactor tank is less than 6 days and the monitoring index increases.

本発明の実施の形態に係る排水処理方法は一実施態様において、膜分離活性汚泥槽の汚泥滞留時間が6日以上でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の増加を行う処理と、膜分離活性汚泥槽へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う処理とを組み合わせて行うように運転条件を調整し、
膜分離活性汚泥槽の汚泥滞留時間が6日未満でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の低減を行う処理と、膜分離活性汚泥槽へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う処理とを組み合わせて行うように運転条件を調整する。
In one embodiment of the wastewater treatment method according to the embodiment of the present invention, when the sludge retention time in the membrane bioreactor tank is 6 days or more and the monitoring index increases, the operation conditions are adjusted so as to combine a process of increasing the amount of sludge extracted from the membrane bioreactor tank with one or more processes of increasing the amount of washing air supplied to the membrane bioreactor tank and shortening the filtration duration,
When the sludge retention time in the membrane bioreactor tank is less than 6 days and the monitoring index increases, the operating conditions are adjusted so as to combine a process for reducing the amount of sludge extracted from the membrane bioreactor tank with one or more of a process for increasing the amount of washing air supplied to the membrane bioreactor tank and a process for shortening the filtration duration.

本発明の実施の形態に係る排水処理方法は一実施態様において、有機物濃度が、COD、BOD、TOC、または、有機炭素検出型サイズ排除クロマトグラフィーで測定した結果、分子量20000以上に分画される有機物濃度のいずれかを含む。 In one embodiment of the wastewater treatment method according to the present invention, the organic matter concentration includes any of COD, BOD, TOC, or the organic matter concentration fractionated to a molecular weight of 20,000 or more as a result of measurement by organic carbon detection type size exclusion chromatography.

本発明の実施の形態に係る排水処理方法は一実施態様において、モニタリング指標が増加した場合に、膜ろ過原水の少なくとも一部に対して、オゾン分解処理、促進酸化処理、または、活性炭吸着処理のいずれか1以上の処理を行うことを更に含む。 In one embodiment of the wastewater treatment method according to the present invention, when the monitoring index increases, one or more of the following processes are performed on at least a portion of the raw water from the membrane filtration: ozone decomposition process, accelerated oxidation process, or activated carbon adsorption process.

本発明の実施の形態に係る排水処理方法は一実施態様において、膜ろ過原水が、有機物を含む汚泥に高分子凝集剤を添加して脱水処理した後に発生する脱水分離液である。 In one embodiment of the wastewater treatment method according to the present invention, the raw water from membrane filtration is a dehydrated separated liquid that is generated after dehydration treatment is performed by adding a polymer flocculant to sludge containing organic matter.

本発明の実施の形態に係る排水処理方法は更に別の一実施態様において、モニタリング指標が増加した場合に、膜分離活性汚泥槽に供給される前の脱水処理で膜ろ過原水に添加される高分子凝集剤の添加率を低減する。 In yet another embodiment of the wastewater treatment method according to the present invention, when the monitoring index increases, the addition rate of polymer flocculant added to the membrane filtered raw water in the dehydration treatment before being supplied to the membrane separation activated sludge tank is reduced.

本発明の実施の形態に係る排水処理装置は一側面において、活性汚泥の存在下で膜ろ過原水を膜分離処理して膜ろ過水を得る膜分離活性汚泥槽と、膜分離活性汚泥槽を曝気する曝気装置と、膜分離活性汚泥槽から膜ろ過水を吸引する吸引ポンプと、膜分離活性汚泥槽から汚泥を引き抜く排泥ポンプと、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度と膜ろ過水の有機物濃度との差分値をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように、曝気装置、吸引ポンプ及び排泥ポンプの運転条件を制御する制御装置とを備える排水処理装置である。 In one aspect, a wastewater treatment device according to an embodiment of the present invention is a wastewater treatment device that includes a membrane separation activated sludge tank in which membrane-filtered raw water is subjected to membrane separation treatment in the presence of activated sludge to obtain membrane-filtered water, an aeration device that aerates the membrane separation activated sludge tank, a suction pump that draws membrane-filtered water from the membrane separation activated sludge tank, a wastewater pump that extracts sludge from the membrane separation activated sludge tank, and a control device that controls the operating conditions of the aeration device, the suction pump, and the wastewater pump so that the difference between the organic matter concentration of the liquid phase of the membrane-filtered raw water in the membrane separation activated sludge tank and the organic matter concentration of the membrane-filtered water is used as a monitoring index, and when the monitoring index increases, one or more of the following treatments are performed: an increase in the amount of cleaning air supplied to the membrane separation activated sludge tank, a shortened filtration duration, or an increase in the amount of sludge extracted from the membrane separation activated sludge tank.

本発明によれば、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことが可能な排水処理方法及び排水処理装置が提供できる。 The present invention provides a wastewater treatment method and wastewater treatment device that can quickly detect signs of clogging of the separation membrane and perform stable and efficient wastewater treatment while appropriately suppressing fouling.

本発明の実施の形態に係る排水処理装置の例を表す概略図である。1 is a schematic diagram illustrating an example of a wastewater treatment device according to an embodiment of the present invention. 汚泥滞留時間(SRT)とモニタリング指標(ΔS-CODMn)の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between sludge retention time (SRT) and a monitoring index (ΔS-COD Mn ). SRTと膜間差圧の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between SRT and transmembrane pressure. SRTと5Cろ紙ろ過量の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between SRT and 5C filter paper filtration amount. BOD-SS負荷とΔS-CODMnの関係の一例を表すグラフである。1 is a graph showing an example of the relationship between BOD-SS load and ΔS-COD Mn . BOD-SS負荷と膜間差圧の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between BOD-SS load and transmembrane pressure. BOD-SS負荷と5Cろ紙ろ過量の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between BOD-SS load and 5C filter paper filtration volume. ΔS-CODMnと膜間差圧の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between ΔS-COD Mn and transmembrane pressure. ΔS-CODMnと5Cろ紙ろ過量の関係の一例を表すグラフである。1 is a graph showing an example of the relationship between ΔS-COD Mn and 5C filter paper filtration amount.

以下、図面を参照しながら本発明の実施の形態に係る排水処理装置及び排水処理方法について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Below, we will explain the wastewater treatment equipment and wastewater treatment method according to the embodiments of the present invention with reference to the drawings. In the following description of the drawings, the same or similar parts are given the same or similar reference numerals. Note that the embodiments shown below are examples of equipment and methods for embodying the technical idea of this invention, and the technical idea of this invention does not specify the structure, arrangement, etc. of the components as described below.

本発明の実施の形態に係る排水処理装置は、図1に示すように、膜分離活性汚泥法を用いて排水を処理し、処理汚泥及び膜ろ過水を得る膜分離活性汚泥槽1と、膜分離活性汚泥槽1を曝気する曝気装置2と、膜分離活性汚泥槽1から膜ろ過水を吸引する吸引ポンプ3と、膜分離活性汚泥槽1から汚泥を引き抜く排泥ポンプ4と、膜分離活性汚泥槽1の運転条件を制御する制御装置8とを備える。 As shown in FIG. 1, the wastewater treatment device according to the embodiment of the present invention includes a membrane separation activated sludge tank 1 for treating wastewater using a membrane separation activated sludge method to obtain treated sludge and membrane filtered water, an aeration device 2 for aerating the membrane separation activated sludge tank 1, a suction pump 3 for sucking the membrane filtered water from the membrane separation activated sludge tank 1, a wastewater pump 4 for extracting sludge from the membrane separation activated sludge tank 1, and a control device 8 for controlling the operating conditions of the membrane separation activated sludge tank 1.

処理対象としては、有機物を含有する有機性排水であれば特に限定されない。特に、し尿・浄化槽汚泥、下水初沈汚泥、下水余剰汚泥、生ごみ、バイオマスの嫌気性消化汚泥のいずれか1つ以上を含む有機性汚泥の脱水分離液を、膜分離活性汚泥槽1の膜ろ過原水として使用することができる。脱水分離液中には、高分子凝集剤が含まれているため、膜分離活性汚泥槽1内で長期間処理するにつれて、脱水分離液中に含まれる高分子凝集剤が凝集してゲル層を形成し、膜分離活性汚泥槽1内の分離膜10に付着し、ファウリングを起こしやすくなる。本発明の実施の形態に係る排水処理装置を用いて生物処理を行うことで、ファウリングを抑制しながら長期間安定して処理を行うことができる。 The subject of treatment is not particularly limited as long as it is organic wastewater containing organic matter. In particular, the dehydrated separated liquid of organic sludge containing one or more of sewage/septic tank sludge, sewage initial settling sludge, excess sewage sludge, food waste, and anaerobic digestion sludge of biomass can be used as the raw water for membrane filtration in the membrane separation activated sludge tank 1. Since the dehydrated separated liquid contains a polymer flocculant, as the dehydrated separated liquid is treated for a long period of time in the membrane separation activated sludge tank 1, the polymer flocculant contained in the dehydrated separated liquid aggregates to form a gel layer, which adheres to the separation membrane 10 in the membrane separation activated sludge tank 1, making it more likely to cause fouling. By performing biological treatment using the wastewater treatment device according to the embodiment of the present invention, it is possible to perform stable treatment for a long period of time while suppressing fouling.

脱水分離液は、浮遊物質(SS)、溶解性COD(CODCr、CODMn)、BOD、TOC、窒素、リン、カルシウム(Ca)等を含有し得る。以下に限定されるものではないが、脱水分離液は、典型的には、SSを100~3000mg/L、より典型的には500~2000mg/Lを含む。脱水分離液は、CODCrを500~10000mg/L、より典型的には1000~5000mg/L含み、CODMnを100~5000mg/L、より典型的には500~3000mg/L含む。脱水分離液は、BODを500~5000mg/L、より典型的には1000~3000mg/L含み、TOCを250~4000mg/L、より典型的には500~2000mg/L含む。脱水分離液は、全窒素(T-N)を10~500mg/L、より典型的には50~300mg/L含み、全リン(T-P)を5~200mg/L、より典型的には10~100mg/L含む。脱水分離液は、有機体窒素(T-Nから無機態窒素(NOx-N、NH4-N)を差し引いて求めた濃度)を5~300mg/L、より典型的には50~200mg-N/L含む。 The dehydrated separate liquid may contain suspended solids (SS), soluble COD (COD Cr , COD Mn ), BOD, TOC, nitrogen, phosphorus, calcium (Ca), and the like. Although not limited thereto, the dehydrated separate liquid typically contains 100 to 3000 mg/L of SS, more typically 500 to 2000 mg/L. The dehydrated separate liquid contains 500 to 10000 mg/L of COD Cr , more typically 1000 to 5000 mg/L, and 100 to 5000 mg/L of COD Mn , more typically 500 to 3000 mg/L. The dehydrated separate liquid contains 500 to 5000 mg/L of BOD, more typically 1000 to 3000 mg/L, and 250 to 4000 mg/L of TOC, more typically 500 to 2000 mg/L. The dehydrated separate liquid contains total nitrogen (TN) of 10 to 500 mg/L, more typically 50 to 300 mg/L, and total phosphorus (TP) of 5 to 200 mg/L, more typically 10 to 100 mg/L. The dehydrated separate liquid contains organic nitrogen (concentration calculated by subtracting inorganic nitrogen (NO x -N, NH 4 -N) from TN) of 5 to 300 mg/L, more typically 50 to 200 mg-N/L.

特に、脱水分離液中にSSが500mg/L以上含まれていると、SSに吸着された高分子凝集剤が膜分離活性汚泥槽1に流入する影響が大きくなり、ファウリングが進行しやすくなる。また、脱水分離液中に有機体窒素が50mg/L以上含まれると、タンパク質の分解過程で高分子有機物を生成し、ゲル層を形成しやすくなる。 In particular, if the dehydrated separated liquid contains 500 mg/L or more of SS, the polymer flocculant adsorbed to the SS will have a greater effect of flowing into the membrane separation activated sludge tank 1, making fouling more likely to progress. In addition, if the dehydrated separated liquid contains 50 mg/L or more of organic nitrogen, polymeric organic matter will be produced during the protein decomposition process, making it more likely that a gel layer will form.

また、脱水分離液中のBOD/CODCrが0.7以下となると、難分解性、遅分解性の有機物の割合が増加し、膜分離活性汚泥槽内で高分子凝集剤と複合しゲル層を形成しやすくなる。更に、脱水処理に供する汚泥の種類として、下水の最初沈殿池汚泥、し尿汚泥、生ごみ、等生物処理を経ない汚泥を含む場合は汚泥性状が変動しやすい。このような汚泥を前脱水することにより、ポリマーの添加率が過剰、もしくは不足し、高分子凝集剤がろ液側に流出しやすくなる。 In addition, when the BOD/COD Cr in the dewatered separated liquid is 0.7 or less, the proportion of persistent and slow decomposable organic matter increases, and it is easy for the organic matter to form a gel layer by combining with the polymer flocculant in the membrane separation activated sludge tank. Furthermore, when the type of sludge to be subjected to the dewatering process includes sludge that has not been subjected to biological treatment, such as sludge from the primary sedimentation tank of sewage, sewage sludge, and food waste, the sludge properties are likely to fluctuate. Pre-dewatering such sludge results in an excess or shortage of polymer addition rate, and the polymer flocculant is likely to flow into the filtrate side.

膜ろ過原水として脱水分離液を使用する場合は、膜分離活性汚泥槽1に供給する前の有機性汚泥に対して以下の前処理操作が行われる。前処理操作としては、例えば、有機性汚泥に対し、高分子凝集剤及び必要に応じて無機凝集剤を添加し、撹拌を行って凝集処理を行う。有機性汚泥の表面は一般的に負に帯電しているため、高分子凝集剤はカチオン性ポリマーを用いることが好適である。高分子凝集剤の分子量としては100~1500万、好ましくは100~1000万、より好ましくは100~750万のものが好適に利用できる。高分子凝集剤の添加率は、典型的には0.2~4w/w%対TS、より好ましくは0.5~3w/w%である。高分子凝集剤の選定及び添加率は、凝集試験またはラボスケールの脱水試験等により決定されることが望ましい。 When the dehydrated separated liquid is used as the raw water for membrane filtration, the following pretreatment operation is performed on the organic sludge before it is supplied to the membrane separation activated sludge tank 1. As a pretreatment operation, for example, a polymer flocculant and, if necessary, an inorganic flocculant are added to the organic sludge, and the mixture is stirred to perform flocculation treatment. Since the surface of organic sludge is generally negatively charged, it is preferable to use a cationic polymer as the polymer flocculant. The molecular weight of the polymer flocculant is preferably 1 to 15 million, preferably 1 to 10 million, and more preferably 1 to 7.5 million. The addition rate of the polymer flocculant is typically 0.2 to 4 w/w% of TS, and more preferably 0.5 to 3 w/w%. It is preferable to determine the selection and addition rate of the polymer flocculant by a flocculation test or a laboratory-scale dehydration test.

無機凝集剤としては、ポリ硫酸第二鉄、塩化第二鉄、硫酸バンド、ポリ塩化アルミニウム(PAC)等が使用できる。中でも、薬品費用及び腐食防止の観点から、ポリ硫酸第二鉄の使用が望ましい。無機凝集剤の添加率についても、凝集試験、ラボスケールの脱水試験等により決定されることが望ましい。 As inorganic coagulants, polyferric sulfate, ferric chloride, aluminum sulfate, polyaluminum chloride (PAC), etc. can be used. Among them, the use of polyferric sulfate is preferable from the viewpoint of chemical costs and corrosion prevention. The addition rate of the inorganic coagulant should also be determined by coagulation tests, laboratory-scale dehydration tests, etc.

無機凝集剤の添加方法としては、汚泥の濃縮前に無機凝集剤を添加する前添加方式、汚泥の濃縮後に無機凝集剤を添加する後添加方式、または汚泥の濃縮前後にそれぞれ無機凝集剤を添加する両添加方式等がある。中でも、脱水性の向上及び後段の生物処理に必要なリンを分離液側に供給するという観点から、後添加方式もしくは両添加方式とすることが望ましい。 Methods for adding inorganic coagulants include a pre-addition method in which inorganic coagulants are added before the sludge is concentrated, a post-addition method in which inorganic coagulants are added after the sludge is concentrated, and a dual-addition method in which inorganic coagulants are added both before and after the sludge is concentrated. Of these, the post-addition method or dual-addition method is preferable from the viewpoint of improving dewaterability and supplying phosphorus required for the downstream biological treatment to the separated liquid side.

上記の凝集処理によって得られる凝集汚泥は、脱水処理前に濃縮処理することで、脱水処理時の処理速度の向上及び脱水汚泥の含水率の低下を図ることができる。濃縮処理としては機械濃縮を利用することができ、濃縮機としては、回転式、重力式、及び加圧式のいずれの型式でもよい。 The flocculated sludge obtained by the above flocculation process can be thickened before dehydration to improve the processing speed during dehydration and reduce the moisture content of the dehydrated sludge. Mechanical thickening can be used for the thickening process, and any of the following types of thickeners can be used: rotary, gravity, or pressure.

濃縮処理で得られた濃縮汚泥を、更に脱水処理することにより、脱水汚泥と脱水分離液が得られる。脱水機には、遠心脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリュープレス型脱水機、ロータリープレス型脱水機、電気浸透式脱水機などを用いることができる。 The concentrated sludge obtained in the concentration process is further dehydrated to obtain dehydrated sludge and dehydrated separated liquid. The dehydrator that can be used includes a centrifugal dehydrator, a belt press type dehydrator, a filter press type dehydrator, a screw press type dehydrator, a rotary press type dehydrator, an electro-osmosis type dehydrator, etc.

特に、スクリュープレス脱水機は、低動力で低含水率を達成することができる点で好ましい。スクリュープレス脱水機は、円筒形外筒の内部に、円筒形外筒と同心のスクリュー軸及びスクリュー羽根を備え、混合汚泥供給側の濃縮部と、円筒形外筒とスクリュー軸との間の空間が混合汚泥の進行方向に向かって次第に狭くなる脱水ケーキ排出側の圧搾部と、が形成されており、円筒形外筒に分離液排出用の複数の開孔を備える。 In particular, screw press dehydrators are preferred because they can achieve a low moisture content with low power. Inside a cylindrical outer tube, a screw press dehydrator has a screw shaft and screw blades that are concentric with the cylindrical outer tube, and is formed with a thickening section on the mixed sludge supply side and a squeezing section on the dehydrated cake discharge side where the space between the cylindrical outer tube and the screw shaft gradually narrows in the direction in which the mixed sludge moves, and the cylindrical outer tube has multiple openings for discharging separated liquid.

中でも軸摺動型スクリュープレス脱水機は、脱水汚泥出口方向と並行にスクリュー軸が移動し、脱水汚泥を強制排出する機構を有する。スクリュープレス脱水機を用いることで、脱水ケーキの含水率を大幅に低下させることができる。また、独立したスクリーンと脱水機とを組み合わせた脱水装置だけでなく、スクリーン機能を奏する濃縮部を前段に含み、後段に圧搾部を含む、スクリーンと脱水機とが一体化されている脱水装置は、スクリーンを別途設ける必要がなく、装置構成が簡易になるため好ましい。 Among them, the shaft-sliding screw press dehydrator has a mechanism in which the screw shaft moves parallel to the direction of the dehydrated sludge outlet and forcibly discharges the dehydrated sludge. By using a screw press dehydrator, the moisture content of the dehydrated cake can be significantly reduced. In addition to dehydration devices that combine an independent screen and dehydrator, dehydration devices that include a thickening section that performs the screen function in the front stage and a squeezing section in the rear stage and have an integrated screen and dehydrator are preferable because they do not require a separate screen and the device configuration is simplified.

膜分離活性汚泥槽1内では、膜分離活性汚泥槽1内に流入する膜ろ過原水に対して、活性汚泥を用いた微生物反応を利用した有機物除去、及び硝化-脱窒による窒素除去が行われ、膜分離により活性汚泥と処理水とを分離する膜分離活性汚泥法を利用した生物処理が行われる。 In the membrane separation activated sludge tank 1, the raw water that flows into the membrane-filtered activated sludge tank 1 is subjected to organic matter removal using microbial reactions using activated sludge, and nitrogen removal by nitrification-denitrification, and biological treatment is carried out using the membrane separation activated sludge method, which separates the activated sludge from the treated water by membrane separation.

膜分離活性汚泥槽1内における生物処理としては、有機物や窒素が除去できるものであればよく、例えば、循環式硝化-脱窒法、ステップ流入式硝化-脱窒法等が採用できる。活性汚泥の汚泥濃度(MLSS)は、典型的には4,000~18,000mg/Lとすることができ、より好ましくは6,000~15,000mg/Lとし、処理の状況に合わせて調整することが望ましい。例えば、膜分離活性汚泥槽1内のMLSSを測定するための汚泥濃度計7が膜分離活性汚泥槽1内に配置されていてもよい。 The biological treatment in the membrane bioreactor tank 1 may be any method capable of removing organic matter and nitrogen, such as a circulating nitrification-denitrification method or a step-flow nitrification-denitrification method. The sludge concentration (MLSS) of the activated sludge is typically 4,000 to 18,000 mg/L, and more preferably 6,000 to 15,000 mg/L, and is desirably adjusted according to the treatment conditions. For example, a sludge concentration meter 7 for measuring the MLSS in the membrane bioreactor tank 1 may be disposed in the membrane bioreactor tank 1.

膜ろ過水の窒素除去処理に際し、硝化時にアルカリ度が不足する場合は、薬剤添加手段(不図示)によって、水酸化ナトリウム溶液(NaOH)等のアルカリ剤を添加し、脱窒時に有機物が不足する場合は、メタノール(CH3OH)等の有機物を添加してもよい。 When performing nitrogen removal treatment on membrane filtered water, if there is insufficient alkalinity during nitrification, an alkaline agent such as sodium hydroxide solution (NaOH) can be added using a chemical addition means (not shown), and if there is a shortage of organic matter during denitrification, an organic matter such as methanol ( CH3OH ) can be added.

膜分離活性汚泥槽1内には分離膜10が収容されている。分離膜10の膜の種類としては、MF(精密ろ過:microfiltration)膜、UF(限外ろ過:ultrafiltration)膜のいずれを用いても良い。特に、孔径0.2μm以上、もしくは分画分子量100万以上の膜を使用することで、ファウリングの抑制を抑えつつ長期的に安定した運転が可能となる。 A separation membrane 10 is contained in the membrane separation activated sludge tank 1. The type of membrane used for the separation membrane 10 may be either a microfiltration (MF) membrane or an ultrafiltration (UF) membrane. In particular, by using a membrane with a pore size of 0.2 μm or more or a molecular weight cutoff of 1 million or more, stable operation over the long term can be achieved while suppressing fouling.

膜の材質は、有機膜としては、PSF(ポリスルホン)、PE(ポリエチレン)、CA(酢酸セルロース)、PAN(ポリアクリロニトリル)、PP(ポリプロピレン)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフロロエチレン)等を用いることができ、無機膜としてはセラミックを用いた膜を用いることができる。ろ過方式は全量ろ過とクロスフローろ過のどちらでも良いが、ファウリングの抑制の観点ではクロスフローろ過を採用することが望ましい。膜モジュールの形式については特に制限はなく、中空糸型、平膜型、スパイラル型、管型、モノリス型等が採用できる。 As for the membrane material, organic membranes can be PSF (polysulfone), PE (polyethylene), CA (cellulose acetate), PAN (polyacrylonitrile), PP (polypropylene), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), etc., and inorganic membranes can be ceramic membranes. The filtration method can be either full-flow filtration or cross-flow filtration, but from the viewpoint of suppressing fouling, it is preferable to adopt cross-flow filtration. There are no particular restrictions on the type of membrane module, and hollow fiber type, flat membrane type, spiral type, tubular type, monolith type, etc. can be used.

曝気装置2は、膜分離活性汚泥槽1内に収容された散気装置21及び散気装置21に空気等の気体を供給するブロワ22を備えることができる。曝気装置2は、分離膜10の膜表面に気泡が当たるように配置される。典型的には、曝気装置2は、分離膜10の下部又は底部に配置され、膜分離活性汚泥槽1内に気体を送り込んで、膜表面に堆積する堆積物(ゲル層)を剥離し、膜洗浄を行うように構成されている。膜洗浄時の曝気空気量は、以下に限定されるものではないが、典型的には6~30L/m2/分であり、より好ましくは9~25L/m2/分である。 The aeration device 2 may include an aeration device 21 housed in the membrane bioreactor activated sludge tank 1 and a blower 22 for supplying a gas such as air to the aeration device 21. The aeration device 2 is disposed so that air bubbles hit the membrane surface of the separation membrane 10. Typically, the aeration device 2 is disposed below or at the bottom of the separation membrane 10, and is configured to send gas into the membrane bioreactor activated sludge tank 1 to peel off deposits (gel layer) accumulated on the membrane surface and perform membrane cleaning. The amount of aeration air during membrane cleaning is not limited to the following, but is typically 6 to 30 L/m 2 /min, more preferably 9 to 25 L/m 2 /min.

曝気装置2は、連続曝気方式としてもよいし、曝気期間と次の曝気期間の間に所定の休止期間を設ける間欠曝気方式を採用してもよい。間欠曝気が行われる場合は、膜分離活性汚泥槽1から膜ろ過水を吸引する吸引ポンプ3の駆動が、OFF(吸引停止)時間となっている休止期間に、曝気装置2を用いた曝気による膜洗浄が行われるように、運転条件が設定されることで、曝気装置2による膜洗浄効果をより有効に得ることができる。 The aeration device 2 may be of a continuous aeration type, or an intermittent aeration type in which a predetermined rest period is provided between one aeration period and the next. When intermittent aeration is performed, the operating conditions are set so that membrane cleaning by aeration using the aeration device 2 is performed during the rest period when the suction pump 3, which sucks the membrane filtered water from the membrane separation activated sludge tank 1, is turned off (suction stop), thereby making it possible to more effectively obtain the membrane cleaning effect of the aeration device 2.

吸引ポンプ3による膜ろ過水の吸引は、分離膜10のファウリングの抑制の観点から、間欠タイマを設けて間欠吸引とすることが望ましい。膜ろ過中は、分離膜10の膜表面上に有機物が吸着され、ファウリングが進行しやすくなる。そのため、特にファウリングの進行が予想される場合は、フラックスを上げて可能な限り吸引時間の比率を下げることが望ましい。具体的には、ON時間とOFF時間の各1回行う操作を1サイクルとした場合、1サイクル当たりの間欠タイマのON、OFF時間の比を59:1~4:1とすることが望ましく、29:1~9:1とすることがより望ましい。 From the viewpoint of suppressing fouling of the separation membrane 10, it is desirable to set up an intermittent timer to perform intermittent suction of the membrane filtrate water by the suction pump 3. During membrane filtration, organic matter is adsorbed onto the membrane surface of the separation membrane 10, which makes fouling more likely to progress. Therefore, particularly when the progression of fouling is expected, it is desirable to increase the flux and reduce the ratio of suction time as much as possible. Specifically, if one cycle is an operation in which one ON time and one OFF time are performed, it is desirable to set the ratio of ON and OFF times of the intermittent timer per cycle to 59:1 to 4:1, and more preferably 29:1 to 9:1.

排泥ポンプ4は、膜分離活性汚泥槽1の下部に接続された引き抜き配管41に接続されており、膜分離活性汚泥槽1で発生した処理汚泥を余剰汚泥として引き抜く。排泥ポンプ4による引抜汚泥量の調整は、制御装置8からの運転条件の入力に応じて適宜行うことができる。 The sludge discharge pump 4 is connected to an extraction pipe 41 that is connected to the bottom of the membrane separation activated sludge tank 1, and extracts treated sludge generated in the membrane separation activated sludge tank 1 as excess sludge. The amount of sludge extracted by the sludge discharge pump 4 can be adjusted appropriately according to the operating conditions input from the control device 8.

図1に示すように、膜分離活性汚泥槽1内に収容される膜ろ過原水の有機物濃度を測定するための有機物濃度測定装置5と、吸引ポンプ3を介して膜分離活性汚泥槽1内から膜分離活性汚泥槽1内の外部へ吸引される膜ろ過水の有機物濃度を測定するための有機物濃度測定装置6とが設けられていても良い。 As shown in FIG. 1, an organic matter concentration measuring device 5 for measuring the organic matter concentration of the membrane-filtered raw water contained in the membrane separation activated sludge tank 1, and an organic matter concentration measuring device 6 for measuring the organic matter concentration of the membrane-filtered water sucked from inside the membrane separation activated sludge tank 1 to the outside of the membrane separation activated sludge tank 1 via the suction pump 3 may be provided.

有機物濃度測定装置5、6としては、COD計、BOD計、TOC計、有機炭素検出型サイズ排除クロマトグラフィー(LC-OCD)等の有機物測定器を利用することができる。有機物濃度測定装置5、6を使用せずに、膜ろ過原水及び膜ろ過水を手動又は自動でサンプリングし、図1の排水処理装置以外の別設備において、膜ろ過原水及び膜ろ過水の有機物濃度を測定することも勿論可能である。 As the organic matter concentration measuring devices 5 and 6, organic matter measuring devices such as a COD meter, a BOD meter, a TOC meter, and a size exclusion chromatography with organic carbon detection (LC-OCD) can be used. Of course, it is also possible to manually or automatically sample the membrane-filtered raw water and the membrane-filtered water without using the organic matter concentration measuring devices 5 and 6, and measure the organic matter concentration of the membrane-filtered raw water and the membrane-filtered water in a separate facility other than the wastewater treatment device in Figure 1.

膜ろ過原水及び膜ろ過水の有機物濃度の測定結果は制御装置8へ入力される。膜分離活性汚泥槽1に、膜ろ過原水の温度を測定するための温度計及び分離膜10の膜間差圧を計測するための圧力計等を含む計測装置等が更に設けられていてもよく、各計測装置からの計測結果が、制御装置8に入力されるように構成されていてもよい。 The measurement results of the organic matter concentration of the membrane-filtered raw water and the membrane-filtered water are input to the control device 8. The membrane separation activated sludge tank 1 may be further provided with measuring devices including a thermometer for measuring the temperature of the membrane-filtered raw water and a pressure gauge for measuring the transmembrane pressure difference of the separation membrane 10, and the measurement results from each measuring device may be configured to be input to the control device 8.

分離膜10の膜閉塞のメカニズムは、膜ろ過原水中に含まれる高分子凝集剤等の膜閉塞原因物質が生物処理に流入し、活性汚泥又はその細胞外物質と結合し、高分子かつ難分解の複合体を形成し、膜表面にゲル層を形成するというものであると推定される。更に、一旦、このゲル層が形成されると、ゲル層の存在により更に膜表面に膜閉塞原因物質が捕捉されやすくなり、急激にファウリングが進行する。したがって、ファウリングの発生を防止するためには、膜閉塞の原因となる有機物の挙動をモニタリングすることが重要となる。 The mechanism of membrane clogging of the separation membrane 10 is presumed to be that membrane clogging-causing substances, such as polymeric flocculants contained in the raw water from the membrane filtration, flow into the biological treatment and bind to the activated sludge or its extracellular substances to form a polymeric and difficult-to-decompose complex, which then forms a gel layer on the membrane surface. Furthermore, once this gel layer is formed, the presence of the gel layer makes it easier for the membrane clogging-causing substances to be captured on the membrane surface, causing fouling to progress rapidly. Therefore, in order to prevent the occurrence of fouling, it is important to monitor the behavior of the organic matter that causes membrane clogging.

本発明の実施の形態に係る排水処理装置及び排水処理方法では、膜閉塞原因物質の指標として、膜ろ過原水の液相の有機物濃度と、膜ろ過水の有機物濃度を測定したときの差分を採用する。この差分が、分離膜10で捕捉されている有機物濃度、すなわち分離膜10の膜表面に堆積するゲル層を形成する有機物濃度に大きく影響を及ぼすためである。なお、ファウリングの指標としては、他に所定の孔径(例えば5C)のろ紙の所定時間(例えば5分間)でのろ過量を測定することもできるが、この手法では水温、ろ紙の折り方、等の測定条件や測定時のMLSS等の運転条件が影響を及ぼす場合がある。上述のように有機物濃度差分を測定した方が、誤差を小さくすることができ、定量性の面で優れている。 In the wastewater treatment device and wastewater treatment method according to the embodiment of the present invention, the difference between the organic matter concentration in the liquid phase of the membrane filtrate raw water and the organic matter concentration in the membrane filtrate water is used as an indicator of the membrane clogging causative substance. This is because this difference greatly affects the organic matter concentration captured by the separation membrane 10, i.e., the organic matter concentration that forms the gel layer that accumulates on the membrane surface of the separation membrane 10. As an indicator of fouling, the filtration amount of a filter paper with a predetermined pore size (e.g., 5C) over a predetermined time (e.g., 5 minutes) can also be measured, but this method may be affected by measurement conditions such as water temperature and how the filter paper is folded, and operating conditions such as MLSS during measurement. As described above, measuring the organic matter concentration difference can reduce errors and is superior in terms of quantitativeness.

膜分離活性汚泥槽1の膜ろ過原水は、通常、高濃度の活性汚泥である。そのため、モニタリング指標として、膜ろ過原水の液相の有機物濃度を測定する場合には、膜分離活性汚泥槽1から採取した膜ろ過原水をろ過し、膜ろ過原水中の活性汚泥を除去してから分析を行う。膜ろ過原水の採取に際し、膜分離活性汚泥槽1の上流部分では、未分解の原水中の易分解性有機物や脱窒の際に添加したメタノールが残留し、有機物濃度の差分の測定に影響を及ぼす場合がある。よって、採取場所については、膜分離活性汚泥槽1の下流の膜分離に供する直前の汚泥を採取することが望ましい。ろ過する際は、孔径は膜分離活性汚泥槽1内で使用している膜の孔径と同等またはそれ以上のものを使用することが望ましく、典型的には、孔径0.45~1μm程度である。 The raw water from the membrane-filtered activated sludge tank 1 is usually high-concentration activated sludge. Therefore, when measuring the organic matter concentration in the liquid phase of the raw water from the membrane-filtered activated sludge tank 1 as a monitoring index, the raw water from the membrane-filtered activated sludge tank 1 is filtered to remove the activated sludge from the raw water from the membrane-filtered activated sludge tank before analysis. When collecting the raw water from the membrane-filtered activated sludge tank 1, easily decomposable organic matter in the raw water that has not been decomposed and methanol added during denitrification remain in the upstream part of the membrane-filtered activated sludge tank 1, which may affect the measurement of the difference in organic matter concentration. Therefore, it is preferable to collect the sludge immediately before it is subjected to membrane separation downstream of the membrane-filtered activated sludge tank 1. When filtering, it is preferable to use a filter with a pore size equal to or larger than the pore size of the membrane used in the membrane-filtered activated sludge tank 1, typically with a pore size of about 0.45 to 1 μm.

モニタリング指標として測定する有機物濃度としては、上述の通り、COD、BOD、TOC等が採用できるが、ゲル層の形成原因となる有機物をより適切に測定し、かつ、難分解性のポリマーを適切測定するための指標としては、CODMn、CODCr、TOCの使用がより望ましい。 As mentioned above, COD, BOD, TOC, etc. can be used as organic matter concentrations to be measured as monitoring indicators, but it is more preferable to use COD Mn , COD Cr and TOC as indicators for more appropriately measuring organic matter that causes the formation of a gel layer and for appropriately measuring difficult-to-decompose polymers.

以下の例に限定されるものではないが、例えば、モニタリング指標としてCODMnの差分値(ΔCODMn)を利用する場合、ΔCODMnの基準を70mg/L以下、更には60mg/L以下、更には40mg/L以下とし、測定値が予め設定した基準を超える場合に、膜分離活性汚泥槽1の運転条件の変更を行うことにより、膜分離活性汚泥槽1の膜閉塞を長期間抑制することができる。 Although not limited to the following example, for example, when the difference value of COD Mn (ΔCOD Mn ) is used as the monitoring index, the standard for ΔCOD Mn is set to 70 mg/L or less, further 60 mg/L or less, and further 40 mg/L or less, and when the measured value exceeds the preset standard, the operating conditions of the membrane bioreactor activated sludge tank 1 are changed, thereby making it possible to suppress membrane clogging in the membrane bioreactor activated sludge tank 1 for a long period of time.

膜分離活性汚泥槽1内において、窒素除去のための循環式硝化脱窒を行う場合は、硝化の状況や脱窒の状況により、膜ろ過水中に易分解性の有機物が残存することがある。易分解性有機物が残存すると分離膜10の膜閉塞原因物質の定量的な評価が難しくなる。このような場合は、測定する有機物濃度の指標として難分解性有機物を測定することが好ましい。ここで、難分解性有機物とは、測定対象の排水を一定時間(例えば1~8時間)曝気し、残存した有機物と定義する。このような有機物濃度を測定することで分離膜10の閉塞の兆候のより迅速な検出が可能となる。 When circulating nitrification and denitrification is performed in the membrane separation activated sludge tank 1 to remove nitrogen, easily decomposable organic matter may remain in the membrane filtered water depending on the nitrification and denitrification conditions. If easily decomposable organic matter remains, it becomes difficult to quantitatively evaluate the substances causing membrane blockage in the separation membrane 10. In such cases, it is preferable to measure the non-decomposable organic matter as an index of the organic matter concentration to be measured. Here, non-decomposable organic matter is defined as organic matter remaining after aerating the wastewater to be measured for a certain period of time (e.g., 1 to 8 hours). Measuring the concentration of such organic matter makes it possible to more quickly detect signs of blockage in the separation membrane 10.

膜閉塞の原因となる有機物を測定する別の手法として、分子量分画と有機物濃度の分布を組み合わせた分析装置である有機炭素検出型サイズ排除クロマトグラフィー:LC-OCD(Liquid Chromatography-Organic Carbon Detector)で分析する手法がある。膜閉塞の原因となる有機物は、LC-OCDで分子量20,000以上に分画される物質であることがわかっており、膜ろ過原水の液相と膜ろ過水の濃度を測定することで、対象を絞って定量することが可能になる。 Another method for measuring organic matter that causes membrane blockage is to use size exclusion chromatography with organic carbon detection: Liquid Chromatography-Organic Carbon Detector (LC-OCD), an analytical device that combines molecular weight fractionation and organic matter concentration distribution. It is known that organic matter that causes membrane blockage is a substance that is fractionated by LC-OCD to a molecular weight of 20,000 or more, and by measuring the concentration in the liquid phase of the raw membrane filtration water and the membrane filtrate water, it is possible to narrow down and quantify the target.

LC-OCDは、サイズ排除カラムを備える液体クロマトグラフ有機炭素計であり、試料中の溶存有機物を、サイズ排除カラムを備える液体クロマトグラフによって、下記(1)~(5)のモル質量画分に分画した後、各画分を有機炭素計で計測し有機体炭素として定量する。
(1)Biopolymers:バイオポリマー、モル質量20,000g/mol以上の画分
(2)Humic Substances:フミン質、モル質量500~20,000g/molの画分
(3)Building Blocks:ビルディングブロック(基礎的要素)、モル質量300~500g/molの画分
(4)LMW Acids:低分子有機酸、モル質量350g/mol以下の有機酸の画分
(5)LMW Neutrals:低分子中性物質、モル質量350g/mol以下の有機酸以外の画分
LC-OCD is a liquid chromatograph organic carbon meter equipped with a size exclusion column, and the dissolved organic matter in a sample is fractionated into the molar mass fractions (1) to (5) below using a liquid chromatograph equipped with a size exclusion column, and each fraction is then measured with an organic carbon meter to quantify the organic carbon.
(1) Biopolymers: Biopolymers, fractions with a molar mass of 20,000 g/mol or more (2) Humic Substances: Humic substances, fractions with a molar mass of 500 to 20,000 g/mol (3) Building Blocks: Building blocks (basic elements), fractions with a molar mass of 300 to 500 g/mol (4) LMW Acids: Low molecular weight organic acids, fractions of organic acids with a molar mass of 350 g/mol or less (5) LMW Neutrals: Low molecular weight neutral substances, fractions other than organic acids with a molar mass of 350 g/mol or less

LC-OCDを用いた分析は例えば以下の手順で行うことができる。まず、採取したサンプルを孔径0.45μmPTFEメンブランフィターでろ過し、TOCが1~2mg/Lとなるように超純水(ミリQ水)で希釈して分析試料を調製し、LC-OCD装置のサイズ排除カラムに通水する。モル質量20,000g/mol以上、モル質量500~20,000g/mol、モル質量300~500g/mol、モル質量350g/mol以下の4つの画分に分画し、各画分の有機炭素濃度を測定する。移動相としてリン酸緩衝液(pH6.58)を用いる。LC-OCD分析装置は、例えば、DOC-Labor社のLC-OCD Model 8を用いることができる。 Analysis using LC-OCD can be performed, for example, by the following procedure. First, the collected sample is filtered through a 0.45 μm pore size PTFE membrane filter, and diluted with ultrapure water (Milli-Q water) so that the TOC is 1-2 mg/L to prepare an analytical sample, which is then passed through a size exclusion column of an LC-OCD device. The sample is fractionated into four fractions with a molar mass of 20,000 g/mol or more, a molar mass of 500-20,000 g/mol, a molar mass of 300-500 g/mol, and a molar mass of 350 g/mol or less, and the organic carbon concentration of each fraction is measured. Phosphate buffer (pH 6.58) is used as the mobile phase. For example, an LC-OCD Model 8 from DOC-Labor can be used as the LC-OCD analyzer.

サイズ排除カラムによる分画後の各画分の分析試料は、薄膜反応器(グランツェル薄膜反応器 DOC-Labor社)内で酸性化液(リン酸、pH1.5)と窒素ガスパージにより無機炭素を除去された後、紫外線ランプ(DOCOXランプ、DOC-Lavor社)により酸化され、CO2としてNDIR(非分散形赤外線吸収法)検出器で検出される。得られた分析結果を専用ソフトウェア(ChromCALC,DOC-Labor社)にて解析する。具体的には、クロマトグラムの形状をもとにピークを分割し、各ピークの面積から濃度を計算することにより、LC-OCDで分子量20,000以上に分画される有機物を定量することができる。 After fractionation by the size exclusion column, the analytical sample of each fraction is subjected to removal of inorganic carbon in a thin-film reactor (Glanzel thin-film reactor, DOC-Labor) using an acidifying solution (phosphoric acid, pH 1.5) and nitrogen gas purging, and then oxidized by an ultraviolet lamp (DOCOX lamp, DOC-Labor) and detected as CO2 by an NDIR (non-dispersive infrared) detector. The analytical results obtained are analyzed using dedicated software (ChromCALC, DOC-Labor). Specifically, the peaks are divided based on the shape of the chromatogram, and the concentration is calculated from the area of each peak, allowing the quantification of organic matter fractionated into molecular weights of 20,000 or more by LC-OCD.

-運転改善方法-
本実施形態では、モニタリング指標が増加したときに、ファウリング低減のための運転改善方法として以下の3つの対策、即ち、(1)膜閉塞原因物質の流入量の低減、(2)膜に付着するゲル層の剥離促進、及び(3)膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出の少なくとも一以上の処理を実施する。モニタリング指標が適正範囲内に収まるように、下記の改善対策が適切になされた場合には処理条件を通常条件に戻してもよいことは勿論である。
-How to improve driving-
In this embodiment, when the monitoring index increases, the following three measures are implemented as an operation improvement method for reducing fouling: (1) reducing the inflow of substances causing membrane blockage, (2) promoting the peeling off of the gel layer adhering to the membrane, and (3) decomposing or discharging the membrane blockage substances in the membrane bioreactor activated sludge tank 1. Of course, when the following improvement measures are appropriately implemented so that the monitoring index falls within an appropriate range, the treatment conditions may be returned to normal conditions.

(1)膜閉塞原因物質の流入量の低減
膜ろ過原水中の膜閉塞原因物質、例えば、脱水分離液中の高分子凝集剤が過剰の場合、脱水分離液に含まれる高分子凝集剤の濃度が高くなり、活性汚泥やその細胞外物質と結合し、複合体を形成して膜閉塞が起こりやすくなる。そのため、モニタリング指標が増加に応じた場合に、膜分離活性汚泥槽1内へ流入する前、例えば前処理操作において、膜ろ過原水に添加される高分子凝集剤等の添加剤の最適添加率を確認し、安定した運転を維持する上で可能であれば、添加剤の添加率を低減させるような処理を行うことで、膜閉塞原因物質の流入量の低減を図るように、運転条件を調整する。
(1) Reduction of the inflow of membrane blocking causative substances When the membrane blocking causative substances in the membrane filtration raw water, for example, the polymer flocculant in the dehydration separation liquid is excessive, the concentration of the polymer flocculant contained in the dehydration separation liquid increases, and it binds to the activated sludge and its extracellular substances to form a complex, which makes it easier for membrane blocking to occur. Therefore, when the monitoring index increases, the optimal addition rate of additives such as polymer flocculants added to the membrane filtration raw water before flowing into the membrane separation activated sludge tank 1, for example in the pretreatment operation, is confirmed, and if possible in order to maintain stable operation, the addition rate of the additives is reduced, and the operating conditions are adjusted to reduce the inflow of membrane blocking causative substances.

例えば、膜ろ過原水として脱水分離液を用いる場合、モニタリング指標の測定値が予め設定された基準を超えた場合に、脱水処理のための高分子凝集剤の添加率を低減させるように運転条件を調整する。高分子凝集剤の最適添加率は、凝集試験、もしくは脱水分離液のコロイド荷電の分析等により確認することができる。他の手法としては、モニタリング指標が増加に応じた場合に、高分子凝集剤の種類の再選定、無機凝集剤の添加率の調整、生ごみ等の受け入れを行っている場合は受け入れ量の低減という手法を取ることができる。 For example, when using dehydrated separated liquid as the raw water for membrane filtration, if the measured value of the monitoring index exceeds a preset standard, the operating conditions are adjusted to reduce the addition rate of polymer flocculant for the dehydration treatment. The optimal addition rate of polymer flocculant can be confirmed by flocculation tests or analysis of the colloidal charge of the dehydrated separated liquid. Other methods that can be taken in response to an increase in the monitoring index include reselecting the type of polymer flocculant, adjusting the addition rate of inorganic flocculant, and reducing the amount of food waste, etc., that is accepted.

(2)膜に付着するゲル層の剥離促進
膜分離活性汚泥槽1内に収容された分離膜10の膜に付着するゲル層の破壊を促進する手法の一つとしては、間欠タイマを用いて、吸引ポンプ3による膜ろ過水の吸引のタイミングを調整することで、分離膜10のろ過継続時間を調整する方法が考えられる。モニタリング指標が増加した場合は、1サイクルあたりの間欠タイマのON、OFF時間の比が59:1~4:1、望ましくは29:1~9:1となる適正範囲内において、ろ過継続時間(ON時間)を短縮してろ過休止時間(OFF時間)が長くなるように、ON、OFF時間の比を調整し、OFF時間中に膜面に気泡を当てる時間を長くすることで、ゲル層の剥離を促進させることができる。
(2) Promotion of peeling of gel layer adhering to membrane One method for promoting the destruction of the gel layer adhering to the separation membrane 10 contained in the membrane bioreactor activated sludge tank 1 is to adjust the filtration duration of the separation membrane 10 by adjusting the timing of the suction of the membrane filtrate water by the suction pump 3 using an intermittent timer. When the monitoring index increases, the ratio of the ON and OFF times of the intermittent timer per cycle can be adjusted within an appropriate range of 59:1 to 4:1, preferably 29:1 to 9:1, so that the filtration duration (ON time) is shortened and the filtration pause time (OFF time) is lengthened, and the time for which air bubbles are applied to the membrane surface during the OFF time is lengthened, thereby promoting the peeling of the gel layer.

膜分離活性汚泥槽1内に収容された分離膜10の膜に付着するゲル層の破壊を促進する別の手法としては、曝気装置2による膜分離活性汚泥槽1内の曝気時間の調整を行う手法がある。例えば、モニタリング指標が増加したときに、曝気空気量6~30L/m2/分であり、より好ましくは9~25L/m2/分の範囲において、膜分離活性汚泥槽1へ供給する洗浄空気量を通常運転時よりも5~50%程度増加させることで、分離膜10の膜表面に付着するゲル層の剥離を促進させることができる。 Another method for promoting the destruction of the gel layer adhering to the separation membrane 10 contained in the membrane bioreactor 1 is to adjust the aeration time in the membrane bioreactor 1 by the aeration device 2. For example, when the monitoring index increases, the amount of cleaning air supplied to the membrane bioreactor 1 can be increased by about 5 to 50% compared to normal operation at an aeration air volume in the range of 6 to 30 L/ m2 /min, more preferably 9 to 25 L/ m2 /min, to promote the peeling off of the gel layer adhering to the surface of the separation membrane 10.

(3)膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出
分離膜10の膜に付着したゲル層を剥離させても、ゲル層の原因物質は難分解で遅分解であり、分子量が大きく、膜面で捕捉されやすい性質を有する。そのため、捕捉されやすい物質が槽内にある限り、再び膜面に付着し、ファウリングが進行しやすい状態が継続されることがあるため、膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出を促進するための対策として以下の手法が好適に用いられる。
(3) Decomposition or discharge of membrane-clogging substances in the membrane bioreactor tank 1 Even if the gel layer attached to the membrane of the separation membrane 10 is peeled off, the substances that cause the gel layer are difficult to decompose and decompose slowly, have a large molecular weight, and tend to be captured by the membrane surface. Therefore, as long as the substances that are easily captured remain in the tank, they may adhere to the membrane surface again, and the state in which fouling tends to progress may continue. Therefore, the following methods are preferably used as measures to promote the decomposition or discharge of membrane-clogging substances in the membrane bioreactor tank 1.

-SRT制御-
ゲル層の原因物質は、膜で捕捉され汚泥とともに槽内に滞留する可能性が高い。そのため、SRTが長いほど原因物質が濃縮され、ファウリングが進行しやすくなる。このため、硝化、脱窒等の処理が悪化しない範囲でSRTを下げ、ゲル層の原因物質を槽外に排出することが望ましい。
- SRT control -
The substances that cause the gel layer are likely to be captured by the membrane and remain in the tank together with the sludge. Therefore, the longer the SRT, the more the substances that cause the gel layer are concentrated, and the more likely fouling progresses. For this reason, it is desirable to lower the SRT to the extent that the nitrification, denitrification, and other processes do not deteriorate, and to discharge the substances that cause the gel layer out of the tank.

なお、ファウリングの要因の1つとして、特許文献1に記載されるように、活性汚泥の細胞外物質の存在が知られており、ファウリングを防止するために、SRTを長くし、汚泥負荷を下げる対策がとられることがある。しかしながら、脱水分離液のように原水中に難分解性のゲル層の原因物質が含まれ、SRTが既に適正な範囲である場合、SRTを長くすることは逆にファウリング原因物質の濃縮を促進することにつながる可能性がある。このため、本実施形態では適正なSRTを保ったうえで、あえてSRTを下げることで、ゲル層の原因物質の濃縮を防止する手法を採用することが好ましい。 As described in Patent Document 1, the presence of extracellular substances in activated sludge is known to be one of the causes of fouling, and measures to prevent fouling are sometimes taken to lengthen the SRT and reduce the sludge load. However, when the raw water contains persistent gel layer-causing substances, such as dehydration separation liquid, and the SRT is already within an appropriate range, lengthening the SRT may actually promote the concentration of fouling-causing substances. For this reason, in this embodiment, it is preferable to adopt a method of preventing the concentration of gel layer-causing substances by deliberately lowering the SRT while maintaining an appropriate SRT.

SRTとしては、典型的には35日以下、より典型的には30日以下となるように引抜汚泥量を調整することにより、ファウリングを適切に抑制しながら長期間安定して効率良く排水処理を行うことが可能となる。一方、SRTを短かくしすぎても、分離膜10の膜間差圧が高くなり、安定した処理が行えない場合がある。典型的には、SRTは6日以上となるように制御することが好ましく、10日以上とすることが好ましい。これにより、膜分離活性汚泥槽1内の分離膜10のファウリングを適切に抑制しながら安定的に処理できる。 By adjusting the amount of extracted sludge so that the SRT is typically 35 days or less, more typically 30 days or less, it becomes possible to carry out stable and efficient wastewater treatment for a long period of time while appropriately suppressing fouling. On the other hand, if the SRT is made too short, the transmembrane pressure difference of the separation membrane 10 becomes high, and stable treatment may not be possible. Typically, it is preferable to control the SRT to 6 days or more, and preferably 10 days or more. This allows stable treatment while appropriately suppressing fouling of the separation membrane 10 in the membrane separation activated sludge tank 1.

-物理化学処理-
モニタリング指標が増加した場合に、膜ろ過原水の少なくとも一部に対して、オゾン分解処理、促進酸化処理、または、活性炭吸着処理のいずれか1以上の処理を行うことにより、ゲル層の原因物質を分解、除去する。
-Physical and chemical treatment-
When the monitoring index increases, at least a portion of the raw membrane-filtered water is subjected to one or more of ozone decomposition treatment, advanced oxidation treatment, and activated carbon adsorption treatment to decompose and remove the causative substances in the gel layer.

-モニタリング指標の測定値に基づく膜分離活性汚泥槽1内の活性汚泥量の調整-
SRTを適切に調整しても、膜ろ過原水の変動等により、膜分離活性汚泥槽1内の状態が一時的にゲル層の形成を促進させる状態となり得る場合がある。本実施形態では、モニタリング指標が増加したときに、膜分離活性汚泥槽1からの引抜汚泥量を増加させて膜分離活性汚泥槽1内の活性汚泥量を低減させるように、排泥ポンプ4を調節するための運転条件の制御を行うことで、分離膜10に付着するゲル層の原因物質を槽外に排出させることが好ましい。
-Adjusting the volume of activated sludge in membrane bioreactor tank 1 based on the measured values of monitoring indices-
Even if the SRT is appropriately adjusted, the state in the membrane bioreactor activated sludge tank 1 may temporarily become one that promotes the formation of a gel layer due to fluctuations in the membrane-filtered raw water, etc. In this embodiment, when the monitoring index increases, it is preferable to control the operating conditions for adjusting the sludge pump 4 so as to increase the amount of sludge extracted from the membrane bioreactor activated sludge tank 1 and reduce the amount of activated sludge in the membrane bioreactor activated sludge tank 1, thereby discharging the substances that cause the gel layer adhering to the separation membrane 10 out of the tank.

以下に限定されるものではないが、分離膜10の膜間差圧が予め設定された許容範囲内に維持され、膜分離活性汚泥法による生物処理を安定的に行うことができる第1の汚泥滞留時間(典型的にはSRTが6日~35日間)においてモニタリング指標が増加した場合には、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う。分離膜10の膜間差圧が上記許容範囲を超える第2の汚泥滞留時間(典型的には6日未満となる場合)においてモニタリング指標が増加した場合は、膜分離活性汚泥槽1からの引抜汚泥量の低減を行うことが好ましい。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、引抜汚泥量を低減させるとSRTが長くなり処理に影響を及ぼす可能性がある。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う。 Although not limited to the following, if the monitoring index increases during the first sludge retention time (typically SRT is 6 to 35 days) when the transmembrane pressure difference of the separation membrane 10 is maintained within a preset allowable range and biological treatment by the membrane separation activated sludge method can be stably performed, the amount of sludge extracted from the membrane separation activated sludge tank 1 is increased. If the monitoring index increases during the second sludge retention time (typically less than 6 days) when the transmembrane pressure difference of the separation membrane 10 exceeds the allowable range, it is preferable to reduce the amount of sludge extracted from the membrane separation activated sludge tank 1. If the monitoring index increases when the SRT exceeds 35 days, reducing the amount of sludge extracted may lengthen the SRT and affect the treatment. If the monitoring index increases when the SRT exceeds 35 days, the amount of sludge extracted from the membrane separation activated sludge tank 1 is increased.

制御装置8は、曝気装置2のブロワ22、排泥ポンプ4、吸引ポンプ3、有機物濃度測定装置5、6、汚泥濃度計7に電気的に接続されており、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽1からの引抜汚泥量の増加、のいずれか1以上の処理を行うように、曝気装置2、吸引ポンプ3及び排泥ポンプ4の運転条件を制御する。 The control device 8 is electrically connected to the blower 22 of the aeration device 2, the sludge pump 4, the suction pump 3, the organic matter concentration measuring devices 5 and 6, and the sludge concentration meter 7, and controls the operating conditions of the aeration device 2, the suction pump 3, and the sludge pump 4 so that when the monitoring index increases, one or more of the following processes are performed: increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1, shortening the filtration duration, or increasing the amount of sludge extracted from the membrane separation activated sludge tank 1.

図1に示す排水処理装置を用いて本発明の実施の形態に係る排水処理方法を実施することができる。即ち、実施の形態に係る排水処理方法は、膜分離活性汚泥槽1内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽1からの引抜汚泥量の増加、のいずれか1以上の処理を行うように運転条件を調整することを含む。 The wastewater treatment method according to the embodiment of the present invention can be carried out using the wastewater treatment device shown in Figure 1. That is, the wastewater treatment method according to the embodiment includes measuring the organic matter concentration in the liquid phase of the membrane-filtered raw water in the membrane separation activated sludge tank 1 and the organic matter concentration in the membrane-filtered water, using the difference as a monitoring index, and adjusting the operating conditions so that, when the monitoring index increases, one or more of the following processes are performed: increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1, shortening the filtration duration, or increasing the amount of sludge extracted from the membrane separation activated sludge tank 1.

このように、本発明の実施の形態に係る排水処理装置及び排水処理方法によれば、膜分離活性汚泥槽1内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加した場合に、膜閉塞原因物質の流入量の低減、膜に付着するゲル層の剥離促進、及び膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出の少なくとも一以上の処理を実施することにより、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことができる。 Thus, according to the wastewater treatment device and wastewater treatment method of the embodiment of the present invention, the organic matter concentration of the liquid phase of the membrane-filtered raw water in the membrane separation activated sludge tank 1 and the organic matter concentration of the membrane-filtered water are measured, and the difference between them is used as a monitoring index. If the monitoring index increases, at least one of the following processes is carried out: reducing the inflow of substances that cause membrane blockage, promoting the peeling off of the gel layer adhering to the membrane, and decomposing or discharging the membrane-blocking substances in the membrane separation activated sludge tank 1. This makes it possible to quickly detect signs of separation membrane blockage and perform stable and efficient wastewater treatment while appropriately suppressing fouling.

(変形例)
膜分離活性汚泥槽1内の分離膜10の閉塞を抑制する方法として、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加の少なくともいずれかを行うタイミングまたは処理時間の少なくともいずれかを各処理毎に適正化することが好ましい。
(Modification)
As a method for suppressing clogging of the separation membrane 10 in the membrane bioreactor activated sludge tank 1, it is preferable to optimize at least one of the timing of increasing the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1, shortening the filtration duration, or increasing the amount of sludge extracted from the membrane bioreactor activated sludge tank, or the treatment time, for each treatment, when the monitoring index increases.

例えば、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮処理は、分離膜10に付着したゲル層を物理的に除去するための処理であり、ファウリングを抑制するための処置としては、比較的短時間で効果が出やすい。一方、膜分離活性汚泥槽1からの引抜汚泥量を増加させるための排泥ポンプ4の制御は、分離膜10の膜表面上でゲル層を形成しやすい物質濃度を高めないように膜分離活性汚泥槽1内の濃度を調整するための処置であり、ファウリングを抑制するための処置としては、比較的長時間継続させることで効果を得ることができる。よって、分離膜10の汚染度合及び膜分離活性汚泥槽1内の汚泥及び流入高分子凝集剤の濃度に応じて、ファウリングを抑制するための短期的な処置と長期的な処置とを組み合わせることが好ましい。 For example, the increase in the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1 and the shortening of the filtration duration are processes for physically removing the gel layer attached to the separation membrane 10, and as measures for suppressing fouling, they tend to be effective in a relatively short time. On the other hand, the control of the sludge pump 4 for increasing the amount of sludge extracted from the membrane bioreactor activated sludge tank 1 is a process for adjusting the concentration in the membrane bioreactor activated sludge tank 1 so as not to increase the concentration of substances that tend to form a gel layer on the membrane surface of the separation membrane 10, and as a measure for suppressing fouling, it is necessary to continue it for a relatively long time to obtain an effect. Therefore, it is preferable to combine short-term measures and long-term measures for suppressing fouling depending on the degree of contamination of the separation membrane 10 and the concentrations of the sludge and inflow polymer flocculant in the membrane bioreactor activated sludge tank 1.

洗浄空気量の増加は、短期的にファウリングを抑制できる反面、ブロワ22の電力消費量の増加によるランニングコストの増加、活性汚泥の解体、等の課題がある。また、ろ過継続時間の増加は、短期的にファウリングを抑制できる反面、時間当たりのろ過量には限界がある。また、SRTの制御は、汚泥が入れ替わるまでには数日~数十日の期間が必要であり、効果が出るまでに時間がかかる。よって、本実施形態では、短期的に効果が得られる洗浄空気量の増加及びろ過継続時間の短縮処理と、長期的に効果が得られる引抜汚泥量の調整処理を組み合わせる。例えば、ファウリングの発生初期は、短期的な対策と長期的な対策を同時に行い、汚泥の入れ替わりが進行してモニタリング指標が低下した後は、短期的な処置を処置前に戻すことで、ファウリングを即時に抑制しつつ、長期間に渡ってランニングコストを抑え、かつ安定的な運転化が可能になる。 Increasing the amount of cleaning air can suppress fouling in the short term, but it has problems such as increased running costs due to increased power consumption of the blower 22 and dismantling of activated sludge. Increasing the duration of filtration can suppress fouling in the short term, but it has a limit to the amount of filtration per hour. In addition, it takes several days to several tens of days for the sludge to be replaced, and it takes time for the SRT control to be effective. Therefore, in this embodiment, a process of increasing the amount of cleaning air and shortening the duration of filtration, which is effective in the short term, is combined with a process of adjusting the amount of extracted sludge, which is effective in the long term. For example, in the early stage of fouling, short-term and long-term measures are taken simultaneously, and after the replacement of sludge progresses and the monitoring index decreases, the short-term measures are returned to the state before the treatment, thereby immediately suppressing fouling, reducing running costs over the long term, and enabling stable operation.

具体的な例としては、以下に限定されるものではないが、例えば、モニタリング指標に対して、第1の基準値と第1の基準値よりも大きい第2の基準値を予め設定しておき、モニタリング指標が増大して第1の基準値を超えたときには、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う処理を開始し、更に第2の基準値を超えたときには、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理を開始するように、運転条件を調整することができる。 Specific examples include, but are not limited to, a first reference value and a second reference value greater than the first reference value are preset for the monitoring index, and when the monitoring index increases and exceeds the first reference value, a process is started to increase the amount of sludge extracted from the membrane bioreactor activated sludge tank 1, and when the monitoring index further exceeds the second reference value, the operating conditions can be adjusted to start a first process to increase the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1 and/or shorten the filtration duration.

具体的には、膜分離活性汚泥槽1内の分離膜10の膜間差圧が基準範囲内となり、安定的な生物処理が行われる第1の汚泥滞留時間(典型的には6~35日間)において、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う第2の処理との少なくともいずれかを行うように運転条件を調整することができる。 Specifically, when the transmembrane pressure difference of the separation membrane 10 in the membrane bioreactor tank 1 falls within the standard range and the monitoring index increases during the first sludge retention time (typically 6 to 35 days) during which stable biological treatment is performed, the operating conditions can be adjusted to perform at least one of a first process, which increases the amount of cleaning air supplied to the membrane bioreactor tank 1 and/or a second process, which increases the amount of sludge extracted from the membrane bioreactor tank 1.

また、分離膜10の膜間差圧が上記基準範囲を超える第2の汚泥滞留時間(典型的には6日未満)においてモニタリング指標が増加した場合には、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の低減を行う第3の処理との少なくともいずれかを行うように運転条件を調整することができる。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う第2の処理との少なくともいずれかを行うように運転条件を調整することができる。 In addition, when the monitoring index increases during the second sludge retention time (typically less than 6 days) when the transmembrane pressure difference of the separation membrane 10 exceeds the above-mentioned reference range, the operating conditions can be adjusted to perform at least one of the following: a first process for increasing the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1 and/or shortening the filtration duration, and a third process for reducing the amount of sludge extracted from the membrane bioreactor activated sludge tank 1. In addition, when the monitoring index increases when the SRT exceeds 35 days, the operating conditions can be adjusted to perform at least one of the following: a first process for increasing the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1 and/or shortening the filtration duration, and a second process for increasing the amount of sludge extracted from the membrane bioreactor activated sludge tank 1.

これにより、膜分離活性汚泥槽1内での生物処理をより安定的に進めることができ、基準値を満たす処理水を安定して継続的に得ながら、膜ろ過原水の急激な性状変動が生じた場合においても、分離膜10の閉塞の兆候を迅速に検出し、ファウリングを適切に抑制しながら長期間安定して効率良く排水処理を行うことが可能となる。 This allows biological treatment in the membrane separation activated sludge tank 1 to proceed more stably, and while it is possible to stably and continuously obtain treated water that meets the standard values, even if there is a sudden change in the properties of the membrane filtration raw water, it is possible to quickly detect signs of blockage of the separation membrane 10 and perform wastewater treatment stably and efficiently over a long period of time while appropriately suppressing fouling.

上記対策を行い、モニタリング指標の減少が確認された場合は、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理を、対策前の状態に段階的に戻すことで、ランニングコストを低減しつつ、処理の安定化が可能になる。 If the above measures are taken and a decrease in the monitoring index is confirmed, the first process, which involves one or more of increasing the amount of cleaning air supplied to the membrane bioreactor activated sludge tank 1 and shortening the filtration duration, can be gradually returned to the state before the measures were taken, thereby reducing running costs and stabilizing the process.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 The following examples of the present invention are presented together with comparative examples, but these examples are provided to provide a better understanding of the present invention and its advantages, and are not intended to limit the invention.

(試験1)SRT制御
脱窒槽と硝化槽(膜分離槽)とを備える膜分離活性汚泥槽内に供給する膜ろ過原水として、し尿・浄化槽汚泥の脱水分離液を用い、脱水分離液のMLSSを3,000~20,000mg/Lに変化させ、SRT、硝化槽のT-N-SS負荷(以下「T-N-SS負荷」という)及び全槽BOD-SS負荷(以下「BOD-SS負荷」という)の変化による膜ろ過性能を検討した処理試験条件と測定結果を表1に示す。なお、BOD-SS負荷は脱窒槽及び硝化槽の合計のBOD-SS負荷を表す。
(Test 1) SRT control Dehydrated separated liquid from sewage and septic tank sludge was used as the membrane-filtered raw water to be supplied to a membrane separation activated sludge tank equipped with a denitrification tank and a nitrification tank (membrane separation tank), and the MLSS of the dehydrated separated liquid was changed from 3,000 to 20,000 mg/L to examine the membrane filtration performance due to changes in SRT, T-N-SS load in the nitrification tank (hereinafter referred to as "T-N-SS load"), and BOD-SS load in all tanks (hereinafter referred to as "BOD-SS load"), and the treatment test conditions and measurement results are shown in Table 1. Note that the BOD-SS load represents the total BOD-SS load in the denitrification tank and the nitrification tank.

試験1では、孔径0.4μmの有機平膜を用いた。ろ過フラックスを0.4m/dで一定とし、膜間差圧の変化、有機物濃度の差分値(ΔS-CODMn)及び5Cろ紙ろ過量で膜に対する汚染度を評価した。5Cろ紙ろ過量は、150mmφの5Cろ紙を用い、50ml汚泥混合液を5分間にろ過できるろ液量を測定した結果を示す。ΔS-CODMnは膜分離槽混合液中の溶解性CODMn(S-CODMn)と膜分離水のCODMnの差を示す。このΔS-CODMnが高いほど膜表面の汚染度が高く、ろ過しにくいことを示す。Δ膜間差圧、ΔS-CODMn及び5Cろ紙ろ過量はいずれも連続処理3ヵ月後の測定値である。 In Test 1, an organic flat membrane with a pore size of 0.4 μm was used. The filtration flux was fixed at 0.4 m/d, and the degree of contamination of the membrane was evaluated based on the change in transmembrane pressure difference, the difference in organic matter concentration (ΔS-COD Mn ), and the amount of filtration using 5C filter paper. The amount of filtration using 5C filter paper is the result of measuring the amount of filtrate that can be filtered in 5 minutes using 5C filter paper with a diameter of 150 mm. ΔS-COD Mn indicates the difference between the soluble COD Mn (S-COD Mn ) in the mixed liquid in the membrane separation tank and the COD Mn of the membrane separated water. The higher the ΔS-COD Mn , the higher the degree of contamination of the membrane surface, indicating that filtration is more difficult. ΔTransmembrane pressure difference, ΔS-COD Mn , and the amount of filtration using 5C filter paper are all measured values after 3 months of continuous treatment.

図2~4は、試験1で得られたSRTと膜汚染度を示す指標となるΔS-CODMn、膜間差圧、5Cろ紙ろ過量の関係を示す。SRTは10~30dの場合、ΔS-CODMnが22~40mg/Lと比較的に安定し、膜汚染が少ないと判断された。一方、SRTが6dと短い場合、ΔS-CODMnが82mg/Lと高く、膜汚染が多いと判断された。また、SRTが40dと長い場合も、ΔS-CODMnが90mg/Lと高く、膜汚染の多いことが示された。 2 to 4 show the relationship between the SRT obtained in Test 1 and ΔS-COD Mn , which is an index showing the degree of membrane fouling, transmembrane pressure difference, and 5C filter paper filtration volume. When the SRT was 10 to 30 d, ΔS-COD Mn was relatively stable at 22 to 40 mg/L, and it was determined that there was little membrane fouling. On the other hand, when the SRT was as short as 6 d, ΔS-COD Mn was high at 82 mg/L, and it was determined that there was a lot of membrane fouling. Also, when the SRT was as long as 40 d, ΔS-COD Mn was high at 90 mg/L, indicating that there was a lot of membrane fouling.

図3に示すSRTと膜間差圧の関係から、膜間差圧を安定処理の目安となる25KPa以下、好ましくは20KPa以下とするためにはSRTを6~35d、更には10~30dとするのが妥当と推測される。図4に示すSRTと5Cろ紙ろ過量の関係から、良好なろ過性能の目安とされる5Cろ紙ろ過量8ml以上、好ましくは10ml以上に維持するためには、SRTを6~35d、更にはSRTを10~30dとするのが好ましいと判断される。 From the relationship between SRT and transmembrane pressure shown in Figure 3, it is estimated that an SRT of 6 to 35 d, or even 10 to 30 d, is appropriate to keep the transmembrane pressure at 25 KPa or less, and preferably 20 KPa or less, which is the benchmark for stable treatment. From the relationship between SRT and 5C filter paper filtration volume shown in Figure 4, it is determined that an SRT of 6 to 35 d, or even 10 to 30 d, is preferable to maintain a 5C filter paper filtration volume of 8 ml or more, and preferably 10 ml or more, which is the benchmark for good filtration performance.

図5~7は試験で得られた反応槽全体のBOD-SS負荷とΔS-CODMn、膜間差圧、5Cろ紙ろ過量の関係を示す。BOD-SS負荷からみると、膜汚染を抑制するためには、BOD-SS負荷を0.05~0.2kg/kg/dとするのが妥当と考えられる。図8はΔS-CODMnと膜間差圧の関係、図9はΔS-CODMnと5Cろ紙ろ過量の関係を示す。ΔS-CODMnと膜間差圧が良好な相関が見られた。膜間差圧を安定処理の目安である20KPa以下とするためには、ΔS-CODMnを40mg/L以下にて運転管理するのが好ましい。ΔS-CODMnと5Cろ紙ろ過量も同様に良好な相関が見られた。5Cろ紙ろ過量を良好なろ過性能目安である10ml以上とするためにはΔS-CODMnを約70mg/L以下にて運転管理するのが好ましい。 Figures 5 to 7 show the relationship between the BOD-SS load of the entire reactor, ΔS-COD Mn , transmembrane pressure, and 5C paper filter filtration volume obtained in the test. In terms of the BOD-SS load, it is considered appropriate to set the BOD-SS load at 0.05 to 0.2 kg/kg/d in order to suppress membrane fouling. Figure 8 shows the relationship between ΔS-COD Mn and transmembrane pressure, and Figure 9 shows the relationship between ΔS-COD Mn and 5C paper filter filtration volume. A good correlation was observed between ΔS-COD Mn and transmembrane pressure. In order to keep the transmembrane pressure at 20 KPa or less, which is the guideline for stable treatment, it is preferable to operate and manage ΔS-COD Mn at 40 mg/L or less. A similar good correlation was observed between ΔS-COD Mn and 5C paper filter filtration volume. In order to keep the 5C paper filter filtration volume at 10 ml or more, which is the guideline for good filtration performance, it is preferable to operate and manage ΔS-COD Mn at approximately 70 mg/L or less.

以上の結果より、本発明の一実施態様によれば、膜汚染を抑制し、安定したろ過性能を維持するためには、ΔS-CODMnを少なくとも70mg/L以下、好ましくは40mg/L以下となるように運転条件を管理し、適切なSRTやBOD-SSの調整を行うことが好ましいことが分かった。 From the above results, it has been found that, according to one embodiment of the present invention, in order to suppress membrane fouling and maintain stable filtration performance, it is preferable to control the operating conditions so that ΔS-COD Mn is at least 70 mg/L or less, preferably 40 mg/L or less, and to appropriately adjust SRT and BOD-SS.

(試験2)適正SRT条件、適正吸引時間条件下の曝気風量検討
試験1と同様の設備で、膜ろ過原水としてし尿・浄化槽汚泥の脱水分離液を用い、脱水分離液のMLSSを3,000~20,000mg/Lに変化させ、洗浄空気量及びろ過継続時間(吸引タイマ)の変化による膜ろ過性能を検討した。結果を表2に示す。
(Test 2) Study of aeration air volume under appropriate SRT conditions and appropriate suction time conditions Using the same equipment as in Test 1, dehydrated separated liquid of human waste and septic tank sludge was used as the raw water for membrane filtration, and the MLSS of the dehydrated separated liquid was changed from 3,000 to 20,000 mg/L to study the membrane filtration performance according to the change in the amount of washing air and the duration of filtration (suction timer). The results are shown in Table 2.

SRT18d、吸引9分と吸引停止1分の繰り返し条件下、洗浄空気量7~18L/m2/分では、膜間差圧は17~23Kpaと低値を維持し、5Cろ紙ろ過量も15~21mLと多く良好な状態であった(No.11~13)。洗浄空気量を4L/m2/分に絞ると、膜間差圧は26Kpaに上昇し、5Cろ紙ろ過量も9.2mLと少なく膜閉塞の兆候がみられた(No.14)。 Under conditions of SRT18d, repeated suction for 9 minutes and 1 minute without suction, and a cleaning air volume of 7-18 L/ m2 /min, the transmembrane pressure remained low at 17-23 Kpa and the 5C paper filtration volume was also high at 15-21 mL, showing good conditions (No. 11-13).When the cleaning air volume was reduced to 4 L/ m2 /min, the transmembrane pressure rose to 26 Kpa and the 5C paper filtration volume was also low at 9.2 mL, showing signs of membrane blockage (No. 14).

SRT18d、洗浄空気量18L/m2/分の条件下、吸引20分~40分ごとに1分間吸引停止することで、膜間差圧は24~32Kpaと低値を維持し、5Cろ紙ろ過量も16~20mLと多く良好な状態であった(No.15、16)。しかしながら、吸引60分ごとに1分間吸引停止した場合、膜間差圧は31Kpaに上昇し、5Cろ紙ろ過量も8.4mLと少なく膜閉塞の兆候がみられた(No.17)。 Under conditions of SRT18d and cleaning air volume 18 L/ m2 /min, by stopping suction for 1 minute every 20 to 40 minutes, the transmembrane pressure was maintained at a low value of 24 to 32 Kpa and the 5C filter paper filtration volume was also high at 16 to 20 mL, which was in a good condition (No. 15, 16). However, when suction was stopped for 1 minute every 60 minutes, the transmembrane pressure rose to 31 Kpa and the 5C filter paper filtration volume was also low at 8.4 mL, indicating signs of membrane blockage (No. 17).

(試験3)モニタリング指標に基づく制御
以下の3条件で連続運転を行い、膜間差圧が30kPa以上となるまでの日数を調べた。
(1)比較例1:通常運転、モニタリング指標に基づく制御なし
(洗浄空気量7L/m2/分、吸引タイマOn:Off=12:1、SRT18日)
(2)実施例1:モニタリング指標に基づく制御(短期的処置のみ)
(ΔS-CODMn40mg/L以上となった場合に、通常運転から洗浄空気量を9L/m2/分、吸引タイマOn:Off=9:1へ変更する制御を行い、ΔS-CODMn30mg/L以下となった場合に通常運転に戻す制御を行った)
(3)実施例2:モニタリング指標に基づく制御(短期的処置と長期的処置の組み合わせ)
ΔS-CODMn40mg/L以上となった場合に、通常運転から洗浄空気量を9L/m2/分、吸引タイマOn:Off=9:1、排泥ポンプを操作してSRTを14日に変更、ΔS-CODMn30mg/L以下となった場合に通常運転に戻す制御を行い、S-CODMn30mg/L以下となった場合に洗浄空気量を7L/m2/分、吸引タイマOn:Off=12:1、SRT14日とし、S-CODMn20m以下で通常運転の条件に戻す制御を行った。
(Test 3) Control Based on Monitoring Indicators Continuous operation was carried out under the following three conditions, and the number of days until the transmembrane pressure reached 30 kPa or more was examined.
(1) Comparative Example 1: Normal operation, no control based on monitoring index (cleaning air volume 7 L/ m2 /min, suction timer On:Off=12:1, SRT 18 days)
(2) Example 1: Control based on monitoring indicators (short-term treatment only)
(When ΔS-COD Mn reached 40 mg/L or more, the cleaning air volume was changed from normal operation to 9 L/m 2 /min and the suction timer On:Off=9:1, and when ΔS-COD Mn reached 30 mg/L or less, the operation was returned to normal.)
(3) Example 2: Control based on monitoring indicators (combination of short-term and long-term treatments)
If ΔS-COD Mn reached 40 mg/L or above, the system changed from normal operation to a scrubbing air volume of 9 L/ m2 /min, suction timer On:Off = 9:1, and SRT to 14 days by operating the sludge pump; if ΔS-COD Mn fell below 30 mg/L, control was performed to return to normal operation; if S-COD Mn fell below 30 mg/L, control was performed to return to normal operation conditions, with the scrubbing air volume changed to 7 L/ m2 /min, suction timer On:Off = 12:1, and SRT to 14 days; and if S-COD Mn was below 20 mg/L, control was performed to return to normal operating conditions.

実施例1の短期的処置のみを行う場合では234日、実施例2の短期的処置と長期的処置の組み合わせでは381日と、制御をおこなわない比較例1に比べてより長期間安定的に運転できることが確認された。 When only the short-term treatment of Example 1 was performed, the operation time was 234 days, and when the short-term and long-term treatments of Example 2 were combined, the operation time was 381 days, confirming that the operation could be stably continued for a longer period of time compared to Comparative Example 1 where no control was performed.

1…膜分離活性汚泥槽
2…曝気装置
3…吸引ポンプ
4…排泥ポンプ
5、6…有機物濃度測定装置
7…汚泥濃度計
8…制御装置
10…分離膜
21…散気装置
22…ブロワ
41…引き抜き配管
1...membrane separation activated sludge tank 2...aeration device 3...suction pump 4...sludge pump 5, 6...organic matter concentration measuring device 7...sludge concentration meter 8...control device 10...separation membrane 21...aeration device 22...blower 41...drawing pipe

Claims (6)

膜分離活性汚泥法を用いた排水処理方法において、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、前記モニタリング指標が増加したときに、前記膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または前記膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように運転条件を調整することを含み、
前記モニタリング指標が第1の基準値を超える場合に、前記膜分離活性汚泥槽からの引抜汚泥量の増加の処理を行い、
前記モニタリング指標が第1の基準値よりも高い第2の基準値を超える場合に、前記膜分離活性汚泥槽へ供給する洗浄空気量の増加又は前記ろ過継続時間の短縮のいずれか1以上の処理を行うことを含む排水処理方法。
A wastewater treatment method using a membrane bioreactor, comprising measuring an organic matter concentration in the liquid phase of membrane-filtered raw water in a membrane bioreactor tank and an organic matter concentration in membrane-filtered water, using the difference between the organic matter concentrations as a monitoring index, and adjusting operating conditions so as to perform one or more of the following treatments when the monitoring index increases: increasing the amount of cleaning air supplied to the membrane bioreactor tank, shortening the filtration duration, or increasing the amount of sludge extracted from the membrane bioreactor tank;
When the monitoring index exceeds a first reference value, a process for increasing the amount of sludge extracted from the membrane bioreactor activated sludge tank is performed;
When the monitoring index exceeds a second standard value that is higher than the first standard value, the wastewater treatment method comprises carrying out one or more of the following: increasing an amount of cleaning air to be supplied to the membrane bioreactor tank or shortening the filtration duration.
前記有機物濃度として、COD、BOD、TOC、または、有機炭素検出型サイズ排除クロマトグラフィーで測定して分子量20000以上に分画される有機物濃度、のいずれかを測定することを含む請求項に記載の排水処理方法。 The wastewater treatment method according to claim 1, further comprising measuring the organic matter concentration as any one of COD, BOD, TOC, or the concentration of organic matter fractionated to a molecular weight of 20,000 or more as measured by organic carbon detection type size exclusion chromatography. 前記モニタリング指標が増加した場合に、前記膜ろ過原水の少なくとも一部に対して、オゾン分解処理、促進酸化処理、または、活性炭吸着処理のいずれか1以上の処理を行うことを含む請求項1又は2に記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2 , further comprising subjecting at least a portion of the membrane-filtered raw water to one or more of ozone decomposition treatment, advanced oxidation treatment, and activated carbon adsorption treatment when the monitoring index increases. 前記膜ろ過原水が、有機物を含む汚泥に高分子凝集剤を添加して脱水処理した後に発生する脱水分離液である請求項1~のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3 , wherein the membrane filtrated raw water is a dehydrated separated liquid generated after a polymer flocculant is added to sludge containing organic matter and the dehydration treatment is performed. 前記モニタリング指標が増加した場合に、前記膜分離活性汚泥槽に供給される前の脱水処理で前記膜ろ過原水に添加される高分子凝集剤の添加率を低減する処理を行うことを含む請求項1~のいずれか1項に記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 4, further comprising performing a process of reducing an addition rate of a polymer flocculant added to the membrane-filtered raw water in a dehydration process before the raw water is supplied to the membrane separation activated sludge tank when the monitoring index increases. 活性汚泥の存在下で膜ろ過原水を膜分離処理して膜ろ過水を得る膜分離活性汚泥槽と、
前記膜分離活性汚泥槽を曝気する曝気装置と、
前記膜分離活性汚泥槽から前記膜ろ過水を吸引する吸引ポンプと、
前記膜分離活性汚泥槽から汚泥を引き抜く排泥ポンプと、
前記膜分離活性汚泥槽内の前記膜ろ過原水の液相の有機物濃度と前記膜ろ過水の有機物濃度との差分値をモニタリング指標とし、前記モニタリング指標が増加したときに、前記膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または前記膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように、前記曝気装置、前記吸引ポンプ及び前記排泥ポンプの運転条件を制御する制御装置と
を備え
前記制御装置が、前記モニタリング指標が第1の基準値を超える場合に、前記膜分離活性汚泥槽からの引抜汚泥量の増加の処理を行い、前記モニタリング指標が第1の基準値よりも高い第2の基準値を超える場合に、前記膜分離活性汚泥槽へ供給する洗浄空気量の増加又は前記ろ過継続時間の短縮のいずれか1以上の処理を行うことを特徴とする排水処理装置。
a membrane separation activated sludge tank for subjecting the membrane-filtered raw water to membrane separation treatment in the presence of activated sludge to obtain membrane-filtered water;
an aeration device for aerating the membrane separation activated sludge tank;
a suction pump that sucks the membrane-filtered water from the membrane separation activated sludge tank;
a sludge pump for extracting sludge from the membrane bioreactor tank;
a control device which controls the operating conditions of the aeration device, the suction pump and the discharge sludge pump so that a difference value between an organic matter concentration in the liquid phase of the membrane-filtered raw water in the membrane bioreactor tank and an organic matter concentration in the membrane-filtered water is used as a monitoring index, and when the monitoring index increases, one or more of the following processes are performed: an increase in the amount of cleaning air supplied to the membrane bioreactor tank, a shortened filtration duration, or an increase in the amount of sludge extracted from the membrane bioreactor tank ;
the control device, when the monitoring index exceeds a first reference value, performs a process of increasing the amount of sludge extracted from the membrane bioreactor tank, and, when the monitoring index exceeds a second reference value higher than the first reference value, performs one or more of the following processes: increasing the amount of cleaning air supplied to the membrane bioreactor tank or shortening the filtration duration .
JP2021004431A 2021-01-14 2021-01-14 Wastewater treatment method and wastewater treatment device Active JP7474718B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021004431A JP7474718B2 (en) 2021-01-14 2021-01-14 Wastewater treatment method and wastewater treatment device
JP2024018856A JP2024036698A (en) 2021-01-14 2024-02-09 Wastewater treatment method and wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004431A JP7474718B2 (en) 2021-01-14 2021-01-14 Wastewater treatment method and wastewater treatment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024018856A Division JP2024036698A (en) 2021-01-14 2024-02-09 Wastewater treatment method and wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2022109088A JP2022109088A (en) 2022-07-27
JP7474718B2 true JP7474718B2 (en) 2024-04-25

Family

ID=82557057

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021004431A Active JP7474718B2 (en) 2021-01-14 2021-01-14 Wastewater treatment method and wastewater treatment device
JP2024018856A Pending JP2024036698A (en) 2021-01-14 2024-02-09 Wastewater treatment method and wastewater treatment apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024018856A Pending JP2024036698A (en) 2021-01-14 2024-02-09 Wastewater treatment method and wastewater treatment apparatus

Country Status (1)

Country Link
JP (2) JP7474718B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176710A (en) 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013176710A (en) 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system

Also Published As

Publication number Publication date
JP2024036698A (en) 2024-03-15
JP2022109088A (en) 2022-07-27

Similar Documents

Publication Publication Date Title
Dialynas et al. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater
Tewari et al. Membrane bioreactor (MBR) for wastewater treatment: Filtration performance evaluation of low cost polymeric and ceramic membranes
Trussell et al. The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater
Qin et al. Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent
CN103112978B (en) Advanced treatment method for cotton slurry paper-making wastewater
WO2014034827A1 (en) Fresh water generation method
CN110028210A (en) A kind of technique suitable for UASB processing landfill leachate
CN208136047U (en) A kind of coking wastewater processing system
KR20070016079A (en) Method of treating organic waste water
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP5399065B2 (en) Wastewater treatment method
Wang et al. Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS)
JP4408524B2 (en) Fresh water system
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
Elfilali et al. Effectiveness of membrane bioreactor/reverse osmosis hybrid process for advanced purification of landfill leachate
JP7474718B2 (en) Wastewater treatment method and wastewater treatment device
Toran et al. Membrane-based processes to obtain high-quality water from brewery wastewater
RU2112747C1 (en) Method and membrane installation for treating water
JP3552580B2 (en) Method and apparatus for treating human wastewater
CN209759260U (en) Landfill leachate membrane method deep treatment system
JP2013176710A (en) Membrane separation activated sludge treatment method and system
JPH11347595A (en) Water purifying treatment equipment and concentration sludge thereof
JPS62191097A (en) Raw sewage treatment method
WO2023176161A1 (en) Method for operating anaerobic treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7474718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150