JP2000092703A - Input/output buffer circuit device - Google Patents

Input/output buffer circuit device

Info

Publication number
JP2000092703A
JP2000092703A JP10262701A JP26270198A JP2000092703A JP 2000092703 A JP2000092703 A JP 2000092703A JP 10262701 A JP10262701 A JP 10262701A JP 26270198 A JP26270198 A JP 26270198A JP 2000092703 A JP2000092703 A JP 2000092703A
Authority
JP
Japan
Prior art keywords
power supply
power
vcc2
vcc1
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10262701A
Other languages
Japanese (ja)
Inventor
Yasuo Kaminaga
保男 神長
Michio Morioka
道雄 森岡
Tsutomu Yamada
山田  勉
Kenichi Kurosawa
憲一 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10262701A priority Critical patent/JP2000092703A/en
Publication of JP2000092703A publication Critical patent/JP2000092703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration and destruction of a group of LSIs in different kinds of power supply systems, by inputting one rank higher power supply voltages to voltage regulators, and by correcting the natural logarithmic discharging characteristic between each of the power supplies at the time of power interruption in response to each load condition of the power supplies. SOLUTION: Correcting capacity 71 is provided for correcting the natural logarithmic discharging characteristic at the time of power interruption. Also, this device is structured in such a way that power in inputted from power supply higher by one rank into each of voltage regulators 2, 3. Then, when power is impressed, each input voltage raises the output sides in sequence with the minimum drop voltage of the voltage regulators 2, 3 so that the power supply secures the electric potential of VCC1>VCC2>VCC3, a condition needed to be observed. On the other hand, when the power supply unit 1 is turned off, the addition of the correcting capacity 71 makes it possible to maintain VCC1>VCC2>VCC3, a condition needed to be observed at the time of power interruption. As a result, the deterioration and destruction of a group of LSIs can be prevented in different kinds of power supply systems.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は制御用コントローラ
あるいは情報処理装置のパワーシーケンス回路装置に係
り、特に異種電源混在システムにおける電源投入,遮断
時に異種電源間電位差による、電源受給側LSIの耐圧
保護,LSIの劣化および破壊から守ることを目的とす
るパワーシーケンス回路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control controller or a power sequence circuit device of an information processing apparatus, and more particularly, to a withstand voltage protection of a power receiving side LSI due to a potential difference between different power sources when a power source is turned on and off in a mixed power source system. The present invention relates to a power sequence circuit device for protecting an LSI from deterioration and destruction.

【0002】[0002]

【従来の技術】近年、制御用コントローラあるいは情報
処理装置において、システム中の電源電圧が複数必要で
ある異種電源混在システムが構築され、また要求されて
いる。この際、搭載されたlSI保護のため、特に電源
の投入時,遮断時のおける異種電源相互の電位逆転およ
び電位差値に留意せねばならず、これが課題となってい
る。
2. Description of the Related Art In recent years, in a control controller or an information processing apparatus, a heterogeneous power supply mixed system requiring a plurality of power supply voltages in the system has been constructed and demanded. At this time, in order to protect the mounted LSI, it is necessary to pay attention to the potential reversal and the potential difference between the different types of power supplies particularly when the power is turned on and off, which is a problem.

【0003】その内容は次のとおりである。(1)LS
Iに電源電圧VCC以上の電圧が入力に印加されると入
力回路のMOSトランジスタのゲート酸化膜破壊が生じ
る、(2)同様に入力に高電界が印加されると出力回路
のMOSトランジスタのドレイン−ソース間にホットキ
ャリア発生による素子劣化が生じる、(3)同様に入力
に電源電圧VCC以上の電圧が印加されると逆バイアス
が順バイアスとなってしまい寄生ダイオードに電流パス
を生じ、引いてはラッチアップの原因になる。従って、
異種電源混在システムでは、特に通常動作状態以外の電
源投入,遮断時においては電源相互の電圧値が逆転しな
いよう留意している。一般に電源投入時は高い電源が先
にオンさせ、遮断時は高い電源が後にオフさせる手順を
順守している。さらに、(4)LSIの中には入力に電
源電圧よりも高い電圧の印加を許容するトレラント回路
内蔵もあるが、自己電源を供給状態時における許容条件
とするケースが多く、電源相互の電圧値逆転保持以外に
相互の電位差値も大とならない留意が必要となる。
The contents are as follows. (1) LS
When a voltage equal to or higher than the power supply voltage VCC is applied to the input of I, the gate oxide film of the MOS transistor of the input circuit is destroyed. (2) Similarly, when a high electric field is applied to the input, the drain of the MOS transistor of the output circuit is (3) Similarly, when a voltage equal to or higher than the power supply voltage VCC is applied to the input, the reverse bias becomes a forward bias, and a current path is generated in the parasitic diode. May cause latch-up. Therefore,
In a system with a mixture of different power sources, care is taken to prevent the voltage values of the power sources from being reversed, particularly when the power is turned on and turned off in a state other than the normal operation state. Generally, a procedure is followed in which a high power supply is turned on first when the power supply is turned on, and a high power supply is turned off later when the power supply is turned off. Furthermore, (4) Some LSIs have a built-in tolerant circuit that allows the application of a voltage higher than the power supply voltage to the input. It is necessary to pay attention not to increase the mutual potential difference value other than the reverse rotation holding.

【0004】ここで図5に従来例の一つを示す。複数の
異種電源はVCC1>VCC2>VCC3を示し、例え
ばVCC1=5.0V,VCC2=3.3V,VCC3=
1.8V とする。電源ユニット1はVCCを生成し、容
量(C5)11は電源ユニット1内出力端子に接続され
る容量、ボルテージレギュレータ2は一例ではトランジ
スタ21を入力側(VCC1)と出力側(VCC2)へ
シリーズに接続構成し電源VCC1からVCC2を生成
するIC、ボルテージレギュレータ4は一例ではトラン
ジスタ41を入力側(VCC1)と出力側(VCC3)
へシリーズに接続構成し電源VCC1からVCC3を生
成するIC、負荷容量(CL5)5は電源VCC1を受給
する負荷側LSIの総負荷容量、負荷抵抗(RL5)6は
電源VCC1を受給する負荷側LSIの消費電流(i5)
に対する総負荷抵抗、負荷容量(CL3.3)7は電源V
CC2を受給する負荷側LSIの総負荷容量、負荷抵抗
(RL3.3)8は電源VCC2を受給する負荷側LSI
の消費電流(i3.3)に対する総負荷抵抗、負荷容量
(CL1.8)9は電源VCC3を受給する負荷側LS
Iの総負荷容量、負荷抵抗(RL1.8)10は電源VC
C3を受給する負荷側LSIの消費電流(i1.8)に対
する総負荷抵抗である。電源ユニット1が電源投入時
は、ボルテージレギュレータ2,3のアクティーブ動作
により電圧上昇するが、図6に示すように電源VCC3
はVCC2と同様に入力をVCC1としているため、電
源立上がりがVCC2より速くなるケースも発生してし
まい、順守事項のVCC2>VCC3の電位が確保でき
ない。他方、電源ユニット1が電源遮断時は図7に示
す。図中の動作はa点がVCC1の低下開始点、b点が
ボルテージレギュレータのドロップ最小電圧によるVC
C2の低下点、b′点がボルテージレギュレータのドロ
ップ最小電圧によるVCC3の低下点、c点がVCC1の出
力停止点である。遮断時当初(a〜c)はボルテージレ
ギュレータ2,3のアクティーブ動作によりVCC1>
VCC2>VCC3を維持するが、電源電圧低下に伴い
非アクティーブ状態(c〜)では自然対数放電となり負荷
側の条件(C5,CL5,RL5/CL3.3,RL3.
3/CL1.8,RL1.8)により各電源電圧の放電動作
が定まってしまう。従って、VCC1とVCC2間はC
5>>CL3.3なのでRL5,RL3.3の比を吸収し
VCC1とVCC2の放電時間はt5>t3.3 を確保
できるが、VCC2とVCC3間は負荷条件により、放
電時間t3.3=−CL3.3・RL3.3・ln(V0/
VCC3.3),t1.8=−CL1.8・RL1.8・l
n(V0/VCC1.8)より、t3.3>t1.8が確保
できない、すなわち、VCC3>VCC2が逆転するケ
ースが生じてしまう。
FIG. 5 shows one of the conventional examples. The plurality of different power supplies indicate VCC1>VCC2> VCC3. For example, VCC1 = 5.0V, VCC2 = 3.3V, VCC3 =
1.8V. The power supply unit 1 generates VCC, the capacity (C5) 11 is a capacity connected to an output terminal in the power supply unit 1, and the voltage regulator 2 is configured such that the transistor 21 is connected in series to the input side (VCC1) and the output side (VCC2) in an example. In an example, the voltage regulator 4 is an IC that generates a VCC2 from the power supply VCC1 by connecting and connecting the transistors 41 to the input side (VCC1) and the output side (VCC3).
The load capacity (CL5) 5 is the total load capacity of the load-side LSI that receives the power supply VCC1, and the load resistance (RL5) 6 is the load-side LSI that receives the power supply VCC1. Consumption current (i5)
The total load resistance and load capacity (CL 3.3) 7
The total load capacity and load resistance (RL3.3) 8 of the load-side LSI receiving the CC2 are the load-side LSI receiving the power VCC2.
The total load resistance and load capacitance (CL1.8) 9 for the current consumption (i3.3) of the
I total load capacity, load resistance (RL1.8) 10 is power supply VC
This is the total load resistance with respect to the current consumption (i1.8) of the load-side LSI that receives C3. When the power supply unit 1 is turned on, the voltage rises due to the active operation of the voltage regulators 2 and 3, but as shown in FIG.
Since the input is set to VCC1 like VCC2, the power supply rises faster than VCC2 in some cases, and the potential of VCC2> VCC3, which is a matter to be observed, cannot be secured. On the other hand, FIG. 7 shows when the power supply unit 1 is turned off. In the operation shown in the figure, the point a is the start point of the drop of VCC1, and the point b is the VC due to the minimum voltage drop of the voltage regulator.
The drop point of C2, the point b 'is the drop point of VCC3 due to the minimum voltage drop of the voltage regulator, and the point c is the output stop point of VCC1. At the beginning (a to c) at the time of cutoff, VCC1>
Although VCC2> VCC3 is maintained, natural logarithmic discharge occurs in the inactive state (c to) due to a decrease in the power supply voltage, and conditions on the load side (C5, CL5, RL5 / CL3.3, RL3.
3 / CL1.8, RL1.8) determines the discharge operation of each power supply voltage. Therefore, C is connected between VCC1 and VCC2.
Since 5 >> CL3.3, the ratio of RL5 and RL3.3 is absorbed and the discharge time of VCC1 and VCC2 can secure t5> t3.3. However, the discharge time t3.3 = −3.3 between VCC2 and VCC3 depending on the load condition. CL3.3 ・ RL3.3 ・ ln (V0 /
VCC3.3), t1.8 = -CL1.8.RL1.8.l
From n (V0 / VCC1.8), t3.3> t1.8 cannot be ensured, that is, there is a case where VCC3> VCC2 is reversed.

【0005】その他、従来方式として、電源遮断時に時
間制御による強制放電方式もあるが、1)回路規模が増
大する、2)時間制御によっては電源間の低下時間差に
より電位差VCC3が零でVCC2の電位がそのまま印
加されるケースが生じてしまう、3)強制放電回路によ
る電源端子の放電スピードがIC群入力端子より速すぎ
るとラッチアップの原因となりIC素子に影響を与える
等、欠点もある。
As another conventional method, there is also a forced discharge method by time control when the power supply is cut off. However, 1) the circuit scale is increased. 2) Depending on the time control, the potential difference VCC3 is zero and the potential of VCC2 is reduced due to the fall time difference between the power supplies. 3) If the discharge speed of the power supply terminal by the forced discharge circuit is too fast than that of the IC group input terminal, latch-up may occur and affect the IC elements.

【0006】[0006]

【発明が解決しようとする課題】上記のパワーシーケン
ス回路装置において、異種電源の電源投入,遮断時に複
数の電源電圧をVCC1>VCC2>VCC3と動作さ
せると共に、電源相互の電位差値を<VCC1,<VC
C2を確保する回路構成とする。
In the power sequence circuit device described above, a plurality of power supply voltages are operated as VCC1>VCC2> VCC3 when the different types of power supplies are turned on and off, and the potential difference between the power supplies is set to <VCC1, <VCC1. VC
The circuit configuration is to secure C2.

【0007】[0007]

【課題を解決するための手段】本発明のパワーシーケン
ス回路装置において、ボルテージレギュレータの入力は
一ランク大きい電源電圧とし、電源遮断時における電源
間相互の自然対数放電特性は相互の電源負荷条件に対応
し、付加容量のみで補正する。
In the power sequence circuit device of the present invention, the input of the voltage regulator is a power supply voltage one rank higher, and the natural logarithmic discharge characteristics between the power supplies when the power supply is cut off correspond to the mutual power supply load conditions. Then, the correction is performed only with the additional capacity.

【0008】本発明によれば、複数の異種電源システム
において、システム中のLSI群の劣化や破壊を保護で
きるシンプルなパワーシーケンス回路装置の構築が実現
できる。
According to the present invention, in a plurality of heterogeneous power supply systems, it is possible to realize a simple power sequence circuit device capable of protecting the LSI group in the system from deterioration and destruction.

【0009】[0009]

【発明の実施の形態】本発明の入出力バッファ回路装置
の一実施例を図1に示す。
FIG. 1 shows an embodiment of an input / output buffer circuit device according to the present invention.

【0010】電源ユニット1はVCCを生成し、容量
(C5)11は電源ユニット1内出力端子に接続される容
量、ボルテージレギュレータ2はトランジスタ21が入
力側(VCC1)と出力側(VCC2)へシリーズに接続さ
れ電源VCC1からVCC2を生成するICであり、ボ
ルテージレギュレータ3はトランジスタ31が入力側
(VCC2)と出力側(VCC3)へシリーズに接続され電
源VCC2からVCC3を生成するICであり、負荷容
量(CL5)5は電源VCC1を受給する負荷側LSIの
総負荷容量、負荷抵抗(RL5)6は電源VCC1を受給
する負荷側LSIの消費電流(i5)に対する総負荷抵抗、
負荷容量(CL3.3)7は電源VCC2を受給する負荷
側LSIの総負荷容量、容量(CLadd)71は電源遮
断時の自然対数放電特性を補正するためのコンデンサ、
負荷抵抗(RL3.3)8は電源VCC2を受給する負荷
側LSIの消費電流(i3.3)に対する総負荷抵抗、負
荷容量(CL1.8)9は電源VCC3を受給する負荷側
LSIの総負荷容量、負荷抵抗(RL1.8)10は電源
VCC3を受給する負荷側LSIの消費電流(i1.8)
に対する総負荷抵抗となる構成である。この回路構成に
おいて、電源ユニット1を電源投入時、ボルテージレギ
ュレータ2,3のアクティーブ動作と入力がそれぞれ1
ランク高い電源から供給する構成により、各々入力電圧
がボルテージレギュレータのドロップ最小電圧上昇にて
順に出力側が立上がるので、図2に示すように、電源は
順守事項のVCC1>VCC2>VCC3の電位を確保
できる。他方、電源ユニット1が遮断時の動作特性は図
3に示す。図中の動作はa点がVCC1の低下開始点、
b点がボルテージレギュレータのドロップ最小電圧によ
るVCC2の低下点、b′点がボルテージレギュレータ
のドロップ最小電圧によるVCC3の低下点、c点がV
CC1の出力停止点となる。遮断時当初(a〜c)はボ
ルテージレギュレータ2,3のアクティーブ動作により
VCC1>VCC2>VCC3を維持できる。また、電
源電圧低下に伴い非アクティーブ状態(c〜)では各電源
電圧が負荷側の条件(C5,CL5,RL5/CL3.
3,RL3.3/CL1.8,RL1.8)で定まる自然対
数放電特性となるが、VCC1,VCC2間はC5>>CL
3.3なのでRL5,RL3.3の比を吸収しVCC1と
VCC2の放電時間はt5>t3.3 を確保できる。さ
らに、VCC2,VCC3間は負荷条件に大小の逆転はあっ
ても、VCC2ラインに接続した付加容量71のみで自
然対数特性の補正を行うことでVCC1>VCC2>V
CC3を確保することができる。この負荷条件大小とは
放電時間の関数値となる各々の負荷総容量,消費電流値
と電源電圧値の比である。すなわち、(CL3.3+C
Ladd)・VCC3.3/i3.3対CL1.8・VCC
1.8/i1.8 である。図4にこの放電特性式と補正
用容量値の導出式を示す。VCC2,VCC3の放電時
間はt3.3=−(CL3.3+CLadd)・RL3.3
・ln(V0/Vcc3.3),t1.8=−CL1.8・
RL1.8・ln(V0/Vcc1.8)であり、負荷条
件により補正用容量値は(CL3.3+CLadd)・V
CC3.3/i3.3≧CL1.8・VCC1.8/i1.
8 で求まる。従って、補正用容量CLaddを付加す
ることによりt3.3>t1.8が確保でき、電源遮断時
の順守事項VCC1>VCC2>VCC3の維持が可能とな
る。しかも、他方の順守事項である電源相互間の電位差
値もアクティーブ動作により、(VCC1−VCC2の
近傍)<VCC1,(VCC2−VCC3の近傍)<V
CC2を確保できる。
The power supply unit 1 generates VCC and has a capacity
(C5) 11 is a capacitor connected to the output terminal in the power supply unit 1, and the voltage regulator 2 is an IC that generates the VCC2 from the power supply VCC1 by connecting the transistor 21 to the input side (VCC1) and the output side (VCC2) in series. , The voltage regulator 3 has the transistor 31 on the input side
(VCC2) and an output side (VCC3) are connected in series to generate VCC3 from the power supply VCC2. The load capacity (CL5) 5 is the total load capacity and load resistance (RL5) of the load side LSI receiving the power supply VCC1. 6 is the total load resistance with respect to the current consumption (i5) of the load side LSI receiving the power supply VCC1,
The load capacity (CL 3.3) 7 is the total load capacity of the load-side LSI receiving the power supply VCC2, the capacity (CLadd) 71 is a capacitor for correcting the natural logarithmic discharge characteristic when the power supply is cut off,
The load resistance (RL3.3) 8 is the total load resistance for the consumption current (i3.3) of the load-side LSI receiving the power supply VCC2, and the load capacitance (CL1.8) 9 is the total load of the load-side LSI receiving the power supply VCC3. The capacitance and load resistance (RL1.8) 10 are the current consumption (i1.8) of the load-side LSI receiving the power supply VCC3.
Is the total load resistance. In this circuit configuration, when the power supply unit 1 is powered on, the active operation and the input of the voltage regulators 2 and 3 become 1 respectively.
Since the input voltage rises at the minimum voltage drop of the voltage regulator, the output side rises in order by the configuration of supplying power from the rank higher power supply. As shown in FIG. it can. On the other hand, the operating characteristics when the power supply unit 1 is shut off are shown in FIG. In the operation in the figure, the point a is the point where VCC1 starts to decrease,
Point b is the drop point of VCC2 due to the minimum voltage drop of the voltage regulator, point b 'is the drop point of VCC3 due to the minimum drop voltage of the voltage regulator, and point c is V
This is the output stop point of CC1. At the beginning of the cutoff (ac), VCC1>VCC2> VCC3 can be maintained by the active operation of the voltage regulators 2 and 3. In addition, in a non-active state (c to) due to a drop in the power supply voltage, each power supply voltage is set to a load-side condition (C5, CL5, RL5 / CL3.
3, RL3.3 / CL1.8, RL1.8), but the natural logarithmic discharge characteristic is determined by C5 >> CL between VCC1 and VCC2.
Since the ratio is 3.3, the ratio of RL5 and RL3.3 is absorbed, and the discharge time of VCC1 and VCC2 can satisfy t5> t3.3. Further, even if the load condition is reversed between VCC2 and VCC3, the natural logarithmic characteristic is corrected only by the additional capacitor 71 connected to the VCC2 line, so that VCC1>VCC2> V.
CC3 can be secured. The magnitude of the load condition is a ratio of the total load capacity of each load, which is a function value of the discharge time, the consumption current value, and the power supply voltage value. That is, (CL3.3 + C
Ladd) · VCC 3.3 / i 3.3 vs CL 1.8 · VCC
1.8 / i1.8. FIG. 4 shows the discharge characteristic formula and the formula for deriving the correction capacitance value. The discharge time of VCC2 and VCC3 is t3.3 =-(CL3.3 + CLadd) .RL3.3
Ln (V0 / Vcc 3.3), t1.8 = -CL1.8
RL1.8 · ln (V0 / Vcc1.8), and the correction capacitance value is (CL3.3 + CLadd) · V depending on the load condition.
CC3.3 / i3.3 ≧ CL1.8.VCC1.8 / i1.
8 Therefore, by adding the correction capacitor CLadd, t3.3> t1.8 can be ensured, and it is possible to maintain the compliance items VCC1>VCC2> VCC3 when the power is turned off. In addition, the potential difference value between the power supplies, which is the other compliance item, is also activated by the active operation (in the vicinity of VCC1-VCC2) <VCC1, (in the vicinity of VCC2-VCC3) <V
CC2 can be secured.

【0011】[0011]

【発明の効果】本発明によれば、制御用コントローラあ
るいは情報制御処理装置等の複数異種電源システムにお
いて、電源供給を受けるLSI群の耐圧保護,素子の劣
化,破壊防止の効果を発揮した、シンプルな回路構成の
パワーシーケンス回路装置が実現できる。
According to the present invention, in a multiple heterogeneous power supply system such as a control controller or an information control processing device, a simple and effective effect of protecting a group of LSIs to which power is supplied from withstand voltage, preventing deterioration and destruction of elements. A power sequence circuit device having a simple circuit configuration can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のパワーシーケンス回路装
置。
FIG. 1 shows a power sequence circuit device according to an embodiment of the present invention.

【図2】本発明の一実施例のパワーシーケンス回路装置
の動作波形。
FIG. 2 is an operation waveform of a power sequence circuit device according to one embodiment of the present invention.

【図3】本発明の一実施例のパワーシーケンス回路装置
の動作波形。
FIG. 3 is an operation waveform of the power sequence circuit device according to one embodiment of the present invention.

【図4】本発明の一実施例のパワーシーケンス回路装置
の放電特性。
FIG. 4 is a discharge characteristic of the power sequence circuit device according to one embodiment of the present invention.

【図5】従来の一実施例のパワーシース回路装置。FIG. 5 is a power sheath circuit device according to a conventional example.

【図6】従来の一実施例のパワーシース回路装置の動作
波形。
FIG. 6 is an operation waveform of a power sheath circuit device according to a conventional example.

【図7】従来の一実施例のパワーシース回路装置の動作
波形。
FIG. 7 is an operation waveform of a power sheath circuit device according to a conventional example.

【符号の説明】 1…電源ユニット、2,3…ボルテージレギュレータ、
5,7,9…負荷容量、6,8,10…負荷抵抗、11
…容量、21,31…トランジスタ、71…補正用容
量。
[Explanation of Signs] 1. Power supply unit, 2, 3 ... Voltage regulator,
5, 7, 9 ... load capacity, 6, 8, 10 ... load resistance, 11
... capacitance, 21, 31 ... transistor, 71 ... correction capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 勉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 黒沢 憲一 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 Fターム(参考) 5G065 BA01 DA07 EA01 FA02 GA06 HA05 HA06 JA02 KA02 KA05 MA09 MA10 NA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutomu Yamada 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kenichi Kurosawa 5-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 F-term (reference) in Hitachi, Ltd. Omika Plant 5G065 BA01 DA07 EA01 FA02 GA06 HA05 HA06 JA02 KA02 KA05 MA09 MA10 NA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】LSI群へ複数電源を印加および遮断する
異種電源混在システムのパワーシーケンス回路装置にお
いて、電源遮断時、各々の電源電圧大小値維持および電
位差確保のため、容量のみで放電特性を補正することを
特徴とするパワーシーケンス回路装置。
In a power sequence circuit device of a heterogeneous power supply mixed system in which a plurality of power supplies are applied to and cut off from an LSI group, a discharge characteristic is corrected only by a capacity in order to maintain a power supply voltage level and secure a potential difference when the power supply is cut off. A power sequence circuit device.
【請求項2】LSI群へ複数電源を印加および遮断する
異種電源混在システムのパワーシーケンス回路装置にお
いて、電源投入時、各々の電源電圧大小値維持と電位差
確保のため、各々のボルテージレギュレータ入力を一ラ
ンク上の電源から供給することを特徴とするパワーシー
ケンス回路装置。
2. A power sequence circuit device of a heterogeneous power supply mixed system for applying and shutting down a plurality of power supplies to a group of LSIs. A power sequence circuit device supplied from a power source on a rank.
【請求項3】請求項第1項において、 補正用の容量は第二の電源VCC2へ付加することを特
徴とするパワーシーケンス回路装置。
3. The power sequence circuit device according to claim 1, wherein a correction capacitor is added to the second power supply VCC2.
JP10262701A 1998-09-17 1998-09-17 Input/output buffer circuit device Pending JP2000092703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262701A JP2000092703A (en) 1998-09-17 1998-09-17 Input/output buffer circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262701A JP2000092703A (en) 1998-09-17 1998-09-17 Input/output buffer circuit device

Publications (1)

Publication Number Publication Date
JP2000092703A true JP2000092703A (en) 2000-03-31

Family

ID=17379402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262701A Pending JP2000092703A (en) 1998-09-17 1998-09-17 Input/output buffer circuit device

Country Status (1)

Country Link
JP (1) JP2000092703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785625A (en) * 2011-05-17 2012-11-21 三菱电机株式会社 On-vehicle electronic control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785625A (en) * 2011-05-17 2012-11-21 三菱电机株式会社 On-vehicle electronic control apparatus

Similar Documents

Publication Publication Date Title
KR0158478B1 (en) Substrate voltage control circuit of semiconductor memory apparatus
US20150005976A1 (en) Power supply switching circuit, electronic device, and control method of power supply switching circuit
US20040080340A1 (en) Low power consumption MIS semiconductor device
US7372382B2 (en) Voltage regulation using digital voltage control
JPH06236686A (en) Semiconductor device
US7279956B2 (en) Systems and methods for minimizing static leakage of an integrated circuit
WO2011163420A2 (en) A method, apparatus, and system for protecting supply nodes from electrostatic discharge
US5793592A (en) Dynamic dielectric protection circuit for a receiver
US5278798A (en) Semiconductor memory device
US6864736B2 (en) High-voltage inverter amplifier device
CN115411697A (en) Undervoltage protection device
EP1104107A2 (en) Clamp circuit for a switch
JP2000092703A (en) Input/output buffer circuit device
US20060103452A1 (en) Internal voltage generator for semiconductor device
US7589562B2 (en) I/O cell capable of finely controlling drive strength
US9996143B2 (en) Apparatus and method for selectively disabling one or more analog circuits of a processor during a low power state of the processor
US20220238509A1 (en) Electrostatic discharge circuit and electrostatic discharge control system
JP2000152497A (en) Power sequence circuit device
EP0748535B1 (en) Improved supply voltage detection circuit
JPH10163852A (en) Input-output circuit of semiconductor device
KR100633598B1 (en) Half power voltage generator
US20040075468A1 (en) Digital signal driver circuit
US11621555B2 (en) Circuits to control a clamping device
US7230810B1 (en) Dynamic over-voltage protection scheme for integrated-circuit devices
JP3948656B2 (en) Input buffer circuit, output buffer circuit, and input / output buffer circuit