JP2024036698A - Wastewater treatment method and wastewater treatment apparatus - Google Patents
Wastewater treatment method and wastewater treatment apparatus Download PDFInfo
- Publication number
- JP2024036698A JP2024036698A JP2024018856A JP2024018856A JP2024036698A JP 2024036698 A JP2024036698 A JP 2024036698A JP 2024018856 A JP2024018856 A JP 2024018856A JP 2024018856 A JP2024018856 A JP 2024018856A JP 2024036698 A JP2024036698 A JP 2024036698A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- activated sludge
- tank
- sludge tank
- wastewater treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004065 wastewater treatment Methods 0.000 title claims abstract description 53
- 239000010802 sludge Substances 0.000 claims abstract description 285
- 239000012528 membrane Substances 0.000 claims abstract description 216
- 238000000926 separation method Methods 0.000 claims abstract description 154
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 75
- 239000005416 organic matter Substances 0.000 claims abstract description 66
- 238000012544 monitoring process Methods 0.000 claims abstract description 59
- 238000001914 filtration Methods 0.000 claims abstract description 53
- 238000004140 cleaning Methods 0.000 claims abstract description 27
- 238000005374 membrane filtration Methods 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 22
- 230000014759 maintenance of location Effects 0.000 claims abstract description 17
- 238000004904 shortening Methods 0.000 claims abstract description 15
- 239000007791 liquid phase Substances 0.000 claims abstract description 13
- 238000011282 treatment Methods 0.000 claims description 66
- 239000007788 liquid Substances 0.000 claims description 42
- 229920000642 polymer Polymers 0.000 claims description 34
- 238000005273 aeration Methods 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 7
- 238000006297 dehydration reaction Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 238000005949 ozonolysis reaction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 9
- 239000002351 wastewater Substances 0.000 abstract description 6
- 239000000126 substance Substances 0.000 description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000012360 testing method Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000011109 contamination Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 239000008394 flocculating agent Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000010800 human waste Substances 0.000 description 7
- 239000010865 sewage Substances 0.000 description 7
- 208000005156 Dehydration Diseases 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 208000028659 discharge Diseases 0.000 description 5
- 238000005189 flocculation Methods 0.000 description 5
- 230000016615 flocculation Effects 0.000 description 5
- 230000002085 persistent effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007717 exclusion Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000009295 crossflow filtration Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010794 food waste Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011866 long-term treatment Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000001477 organic nitrogen group Chemical group 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000005446 dissolved organic matter Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、廃水処理方法及び排水処理装置に関し、特に、膜分離活性汚泥法を利用した廃水処理方法及び排水処理装置に関する。 The present invention relates to a wastewater treatment method and a wastewater treatment apparatus, and particularly to a wastewater treatment method and a wastewater treatment apparatus using a membrane separation activated sludge method.
従来のし尿・浄化槽汚泥処理においては、夾雑物を除去した汚泥を活性汚泥法等により直接生物処理し、有機物及び窒素を除去する手法が主流であり、膜分離活性汚泥法もその処理方式の1つとして採用されてきた。膜分離活性汚泥法は、固液分離を膜分離により行うために、生物処理槽内のMLSS(活性汚泥浮遊物:Mixed Liquor Suspended Solids)濃度を高め、敷地面積を削減することができるという利点を有している。 In conventional human waste and septic tank sludge treatment, the main method is to directly biologically treat the sludge from which impurities have been removed using the activated sludge method to remove organic matter and nitrogen, and the membrane separation activated sludge method is one of the treatment methods. It has been adopted as one. The membrane separation activated sludge method performs solid-liquid separation by membrane separation, so it has the advantage of increasing the MLSS (Mixed Liquor Suspended Solids) concentration in the biological treatment tank and reducing the site area. have.
また、近年では、し尿・浄化槽汚泥をあらかじめ脱水し、脱水ケーキを固形物燃料等として再利用し、かつ生物処理対象を脱水分離液のみとすることで、生物処理の負荷を低減させる手法が主流になりつつある。更に、近年増加している汚泥や生ごみ等のバイオマスを嫌気性消化し、メタンガスを回収する設備においても、嫌気性消化汚泥を脱水後に生物処理する必要がある。このようなケースでも、生物処理に膜分離活性汚泥法を採用し、敷地面積を削減することが多い。 In addition, in recent years, methods have become mainstream to reduce the burden of biological treatment by dehydrating human waste and septic tank sludge in advance, reusing the dehydrated cake as solid fuel, and treating only the dehydrated separated liquid. It is becoming. Furthermore, even in equipment that anaerobically digests biomass such as sludge and food waste and recovers methane gas, which has been increasing in recent years, it is necessary to biologically treat the anaerobically digested sludge after dewatering it. Even in such cases, the membrane separation activated sludge method is often used for biological treatment to reduce the site area.
膜分離活性汚泥法を利用した技術として、例えば、特許第5868217号公報(特許文献1)には、被処理水を生物反応槽内で活性汚泥により生物処理し、生物反応槽の槽内混合液を膜分離装置で固液分離して分離膜を透過した膜ろ過水を槽外に取り出す膜分離活性汚泥処理方法において、COD(化学的酸素要求量)、BOD(生物学的酸素要求量)、TOC(全酸素要求量)、全糖濃度、タンパク質濃度、ウロン酸濃度、E260(波長260nmでの紫外線吸光度)の何れかに基づいて有機物濃度を求め、槽内混合液中の液相の有機物濃度と膜ろ過水の有機物濃度との濃度差、または槽内混合液中の液相の有機物濃度と膜ろ過水の有機物濃度との濃度比率を調整指標として、調整指標が増加したときに生物反応槽内の活性汚泥量を増加させ、調整指標が減少したときに生物反応槽内の活性汚泥量を減少させて、分離膜のファウリングを抑制することを特徴とする膜分離活性汚泥処理方法が記載されている。 As a technology using the membrane separation activated sludge method, for example, Japanese Patent No. 5868217 (Patent Document 1) discloses that the water to be treated is biologically treated with activated sludge in a biological reaction tank, and the mixed liquid in the biological reaction tank is In the membrane separation activated sludge treatment method, in which solid-liquid separation is performed using a membrane separator and the membrane-filtered water that has passed through the separation membrane is taken out of the tank, COD (chemical oxygen demand), BOD (biological oxygen demand), Determine the organic matter concentration based on TOC (total oxygen demand), total sugar concentration, protein concentration, uronic acid concentration, or E260 (ultraviolet absorbance at a wavelength of 260 nm), and calculate the organic matter concentration in the liquid phase of the mixed liquid in the tank. The biological reaction tank A membrane separation activated sludge treatment method is described, which is characterized by increasing the amount of activated sludge in the biological reaction tank, and reducing the amount of activated sludge in the biological reaction tank when the adjustment index decreases, thereby suppressing fouling of the separation membrane. has been done.
特許第4046661号公報(特許文献2)には、生物処理槽において有機性汚水を活性汚泥処理し、生物処理槽内に浸漬設置した第1分離手段をなす浸漬型膜分離装置で活性汚泥混合液を固液分離し、活性汚泥処理により生物処理槽内に蓄積される生物由来ポリマーを含むCODを第2分離手段によって適時に活性汚泥混合液から固液分離して、生物処理槽内の活性汚泥量を高濃度に維持しつつ、活性汚泥混合液中の生物由来ポリマー量を低濃度に維持するのに際して、浸漬型膜分離装置を透過した膜ろ液中のCODを測定し、浸漬型膜分離装置のろ過膜の細孔より大きい所定口径の細孔を有するろ過手段で生物処理槽内の活性汚泥混合液をろ過したろ過手段ろ液中のCODを測定し、ろ過手段ろ液中のCODから膜ろ液中のCODを減算したCOD差値が所定値以上であるときに、第2分離手段によって活性汚泥混合液から生物由来ポリマーを含むCODを分離することを特徴とする汚水の処理方法が記載されている。 Japanese Patent No. 4046661 (Patent Document 2) discloses that organic sewage is treated with activated sludge in a biological treatment tank, and an activated sludge mixture is collected using a submerged membrane separator serving as a first separation means that is submerged in the biological treatment tank. COD containing bio-derived polymers accumulated in the biological treatment tank through activated sludge treatment is timely solid-liquid separated from the activated sludge mixture by the second separation means, and the activated sludge in the biological treatment tank is separated into solid and liquid. In order to maintain the amount of biologically derived polymer in the activated sludge mixture at a low concentration while maintaining the amount of biologically derived polymer in the activated sludge mixture at a high concentration, the COD in the membrane filtrate that has passed through the submerged membrane separation device is measured, and the COD is The activated sludge mixture in the biological treatment tank is filtered using a filtration means having pores with a predetermined diameter larger than the pores of the filtration membrane of the device.The COD in the filtrate of the filtration means is measured, and the COD in the filtrate of the filtration means is measured. A sewage treatment method characterized in that when a COD difference value obtained by subtracting COD in a membrane filtrate is equal to or higher than a predetermined value, COD containing a biological polymer is separated from an activated sludge mixture by a second separation means. Are listed.
特許第5822264号公報(特許文献3)には、活性汚泥中で被処理液に散気する散気手段が浸漬配置された曝気槽と、活性汚泥中の被処理液から透過液を得る膜分離装置が浸漬配置された膜分離槽を備えた膜分離活性汚泥処理装置の運転方法であって、活性汚泥中の被処理液の上澄み液中の有機物濃度とBOD/SS負荷の値に基づいて、有機物濃度が所定値以上であるときに、BOD/SS負荷の値が所定値以上である場合には散気手段の単位時間当たりの散気量を増加させ、BOD/SS負荷の値が所定値未満である場合には散気手段の単位時間当たりの散気量を減少させるように、散気手段の単位時間当たりの散気量を調整する膜分離活性汚泥処理装置の運転方法が記載されている。 Japanese Patent No. 5822264 (Patent Document 3) discloses an aeration tank in which an aeration means for aerating a liquid to be treated in activated sludge is immersed, and a membrane separation system for obtaining a permeate from the liquid to be treated in activated sludge. A method of operating a membrane separation activated sludge treatment device equipped with a membrane separation tank in which the device is immersed, the method comprising: When the organic matter concentration is above a predetermined value and the value of BOD/SS load is above a predetermined value, the amount of air diffused per unit time of the aeration means is increased, and the value of BOD/SS load is set to the predetermined value. A method of operating a membrane separation activated sludge treatment equipment is described in which the amount of air diffused per unit time of the aeration means is adjusted so as to reduce the amount of air diffused per unit time of the aeration means when the amount of air diffused per unit time is less than There is.
特開2014-193452号公報(特許文献4)には、活性汚泥を収容した被処理水収容槽に有機性汚水を流入させ、生物処理し、被処理水収容槽又はその後段に設置した膜分離装置によって固液分離を行って処理水を得る有機性汚水の処理方法であって、活性汚泥中の細胞外ATP量または活性汚泥中の細胞外ATP量の増加速度が所定の基準値に達した際、膜分離装置に供給する散気量、膜分離装置の洗浄条件、被処理水収容槽に凝集剤を注入する凝集剤注入条件、膜分離装置のろ過流束、及び、被処理水収容槽からの活性汚泥の引き抜き量、から選ばれる少なくとも1つの条件を制御する有機性汚水の処理方法が記載されている。 Japanese Patent Laid-Open No. 2014-193452 (Patent Document 4) discloses that organic sewage is flowed into a water storage tank containing activated sludge, subjected to biological treatment, and subjected to membrane separation installed in the water storage tank or its subsequent stage. A method for treating organic sewage in which treated water is obtained by solid-liquid separation using an apparatus, wherein the amount of extracellular ATP in activated sludge or the rate of increase in the amount of extracellular ATP in activated sludge reaches a predetermined standard value. At this time, the amount of aeration supplied to the membrane separation device, the cleaning conditions of the membrane separation device, the conditions for injecting the flocculant into the water storage tank to be treated, the filtration flux of the membrane separation device, and the water storage tank to be treated A method for treating organic wastewater is described in which at least one condition selected from the following is controlled: the amount of activated sludge withdrawn from the organic wastewater.
し尿・浄化槽汚泥、嫌気性消化汚泥等の有機性汚泥の脱水処理の際には、無機凝集剤及び高分子凝集剤(ポリマー)を汚泥に添加することで、汚泥を凝集させてから脱水処理を行う。この際、高分子凝集剤の添加率は、凝集フロックの状態等により決定されるが、汚泥の性状の変化により過不足が生じると、脱水分離液中の浮遊物質(SS)濃度の増加及びろ液中の残存ポリマーの増加を招き、生物処理原水中に含まれる高分子凝集剤の濃度が増加する。 When dewatering organic sludge such as human waste, septic tank sludge, and anaerobic digestion sludge, inorganic flocculants and polymer flocculants (polymers) are added to the sludge to flocculate the sludge before dewatering. conduct. At this time, the addition rate of the polymer flocculant is determined by the condition of the flocculated flocs, etc., but if excess or deficiency occurs due to changes in the properties of the sludge, the concentration of suspended solids (SS) in the dehydrated liquid will increase and the This results in an increase in the amount of residual polymer in the liquid, and an increase in the concentration of the polymer flocculant contained in the raw water for biological treatment.
高分子凝集剤は難分解性であることが多いため、微生物による分解がされにくく、その分子量は100万以上である。このような高分子凝集剤は、通常、膜分離活性汚泥法で使用される分離膜で捕捉されるが、高分子凝集剤の槽内濃度が高くなるにつれて分離膜上にゲル層と呼ばれる層が形成されてファウリングが進行するおそれがある。そのため、ファウリングを適切に抑制するための対策が必要となる。 Since polymer flocculants are often difficult to decompose, they are difficult to be decomposed by microorganisms, and their molecular weight is 1 million or more. Such polymer flocculants are usually captured by the separation membrane used in the membrane separation activated sludge method, but as the concentration of polymer flocculant in the tank increases, a layer called a gel layer is formed on the separation membrane. There is a risk that fouling may occur due to the formation of dirt. Therefore, measures are required to appropriately suppress fouling.
引用文献1に記載された発明では、槽内混合液中の有機物濃度と膜ろ過水の有機物濃度の濃度差を適用し、濃度差が増大したときに、生物反応槽内の活性汚泥量を増大させる処理を行うことを提案している。しかしながら、このような処理方法では、生物反応槽内で増大した活性汚泥又はその細胞外物質と高分子凝集剤とが生物反応槽内で更に結合し、ゲル層を分離膜上に更に堆積させる恐れがあり、その結果、ファウリングを適切に抑制できなくなる場合がある。 In the invention described in Cited Document 1, the concentration difference between the organic matter concentration in the mixed liquid in the tank and the organic matter concentration in membrane-filtered water is applied, and when the concentration difference increases, the amount of activated sludge in the biological reaction tank is increased. It is proposed to perform processing to However, with such a treatment method, there is a risk that the activated sludge or its extracellular substances increased in the biological reaction tank and the polymer flocculant will further combine in the biological reaction tank, causing a gel layer to be further deposited on the separation membrane. As a result, fouling may not be properly suppressed.
特許文献2に記載されるような第2分離手段を用いたファウリング抑制手法では、第1分離手段だけでなく、第2分離手段の膜閉塞の問題も考慮する必要があるため、メンテナンス処理が煩雑になる。特許文献3に記載されるような活性汚泥中の被処理液の上澄み液中の有機物濃度とBOD/SS負荷の値に基づく曝気風量の調整手法、或いは、特許文献4に記載されるような細胞外ATP量に基づくファウリング制御方法によっても、他の従来技術と同様に、分離膜の閉塞の兆候を迅速に検出し、ファウリングを抑制して長期間の安定的な排水処理を行う観点からはまだ十分な処理であるとはいえない。 In the fouling suppression method using the second separation means as described in Patent Document 2, it is necessary to consider not only the problem of membrane clogging of the first separation means but also the second separation means, so maintenance processing is required. It becomes complicated. A method of adjusting the aeration air volume based on the organic matter concentration in the supernatant liquid of the liquid to be treated in activated sludge and the value of BOD/SS load as described in Patent Document 3, or a cell method as described in Patent Document 4 Similar to other conventional technologies, the fouling control method based on the amount of external ATP can quickly detect signs of separation membrane clogging, suppress fouling, and provide stable wastewater treatment over a long period of time. cannot be said to be a sufficient process.
上記課題を鑑み、本発明は、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことが可能な排水処理方法及び排水処理装置を提供する。 In view of the above-mentioned problems, the present invention provides a wastewater treatment method and a wastewater treatment apparatus that can quickly detect signs of separation membrane blockage and perform wastewater treatment stably and efficiently while appropriately suppressing fouling. provide.
上記課題を解決するために本発明者らが鋭意検討した結果、膜分離活性汚泥装置の膜ろ過原水の液相の有機物濃度と膜ろ過で得られる膜ろ過水(膜透過水)の有機物濃度との差分をモニタリング指標とし、このモニタリング指標に基づいて、特定の処理を行うことが有効であることを見出した。 As a result of intensive studies by the present inventors to solve the above problems, we found that the organic matter concentration in the liquid phase of the membrane-filtered raw water of the membrane separation activated sludge equipment and the organic matter concentration in the membrane-filtered water (membrane permeated water) obtained by membrane filtration. We have found that it is effective to use the difference between the two as a monitoring index and to perform specific processing based on this monitoring index.
以上の知見を基礎として完成した本発明の実施の形態は一側面において、膜分離活性汚泥法を用いた排水処理方法において、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように運転条件を調整することを含む排水処理方法である。 One aspect of the embodiment of the present invention, which was completed based on the above knowledge, is that in a wastewater treatment method using a membrane separation activated sludge method, the concentration of organic matter in the liquid phase of membrane filtration raw water in a membrane separation activated sludge tank and the The organic matter concentration of the filtrate is measured and the difference is used as a monitoring index, and when the monitoring index increases, the amount of cleaning air supplied to the membrane separation activated sludge tank is increased, the filtration duration is shortened, or the membrane separation activated sludge tank is changed. This wastewater treatment method includes adjusting operating conditions so as to perform one or more of the following treatments: increasing the amount of sludge drawn from the wastewater treatment plant.
本発明の実施の形態に係る排水処理方法は一実施態様において、モニタリング指標が第1の基準値を超える場合に、膜分離活性汚泥槽からの引抜汚泥量の増加の処理を行い、モニタリング指標が第1の基準値よりも高い第2の基準値を超える場合に、膜分離活性汚泥槽へ供給する洗浄空気量の増加又はろ過継続時間の短縮のいずれか1以上の処理を行う。 In one embodiment of the wastewater treatment method according to the embodiment of the present invention, when the monitoring index exceeds the first reference value, the amount of sludge drawn from the membrane separation activated sludge tank is increased, and the monitoring index is increased. When the second standard value, which is higher than the first standard value, is exceeded, one or more of the following steps is performed: increasing the amount of cleaning air supplied to the membrane separation activated sludge tank or shortening the filtration duration time.
本発明の実施の形態は別の一側面において、膜分離活性汚泥法を用いた排水処理方法において、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定し、その差分をモニタリング指標とし、膜分離活性汚泥槽の汚泥滞留時間が6日以上でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の増加を行うように運転条件を調整し、膜分離活性汚泥槽の汚泥滞留時間が6日未満でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の低減を行うように運転条件を調整することを含む排水処理方法である。 In another aspect of the embodiment of the present invention, in a wastewater treatment method using a membrane separation activated sludge method, the organic matter concentration of the liquid phase of the membrane filtration raw water in the membrane separation activated sludge tank and the organic matter concentration of the membrane filtration water are controlled. The operating conditions are set such that when the monitoring index increases when the sludge retention time in the membrane separation activated sludge tank exceeds 6 days, the amount of sludge drawn from the membrane separation activated sludge tank is increased. This includes adjusting operating conditions to reduce the amount of sludge drawn from the membrane-separated activated sludge tank when the monitoring index increases when the sludge retention time in the membrane-separated activated sludge tank is less than 6 days. This is a wastewater treatment method.
本発明の実施の形態に係る排水処理方法は一実施態様において、膜分離活性汚泥槽の汚泥滞留時間が6日以上でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の増加を行う処理と、膜分離活性汚泥槽へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う処理とを組み合わせて行うように運転条件を調整し、
膜分離活性汚泥槽の汚泥滞留時間が6日未満でモニタリング指標が増加したときに、膜分離活性汚泥槽からの引抜汚泥量の低減を行う処理と、膜分離活性汚泥槽へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う処理とを組み合わせて行うように運転条件を調整する。
In one embodiment of the wastewater treatment method according to the embodiment of the present invention, when the sludge retention time in the membrane separation activated sludge tank increases for 6 days or more and the monitoring index increases, the amount of sludge drawn from the membrane separation activated sludge tank increases. Adjusting the operating conditions so as to perform a combination of a process that increases the amount of cleaning air supplied to the membrane separation activated sludge tank and a process that increases the amount of cleaning air supplied to the membrane separation activated sludge tank and shortens the filtration duration time,
A process that reduces the amount of sludge drawn from the membrane-separated activated sludge tank when the sludge retention time in the membrane-separated activated sludge tank is less than 6 days and the monitoring index increases, and the amount of cleaning air supplied to the membrane-separated activated sludge tank. The operating conditions are adjusted so as to perform a combination of one or more of increasing the filtering time and shortening the filtration duration time.
本発明の実施の形態に係る排水処理方法は一実施態様において、有機物濃度が、COD、BOD、TOC、または、有機炭素検出型サイズ排除クロマトグラフィーで測定した結果、分子量20000以上に分画される有機物濃度のいずれかを含む。 In one embodiment of the wastewater treatment method according to the embodiment of the present invention, the organic matter concentration is fractionated into those having a molecular weight of 20,000 or more as measured by COD, BOD, TOC, or organic carbon detection size exclusion chromatography. Contains any organic matter concentration.
本発明の実施の形態に係る排水処理方法は一実施態様において、モニタリング指標が増加した場合に、膜ろ過原水の少なくとも一部に対して、オゾン分解処理、促進酸化処理、または、活性炭吸着処理のいずれか1以上の処理を行うことを更に含む。 In one embodiment of the wastewater treatment method according to the embodiment of the present invention, when a monitoring index increases, at least a portion of the membrane-filtered raw water is subjected to ozonolysis treatment, accelerated oxidation treatment, or activated carbon adsorption treatment. The method further includes performing any one or more of the processes.
本発明の実施の形態に係る排水処理方法は一実施態様において、膜ろ過原水が、有機物を含む汚泥に高分子凝集剤を添加して脱水処理した後に発生する脱水分離液である。 In one embodiment of the wastewater treatment method according to the embodiment of the present invention, the membrane filtration raw water is a dehydrated separated liquid generated after dehydration treatment is performed by adding a polymer flocculant to sludge containing organic matter.
本発明の実施の形態に係る排水処理方法は更に別の一実施態様において、モニタリング指標が増加した場合に、膜分離活性汚泥槽に供給される前の脱水処理で膜ろ過原水に添加される高分子凝集剤の添加率を低減する。 In yet another embodiment of the wastewater treatment method according to the embodiment of the present invention, when a monitoring index increases, high Reduce the addition rate of molecular flocculant.
本発明の実施の形態に係る排水処理装置は一側面において、活性汚泥の存在下で膜ろ過原水を膜分離処理して膜ろ過水を得る膜分離活性汚泥槽と、膜分離活性汚泥槽を曝気する曝気装置と、膜分離活性汚泥槽から膜ろ過水を吸引する吸引ポンプと、膜分離活性汚泥槽から汚泥を引き抜く排泥ポンプと、膜分離活性汚泥槽内の膜ろ過原水の液相の有機物濃度と膜ろ過水の有機物濃度との差分値をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加、のいずれか1以上の処理を行うように、曝気装置、吸引ポンプ及び排泥ポンプの運転条件を制御する制御装置とを備える排水処理装置である。 In one aspect, the wastewater treatment apparatus according to the embodiment of the present invention includes a membrane separation activated sludge tank for obtaining membrane filtrate water by subjecting membrane filtration raw water to membrane separation treatment in the presence of activated sludge, and a membrane separation activated sludge tank for aeration. a suction pump that sucks membrane-filtered water from the membrane-separated activated sludge tank, a sludge pump that pulls out sludge from the membrane-separated activated sludge tank, and organic matter in the liquid phase of the membrane-filtered raw water in the membrane-separated activated sludge tank. The difference value between the concentration and the organic matter concentration of membrane-filtered water is used as a monitoring index, and when the monitoring index increases, the amount of cleaning air supplied to the membrane-separated activated sludge tank is increased, the filtration duration is shortened, or the membrane-separated activated sludge is increased. This wastewater treatment device includes a control device that controls operating conditions of an aeration device, a suction pump, and a sludge pump so as to increase the amount of sludge drawn from the tank.
本発明によれば、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことが可能な排水処理方法及び排水処理装置が提供できる。 According to the present invention, it is possible to provide a wastewater treatment method and a wastewater treatment apparatus that can quickly detect signs of separation membrane blockage and perform wastewater treatment stably and efficiently while appropriately suppressing fouling.
以下、図面を参照しながら本発明の実施の形態に係る排水処理装置及び排水処理方法について説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A wastewater treatment device and a wastewater treatment method according to embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings below, the same or similar parts are denoted by the same or similar symbols. The embodiments shown below are intended to exemplify devices and methods for embodying the technical idea of this invention. It is not specific to
本発明の実施の形態に係る排水処理装置は、図1に示すように、膜分離活性汚泥法を用いて排水を処理し、処理汚泥及び膜ろ過水を得る膜分離活性汚泥槽1と、膜分離活性汚泥槽1を曝気する曝気装置2と、膜分離活性汚泥槽1から膜ろ過水を吸引する吸引ポンプ3と、膜分離活性汚泥槽1から汚泥を引き抜く排泥ポンプ4と、膜分離活性汚泥槽1の運転条件を制御する制御装置8とを備える。 As shown in FIG. 1, a wastewater treatment apparatus according to an embodiment of the present invention includes a membrane-separated activated sludge tank 1 that processes wastewater using a membrane-separated activated sludge method to obtain treated sludge and membrane-filtered water; An aeration device 2 that aerates the separation activated sludge tank 1, a suction pump 3 that sucks membrane filtrate water from the membrane separation activated sludge tank 1, a drainage pump 4 that pulls out sludge from the membrane separation activated sludge tank 1, and a membrane separation activated sludge tank 1. A control device 8 that controls the operating conditions of the sludge tank 1 is provided.
処理対象としては、有機物を含有する有機性排水であれば特に限定されない。特に、し尿・浄化槽汚泥、下水初沈汚泥、下水余剰汚泥、生ごみ、バイオマスの嫌気性消化汚泥のいずれか1つ以上を含む有機性汚泥の脱水分離液を、膜分離活性汚泥槽1の膜ろ過原水として使用することができる。脱水分離液中には、高分子凝集剤が含まれているため、膜分離活性汚泥槽1内で長期間処理するにつれて、脱水分離液中に含まれる高分子凝集剤が凝集してゲル層を形成し、膜分離活性汚泥槽1内の分離膜10に付着し、ファウリングを起こしやすくなる。本発明の実施の形態に係る排水処理装置を用いて生物処理を行うことで、ファウリングを抑制しながら長期間安定して処理を行うことができる。 The object to be treated is not particularly limited as long as it is organic wastewater containing organic matter. In particular, the dehydrated separated liquid of organic sludge containing one or more of human waste/septic tank sludge, sewage initial settling sludge, sewage surplus sludge, food waste, and biomass anaerobic digested sludge is transferred to the membrane separation activated sludge tank 1. It can be used as filtered raw water. Since the dehydrated separated liquid contains a polymer flocculant, as it is treated in the membrane separation activated sludge tank 1 for a long period of time, the polymer flocculant contained in the dehydrated separated liquid aggregates and forms a gel layer. It forms, adheres to the separation membrane 10 in the membrane separation activated sludge tank 1, and tends to cause fouling. By performing biological treatment using the wastewater treatment apparatus according to the embodiment of the present invention, the treatment can be performed stably for a long period of time while suppressing fouling.
脱水分離液は、浮遊物質(SS)、溶解性COD(CODCr、CODMn)、BOD、TOC、窒素、リン、カルシウム(Ca)等を含有し得る。以下に限定されるものではないが、脱水分離液は、典型的には、SSを100~3000mg/L、より典型的には500~2000mg/Lを含む。脱水分離液は、CODCrを500~10000mg/L、より典型的には1000~5000mg/L含み、CODMnを100~5000mg/L、より典型的には500~3000mg/L含む。脱水分離液は、BODを500~5000mg/L、より典型的には1000~3000mg/L含み、TOCを250~4000mg/L、より典型的には500~2000mg/L含む。脱水分離液は、全窒素(T-N)を10~500mg/L、より典型的には50~300mg/L含み、全リン(T-P)を5~200mg/L、より典型的には10~100mg/L含む。脱水分離液は、有機体窒素(T-Nから無機態窒素(NOx-N、NH4-N)を差し引いて求めた濃度)を5~300mg/L、より典型的には50~200mg-N/L含む。 The dehydrated separated liquid may contain suspended solids (SS), soluble COD (COD Cr , COD Mn ), BOD, TOC, nitrogen, phosphorus, calcium (Ca), and the like. Although not limited to the following, the dehydrated separation solution typically contains 100 to 3000 mg/L of SS, more typically 500 to 2000 mg/L. The dehydrated separate contains COD Cr at 500-10000 mg/L, more typically 1000-5000 mg/L, and COD Mn at 100-5000 mg/L, more typically 500-3000 mg/L. The dehydrated separate contains 500-5000 mg/L BOD, more typically 1000-3000 mg/L, and 250-4000 mg/L, more typically 500-2000 mg/L TOC. The dehydrated separated liquid contains 10 to 500 mg/L of total nitrogen (TN), more typically 50 to 300 mg/L, and 5 to 200 mg/L of total phosphorus (TP), more typically Contains 10 to 100 mg/L. The dehydrated separated liquid contains organic nitrogen (concentration determined by subtracting inorganic nitrogen (NO x -N, NH 4 -N) from TN) of 5 to 300 mg/L, more typically 50 to 200 mg/L. Including N/L.
特に、脱水分離液中にSSが500mg/L以上含まれていると、SSに吸着された高分子凝集剤が膜分離活性汚泥槽1に流入する影響が大きくなり、ファウリングが進行しやすくなる。また、脱水分離液中に有機体窒素が50mg/L以上含まれると、タンパク質の分解過程で高分子有機物を生成し、ゲル層を形成しやすくなる。 In particular, if the dehydrated separated liquid contains 500 mg/L or more of SS, the influence of the polymer flocculant adsorbed by the SS flowing into the membrane-separated activated sludge tank 1 becomes large, and fouling tends to progress. . Furthermore, if the dehydrated separated liquid contains 50 mg/L or more of organic nitrogen, high-molecular organic substances are generated during the protein decomposition process, and a gel layer is likely to be formed.
また、脱水分離液中のBOD/CODCrが0.7以下となると、難分解性、遅分解性の有機物の割合が増加し、膜分離活性汚泥槽内で高分子凝集剤と複合しゲル層を形成しやすくなる。更に、脱水処理に供する汚泥の種類として、下水の最初沈殿池汚泥、し尿汚泥、生ごみ、等生物処理を経ない汚泥を含む場合は汚泥性状が変動しやすい。このような汚泥を前脱水することにより、ポリマーの添加率が過剰、もしくは不足し、高分子凝集剤がろ液側に流出しやすくなる。 Furthermore, when the BOD/COD Cr in the dehydrated separated liquid becomes 0.7 or less, the proportion of persistent and slowly decomposable organic matter increases, and in the membrane-separated activated sludge tank, it combines with the polymer flocculant and forms a gel layer. becomes easier to form. Furthermore, when the type of sludge to be subjected to dewatering treatment includes sludge that has not undergone biological treatment, such as sewage primary sedimentation tank sludge, human waste sludge, and garbage, the sludge properties tend to change. By pre-dehydrating such sludge, the addition rate of polymer becomes excessive or insufficient, and the polymer flocculant tends to flow out to the filtrate side.
膜ろ過原水として脱水分離液を使用する場合は、膜分離活性汚泥槽1に供給する前の有機性汚泥に対して以下の前処理操作が行われる。前処理操作としては、例えば、有機性汚泥に対し、高分子凝集剤及び必要に応じて無機凝集剤を添加し、撹拌を行って凝集処理を行う。有機性汚泥の表面は一般的に負に帯電しているため、高分子凝集剤はカチオン性ポリマーを用いることが好適である。高分子凝集剤の分子量としては100~1500万、好ましくは100~1000万、より好ましくは100~750万のものが好適に利用できる。高分子凝集剤の添加率は、典型的には0.2~4w/w%対TS、より好ましくは0.5~3w/w%である。高分子凝集剤の選定及び添加率は、凝集試験またはラボスケールの脱水試験等により決定されることが望ましい。 When using a dehydrated separated liquid as raw water for membrane filtration, the following pretreatment operation is performed on the organic sludge before it is supplied to the membrane-separated activated sludge tank 1. As a pretreatment operation, for example, a polymer flocculant and, if necessary, an inorganic flocculant are added to organic sludge, and the mixture is stirred to perform flocculation treatment. Since the surface of organic sludge is generally negatively charged, it is preferable to use a cationic polymer as the polymer flocculant. The molecular weight of the polymer flocculant is preferably 1 million to 15 million, preferably 1 million to 10 million, more preferably 1 million to 7.5 million. The addition rate of polymeric flocculant is typically 0.2-4% w/w to TS, more preferably 0.5-3% w/w. It is desirable that the selection and addition rate of the polymer flocculant be determined by a flocculation test, a laboratory-scale dehydration test, or the like.
無機凝集剤としては、ポリ硫酸第二鉄、塩化第二鉄、硫酸バンド、ポリ塩化アルミニウム(PAC)等が使用できる。中でも、薬品費用及び腐食防止の観点から、ポリ硫酸第二鉄の使用が望ましい。無機凝集剤の添加率についても、凝集試験、ラボスケールの脱水試験等により決定されることが望ましい。 As the inorganic flocculant, polyferric sulfate, ferric chloride, aluminum sulfate, polyaluminum chloride (PAC), etc. can be used. Among these, it is desirable to use polyferric sulfate from the viewpoint of chemical costs and corrosion prevention. The addition rate of the inorganic flocculant is also preferably determined by a flocculation test, a laboratory-scale dehydration test, etc.
無機凝集剤の添加方法としては、汚泥の濃縮前に無機凝集剤を添加する前添加方式、汚泥の濃縮後に無機凝集剤を添加する後添加方式、または汚泥の濃縮前後にそれぞれ無機凝集剤を添加する両添加方式等がある。中でも、脱水性の向上及び後段の生物処理に必要なリンを分離液側に供給するという観点から、後添加方式もしくは両添加方式とすることが望ましい。 The inorganic flocculant can be added using a pre-addition method in which the inorganic flocculant is added before sludge concentration, a post-addition method in which the inorganic flocculant is added after sludge concentration, or an inorganic flocculant is added before and after sludge concentration. There are two types of addition methods. Among these, the post-addition method or both addition methods are desirable from the viewpoint of improving dewatering performance and supplying phosphorus necessary for subsequent biological treatment to the separated liquid side.
上記の凝集処理によって得られる凝集汚泥は、脱水処理前に濃縮処理することで、脱水処理時の処理速度の向上及び脱水汚泥の含水率の低下を図ることができる。濃縮処理としては機械濃縮を利用することができ、濃縮機としては、回転式、重力式、及び加圧式のいずれの型式でもよい。 By concentrating the flocculated sludge obtained by the above flocculation treatment before the dewatering treatment, it is possible to improve the processing speed during the dewatering treatment and reduce the water content of the dehydrated sludge. Mechanical concentration can be used as the concentration process, and the concentrator may be of any type, such as a rotary type, a gravity type, or a pressurized type.
濃縮処理で得られた濃縮汚泥を、更に脱水処理することにより、脱水汚泥と脱水分離液が得られる。脱水機には、遠心脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリュープレス型脱水機、ロータリープレス型脱水機、電気浸透式脱水機などを用いることができる。 By further dehydrating the thickened sludge obtained through the concentration treatment, dehydrated sludge and dehydrated separated liquid can be obtained. As the dehydrator, a centrifugal dehydrator, a belt press dehydrator, a filter press dehydrator, a screw press dehydrator, a rotary press dehydrator, an electroosmotic dehydrator, or the like can be used.
特に、スクリュープレス脱水機は、低動力で低含水率を達成することができる点で好ましい。スクリュープレス脱水機は、円筒形外筒の内部に、円筒形外筒と同心のスクリュー軸及びスクリュー羽根を備え、混合汚泥供給側の濃縮部と、円筒形外筒とスクリュー軸との間の空間が混合汚泥の進行方向に向かって次第に狭くなる脱水ケーキ排出側の圧搾部と、が形成されており、円筒形外筒に分離液排出用の複数の開孔を備える。 In particular, a screw press dehydrator is preferable because it can achieve a low water content with low power. The screw press dehydrator is equipped with a screw shaft and screw blades concentric with the cylindrical outer cylinder inside the cylindrical outer cylinder, and a space between the thickening section on the mixed sludge supply side and the cylindrical outer cylinder and the screw shaft. The cylindrical outer cylinder is provided with a squeeze part on the dewatered cake discharge side that gradually becomes narrower in the direction of movement of the mixed sludge, and the cylindrical outer cylinder is provided with a plurality of openings for discharging the separated liquid.
中でも軸摺動型スクリュープレス脱水機は、脱水汚泥出口方向と並行にスクリュー軸が移動し、脱水汚泥を強制排出する機構を有する。スクリュープレス脱水機を用いることで、脱水ケーキの含水率を大幅に低下させることができる。また、独立したスクリーンと脱水機とを組み合わせた脱水装置だけでなく、スクリーン機能を奏する濃縮部を前段に含み、後段に圧搾部を含む、スクリーンと脱水機とが一体化されている脱水装置は、スクリーンを別途設ける必要がなく、装置構成が簡易になるため好ましい。 Among them, the shaft-sliding type screw press dehydrator has a mechanism in which the screw shaft moves in parallel to the dewatered sludge outlet direction and forcibly discharges the dehydrated sludge. By using a screw press dehydrator, the water content of the dehydrated cake can be significantly reduced. In addition to dehydration equipment that combines an independent screen and dehydrator, we also offer dehydration equipment that integrates a screen and dehydrator, including a concentration section in the front stage that functions as a screen, and a compression section in the latter stage. This is preferable because there is no need to separately provide a screen and the device configuration is simplified.
膜分離活性汚泥槽1内では、膜分離活性汚泥槽1内に流入する膜ろ過原水に対して、活性汚泥を用いた微生物反応を利用した有機物除去、及び硝化-脱窒による窒素除去が行われ、膜分離により活性汚泥と処理水とを分離する膜分離活性汚泥法を利用した生物処理が行われる。 In the membrane-separated activated sludge tank 1, the membrane-filtered raw water flowing into the membrane-separated activated sludge tank 1 is subjected to organic matter removal using microbial reactions using activated sludge and nitrogen removal through nitrification-denitrification. Biological treatment is performed using the membrane separation activated sludge method, which separates activated sludge and treated water by membrane separation.
膜分離活性汚泥槽1内における生物処理としては、有機物や窒素が除去できるものであればよく、例えば、循環式硝化-脱窒法、ステップ流入式硝化-脱窒法等が採用できる。活性汚泥の汚泥濃度(MLSS)は、典型的には4,000~18,000mg/Lとすることができ、より好ましくは6,000~15,000mg/Lとし、処理の状況に合わせて調整することが望ましい。例えば、膜分離活性汚泥槽1内のMLSSを測定するための汚泥濃度計7が膜分離活性汚泥槽1内に配置されていてもよい。 The biological treatment in the membrane-separated activated sludge tank 1 may be any method as long as it can remove organic matter and nitrogen, and for example, a circulating nitrification-denitrification method, a step flow-type nitrification-denitrification method, etc. can be adopted. The sludge concentration (MLSS) of activated sludge can typically be 4,000 to 18,000 mg/L, more preferably 6,000 to 15,000 mg/L, and adjusted according to the treatment situation. It is desirable to do so. For example, a sludge concentration meter 7 for measuring MLSS in the membrane-separated activated sludge tank 1 may be disposed within the membrane-separated activated sludge tank 1.
膜ろ過水の窒素除去処理に際し、硝化時にアルカリ度が不足する場合は、薬剤添加手段(不図示)によって、水酸化ナトリウム溶液(NaOH)等のアルカリ剤を添加し、脱窒時に有機物が不足する場合は、メタノール(CH3OH)等の有機物を添加してもよい。 When removing nitrogen from membrane-filtered water, if alkalinity is insufficient during nitrification, an alkaline agent such as sodium hydroxide solution (NaOH) is added using a chemical addition means (not shown) to prevent a lack of organic matter during denitrification. If necessary, an organic substance such as methanol (CH 3 OH) may be added.
膜分離活性汚泥槽1内には分離膜10が収容されている。分離膜10の膜の種類としては、MF(精密ろ過:microfiltration)膜、UF(限外ろ過:ultrafiltration)膜のいずれを用いても良い。特に、孔径0.2μm以上、もしくは分画分子量100万以上の膜を使用することで、ファウリングの抑制を抑えつつ長期的に安定した運転が可能となる。 A separation membrane 10 is accommodated in the membrane separation activated sludge tank 1 . As the type of membrane for the separation membrane 10, either a MF (microfiltration) membrane or a UF (ultrafiltration) membrane may be used. In particular, by using a membrane with a pore diameter of 0.2 μm or more or a molecular weight cut-off of 1 million or more, stable operation can be achieved over a long period of time while suppressing fouling.
膜の材質は、有機膜としては、PSF(ポリスルホン)、PE(ポリエチレン)、CA(酢酸セルロース)、PAN(ポリアクリロニトリル)、PP(ポリプロピレン)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフロロエチレン)等を用いることができ、無機膜としてはセラミックを用いた膜を用いることができる。ろ過方式は全量ろ過とクロスフローろ過のどちらでも良いが、ファウリングの抑制の観点ではクロスフローろ過を採用することが望ましい。膜モジュールの形式については特に制限はなく、中空糸型、平膜型、スパイラル型、管型、モノリス型等が採用できる。 Membrane materials include organic membranes such as PSF (polysulfone), PE (polyethylene), CA (cellulose acetate), PAN (polyacrylonitrile), PP (polypropylene), PVDF (polyvinylidene fluoride), and PTFE (polytetrafluoroethylene). ) etc. can be used, and as the inorganic membrane, a membrane using ceramic can be used. The filtration method may be either total volume filtration or cross-flow filtration, but from the viewpoint of suppressing fouling, it is desirable to adopt cross-flow filtration. There is no particular restriction on the format of the membrane module, and hollow fiber types, flat membrane types, spiral types, tube types, monolith types, etc. can be adopted.
曝気装置2は、膜分離活性汚泥槽1内に収容された散気装置21及び散気装置21に空気等の気体を供給するブロワ22を備えることができる。曝気装置2は、分離膜10の膜表面に気泡が当たるように配置される。典型的には、曝気装置2は、分離膜10の下部又は底部に配置され、膜分離活性汚泥槽1内に気体を送り込んで、膜表面に堆積する堆積物(ゲル層)を剥離し、膜洗浄を行うように構成されている。膜洗浄時の曝気空気量は、以下に限定されるものではないが、典型的には6~30L/m2/分であり、より好ましくは9~25L/m2/分である。 The aeration device 2 can include an aeration device 21 housed in the membrane-separated activated sludge tank 1 and a blower 22 that supplies gas such as air to the aeration device 21. The aeration device 2 is arranged so that air bubbles hit the membrane surface of the separation membrane 10. Typically, the aeration device 2 is placed below or at the bottom of the separation membrane 10, and sends gas into the membrane separation activated sludge tank 1 to peel off deposits (gel layer) deposited on the membrane surface and remove the membrane. It is configured to perform cleaning. The amount of aerated air during membrane cleaning is not limited to the following, but is typically 6 to 30 L/m 2 /min, more preferably 9 to 25 L/m 2 /min.
曝気装置2は、連続曝気方式としてもよいし、曝気期間と次の曝気期間の間に所定の休止期間を設ける間欠曝気方式を採用してもよい。間欠曝気が行われる場合は、膜分離活性汚泥槽1から膜ろ過水を吸引する吸引ポンプ3の駆動が、OFF(吸引停止)時間となっている休止期間に、曝気装置2を用いた曝気による膜洗浄が行われるように、運転条件が設定されることで、曝気装置2による膜洗浄効果をより有効に得ることができる。 The aeration device 2 may be of a continuous aeration type or may be of an intermittent aeration type in which a predetermined rest period is provided between an aeration period and the next aeration period. When intermittent aeration is performed, the operation of the suction pump 3 that sucks membrane-filtered water from the membrane-separated activated sludge tank 1 is during the OFF (suction stop) period, during which the aeration is performed using the aeration device 2. By setting the operating conditions so that membrane cleaning is performed, the membrane cleaning effect of the aeration device 2 can be obtained more effectively.
吸引ポンプ3による膜ろ過水の吸引は、分離膜10のファウリングの抑制の観点から、間欠タイマを設けて間欠吸引とすることが望ましい。膜ろ過中は、分離膜10の膜表面上に有機物が吸着され、ファウリングが進行しやすくなる。そのため、特にファウリングの進行が予想される場合は、フラックスを上げて可能な限り吸引時間の比率を下げることが望ましい。具体的には、ON時間とOFF時間の各1回行う操作を1サイクルとした場合、1サイクル当たりの間欠タイマのON、OFF時間の比を59:1~4:1とすることが望ましく、29:1~9:1とすることがより望ましい。 From the viewpoint of suppressing fouling of the separation membrane 10, it is preferable that an intermittent timer be provided to perform intermittent suction of the membrane-filtered water by the suction pump 3. During membrane filtration, organic matter is adsorbed onto the membrane surface of the separation membrane 10, making it easier for fouling to proceed. Therefore, especially when fouling is expected to progress, it is desirable to increase the flux and reduce the suction time ratio as much as possible. Specifically, when one cycle is defined as an operation performed once each during ON time and OFF time, it is desirable that the ratio of ON and OFF times of the intermittent timer per cycle is 59:1 to 4:1. More preferably, the ratio is 29:1 to 9:1.
排泥ポンプ4は、膜分離活性汚泥槽1の下部に接続された引き抜き配管41に接続されており、膜分離活性汚泥槽1で発生した処理汚泥を余剰汚泥として引き抜く。排泥ポンプ4による引抜汚泥量の調整は、制御装置8からの運転条件の入力に応じて適宜行うことができる。 The sludge pump 4 is connected to a withdrawal pipe 41 connected to the lower part of the membrane separation activated sludge tank 1, and extracts the treated sludge generated in the membrane separation activated sludge tank 1 as surplus sludge. The amount of sludge drawn by the sludge pump 4 can be adjusted as appropriate according to the operating conditions input from the control device 8.
図1に示すように、膜分離活性汚泥槽1内に収容される膜ろ過原水の有機物濃度を測定するための有機物濃度測定装置5と、吸引ポンプ3を介して膜分離活性汚泥槽1内から膜分離活性汚泥槽1内の外部へ吸引される膜ろ過水の有機物濃度を測定するための有機物濃度測定装置6とが設けられていても良い。 As shown in FIG. 1, an organic matter concentration measuring device 5 for measuring the organic matter concentration of the membrane-filtered raw water contained in the membrane-separated activated sludge tank 1 and a suction pump 3 are used to measure the organic matter concentration from the inside of the membrane-separated activated sludge tank 1. An organic matter concentration measuring device 6 may be provided for measuring the organic matter concentration of the membrane-filtered water sucked into the outside of the membrane separation activated sludge tank 1.
有機物濃度測定装置5、6としては、COD計、BOD計、TOC計、有機炭素検出型サイズ排除クロマトグラフィー(LC-OCD)等の有機物測定器を利用することができる。有機物濃度測定装置5、6を使用せずに、膜ろ過原水及び膜ろ過水を手動又は自動でサンプリングし、図1の排水処理装置以外の別設備において、膜ろ過原水及び膜ろ過水の有機物濃度を測定することも勿論可能である。 As the organic matter concentration measuring devices 5 and 6, organic matter measuring instruments such as a COD meter, a BOD meter, a TOC meter, and an organic carbon detection size exclusion chromatography (LC-OCD) can be used. Membrane filtration raw water and membrane filtrate water are sampled manually or automatically without using the organic matter concentration measuring devices 5 and 6, and the organic matter concentration of membrane filtration raw water and membrane filtrate water is measured in a separate facility other than the wastewater treatment equipment shown in Figure 1. Of course, it is also possible to measure.
膜ろ過原水及び膜ろ過水の有機物濃度の測定結果は制御装置8へ入力される。膜分離活性汚泥槽1に、膜ろ過原水の温度を測定するための温度計及び分離膜10の膜間差圧を計測するための圧力計等を含む計測装置等が更に設けられていてもよく、各計測装置からの計測結果が、制御装置8に入力されるように構成されていてもよい。 The measurement results of the organic matter concentrations of the membrane-filtered raw water and membrane-filtered water are input to the control device 8 . The membrane separation activated sludge tank 1 may further be provided with a measuring device, etc., including a thermometer for measuring the temperature of the membrane-filtered raw water and a pressure gauge for measuring the transmembrane pressure difference of the separation membrane 10. , the measurement results from each measuring device may be input to the control device 8.
分離膜10の膜閉塞のメカニズムは、膜ろ過原水中に含まれる高分子凝集剤等の膜閉塞原因物質が生物処理に流入し、活性汚泥又はその細胞外物質と結合し、高分子かつ難分解の複合体を形成し、膜表面にゲル層を形成するというものであると推定される。更に、一旦、このゲル層が形成されると、ゲル層の存在により更に膜表面に膜閉塞原因物質が捕捉されやすくなり、急激にファウリングが進行する。したがって、ファウリングの発生を防止するためには、膜閉塞の原因となる有機物の挙動をモニタリングすることが重要となる。 The mechanism of membrane clogging of the separation membrane 10 is that substances that cause membrane clogging, such as polymeric flocculants contained in the membrane-filtered raw water, flow into the biological treatment and combine with activated sludge or its extracellular substances, resulting in polymeric and difficult-to-decompose substances. It is presumed that the membrane forms a complex and forms a gel layer on the membrane surface. Furthermore, once this gel layer is formed, the presence of the gel layer makes it easier for substances that cause membrane clogging to be captured on the membrane surface, and fouling progresses rapidly. Therefore, in order to prevent the occurrence of fouling, it is important to monitor the behavior of organic substances that cause membrane clogging.
本発明の実施の形態に係る排水処理装置及び排水処理方法では、膜閉塞原因物質の指標として、膜ろ過原水の液相の有機物濃度と、膜ろ過水の有機物濃度を測定したときの差分を採用する。この差分が、分離膜10で捕捉されている有機物濃度、すなわち分離膜10の膜表面に堆積するゲル層を形成する有機物濃度に大きく影響を及ぼすためである。なお、ファウリングの指標としては、他に所定の孔径(例えば5C)のろ紙の所定時間(例えば5分間)でのろ過量を測定することもできるが、この手法では水温、ろ紙の折り方、等の測定条件や測定時のMLSS等の運転条件が影響を及ぼす場合がある。上述のように有機物濃度差分を測定した方が、誤差を小さくすることができ、定量性の面で優れている。 In the wastewater treatment device and wastewater treatment method according to the embodiments of the present invention, the difference between the organic matter concentration in the liquid phase of the membrane-filtered raw water and the organic matter concentration in the membrane-filtered water is used as an index of membrane clogging-causing substances. do. This is because this difference greatly affects the concentration of organic matter captured by the separation membrane 10, that is, the concentration of organic matter that forms the gel layer deposited on the surface of the separation membrane 10. In addition, as an indicator of fouling, it is also possible to measure the amount of filtration in a predetermined time (e.g., 5 minutes) using a filter paper with a predetermined pore size (e.g., 5C), but this method uses water temperature, the way the filter paper is folded, The measurement conditions such as MLSS and other operating conditions at the time of measurement may have an influence. Measuring the organic matter concentration difference as described above can reduce errors and is superior in terms of quantitative performance.
膜分離活性汚泥槽1の膜ろ過原水は、通常、高濃度の活性汚泥である。そのため、モニタリング指標として、膜ろ過原水の液相の有機物濃度を測定する場合には、膜分離活性汚泥槽1から採取した膜ろ過原水をろ過し、膜ろ過原水中の活性汚泥を除去してから分析を行う。膜ろ過原水の採取に際し、膜分離活性汚泥槽1の上流部分では、未分解の原水中の易分解性有機物や脱窒の際に添加したメタノールが残留し、有機物濃度の差分の測定に影響を及ぼす場合がある。よって、採取場所については、膜分離活性汚泥槽1の下流の膜分離に供する直前の汚泥を採取することが望ましい。ろ過する際は、孔径は膜分離活性汚泥槽1内で使用している膜の孔径と同等またはそれ以上のものを使用することが望ましく、典型的には、孔径0.45~1μm程度である。 The membrane-filtered raw water in the membrane-separated activated sludge tank 1 is usually highly concentrated activated sludge. Therefore, when measuring the organic matter concentration in the liquid phase of membrane-filtered raw water as a monitoring index, filter the membrane-filtered raw water collected from membrane separation activated sludge tank 1, remove the activated sludge in the membrane-filtered raw water, and then Perform analysis. When collecting membrane-filtered raw water, easily decomposable organic matter in the undecomposed raw water and methanol added during denitrification remain in the upstream part of the membrane-separated activated sludge tank 1, which may affect the measurement of the difference in organic matter concentration. It may be harmful. Therefore, regarding the collection location, it is desirable to collect the sludge immediately before being subjected to membrane separation downstream of the membrane separation activated sludge tank 1. When filtering, it is desirable to use a pore size that is equal to or larger than the pore size of the membrane used in the membrane separation activated sludge tank 1, and typically has a pore size of about 0.45 to 1 μm. .
モニタリング指標として測定する有機物濃度としては、上述の通り、COD、BOD、TOC等が採用できるが、ゲル層の形成原因となる有機物をより適切に測定し、かつ、難分解性のポリマーを適切測定するための指標としては、CODMn、CODCr、TOCの使用がより望ましい。 As mentioned above, COD, BOD, TOC, etc. can be adopted as the organic matter concentration to be measured as a monitoring index, but it is necessary to more appropriately measure the organic matter that causes the formation of the gel layer, and to properly measure the persistent polymer. It is more desirable to use COD Mn , COD Cr , and TOC as indicators for this purpose.
以下の例に限定されるものではないが、例えば、モニタリング指標としてCODMnの差分値(ΔCODMn)を利用する場合、ΔCODMnの基準を70mg/L以下、更には60mg/L以下、更には40mg/L以下とし、測定値が予め設定した基準を超える場合に、膜分離活性汚泥槽1の運転条件の変更を行うことにより、膜分離活性汚泥槽1の膜閉塞を長期間抑制することができる。 Although not limited to the following examples, for example, when using the difference value of COD Mn (ΔCOD Mn ) as a monitoring index, the standard for ΔCOD Mn is set to 70 mg/L or less, further 60 mg/L or less, or 40 mg/L or less, and by changing the operating conditions of the membrane separation activated sludge tank 1 when the measured value exceeds a preset standard, it is possible to suppress membrane clogging of the membrane separation activated sludge tank 1 for a long period of time. can.
膜分離活性汚泥槽1内において、窒素除去のための循環式硝化脱窒を行う場合は、硝化の状況や脱窒の状況により、膜ろ過水中に易分解性の有機物が残存することがある。易分解性有機物が残存すると分離膜10の膜閉塞原因物質の定量的な評価が難しくなる。このような場合は、測定する有機物濃度の指標として難分解性有機物を測定することが好ましい。ここで、難分解性有機物とは、測定対象の排水を一定時間(例えば1~8時間)曝気し、残存した有機物と定義する。このような有機物濃度を測定することで分離膜10の閉塞の兆候のより迅速な検出が可能となる。 When performing circulating nitrification and denitrification for nitrogen removal in the membrane-separated activated sludge tank 1, easily decomposable organic matter may remain in the membrane-filtered water depending on the nitrification and denitrification conditions. If easily decomposable organic substances remain, it becomes difficult to quantitatively evaluate the substances that cause membrane clogging of the separation membrane 10. In such a case, it is preferable to measure persistent organic matter as an indicator of the concentration of organic matter to be measured. Here, the persistent organic matter is defined as the organic matter that remains after aerating the wastewater to be measured for a certain period of time (for example, 1 to 8 hours). By measuring such an organic matter concentration, signs of clogging of the separation membrane 10 can be detected more quickly.
膜閉塞の原因となる有機物を測定する別の手法として、分子量分画と有機物濃度の分布を組み合わせた分析装置である有機炭素検出型サイズ排除クロマトグラフィー:LC-OCD(Liquid Chromatography-Organic Carbon Detector)で分析する手法がある。膜閉塞の原因となる有機物は、LC-OCDで分子量20,000以上に分画される物質であることがわかっており、膜ろ過原水の液相と膜ろ過水の濃度を測定することで、対象を絞って定量することが可能になる。 Another method for measuring organic substances that cause membrane clogging is LC-OCD (Liquid Chromatography-Organic Carbon Detector), which is an analytical device that combines molecular weight fractionation and organic substance concentration distribution. There is a method to analyze it. The organic substances that cause membrane clogging are known to be fractionated by LC-OCD into molecules with a molecular weight of 20,000 or more, and by measuring the concentration of the liquid phase of membrane-filtered raw water and membrane-filtered water, It becomes possible to narrow down the target and quantify it.
LC-OCDは、サイズ排除カラムを備える液体クロマトグラフ有機炭素計であり、試料中の溶存有機物を、サイズ排除カラムを備える液体クロマトグラフによって、下記(1)~(5)のモル質量画分に分画した後、各画分を有機炭素計で計測し有機体炭素として定量する。
(1)Biopolymers:バイオポリマー、モル質量20,000g/mol以上の画分
(2)Humic Substances:フミン質、モル質量500~20,000g/molの画分
(3)Building Blocks:ビルディングブロック(基礎的要素)、モル質量300~500g/molの画分
(4)LMW Acids:低分子有機酸、モル質量350g/mol以下の有機酸の画分
(5)LMW Neutrals:低分子中性物質、モル質量350g/mol以下の有機酸以外の画分
LC-OCD is a liquid chromatograph organic carbon analyzer equipped with a size exclusion column, which converts dissolved organic matter in a sample into molar mass fractions (1) to (5) below using a liquid chromatograph equipped with a size exclusion column. After fractionation, each fraction is measured with an organic carbon meter and quantified as organic carbon.
(1) Biopolymers: Biopolymers, fractions with a molar mass of 20,000 g/mol or more (2) Humic Substances: Humic substances, fractions with a molar mass of 500 to 20,000 g/mol (3) Building Blocks: Building blocks (basic (4) LMW Acids: Low-molecular organic acids, fractions of organic acids with a molar mass of 350 g/mol or less (5) LMW Neutrals: Low-molecular neutral substances, mol Fractions other than organic acids with a mass of 350 g/mol or less
LC-OCDを用いた分析は例えば以下の手順で行うことができる。まず、採取したサンプルを孔径0.45μmPTFEメンブランフィターでろ過し、TOCが1~2mg/Lとなるように超純水(ミリQ水)で希釈して分析試料を調製し、LC-OCD装置のサイズ排除カラムに通水する。モル質量20,000g/mol以上、モル質量500~20,000g/mol、モル質量300~500g/mol、モル質量350g/mol以下の4つの画分に分画し、各画分の有機炭素濃度を測定する。移動相としてリン酸緩衝液(pH6.58)を用いる。LC-OCD分析装置は、例えば、DOC-Labor社のLC-OCD Model 8を用いることができる。 Analysis using LC-OCD can be performed, for example, by the following procedure. First, the collected sample was filtered through a PTFE membrane filter with a pore size of 0.45 μm, and an analysis sample was prepared by diluting it with ultrapure water (Milli-Q water) so that the TOC was 1 to 2 mg/L. Water is passed through the size exclusion column. It is fractionated into four fractions with a molar mass of 20,000 g/mol or more, a molar mass of 500 to 20,000 g/mol, a molar mass of 300 to 500 g/mol, and a molar mass of 350 g/mol or less, and the organic carbon concentration of each fraction is determined. Measure. Phosphate buffer (pH 6.58) is used as the mobile phase. As the LC-OCD analyzer, for example, LC-OCD Model 8 manufactured by DOC-Labor can be used.
サイズ排除カラムによる分画後の各画分の分析試料は、薄膜反応器(グランツェル薄膜反応器 DOC-Labor社)内で酸性化液(リン酸、pH1.5)と窒素ガスパージにより無機炭素を除去された後、紫外線ランプ(DOCOXランプ、DOC-Lavor社)により酸化され、CO2としてNDIR(非分散形赤外線吸収法)検出器で検出される。得られた分析結果を専用ソフトウェア(ChromCALC,DOC-Labor社)にて解析する。具体的には、クロマトグラムの形状をもとにピークを分割し、各ピークの面積から濃度を計算することにより、LC-OCDで分子量20,000以上に分画される有機物を定量することができる。 After fractionation using the size exclusion column, each fraction was analyzed in a thin film reactor (Glanzel thin film reactor, DOC-Labor) using an acidifying solution (phosphoric acid, pH 1.5) and nitrogen gas purge to remove inorganic carbon. After being removed, it is oxidized with an ultraviolet lamp (DOCOX lamp, DOC-Lavor) and detected as CO 2 with an NDIR (non-dispersive infrared absorption) detector. The obtained analysis results are analyzed using dedicated software (ChromCALC, DOC-Labor). Specifically, by dividing the peaks based on the shape of the chromatogram and calculating the concentration from the area of each peak, it is possible to quantify organic substances that are fractionated into molecules with a molecular weight of 20,000 or more using LC-OCD. can.
-運転改善方法-
本実施形態では、モニタリング指標が増加したときに、ファウリング低減のための運転改善方法として以下の3つの対策、即ち、(1)膜閉塞原因物質の流入量の低減、(2)膜に付着するゲル層の剥離促進、及び(3)膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出の少なくとも一以上の処理を実施する。モニタリング指標が適正範囲内に収まるように、下記の改善対策が適切になされた場合には処理条件を通常条件に戻してもよいことは勿論である。
-How to improve driving-
In this embodiment, when the monitoring index increases, the following three measures are taken as an operation improvement method to reduce fouling: (1) reducing the inflow amount of substances that cause membrane clogging, and (2) adhering to the membrane. At least one of the following processes is carried out: (3) decomposition or discharge of membrane-clogging substances in the membrane-separated activated sludge tank 1; Of course, the processing conditions may be returned to normal conditions if the following improvement measures are appropriately taken so that the monitoring index falls within the appropriate range.
(1)膜閉塞原因物質の流入量の低減
膜ろ過原水中の膜閉塞原因物質、例えば、脱水分離液中の高分子凝集剤が過剰の場合、脱水分離液に含まれる高分子凝集剤の濃度が高くなり、活性汚泥やその細胞外物質と結合し、複合体を形成して膜閉塞が起こりやすくなる。そのため、モニタリング指標が増加に応じた場合に、膜分離活性汚泥槽1内へ流入する前、例えば前処理操作において、膜ろ過原水に添加される高分子凝集剤等の添加剤の最適添加率を確認し、安定した運転を維持する上で可能であれば、添加剤の添加率を低減させるような処理を行うことで、膜閉塞原因物質の流入量の低減を図るように、運転条件を調整する。
(1) Reducing the inflow amount of substances that cause membrane clogging If there is an excess of substances that cause membrane clogging in the membrane filtration raw water, for example, polymer flocculants in the dehydrated separation liquid, the concentration of polymer flocculants contained in the dehydrated separation liquid becomes high, combines with activated sludge and its extracellular substances, forms a complex, and becomes more likely to cause membrane clogging. Therefore, when the monitoring index increases, the optimum addition rate of additives such as polymer flocculants to be added to the membrane filtration raw water before it flows into the membrane separation activated sludge tank 1, for example in the pretreatment operation, can be determined. If possible to maintain stable operation, adjust operating conditions to reduce the amount of substances that cause membrane clogging by reducing the additive addition rate. do.
例えば、膜ろ過原水として脱水分離液を用いる場合、モニタリング指標の測定値が予め設定された基準を超えた場合に、脱水処理のための高分子凝集剤の添加率を低減させるように運転条件を調整する。高分子凝集剤の最適添加率は、凝集試験、もしくは脱水分離液のコロイド荷電の分析等により確認することができる。他の手法としては、モニタリング指標が増加に応じた場合に、高分子凝集剤の種類の再選定、無機凝集剤の添加率の調整、生ごみ等の受け入れを行っている場合は受け入れ量の低減という手法を取ることができる。 For example, when using a dehydrated separated liquid as raw water for membrane filtration, operating conditions may be changed to reduce the addition rate of polymer flocculant for dehydration treatment if the measured value of a monitoring index exceeds a preset standard. adjust. The optimum addition rate of the polymer flocculant can be confirmed by a flocculation test or by analyzing the colloidal charge of the dehydrated separated liquid. Other methods include reselecting the type of polymer flocculant, adjusting the addition rate of inorganic flocculant, and reducing the amount of garbage received if the monitoring index increases. You can take this approach.
(2)膜に付着するゲル層の剥離促進
膜分離活性汚泥槽1内に収容された分離膜10の膜に付着するゲル層の破壊を促進する手法の一つとしては、間欠タイマを用いて、吸引ポンプ3による膜ろ過水の吸引のタイミングを調整することで、分離膜10のろ過継続時間を調整する方法が考えられる。モニタリング指標が増加した場合は、1サイクルあたりの間欠タイマのON、OFF時間の比が59:1~4:1、望ましくは29:1~9:1となる適正範囲内において、ろ過継続時間(ON時間)を短縮してろ過休止時間(OFF時間)が長くなるように、ON、OFF時間の比を調整し、OFF時間中に膜面に気泡を当てる時間を長くすることで、ゲル層の剥離を促進させることができる。
(2) Promoting peeling of the gel layer adhering to the membrane One method for promoting the destruction of the gel layer adhering to the membrane of the separation membrane 10 housed in the membrane separation activated sludge tank 1 is to use an intermittent timer. A conceivable method is to adjust the filtration duration time of the separation membrane 10 by adjusting the timing of suction of membrane-filtrated water by the suction pump 3. If the monitoring index increases, the filtration duration ( By adjusting the ratio of ON and OFF times and lengthening the time when air bubbles are exposed to the membrane surface during the OFF time, the gel layer is Peeling can be promoted.
膜分離活性汚泥槽1内に収容された分離膜10の膜に付着するゲル層の破壊を促進する別の手法としては、曝気装置2による膜分離活性汚泥槽1内の曝気時間の調整を行う手法がある。例えば、モニタリング指標が増加したときに、曝気空気量6~30L/m2/分であり、より好ましくは9~25L/m2/分の範囲において、膜分離活性汚泥槽1へ供給する洗浄空気量を通常運転時よりも5~50%程度増加させることで、分離膜10の膜表面に付着するゲル層の剥離を促進させることができる。 Another method for promoting the destruction of the gel layer adhering to the membrane of the separation membrane 10 housed in the membrane separation activated sludge tank 1 is to adjust the aeration time in the membrane separation activated sludge tank 1 by the aeration device 2. There is a method. For example, when the monitoring index increases, the amount of cleaning air supplied to the membrane separation activated sludge tank 1 is in the range of 6 to 30 L/m 2 /min, more preferably in the range of 9 to 25 L/m 2 /min. By increasing the amount by about 5 to 50% compared to normal operation, peeling of the gel layer adhering to the membrane surface of the separation membrane 10 can be promoted.
(3)膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出
分離膜10の膜に付着したゲル層を剥離させても、ゲル層の原因物質は難分解で遅分解であり、分子量が大きく、膜面で捕捉されやすい性質を有する。そのため、捕捉されやすい物質が槽内にある限り、再び膜面に付着し、ファウリングが進行しやすい状態が継続されることがあるため、膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出を促進するための対策として以下の手法が好適に用いられる。
(3) Decomposition or discharge of membrane clogging substances in the membrane separation activated sludge tank 1 Even if the gel layer attached to the membrane of the separation membrane 10 is peeled off, the substances that cause the gel layer are difficult to decompose and decompose slowly, and the molecular weight is It is large and has the property of being easily captured on the membrane surface. Therefore, as long as substances that are easily captured remain in the tank, they may adhere to the membrane surface again and continue to be in a state where fouling tends to progress. The following methods are preferably used as measures to promote emissions.
-SRT制御-
ゲル層の原因物質は、膜で捕捉され汚泥とともに槽内に滞留する可能性が高い。そのため、SRTが長いほど原因物質が濃縮され、ファウリングが進行しやすくなる。このため、硝化、脱窒等の処理が悪化しない範囲でSRTを下げ、ゲル層の原因物質を槽外に排出することが望ましい。
-SRT control-
The substances that cause the gel layer are likely to be captured by the membrane and remain in the tank together with the sludge. Therefore, the longer the SRT, the more concentrated the causative substance is, and the more likely fouling is to progress. For this reason, it is desirable to lower the SRT within a range that does not deteriorate processes such as nitrification and denitrification, and to discharge substances that cause the gel layer to the outside of the tank.
なお、ファウリングの要因の1つとして、特許文献1に記載されるように、活性汚泥の細胞外物質の存在が知られており、ファウリングを防止するために、SRTを長くし、汚泥負荷を下げる対策がとられることがある。しかしながら、脱水分離液のように原水中に難分解性のゲル層の原因物質が含まれ、SRTが既に適正な範囲である場合、SRTを長くすることは逆にファウリング原因物質の濃縮を促進することにつながる可能性がある。このため、本実施形態では適正なSRTを保ったうえで、あえてSRTを下げることで、ゲル層の原因物質の濃縮を防止する手法を採用することが好ましい。 As described in Patent Document 1, the presence of extracellular substances in activated sludge is known to be one of the causes of fouling, and in order to prevent fouling, the SRT is lengthened and the sludge load is Measures may be taken to reduce the However, if the raw water contains substances that cause a persistent gel layer, such as dehydrated separated liquid, and the SRT is already within an appropriate range, lengthening the SRT will conversely promote the concentration of the substances that cause fouling. It may lead to doing so. For this reason, in this embodiment, it is preferable to adopt a method of maintaining an appropriate SRT and intentionally lowering the SRT to prevent concentration of the causative substance of the gel layer.
SRTとしては、典型的には35日以下、より典型的には30日以下となるように引抜汚泥量を調整することにより、ファウリングを適切に抑制しながら長期間安定して効率良く排水処理を行うことが可能となる。一方、SRTを短かくしすぎても、分離膜10の膜間差圧が高くなり、安定した処理が行えない場合がある。典型的には、SRTは6日以上となるように制御することが好ましく、10日以上とすることが好ましい。これにより、膜分離活性汚泥槽1内の分離膜10のファウリングを適切に抑制しながら安定的に処理できる。 For SRT, by adjusting the amount of sludge extracted so that it is typically 35 days or less, more typically 30 days or less, wastewater treatment can be performed stably and efficiently over a long period of time while appropriately suppressing fouling. It becomes possible to do this. On the other hand, if the SRT is made too short, the transmembrane pressure difference of the separation membrane 10 increases, and stable processing may not be possible. Typically, SRT is preferably controlled to be 6 days or more, and preferably 10 days or more. Thereby, stable treatment can be performed while appropriately suppressing fouling of the separation membrane 10 in the membrane separation activated sludge tank 1.
-物理化学処理-
モニタリング指標が増加した場合に、膜ろ過原水の少なくとも一部に対して、オゾン分解処理、促進酸化処理、または、活性炭吸着処理のいずれか1以上の処理を行うことにより、ゲル層の原因物質を分解、除去する。
-Physical chemical treatment-
When the monitoring index increases, at least a portion of the membrane-filtered raw water is treated with one or more of ozone decomposition treatment, accelerated oxidation treatment, and activated carbon adsorption treatment to eliminate the substances that cause the gel layer. Decompose and remove.
-モニタリング指標の測定値に基づく膜分離活性汚泥槽1内の活性汚泥量の調整-
SRTを適切に調整しても、膜ろ過原水の変動等により、膜分離活性汚泥槽1内の状態が一時的にゲル層の形成を促進させる状態となり得る場合がある。本実施形態では、モニタリング指標が増加したときに、膜分離活性汚泥槽1からの引抜汚泥量を増加させて膜分離活性汚泥槽1内の活性汚泥量を低減させるように、排泥ポンプ4を調節するための運転条件の制御を行うことで、分離膜10に付着するゲル層の原因物質を槽外に排出させることが好ましい。
- Adjustment of activated sludge amount in membrane separation activated sludge tank 1 based on measured values of monitoring indicators -
Even if the SRT is adjusted appropriately, the condition inside the membrane-separated activated sludge tank 1 may temporarily become a state that promotes the formation of a gel layer due to changes in the membrane-filtered raw water or the like. In this embodiment, the sludge pump 4 is configured to increase the amount of sludge drawn from the membrane separation activated sludge tank 1 and reduce the amount of activated sludge in the membrane separation activated sludge tank 1 when the monitoring index increases. It is preferable that the causative substance of the gel layer adhering to the separation membrane 10 is discharged out of the tank by controlling the operating conditions for adjustment.
以下に限定されるものではないが、分離膜10の膜間差圧が予め設定された許容範囲内に維持され、膜分離活性汚泥法による生物処理を安定的に行うことができる第1の汚泥滞留時間(典型的にはSRTが6日~35日間)においてモニタリング指標が増加した場合には、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う。分離膜10の膜間差圧が上記許容範囲を超える第2の汚泥滞留時間(典型的には6日未満となる場合)においてモニタリング指標が増加した場合は、膜分離活性汚泥槽1からの引抜汚泥量の低減を行うことが好ましい。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、引抜汚泥量を低減させるとSRTが長くなり処理に影響を及ぼす可能性がある。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う。 Although not limited to the following, the first sludge is capable of maintaining the transmembrane pressure difference of the separation membrane 10 within a preset allowable range and stably performing biological treatment by the membrane separation activated sludge method. If the monitoring index increases during the residence time (typically SRT is 6 to 35 days), the amount of sludge drawn from the membrane separation activated sludge tank 1 is increased. If the monitoring index increases during the second sludge retention time (typically less than 6 days) when the transmembrane pressure difference of the separation membrane 10 exceeds the above-mentioned allowable range, the membrane separation activated sludge tank 1 will be withdrawn. It is preferable to reduce the amount of sludge. Note that if the monitoring index increases when the SRT exceeds 35 days, reducing the amount of sludge drawn may lengthen the SRT and affect the treatment. Note that if the monitoring index increases when the SRT exceeds 35 days, the amount of sludge drawn from the membrane separation activated sludge tank 1 is increased.
制御装置8は、曝気装置2のブロワ22、排泥ポンプ4、吸引ポンプ3、有機物濃度測定装置5、6、汚泥濃度計7に電気的に接続されており、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽1からの引抜汚泥量の増加、のいずれか1以上の処理を行うように、曝気装置2、吸引ポンプ3及び排泥ポンプ4の運転条件を制御する。 The control device 8 is electrically connected to the blower 22 of the aeration device 2, the sludge pump 4, the suction pump 3, the organic matter concentration measuring devices 5 and 6, and the sludge concentration meter 7, and when the monitoring index increases, The aeration device is configured to perform one or more of the following: increasing the amount of washed air supplied to the membrane-separated activated sludge tank 1, shortening the filtration duration time, or increasing the amount of sludge drawn from the membrane-separated activated sludge tank 1. 2. Control the operating conditions of the suction pump 3 and the sludge pump 4.
図1に示す排水処理装置を用いて本発明の実施の形態に係る排水処理方法を実施することができる。即ち、実施の形態に係る排水処理方法は、膜分離活性汚泥槽1内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽1からの引抜汚泥量の増加、のいずれか1以上の処理を行うように運転条件を調整することを含む。 The wastewater treatment method according to the embodiment of the present invention can be carried out using the wastewater treatment apparatus shown in FIG. That is, the wastewater treatment method according to the embodiment measures the organic matter concentration of the liquid phase of the membrane-filtered raw water and the organic matter concentration of the membrane-filtered water in the membrane separation activated sludge tank 1, and uses the difference as a monitoring index, and the monitoring index is When the amount of sludge increases, one or more of the following treatments are performed: increasing the amount of washed air supplied to the membrane-separated activated sludge tank 1, shortening the filtration duration time, or increasing the amount of sludge drawn from the membrane-separated activated sludge tank 1. including adjusting operating conditions to
このように、本発明の実施の形態に係る排水処理装置及び排水処理方法によれば、膜分離活性汚泥槽1内の膜ろ過原水の液相の有機物濃度及び膜ろ過水の有機物濃度を測定してその差分をモニタリング指標とし、モニタリング指標が増加した場合に、膜閉塞原因物質の流入量の低減、膜に付着するゲル層の剥離促進、及び膜分離活性汚泥槽1内の膜閉塞物質の分解又は排出の少なくとも一以上の処理を実施することにより、分離膜の閉塞の兆候を迅速に検出でき、ファウリングを適切に抑制しながら安定して効率良く排水処理を行うことができる。 As described above, according to the wastewater treatment apparatus and the wastewater treatment method according to the embodiment of the present invention, the organic matter concentration of the liquid phase of the membrane-filtered raw water in the membrane separation activated sludge tank 1 and the organic matter concentration of the membrane-filtered water are measured. The difference is used as a monitoring index, and when the monitoring index increases, the amount of inflow of substances that cause membrane clogging is reduced, the peeling of the gel layer adhering to the membrane is promoted, and the membrane clogging substances in the membrane separation activated sludge tank 1 are decomposed. Alternatively, by performing at least one or more treatment of discharge, signs of clogging of the separation membrane can be quickly detected, and wastewater treatment can be performed stably and efficiently while appropriately suppressing fouling.
(変形例)
膜分離活性汚泥槽1内の分離膜10の閉塞を抑制する方法として、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または膜分離活性汚泥槽からの引抜汚泥量の増加の少なくともいずれかを行うタイミングまたは処理時間の少なくともいずれかを各処理毎に適正化することが好ましい。
(Modified example)
As a method of suppressing clogging of the separation membrane 10 in the membrane separation activated sludge tank 1, when the monitoring index increases, increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1, shortening the filtration duration time, or increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1, or It is preferable to optimize at least either the timing of increasing the amount of sludge drawn from the separated activated sludge tank or the treatment time for each treatment.
例えば、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮処理は、分離膜10に付着したゲル層を物理的に除去するための処理であり、ファウリングを抑制するための処置としては、比較的短時間で効果が出やすい。一方、膜分離活性汚泥槽1からの引抜汚泥量を増加させるための排泥ポンプ4の制御は、分離膜10の膜表面上でゲル層を形成しやすい物質濃度を高めないように膜分離活性汚泥槽1内の濃度を調整するための処置であり、ファウリングを抑制するための処置としては、比較的長時間継続させることで効果を得ることができる。よって、分離膜10の汚染度合及び膜分離活性汚泥槽1内の汚泥及び流入高分子凝集剤の濃度に応じて、ファウリングを抑制するための短期的な処置と長期的な処置とを組み合わせることが好ましい。 For example, the process of increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1 and shortening the filtration duration is a process for physically removing the gel layer attached to the separation membrane 10, and suppressing fouling. As a treatment for this, it tends to be effective in a relatively short period of time. On the other hand, the control of the sludge pump 4 to increase the amount of sludge drawn from the membrane separation activated sludge tank 1 is carried out to prevent the membrane separation activation from increasing the concentration of substances that tend to form a gel layer on the membrane surface of the separation membrane 10. This is a measure to adjust the concentration in the sludge tank 1, and as a measure to suppress fouling, it can be effective by continuing for a relatively long time. Therefore, depending on the degree of contamination of the separation membrane 10 and the concentration of sludge and inflow polymer flocculant in the membrane-separated activated sludge tank 1, short-term measures and long-term measures for suppressing fouling may be combined. is preferred.
洗浄空気量の増加は、短期的にファウリングを抑制できる反面、ブロワ22の電力消費量の増加によるランニングコストの増加、活性汚泥の解体、等の課題がある。また、ろ過継続時間の増加は、短期的にファウリングを抑制できる反面、時間当たりのろ過量には限界がある。また、SRTの制御は、汚泥が入れ替わるまでには数日~数十日の期間が必要であり、効果が出るまでに時間がかかる。よって、本実施形態では、短期的に効果が得られる洗浄空気量の増加及びろ過継続時間の短縮処理と、長期的に効果が得られる引抜汚泥量の調整処理を組み合わせる。例えば、ファウリングの発生初期は、短期的な対策と長期的な対策を同時に行い、汚泥の入れ替わりが進行してモニタリング指標が低下した後は、短期的な処置を処置前に戻すことで、ファウリングを即時に抑制しつつ、長期間に渡ってランニングコストを抑え、かつ安定的な運転化が可能になる。 Although an increase in the amount of cleaning air can suppress fouling in the short term, there are problems such as an increase in running costs due to an increase in the power consumption of the blower 22 and the disassembly of activated sludge. Furthermore, while increasing the filtration duration can suppress fouling in the short term, there is a limit to the amount of filtration per hour. Furthermore, SRT control requires a period of several days to several tens of days for sludge to be replaced, and it takes time for it to become effective. Therefore, in this embodiment, the process of increasing the amount of washed air and shortening the filtration duration time, which is effective in the short term, is combined with the process of adjusting the amount of drawn sludge, which is effective in the long term. For example, in the early stages of fouling, short-term and long-term measures are taken at the same time, and after sludge replacement progresses and monitoring indicators decline, short-term measures can be returned to the pre-treatment level to prevent fouling. While immediately suppressing the ring, running costs can be suppressed over a long period of time, and stable operation can be achieved.
具体的な例としては、以下に限定されるものではないが、例えば、モニタリング指標に対して、第1の基準値と第1の基準値よりも大きい第2の基準値を予め設定しておき、モニタリング指標が増大して第1の基準値を超えたときには、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う処理を開始し、更に第2の基準値を超えたときには、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理を開始するように、運転条件を調整することができる。 As a specific example, but not limited to, for example, a first reference value and a second reference value larger than the first reference value are set in advance for a monitoring index. When the monitoring index increases and exceeds the first standard value, processing to increase the amount of sludge drawn from the membrane-separated activated sludge tank 1 is started, and when the monitoring index exceeds the second standard value, the membrane separation starts. The operating conditions can be adjusted so as to start the first process that increases the amount of washed air supplied to the activated sludge tank 1 and shortens the filtration duration time.
具体的には、膜分離活性汚泥槽1内の分離膜10の膜間差圧が基準範囲内となり、安定的な生物処理が行われる第1の汚泥滞留時間(典型的には6~35日間)において、モニタリング指標が増加したときに、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う第2の処理との少なくともいずれかを行うように運転条件を調整することができる。 Specifically, the membrane separation activated sludge tank 1 has a first sludge retention time (typically 6 to 35 days) during which the transmembrane pressure difference of the separation membrane 10 falls within the standard range and stable biological treatment is performed. ), when the monitoring index increases, a first process of increasing the amount of cleaning air supplied to the membrane separation activated sludge tank 1 and shortening the filtration duration time; The operating conditions can be adjusted so as to perform at least one of the second process of increasing the amount of sludge drawn from the sludge.
また、分離膜10の膜間差圧が上記基準範囲を超える第2の汚泥滞留時間(典型的には6日未満)においてモニタリング指標が増加した場合には、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の低減を行う第3の処理との少なくともいずれかを行うように運転条件を調整することができる。なお、SRTが35日を超える場合にモニタリング指標が増加した場合には、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理と、膜分離活性汚泥槽1からの引抜汚泥量の増加を行う第2の処理との少なくともいずれかを行うように運転条件を調整することができる。 In addition, if the monitoring index increases during the second sludge retention time (typically less than 6 days) where the transmembrane pressure difference of the separation membrane 10 exceeds the above reference range, the sludge is supplied to the membrane separation activated sludge tank 1. Perform at least one of a first process that increases the amount of washed air and shortens the filtration duration, and a third process that reduces the amount of sludge drawn from the membrane-separated activated sludge tank 1. The operating conditions can be adjusted accordingly. In addition, if the monitoring index increases when the SRT exceeds 35 days, a first treatment is performed in which one or more of increasing the amount of washed air supplied to the membrane separation activated sludge tank 1 and shortening the filtration duration time is performed. The operating conditions can be adjusted so as to perform at least one of the following:
これにより、膜分離活性汚泥槽1内での生物処理をより安定的に進めることができ、基準値を満たす処理水を安定して継続的に得ながら、膜ろ過原水の急激な性状変動が生じた場合においても、分離膜10の閉塞の兆候を迅速に検出し、ファウリングを適切に抑制しながら長期間安定して効率良く排水処理を行うことが可能となる。 As a result, the biological treatment in the membrane separation activated sludge tank 1 can proceed more stably, and while the treated water that meets the standard values can be stably and continuously obtained, rapid changes in the properties of the membrane-filtered raw water can be avoided. Even in such a case, it is possible to quickly detect signs of clogging of the separation membrane 10 and perform wastewater treatment stably and efficiently for a long period of time while appropriately suppressing fouling.
上記対策を行い、モニタリング指標の減少が確認された場合は、膜分離活性汚泥槽1へ供給する洗浄空気量の増加及びろ過継続時間の短縮のいずれか1以上を行う第1の処理を、対策前の状態に段階的に戻すことで、ランニングコストを低減しつつ、処理の安定化が可能になる。 If the above measures are taken and a decrease in the monitoring index is confirmed, the first treatment will be carried out to increase the amount of washed air supplied to the membrane separation activated sludge tank 1 and shorten the filtration duration. By returning to the previous state in stages, it is possible to stabilize processing while reducing running costs.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be shown below along with comparative examples, but these examples are provided to better understand the present invention and its advantages, and are not intended to limit the invention.
(試験1)SRT制御
脱窒槽と硝化槽(膜分離槽)とを備える膜分離活性汚泥槽内に供給する膜ろ過原水として、し尿・浄化槽汚泥の脱水分離液を用い、脱水分離液のMLSSを3,000~20,000mg/Lに変化させ、SRT、硝化槽のT-N-SS負荷(以下「T-N-SS負荷」という)及び全槽BOD-SS負荷(以下「BOD-SS負荷」という)の変化による膜ろ過性能を検討した処理試験条件と測定結果を表1に示す。なお、BOD-SS負荷は脱窒槽及び硝化槽の合計のBOD-SS負荷を表す。
(Test 1) SRT control Dehydrated separated liquid of human waste and septic tank sludge is used as the membrane filtration raw water supplied to the membrane separated activated sludge tank equipped with a denitrification tank and a nitrification tank (membrane separation tank), and MLSS of the dehydrated separated liquid is used. 3,000 to 20,000 mg/L, SRT, TN-SS load of the nitrification tank (hereinafter referred to as "TN-SS load") and total tank BOD-SS load (hereinafter referred to as "BOD-SS load"). Table 1 shows the treatment test conditions and measurement results for examining membrane filtration performance due to changes in . Note that the BOD-SS load represents the total BOD-SS load of the denitrification tank and the nitrification tank.
試験1では、孔径0.4μmの有機平膜を用いた。ろ過フラックスを0.4m/dで一定とし、膜間差圧の変化、有機物濃度の差分値(ΔS-CODMn)及び5Cろ紙ろ過量で膜に対する汚染度を評価した。5Cろ紙ろ過量は、150mmφの5Cろ紙を用い、50ml汚泥混合液を5分間にろ過できるろ液量を測定した結果を示す。ΔS-CODMnは膜分離槽混合液中の溶解性CODMn(S-CODMn)と膜分離水のCODMnの差を示す。このΔS-CODMnが高いほど膜表面の汚染度が高く、ろ過しにくいことを示す。Δ膜間差圧、ΔS-CODMn及び5Cろ紙ろ過量はいずれも連続処理3ヵ月後の測定値である。 In Test 1, an organic flat membrane with a pore size of 0.4 μm was used. The filtration flux was kept constant at 0.4 m/d, and the degree of contamination of the membrane was evaluated based on the change in the pressure difference between the membranes, the difference in organic matter concentration (ΔS- CODMn ), and the amount of 5C filter paper filtration. The 5C filter paper filtration amount is the result of measuring the amount of filtrate that can filter 50 ml of sludge mixture in 5 minutes using a 150 mmφ 5C filter paper. ΔS-COD Mn represents the difference between the soluble COD Mn (S-COD Mn ) in the membrane separation tank mixture and the COD Mn of the membrane-separated water. The higher this ΔS-COD Mn , the higher the degree of contamination of the membrane surface, indicating that it is difficult to filter. Δ transmembrane pressure difference, ΔS-COD Mn , and 5C filter paper filtration amount are all measured values after 3 months of continuous treatment.
図2~4は、試験1で得られたSRTと膜汚染度を示す指標となるΔS-CODMn、膜間差圧、5Cろ紙ろ過量の関係を示す。SRTは10~30dの場合、ΔS-CODMnが22~40mg/Lと比較的に安定し、膜汚染が少ないと判断された。一方、SRTが6dと短い場合、ΔS-CODMnが82mg/Lと高く、膜汚染が多いと判断された。また、SRTが40dと長い場合も、ΔS-CODMnが90mg/Lと高く、膜汚染の多いことが示された。 Figures 2 to 4 show the relationship between the SRT obtained in Test 1, ΔS- CODMn , which is an indicator of the degree of membrane contamination, the transmembrane pressure difference, and the amount of 5C filter paper filtration. When SRT was 10 to 30 d, ΔS-COD Mn was relatively stable at 22 to 40 mg/L, and it was judged that there was little membrane contamination. On the other hand, when the SRT was as short as 6d, ΔS-COD Mn was as high as 82 mg/L, and it was determined that there was a lot of membrane contamination. Furthermore, when the SRT was as long as 40 d, ΔS-COD Mn was as high as 90 mg/L, indicating that there was a lot of membrane contamination.
図3に示すSRTと膜間差圧の関係から、膜間差圧を安定処理の目安となる25KPa以下、好ましくは20KPa以下とするためにはSRTを6~35d、更には10~30dとするのが妥当と推測される。図4に示すSRTと5Cろ紙ろ過量の関係から、良好なろ過性能の目安とされる5Cろ紙ろ過量8ml以上、好ましくは10ml以上に維持するためには、SRTを6~35d、更にはSRTを10~30dとするのが好ましいと判断される。 From the relationship between SRT and transmembrane differential pressure shown in Figure 3, in order to keep the transmembrane differential pressure below 25 KPa, which is a guideline for stabilizing treatment, and preferably below 20 KPa, SRT should be 6 to 35 d, and more preferably 10 to 30 d. It is assumed that it is reasonable. From the relationship between SRT and 5C filter paper filtration amount shown in FIG. It is judged that it is preferable to set the distance between 10 and 30 d.
図5~7は試験で得られた反応槽全体のBOD-SS負荷とΔS-CODMn、膜間差圧、5Cろ紙ろ過量の関係を示す。BOD-SS負荷からみると、膜汚染を抑制するためには、BOD-SS負荷を0.05~0.2kg/kg/dとするのが妥当と考えられる。図8はΔS-CODMnと膜間差圧の関係、図9はΔS-CODMnと5Cろ紙ろ過量の関係を示す。ΔS-CODMnと膜間差圧が良好な相関が見られた。膜間差圧を安定処理の目安である20KPa以下とするためには、ΔS-CODMnを40mg/L以下にて運転管理するのが好ましい。ΔS-CODMnと5Cろ紙ろ過量も同様に良好な相関が見られた。5Cろ紙ろ過量を良好なろ過性能目安である10ml以上とするためにはΔS-CODMnを約70mg/L以下にて運転管理するのが好ましい。 Figures 5 to 7 show the relationship between the BOD-SS load of the entire reaction tank, ΔS- CODMn , transmembrane pressure difference, and 5C filter paper filtration amount obtained in the test. In terms of BOD-SS load, it is considered appropriate to set the BOD-SS load to 0.05 to 0.2 kg/kg/d in order to suppress membrane contamination. FIG. 8 shows the relationship between ΔS-COD Mn and the transmembrane pressure difference, and FIG. 9 shows the relationship between ΔS-COD Mn and the amount of 5C filter paper filtration. A good correlation was observed between ΔS-COD Mn and transmembrane pressure. In order to keep the transmembrane pressure differential at 20 KPa or less, which is a standard for stable treatment, it is preferable to operate and manage the ΔS-COD Mn at 40 mg/L or less. A similarly good correlation was observed between ΔS-COD Mn and the amount of 5C filter paper filtration. In order to maintain the 5C filter paper filtration amount to 10 ml or more, which is a guideline for good filtration performance, it is preferable to operate and manage the ΔS-COD Mn at about 70 mg/L or less.
以上の結果より、本発明の一実施態様によれば、膜汚染を抑制し、安定したろ過性能を維持するためには、ΔS-CODMnを少なくとも70mg/L以下、好ましくは40mg/L以下となるように運転条件を管理し、適切なSRTやBOD-SSの調整を行うことが好ましいことが分かった。 From the above results, according to one embodiment of the present invention, in order to suppress membrane contamination and maintain stable filtration performance, ΔS-COD Mn should be at least 70 mg/L or less, preferably 40 mg/L or less. It has been found that it is preferable to manage the operating conditions and make appropriate adjustments to SRT and BOD-SS to ensure that the conditions are met.
(試験2)適正SRT条件、適正吸引時間条件下の曝気風量検討
試験1と同様の設備で、膜ろ過原水としてし尿・浄化槽汚泥の脱水分離液を用い、脱水分離液のMLSSを3,000~20,000mg/Lに変化させ、洗浄空気量及びろ過継続時間(吸引タイマ)の変化による膜ろ過性能を検討した。結果を表2に示す。
(Test 2) Examination of aeration air volume under appropriate SRT conditions and appropriate suction time conditions Using the same equipment as in Test 1, using dehydrated separated liquid of human waste and septic tank sludge as membrane filtration raw water, the MLSS of the dehydrated separated liquid was 3,000 ~ The concentration was changed to 20,000 mg/L, and the membrane filtration performance was examined by changing the amount of washed air and the filtration duration (suction timer). The results are shown in Table 2.
SRT18d、吸引9分と吸引停止1分の繰り返し条件下、洗浄空気量7~18L/m2/分では、膜間差圧は17~23Kpaと低値を維持し、5Cろ紙ろ過量も15~21mLと多く良好な状態であった(No.11~13)。洗浄空気量を4L/m2/分に絞ると、膜間差圧は26Kpaに上昇し、5Cろ紙ろ過量も9.2mLと少なく膜閉塞の兆候がみられた(No.14)。 Under the conditions of SRT18d, where suction is repeated for 9 minutes and suction stopped for 1 minute, the transmembrane pressure remains as low as 17 to 23 Kpa, and the amount of 5C filter paper filtration is maintained at a low value of 15 to 18 L/m 2 /min. The volume was 21 mL and in good condition (Nos. 11 to 13). When the amount of cleaning air was reduced to 4 L/m 2 /min, the transmembrane pressure difference increased to 26 Kpa, and the amount of 5C filter paper filtration was as small as 9.2 mL, showing signs of membrane clogging (No. 14).
SRT18d、洗浄空気量18L/m2/分の条件下、吸引20分~40分ごとに1分間吸引停止することで、膜間差圧は24~32Kpaと低値を維持し、5Cろ紙ろ過量も16~20mLと多く良好な状態であった(No.15、16)。しかしながら、吸引60分ごとに1分間吸引停止した場合、膜間差圧は31Kpaに上昇し、5Cろ紙ろ過量も8.4mLと少なく膜閉塞の兆候がみられた(No.17)。 By stopping suction for 1 minute every 20 to 40 minutes under the conditions of SRT18d and cleaning air volume of 18 L/m 2 /min, the transmembrane differential pressure is maintained at a low value of 24 to 32 Kpa, and the amount of 5C filter paper filtration is reduced. The volume was 16 to 20 mL and in good condition (No. 15, 16). However, when suction was stopped for 1 minute every 60 minutes, the transmembrane pressure rose to 31 Kpa, and the amount of 5C filter paper filtration was as small as 8.4 mL, showing signs of membrane clogging (No. 17).
(試験3)モニタリング指標に基づく制御
以下の3条件で連続運転を行い、膜間差圧が30kPa以上となるまでの日数を調べた。
(1)比較例1:通常運転、モニタリング指標に基づく制御なし
(洗浄空気量7L/m2/分、吸引タイマOn:Off=12:1、SRT18日)
(2)実施例1:モニタリング指標に基づく制御(短期的処置のみ)
(ΔS-CODMn40mg/L以上となった場合に、通常運転から洗浄空気量を9L/m2/分、吸引タイマOn:Off=9:1へ変更する制御を行い、ΔS-CODMn30mg/L以下となった場合に通常運転に戻す制御を行った)
(3)実施例2:モニタリング指標に基づく制御(短期的処置と長期的処置の組み合わせ)
ΔS-CODMn40mg/L以上となった場合に、通常運転から洗浄空気量を9L/m2/分、吸引タイマOn:Off=9:1、排泥ポンプを操作してSRTを14日に変更、ΔS-CODMn30mg/L以下となった場合に通常運転に戻す制御を行い、S-CODMn30mg/L以下となった場合に洗浄空気量を7L/m2/分、吸引タイマOn:Off=12:1、SRT14日とし、S-CODMn20m以下で通常運転の条件に戻す制御を行った。
(Test 3) Control based on monitoring index Continuous operation was performed under the following three conditions, and the number of days until the transmembrane differential pressure reached 30 kPa or more was investigated.
(1) Comparative example 1: Normal operation, no control based on monitoring index (cleaning air volume 7L/m 2 /min, suction timer On:Off = 12:1, SRT 18 days)
(2) Example 1: Control based on monitoring indicators (short-term treatment only)
(If ΔS-COD Mn is 40 mg/L or more, control is performed to change the cleaning air volume from normal operation to 9 L/m 2 /min and suction timer On: Off = 9:1, and ΔS-COD Mn is 30 mg/L. /L or less, control was performed to return to normal operation)
(3) Example 2: Control based on monitoring indicators (combination of short-term and long-term treatments)
If ΔS-COD Mn is 40 mg/L or more, change the cleaning air amount from normal operation to 9 L/m 2 /min, suction timer On: Off = 9:1, operate the sludge pump, and change SRT to 14 days. Change, when ΔS-COD Mn is below 30mg/L, control is performed to return to normal operation, and when S-COD Mn is below 30mg/L, the amount of cleaning air is set to 7L/m 2 /min, and the suction timer is turned on. :Off=12:1, SRT was set to 14 days, and control was performed to return to normal operating conditions when S-COD Mn was 20 m or less.
実施例1の短期的処置のみを行う場合では234日、実施例2の短期的処置と長期的処置の組み合わせでは381日と、制御をおこなわない比較例1に比べてより長期間安定的に運転できることが確認された。 When only the short-term treatment of Example 1 is performed, the operation time is 234 days, and when the combination of short-term treatment and long-term treatment of Example 2 is performed, it is 381 days, which is a longer period of stable operation than in Comparative Example 1 where no control is performed. It was confirmed that it can be done.
1…膜分離活性汚泥槽
2…曝気装置
3…吸引ポンプ
4…排泥ポンプ
5、6…有機物濃度測定装置
7…汚泥濃度計
8…制御装置
10…分離膜
21…散気装置
22…ブロワ
41…引き抜き配管
1... Membrane separation activated sludge tank 2... Aeration device 3... Suction pump 4... Sludge pumps 5, 6... Organic matter concentration measuring device 7... Sludge concentration meter 8... Control device 10... Separation membrane 21... Diffusion device 22... Blower 41 …Pull-out piping
Claims (7)
前記膜分離活性汚泥槽を曝気する曝気装置と、
前記膜分離活性汚泥槽から前記膜ろ過水を吸引する吸引ポンプと、
前記膜分離活性汚泥槽から汚泥を引き抜く排泥ポンプと、
前記膜分離活性汚泥槽内の前記膜ろ過原水の液相の有機物濃度と前記膜ろ過水の有機物濃度との差分値をモニタリング指標とし、前記膜分離活性汚泥槽の汚泥滞留時間が6日以上で前記モニタリング指標が増加したときに、前記膜分離活性汚泥槽へ供給する洗浄空気量の増加、ろ過継続時間の短縮、または前記膜分離活性汚泥槽の汚泥滞留時間の短縮のいずれか1以上の処理を行うように、前記曝気装置、前記吸引ポンプ及び前記排泥ポンプの運転条件を制御する制御装置と
を備えることを特徴とする排水処理装置。 a membrane separation activated sludge tank for obtaining membrane filtration water by subjecting membrane filtration raw water to membrane separation treatment in the presence of activated sludge;
an aeration device for aerating the membrane-separated activated sludge tank;
a suction pump that sucks the membrane-filtered water from the membrane-separated activated sludge tank;
a sludge pump that extracts sludge from the membrane-separated activated sludge tank;
The difference value between the organic matter concentration of the liquid phase of the membrane-filtered raw water in the membrane-separated activated sludge tank and the organic matter concentration of the membrane-filtered water is used as a monitoring index, and if the sludge retention time in the membrane-separated activated sludge tank is 6 days or more, When the monitoring index increases, any one or more of increasing the amount of cleaning air supplied to the membrane-separated activated sludge tank, shortening the filtration duration time, or shortening the sludge retention time in the membrane-separated activated sludge tank. A wastewater treatment device comprising: a control device that controls operating conditions of the aeration device, the suction pump, and the sludge pump so as to perform the following steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024018856A JP2024036698A (en) | 2021-01-14 | 2024-02-09 | Wastewater treatment method and wastewater treatment apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021004431A JP7474718B2 (en) | 2021-01-14 | 2021-01-14 | Wastewater treatment method and wastewater treatment device |
JP2024018856A JP2024036698A (en) | 2021-01-14 | 2024-02-09 | Wastewater treatment method and wastewater treatment apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021004431A Division JP7474718B2 (en) | 2021-01-14 | 2021-01-14 | Wastewater treatment method and wastewater treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024036698A true JP2024036698A (en) | 2024-03-15 |
Family
ID=82557057
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021004431A Active JP7474718B2 (en) | 2021-01-14 | 2021-01-14 | Wastewater treatment method and wastewater treatment device |
JP2024018856A Pending JP2024036698A (en) | 2021-01-14 | 2024-02-09 | Wastewater treatment method and wastewater treatment apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021004431A Active JP7474718B2 (en) | 2021-01-14 | 2021-01-14 | Wastewater treatment method and wastewater treatment device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7474718B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5868217B2 (en) * | 2012-02-28 | 2016-02-24 | 株式会社クボタ | Membrane separation activated sludge treatment method and system |
-
2021
- 2021-01-14 JP JP2021004431A patent/JP7474718B2/en active Active
-
2024
- 2024-02-09 JP JP2024018856A patent/JP2024036698A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP7474718B2 (en) | 2024-04-25 |
JP2022109088A (en) | 2022-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dialynas et al. | Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater | |
Trussell et al. | The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater | |
Tewari et al. | Membrane bioreactor (MBR) for wastewater treatment: Filtration performance evaluation of low cost polymeric and ceramic membranes | |
Li et al. | Treatment of river water by a hybrid coagulation and ceramic membrane process | |
Tian et al. | Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: as compared to membrane bioreactor (MBR) | |
IL215412A (en) | Method and apparatus for desalinating sea water | |
Tian et al. | Submerged membrane bioreactor (sMBR) for the treatment of contaminated raw water | |
CN110028210A (en) | A kind of technique suitable for UASB processing landfill leachate | |
WO2014034827A1 (en) | Fresh water generation method | |
Kocadagistan et al. | Treatment investigation of the Erzurum City municipal wastewaters with anaerobic membrane bioreactors | |
CN208136047U (en) | A kind of coking wastewater processing system | |
JP5399065B2 (en) | Wastewater treatment method | |
Wang et al. | Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS) | |
JP2007000727A (en) | Method for operating membrane separation activated sludge treatment apparatus | |
Cicek et al. | Impact of soluble organic compounds on permeate flux in an aerobic membrane bioreactor | |
KR100949077B1 (en) | Wastewater treatment apparatus and wastewater treatmentmethod using the single-head typed submerged hollow fiber membrane | |
Elfilali et al. | Effectiveness of membrane bioreactor/reverse osmosis hybrid process for advanced purification of landfill leachate | |
JP7474718B2 (en) | Wastewater treatment method and wastewater treatment device | |
Blšt’áková et al. | Domestic wastewater treatment with membrane filtration—two years experience | |
JP2013176710A (en) | Membrane separation activated sludge treatment method and system | |
RU2644904C1 (en) | Method of biological purification of wastewater from nitrogen phosphoric and organic compounds | |
WO2023176161A1 (en) | Method for operating anaerobic treatment apparatus | |
JPH11347595A (en) | Water purifying treatment equipment and concentration sludge thereof | |
JP2005040787A (en) | Method and device for treating soluble organic matter-containing liquid | |
Liu et al. | A pilot study on a submerged membrane bioreactor for domestic wastewater treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240209 |