JP2000091513A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000091513A
JP2000091513A JP11181675A JP18167599A JP2000091513A JP 2000091513 A JP2000091513 A JP 2000091513A JP 11181675 A JP11181675 A JP 11181675A JP 18167599 A JP18167599 A JP 18167599A JP 2000091513 A JP2000091513 A JP 2000091513A
Authority
JP
Japan
Prior art keywords
film
hydrogen
semiconductor device
insulating film
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11181675A
Other languages
Japanese (ja)
Other versions
JP3332013B2 (en
Inventor
Kazuhiro Takenaka
計廣 竹中
Akira Fujisawa
晃 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18167599A priority Critical patent/JP3332013B2/en
Publication of JP2000091513A publication Critical patent/JP2000091513A/en
Application granted granted Critical
Publication of JP3332013B2 publication Critical patent/JP3332013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve residual dielectric polarization and a dielectric constant by forming an SiN film to the upper section of an element in a semiconductor device, using a ferroelectric film as the element. SOLUTION: A first inter-layer insulating film 7 is formed on the entire surfaces of a local oxide film (LOCOS) 6 and a polycrystalline silicon-gate 3. A lower plate electrode 8 is formed to a section directly above the LOCOS 6 in the inter-layer insulating film 7. A PZT dielectric film 9 as a ferroelectric is formed on the lower plate electrode 8. An upper plate electrode 10 is shaped on the dielectric film 9, and a storage capacitor C is obtained. An SiN second inter-layer insulating film 11 is formed on the first inter-layer insulating film 7. Al wirings are formed on the inter-layer insulating film 11. An SiN thrid inter-layer insulating film 13' is formed on the Al wirings 12a, 12b. Accordingly, characteristic deterioration such as the residual dielectric polarization of the ferroelectric, the lowering of a dielectric constant, etc., can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の製造方法に関し、特に、PZT(Pb(TixZry
3)などの強誘電体膜を用いたキャパシタ構造を有す
る半導体メモリや多結晶シリコン・ゲートを用いたCM
OS半導体集積回路における保護膜構造及びその成膜法
に関するものである。
The present invention relates to relates to a semiconductor device and a manufacturing method thereof, in particular, PZT (Pb (Ti x Zr y)
Semiconductor memory having a capacitor structure using a ferroelectric film such as O 3 ) or CM using a polycrystalline silicon gate
The present invention relates to a protective film structure in an OS semiconductor integrated circuit and a method for forming the same.

【0002】[0002]

【従来の技術】従来、強誘電体を用いたストレージ・キ
ャパシタ構造を有する半導体不揮発性メモリ・セルは、
例えば図6に示す構造を備えている。このメモリ・セル
は、単一の転送ゲート・トランジスタ(MOSトランジ
スタ)Tに強誘電体膜を用いたストレージ・キャパシタ
(コンデンサ)Cを直列接続したものである。転送ゲー
ト・トランジスタTは、p型半導体基板1の上にゲート
絶縁膜2を介して形成されて多結晶シリコン・ゲート3
と、この多結晶シリコン・ゲート3をマスクとしてp型
半導体基板1の表面側にセルフアラインで形成された高
濃度n型領域たるソース・ドレイン領域4,5とから構
成されている。なお、ソース・ドレイン領域4はビット
線に、多結晶シリコン・ゲート3はワード線にそれぞれ
接続されている。一方、ストレージ・キャパシタCはフ
ィールド酸化膜たるLOCOS(局所酸化膜)6上に溝
成されている。LOCOS6,多結晶シリコン・ゲート
3の上には、例えばCVDによりSiO2又はスパッタ
法によるSiNの第1の層間絶縁膜7が形成され、この
層間絶縁膜7のうちLOCOS6の真上にスパッタ法で
白金(Pt)の下部平板電極8が形成される。この下部平
板電極8上の一部にはスパッタ法又は塗布法により強誘
電体たるPZT(Pb(Tix Zry)O3)の誘電体膜
9が形成され、またこの誘電体膜9の上にはスパッタ法
で白金の上部平板電極10が形成される。次に、第1の
層間絶縁膜7の上には例えばCVDによるSiO2又は
スパッタ法によるSiNの第2の層間絶縁膜11が形成
され、この層間絶縁膜11の上にスパッタ法によりAl
配線が形成される。Al配線12aはソース・ドレイン
領域5と上部平板電極10とをコンタクト穴を介して導
通させるセル内部配線で、Al配線12bは下部平板電
極8と図示しないパッド部とを導通させる接地配線であ
る。なお、図6には示されていないが、多結晶シリコン
・ゲート3に導通するワード線及びソース・ドレイン領
域4に導通するビット線は上記Al配線と同一層に形成
されている。Al配線12a,12bの上にはスパッタ
法によるSiNのパッシベーション膜13が形成されて
いる。
2. Description of the Related Art Conventionally, a semiconductor nonvolatile memory cell having a storage capacitor structure using a ferroelectric material has
For example, it has a structure shown in FIG. In this memory cell, a single transfer gate transistor (MOS transistor) T and a storage capacitor (capacitor) C using a ferroelectric film are connected in series. The transfer gate transistor T is formed on a p-type semiconductor substrate 1 via a gate insulating film 2 to form a polycrystalline silicon gate 3.
And source / drain regions 4 and 5 which are high-concentration n-type regions formed by self-alignment on the surface side of p-type semiconductor substrate 1 using polycrystalline silicon gate 3 as a mask. The source / drain region 4 is connected to a bit line, and the polysilicon gate 3 is connected to a word line. On the other hand, the storage capacitor C is formed on a LOCOS (local oxide film) 6 which is a field oxide film. On the LOCOS 6 and the polycrystalline silicon gate 3, for example, a first interlayer insulating film 7 of SiO 2 or SiN is formed by sputtering by CVD, and the first insulating film 7 of the interlayer insulating film 7 is formed on the LOCOS 6 by sputtering. A lower plate electrode 8 of platinum (Pt) is formed. The dielectric film 9 of the portion of the lower plate electrode 8 serving ferroelectric by a sputtering method, a coating method, or PZT (Pb (Ti x Zr y ) O 3) is formed, also on the dielectric film 9 The upper flat plate electrode 10 of platinum is formed by sputtering. Next, a second interlayer insulating film 11 of, for example, SiO 2 by CVD or SiN by sputtering is formed on the first interlayer insulating film 7, and an Al film is formed on the interlayer insulating film 11 by sputtering.
Wiring is formed. The Al wiring 12a is a cell internal wiring that connects the source / drain region 5 and the upper plate electrode 10 through the contact hole, and the Al wiring 12b is a ground wiring that connects the lower plate electrode 8 and a pad (not shown). Although not shown in FIG. 6, the word line conducting to the polysilicon gate 3 and the bit line conducting to the source / drain region 4 are formed in the same layer as the Al wiring. On the Al wirings 12a and 12b, a passivation film 13 of SiN is formed by a sputtering method.

【0003】[0003]

【発明が解決しようとする課題】誘電体膜9に使用され
る強誘電体たるPZT(Pb(Tix Zry)O3)は電
界に対してヒステリシス曲線を持ち、書き込み電圧を取
り除くと、残留分極を保持し続けるため、上述のような
不揮発性メモリとして利用されたり、また比誘電率が約
1000程度の値でSiO2膜と比較して2桁以上も大
きいので、ダイナミックRAMのキャパシタとしても利
用される。
Serving ferroelectric is used in the dielectric film 9 [0005] PZT (Pb (Ti x Zr y ) O 3) has a hysteresis curve to an electric field, when removing the write voltage, the residual It is used as a non-volatile memory as described above to keep the polarization, and has a relative dielectric constant of about 1000, which is two orders of magnitude or more larger than that of a SiO 2 film, so it can be used as a capacitor of a dynamic RAM. Used.

【0004】しかしながら、水素に晒されると残留分極
の値が減少してしまい、記憶機能に必要な2値論理の幅
(マージン)が狭くなる。また比誘電率の値も低下す
る。このような特性劣化は歩留りの低下を招くので、誘
電体膜9の形成工程の後においては水素を誘電体膜9に
晒さないような成膜法に顧慮する必要がある。
However, when exposed to hydrogen, the value of the remanent polarization decreases, and the width (margin) of the binary logic required for the storage function decreases. Also, the value of the relative dielectric constant decreases. Since such a characteristic deterioration causes a decrease in yield, it is necessary to consider a film forming method that does not expose hydrogen to the dielectric film 9 after the step of forming the dielectric film 9.

【0005】プラズマCVD法によるSiNや常圧又は
減圧CVD法によるSiO2の形成にあっては成膜中水
素雰囲気にあるため、これらの膜を誘電体膜9の上部に
形成すると、水素が誘電体膜9へ侵入し、その特性を劣
化させてしまうので、これらの成膜法を採用することは
できない。そこで、上記従来の不揮発性メモリの構造に
おいては、第2の層間絶縁膜11とパッシベーション膜
13はスパッタ法の成膜によるSiN膜とされる。これ
は水素不放出の工程による成膜だからである。一方、パ
ッシベーション膜13は本来的に耐湿性の緻密な膜質が
要求されるが、スパッタ法によるSiN膜は膜質の稠密
性に欠け、耐湿性に劣るので、パッシベーション膜とし
ては不向きである。 本発明は上記問題点を解決するも
のであり、その課題は、強誘電体膜の上部にこの強誘電
体膜への水素侵入を防止する成膜法を採用することによ
り、残留分極及び比誘電率の高い強誘電体膜を要素とす
る半導体装置及びその製造方法を提供することにある。
In the formation of SiN by plasma CVD or SiO 2 by normal pressure or low pressure CVD, a hydrogen atmosphere is present during the film formation. Therefore, when these films are formed on the dielectric film 9, hydrogen These film forming methods cannot be adopted because they penetrate into the body film 9 and deteriorate its characteristics. Therefore, in the structure of the above-mentioned conventional nonvolatile memory, the second interlayer insulating film 11 and the passivation film 13 are formed as SiN films formed by a sputtering method. This is because the film is formed by a process of non-hydrogen release. On the other hand, the passivation film 13 is inherently required to have a moisture-resistant and dense film quality. However, the SiN film formed by the sputtering method is not suitable as a passivation film because the film quality lacks the denseness and is poor in the moisture resistance. The present invention has been made to solve the above problems, and the problem is to solve the above problem by adopting a film formation method on the ferroelectric film to prevent hydrogen from entering the ferroelectric film, thereby achieving remanent polarization and relative dielectric constant. An object of the present invention is to provide a semiconductor device including a ferroelectric film having a high efficiency as an element and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】殊にPZTなどの耐水素
性に乏しい強誘電体を用いたキャパシタ構造を有する半
導体装置において、本発明の講じた手段は、例えばスパ
ッタ法又は塗布法により形成された強誘電体膜の上部に
水素不放出性の成膜法による耐湿性の水素バリア膜を設
けたものである。この水素バリア膜の被覆範囲は全面に
限らず、キャパシタ構造を覆う範囲にあれば良い。この
水素バリア膜としてはスパッタ法によるTiN膜でも良
いし、また酸素侵入型のTiONでも良い。TiON膜
の成膜法としては、TiN膜の酸素雰囲気でのプラズマ
処理又は熱処理、窒素及び酸素雰囲気中でのTiターゲ
ットによるスパッタ法やTiONのスパッタ法である。
TiONは酸素含有率が小さいときは導電性で、酸素含
有率が大きいときは絶縁性である。また酸素含有率の高
いTiON膜は水素阻止能が高くなる。
In particular, in a semiconductor device having a capacitor structure using a ferroelectric material having poor hydrogen resistance such as PZT, the means taken by the present invention is formed by, for example, a sputtering method or a coating method. A moisture-resistant hydrogen barrier film is formed on the ferroelectric film by a film formation method that does not release hydrogen. The coverage of the hydrogen barrier film is not limited to the entire surface, but may be any range that covers the capacitor structure. The hydrogen barrier film may be a TiN film formed by a sputtering method or an oxygen intrusion type TiON. Examples of the method for forming the TiON film include a plasma treatment or heat treatment of the TiN film in an oxygen atmosphere, a sputtering method using a Ti target in a nitrogen and oxygen atmosphere, and a TiON sputtering method.
TiON is conductive when the oxygen content is low, and is insulative when the oxygen content is high. In addition, a TiON film having a high oxygen content has a high hydrogen stopping power.

【0007】この水素バリア膜の上に直接又は層間絶縁
膜を介して腐食防止膜(プラズマCVD法によるSiN
や常圧又は減圧CVD法によるSiO2など)を被着さ
せた構造も採用される。
A corrosion prevention film (SiN film formed by plasma CVD) is formed directly on this hydrogen barrier film or through an interlayer insulating film.
And normal pressure or was deposited and SiO 2) by reduced pressure CVD method structure is also employed.

【0008】[0008]

【作用】水素不放出性の成膜法による耐湿性の水素バリ
ア膜を強誘電体膜の上部に覆うと、強誘電体膜の形成後
において、プロセス中で発生する水素の当該強誘電体膜
の侵入を防止することができ、残留分極や比誘電率の低
下を回避できる。それ故、残留分極や比誘電率の高い強
誘電体膜を有する半導体装置を得ることができる。水素
バリア膜の上部に腐食防止膜を形成した構造において
は、水素バリア膜の腐食を防止できる。この腐食防止膜
は膜質の緻密性を必要とするので、主にCVD法による
成膜で、水素放出の成膜法に依らざる得ない。しかし、
下層には水素バリア膜が存在するので、強誘電体への水
素侵入の問題は発生しない。
When a moisture-resistant hydrogen barrier film is formed on the upper part of the ferroelectric film by a hydrogen non-releasing film forming method, after the ferroelectric film is formed, the hydrogen generated in the process after the ferroelectric film is formed. Can be prevented, and a decrease in remanent polarization and relative permittivity can be avoided. Therefore, it is possible to obtain a semiconductor device having a ferroelectric film having high remanent polarization and relative permittivity. In the structure in which the corrosion prevention film is formed on the hydrogen barrier film, the corrosion of the hydrogen barrier film can be prevented. Since this corrosion prevention film requires denseness of film quality, the film is mainly formed by the CVD method and cannot be relied on the film formation method of releasing hydrogen. But,
Since there is a hydrogen barrier film in the lower layer, the problem of hydrogen penetration into the ferroelectric does not occur.

【0009】上記の製造方法は汎用的な手段であるが、
水素バリア膜として絶縁性(酸素含有率が大)のTiO
N膜を成膜する場合には、上述の腐食防止膜の成膜工程
を削減できる。
Although the above-mentioned manufacturing method is a general-purpose means,
Insulating (high oxygen content) TiO as hydrogen barrier film
When the N film is formed, the step of forming the corrosion prevention film can be reduced.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施例を添付図面
に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings.

【0011】[第1実施例]図1は本発明の第1実施例
に係る半導体メモリの構造を示す断面図である。
[First Embodiment] FIG. 1 is a sectional view showing a structure of a semiconductor memory according to a first embodiment of the present invention.

【0012】p型半導体基板1の表面には熱酸化による
ゲート絶縁膜2とMOSのアクティブ領域を区画形成す
べき厚い酸化膜のLOCOS(局所酸化膜)6が形成さ
れる。転送トランジスタTはゲート絶縁膜2を介して形
成された多結晶シリコン・ゲート3と、この多結晶シリ
コン・ゲート3をマスクとしてp型半導体基板1の表面
側にセルフアラインで形成された高濃度n型領域たるソ
ース・ドレイン領域4,5とから構成されている。一
方、ストレージ・キャパシタCはフィールド酸化膜たる
LOCOS(局所酸化膜)6上に構成されている。
On the surface of the p-type semiconductor substrate 1, a gate insulating film 2 by thermal oxidation and a thick oxide film LOCOS (local oxide film) 6 for forming an active region of a MOS are formed. The transfer transistor T has a polycrystalline silicon gate 3 formed via a gate insulating film 2 and a high-concentration n formed by self-alignment on the surface side of the p-type semiconductor substrate 1 using the polycrystalline silicon gate 3 as a mask. It is composed of source / drain regions 4 and 5, which are mold regions. On the other hand, the storage capacitor C is formed on a LOCOS (local oxide film) 6 which is a field oxide film.

【0013】先ず、LOCOS6,多結晶シリコン・ゲ
ート3の上にはCVDにより緻密な第1の層間絶縁膜
(SiO2又はSiN)7が全面形成される。次に、こ
の層間絶縁膜7のうちLOCOS6の真上にスパッタ法
で白金(Pt)の下部平板電極8が形成される。次に、こ
の下部平板電極8上の一部にはスパッタ法又は塗布法に
より強誘電体たるPZT(Pb(Tix Zry)O3)の
誘電体膜9が形成される。また次に、この誘電体膜9の
上にはスパッタ法で白金の上部平板電極10が形成さ
れ、ストレージ・キャパシタCが得られる。
First, a dense first interlayer insulating film (SiO 2 or SiN) 7 is entirely formed on the LOCOS 6 and the polycrystalline silicon gate 3 by CVD. Next, a lower plate electrode 8 made of platinum (Pt) is formed on the interlayer insulating film 7 directly above the LOCOS 6 by a sputtering method. Next, the dielectric film 9 of this part of the lower plate electrode 8 serving ferroelectric by a sputtering method, a coating method, or PZT (Pb (Ti x Zr y ) O 3) is formed. Next, an upper plate electrode 10 made of platinum is formed on the dielectric film 9 by a sputtering method, and a storage capacitor C is obtained.

【0014】次に、第1の層間絶縁膜7の上にはスパッ
タ法によるSiNの第2の層間絶縁膜(下部層間絶縁
膜)11が形成される。そして、ソース・ドレイン領域
5,上部平板電極10,下部平板電極8の部位にコンタ
クト穴が窓明けされる。
Next, a second interlayer insulating film (lower interlayer insulating film) 11 of SiN is formed on the first interlayer insulating film 7 by a sputtering method. Then, contact holes are opened in the portions of the source / drain regions 5, the upper plate electrode 10, and the lower plate electrode 8.

【0015】次に、この層間絶縁膜11の上にはスパッ
タ法によりAl配線が形成される。Al配線12aはソ
ース・ドレイン領域5と上部平板電極10とをコンタク
ト穴を介して導通させるセル内部配線で、Al配線12
bは下部平板電極8と図示しないパッド部とを導通させ
る接地配線である。なお、図1には示されていないが、
多結晶シリコン・ゲート3に導通するワード線及びソー
ス・ドレイン領域4に導通するビット線は上記Al配線
と同一層に形成されている。
Next, an Al wiring is formed on the interlayer insulating film 11 by a sputtering method. The Al wiring 12a is a cell internal wiring for electrically connecting the source / drain region 5 and the upper plate electrode 10 through the contact hole.
Reference numeral b denotes a ground wiring for conducting the lower plate electrode 8 to a pad (not shown). Although not shown in FIG. 1,
The word line connected to the polycrystalline silicon gate 3 and the bit line connected to the source / drain region 4 are formed in the same layer as the Al wiring.

【0016】次に、Al配線12a,12bの上にはス
パッタ法によるSiNの第3の層間絶縁膜(上部層間絶
縁膜)13’が形成されている。勿論、この工程中では
水素不放出であることから、誘電体膜9の特性劣化の問
題は発生しない。第3の層間絶縁膜13’の膜質は緻密
性に欠けるがので、パッシベーション膜としての意義は
少なく、後述するように、導電性で耐湿性の水素バリア
膜14とAl配線12a,12bとの層間絶縁膜たる意
義を有する。
Next, a third interlayer insulating film (upper interlayer insulating film) 13 'of SiN is formed on the Al wirings 12a and 12b by a sputtering method. Needless to say, since hydrogen is not released during this step, there is no problem of characteristic deterioration of the dielectric film 9. Since the film quality of the third interlayer insulating film 13 ′ lacks in density, it has little significance as a passivation film. As will be described later, an interlayer between the conductive and moisture-resistant hydrogen barrier film 14 and the Al wirings 12 a and 12 b is used. It has significance as an insulating film.

【0017】次に、第3の層間絶縁膜13’の上にスパ
ッタ法でTiN膜を耐湿性の水素バリア膜14として形
成する。この成膜過程においては水素の発生がないた
め、誘電体膜9の特性劣化の問題は発生しない。本発明
者は水素バリア膜14としてこのTiN膜が好適である
を見出した。一般に半導体技術においてTiN膜はシリ
コンとAlのバリアメタルとして知られているが、この
TiN膜は緻密性に富み、導電性の膜であるため、耐湿
性で水素非透過性の保護膜であると共に、電磁シールド
機能をも果たす。この窒化チタン(TiN;チタンナイ
トライド)は酸化して酸素侵入型のTiONとなり易
い。酸素含有率の高いTiONは水素非透過性がより高
くなり、水素バリア膜として優れている。したがって、
この水素バリア膜14としてはTiON膜であっても良
い。TiON膜の成膜法としては次のいずれかの方法を
採用する。
Next, a TiN film is formed as a moisture-resistant hydrogen barrier film 14 on the third interlayer insulating film 13 'by a sputtering method. Since no hydrogen is generated during this film forming process, the problem of characteristic deterioration of the dielectric film 9 does not occur. The present inventor has found that this TiN film is suitable as the hydrogen barrier film 14. Generally, in semiconductor technology, a TiN film is known as a barrier metal of silicon and Al. However, since this TiN film is a dense and conductive film, it is a moisture-resistant and hydrogen-impermeable protective film. , Also performs an electromagnetic shielding function. This titanium nitride (TiN; titanium nitride) is likely to be oxidized to form oxygen-invasive TiON. TiON having a high oxygen content has higher hydrogen non-permeability and is excellent as a hydrogen barrier film. Therefore,
The hydrogen barrier film 14 may be a TiON film. One of the following methods is adopted as a method of forming the TiON film.

【0018】 TiN膜の酸素雰囲気でのプラズマ処
理法 TiN膜の酸素雰囲気での熱処理法 N2,O2雰囲気中でのTiターゲットによるスパッ
タ法 TiONのスパッタ法 なお、水素バリア膜が酸素含有率の高いTiONである
場合には、導電性でないから層間絶縁膜13’の形成は
不要である。
Plasma treatment method of TiN film in oxygen atmosphere Heat treatment method of TiN film in oxygen atmosphere Sputtering method using Ti target in N 2 , O 2 atmosphere Sputtering method of TiON In the case of high TiON, there is no need to form the interlayer insulating film 13 'because it is not conductive.

【0019】ところで、水素バリア膜14はTiN膜又
TiON膜であるので、一般に導電性を有しているが、
酸素侵入型のTiONは酸素含有率が小なるときは導電
性を帯び、酸素含有率が大なるときは絶縁性となる。
Since the hydrogen barrier film 14 is a TiN film or a TiON film, it generally has conductivity.
The oxygen penetration type TiON becomes conductive when the oxygen content is small, and becomes insulating when the oxygen content is large.

【0020】[第2実施例]図2は本発明の第2実施例
に係る半導体メモリの構造を示す断面図である。なお、
図2において図1に示す部分と同一部分には同一参照符
号を付し、その説明は省略する。
[Second Embodiment] FIG. 2 is a sectional view showing a structure of a semiconductor memory according to a second embodiment of the present invention. In addition,
In FIG. 2, the same portions as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.

【0021】この実施例においては、水素バリア膜14
の上にプラズマCVD法によるSiN膜や常圧又は減圧
CVD法によるSiO2膜の腐食防止膜15を形成す
る。この膜は緻密性に富み湿気の侵透を阻止するので、
水素バリア膜14の腐食を防止することができる。プラ
ズマCVD法によるSiN膜や常圧又は減圧CVD法に
よるSiO2膜の成膜法は、水素の発生又は水素雰囲気
中でのプロセスであるが、その水素侵入は既に形成され
た水素バリア膜14によって阻止されるため、誘電体膜
9への影響を惹起させることはない。
In this embodiment, the hydrogen barrier film 14
An anti-corrosion film 15 of a SiN film by plasma CVD or a SiO 2 film by normal pressure or reduced pressure CVD is formed thereon. Since this film is dense and prevents moisture penetration,
Corrosion of the hydrogen barrier film 14 can be prevented. The method of forming a SiN film by a plasma CVD method or a SiO 2 film by a normal pressure or reduced pressure CVD method is a process of generating hydrogen or a process in a hydrogen atmosphere. Since this is prevented, the influence on the dielectric film 9 is not caused.

【0022】[第3実施例]図3は本発明の第3実施例
に係る半導体メモリの構造を示す断面図である。なお、
図3において図2に示す部分と同一部分には同一参照符
号を付し、その説明は省略する。
[Third Embodiment] FIG. 3 is a sectional view showing a structure of a semiconductor memory according to a third embodiment of the present invention. In addition,
3, the same parts as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.

【0023】この第3実施例の第2実施例に対して異な
る点は、TiN膜又はTiON膜の水素バリア膜14’
の形成領域をストレージ・キャパシタ構造を覆う範囲に
限定したところにある。水素バリア膜14’の意義は、
耐湿性のあることは勿論のこと、その成膜中では水素不
放出性で且つ水素非透過性であれば良い。水素バリア膜
牒14’の上に形成するプラズマCVD法によるSiN
膜や常圧又は減圧CVD法によるSiO2膜の腐食防止
膜15は、その成膜中に水素の発生を招くが、積層構造
の下層へ水素が侵入しても誘電体膜9へ到達しないよう
水素バリア膜14’が水素侵入を遮蔽すれば充分であ
る。水素バリア14’はストレージ・キャパシタ構造を
覆う範囲で水素の侵入を遮蔽する。横方向からの水素の
侵入到達距離が長いことから殆ど問題とはならない。
The difference between the third embodiment and the second embodiment is that the hydrogen barrier film 14 ′ is a TiN film or a TiON film.
Is limited to a range that covers the storage capacitor structure. The significance of the hydrogen barrier film 14 ′
Needless to say, it is sufficient if the film is non-hydrogen permeable and non-permeable to hydrogen during the film formation as well as being moisture-resistant. SiN by plasma CVD formed on hydrogen barrier film 14 '
The corrosion prevention film 15 of the film or the SiO 2 film formed by the normal pressure or low pressure CVD method causes generation of hydrogen during the film formation, but does not reach the dielectric film 9 even if hydrogen enters the lower layer of the laminated structure. It is sufficient that the hydrogen barrier film 14 'shields hydrogen from entering. The hydrogen barrier 14 'shields the entry of hydrogen to the extent that it covers the storage capacitor structure. There is almost no problem because the penetration distance of hydrogen from the lateral direction is long.

【0024】ところで、第1実施例や第2実施例におい
て、全面的に形成される水素バリア膜14がTiN膜や
酸素含有率の小なるTiON膜の場合は導電性を有する
ので、Al配線12bと同一層に形成されるパッド部と
これに接続すべきボンディング・ワイヤとの接続方法に
ついて検討する必要がある。一般的な接続方法を図4に
示す。先ず、図4(A)に示すように、第2の層間絶縁
膜の上にAlパッド部12cをAl配線12bと同一層
で形成した後、第2の層間絶縁膜13’,導電性の水素
バリア膜14及び腐食防止膜15を順次形成し、次に、
図4(B)に示す如く、Alパッド部12cの真上の3
層をエッチング処理で除去してコンタクト穴16を形成
してから、図4(C)に示すように、ボンディング・ワ
イヤ17をAlパッド部12cの露出領域に対し圧着す
る。かかる接続法によれば、ボンディング・ワイヤ17
の圧着によってAlパッド部12cのみならずコンタク
ト穴の側壁に望む導電性の水素バリア膜14にもボンデ
ィング・ワイヤ17が導通してしまう。これは他のボン
ディング・ワイヤとのショートを引き起こす。
In the first and second embodiments, when the hydrogen barrier film 14 formed over the entire surface is a TiN film or a TiON film having a small oxygen content, the hydrogen barrier film 14 has conductivity. It is necessary to consider a method of connecting a pad portion formed on the same layer with a bonding wire to be connected to the pad portion. FIG. 4 shows a general connection method. First, as shown in FIG. 4A, after an Al pad portion 12c is formed in the same layer as the Al wiring 12b on the second interlayer insulating film, the second interlayer insulating film 13 'and conductive hydrogen are formed. A barrier film 14 and a corrosion prevention film 15 are sequentially formed, and then,
As shown in FIG. 4 (B), 3 directly above the Al pad portion 12c
After the layer is removed by an etching process to form a contact hole 16, a bonding wire 17 is pressed against the exposed region of the Al pad portion 12c as shown in FIG. According to such a connection method, the bonding wire 17
The bonding wire 17 conducts not only to the Al pad portion 12c but also to the conductive hydrogen barrier film 14 desired on the side wall of the contact hole. This causes a short circuit with other bonding wires.

【0025】図5は、上記問題点を解決するため、パッ
ド部とボンディング・ワイヤとの改善接続方法を示す工
程図である。
FIG. 5 is a process chart showing an improved connection method between a pad portion and a bonding wire to solve the above problem.

【0026】先ず、図5(A)に示すように、第2の層
間絶縁膜の上にAlパッド部12cをAl配線12bと
同一層で形成し、この上に第2の層間絶縁膜13’及び
導電性の水素バリア膜14を順次形成する。
First, as shown in FIG. 5A, an Al pad portion 12c is formed in the same layer as the Al wiring 12b on the second interlayer insulating film, and a second interlayer insulating film 13 'is formed thereon. And a conductive hydrogen barrier film 14 are sequentially formed.

【0027】次に、図5(B)に示す如く、腐食防止膜
15の形成の前に、Alパッド部12cの真上の3層を
エッチング処理で除去して窓明け部16aを形成して一
旦Alパッド部12cを露出させる。その露出領域をX
とする。
Next, as shown in FIG. 5B, before the formation of the corrosion prevention film 15, three layers immediately above the Al pad portion 12c are removed by etching to form a window opening portion 16a. The Al pad portion 12c is once exposed. The exposed area is X
And

【0028】次に、図5(C)に示すように、上記露出
領域Xをも含めて水素バリア膜14の上に腐食防止膜1
5’を形成する。ここではコンタクト穴16a内も腐食
防止膜15’で覆われる。
Next, as shown in FIG. 5C, the corrosion prevention film 1 is formed on the hydrogen barrier film 14 including the exposed region X.
5 'is formed. Here, the inside of the contact hole 16a is also covered with the corrosion prevention film 15 '.

【0029】次に、図5(D)に示すように、Alパッ
ド部12cの真上の1層の腐食防止膜15をエッチング
処理で除去してコンタクト穴16bを形成する。Alパ
ッド部12c表面に形成すべき露出領域の広さ範囲Yは
上記露出領域の広さ範囲Xに比して狭く設定する。
Next, as shown in FIG. 5D, a single layer of the corrosion prevention film 15 immediately above the Al pad portion 12c is removed by etching to form a contact hole 16b. The width range Y of the exposed region to be formed on the surface of the Al pad portion 12c is set narrower than the width range X of the exposed region.

【0030】次に、図5(E)に示すように、ボンィン
グ・ワイヤ17をAlパッド部12cの露出領域Yに対
し圧着する。
Next, as shown in FIG. 5E, the bonding wire 17 is pressed against the exposed region Y of the Al pad portion 12c.

【0031】このような接続方法を採用すると、ボンデ
ィング・ワイヤ17がAlパッド部12cにのみ導通
し、導電性の水素バリア膜14には導通しない。水素バ
リア膜14とボンディング・ワイヤ17とは腐食防止膜
15で絶縁されているからである。なお、Alパッド部
12cとボンディング・ワイヤ17との接続に限らず、
Alパッド部12cとバンプとの接続、Al配線と上層
のAlの接続(スルーホール接続)にも上記接続方法を
適用できる。
When such a connection method is adopted, the bonding wire 17 conducts only to the Al pad portion 12c and does not conduct to the conductive hydrogen barrier film 14. This is because the hydrogen barrier film 14 and the bonding wires 17 are insulated by the corrosion prevention film 15. Not only the connection between the Al pad portion 12c and the bonding wire 17 but also
The above connection method can also be applied to the connection between the Al pad portion 12c and the bump and the connection between the Al wiring and the upper layer Al (through hole connection).

【0032】水素侵入による特性劣化の問題は、強誘電
体膜に限らず、多結晶シリコン・ゲートを有するCMO
S集積回路等においても問題となる。多結晶シリコン・
ゲートが水素に触れると、しきい値の変動を招き、歩留
まりの悪化要因となる。それ故、耐湿性の水素バリア膜
を強誘電体膜の保譲だけでなく、多結晶シリコン・ゲー
トの保覆膜をしてその上部に形成しておくことは、多結
晶シリコン・ゲートの特性の安定性に寄与する。
The problem of characteristic deterioration due to hydrogen intrusion is not limited to the ferroelectric film, but the problem of the CMO having a polycrystalline silicon gate
A problem also occurs in S integrated circuits and the like. Polycrystalline silicon
When the gate comes into contact with hydrogen, the threshold value fluctuates, causing a reduction in yield. Therefore, not only the transfer of the ferroelectric film but also the formation of a protective film for the polycrystalline silicon gate and the formation of a moisture-resistant hydrogen barrier film on the polycrystalline silicon gate are necessary. Contributes to the stability of

【0033】[0033]

【発明の効果】以上説明したように、本発明は、強誘電
体又は多結晶シリコン・ゲートを要素とする半導体装置
において、強誘電体又は多結晶シリコン・ゲートの上部
に水素不放出性の成膜法によりなるTiN膜やTiON
膜等の耐湿性の水素バリア膜を形成した点に特徴を有す
るものである。従って以下の効果を奏する。
As described above, according to the present invention, in a semiconductor device having a ferroelectric or polycrystalline silicon gate as an element, a hydrogen non-releasing component is formed above the ferroelectric or polycrystalline silicon gate. TiN film or TiON by film method
It is characterized in that a moisture-resistant hydrogen barrier film such as a film is formed. Therefore, the following effects are obtained.

【0034】 水素バリア膜の形成自体が水素を発生
しないので、強誘電体又は多結晶シリコン・ゲートヘの
水素侵入の影響がない。また水素バリア膜の形成後に水
素放出性の成膜法が使用された場合や水素雰囲気に半導
体装置自身が置かれた場合でも水素バリア膜がその水素
の侵入を阻止する。従って、強誘電体の残留分極や比誘
電率の低下、多結晶シリコン・ゲートのしきい値の変動
等のような水素侵入による特性劣化の問題を回避でき
る。
Since the formation of the hydrogen barrier film itself does not generate hydrogen, there is no effect of hydrogen penetration into the ferroelectric or polycrystalline silicon gate. The hydrogen barrier film prevents the intrusion of hydrogen even when a hydrogen releasing film formation method is used after the formation of the hydrogen barrier film or when the semiconductor device itself is placed in a hydrogen atmosphere. Therefore, it is possible to avoid a problem of characteristic deterioration due to hydrogen intrusion such as a decrease in remanent polarization or relative permittivity of a ferroelectric substance, a change in a threshold value of a polycrystalline silicon gate, and the like.

【0035】 腐食性の水素バリアの場合、その上に
腐食防止膜を形成した構造を採用すると、水素バリアの
腐食を防止できることは勿論、その腐食防止膜の形成が
水素放出性の成膜法による場合であっても、強誘電体又
は多結晶シリコン・ゲートヘの水素の侵入の問題は生じ
させない。
In the case of a corrosive hydrogen barrier, if a structure in which a corrosion prevention film is formed thereon is adopted, not only can the corrosion of the hydrogen barrier be prevented, but also the formation of the corrosion prevention film can be achieved by a hydrogen releasing film forming method. Even so, the problem of hydrogen penetration into the ferroelectric or polysilicon gate does not arise.

【0036】 絶縁性のあるTiON膜を耐湿性の水
素バリア膜として形成した場合には、水素阻止能が高い
構造を得ることができる。また層間絶縁膜も削減するこ
とができる。
When the insulating TiON film is formed as a moisture-resistant hydrogen barrier film, a structure having a high hydrogen blocking ability can be obtained. Further, the number of interlayer insulating films can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例に係る半導体メモリの構
造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a semiconductor memory according to a first embodiment of the present invention.

【図2】 本発明の第2実施例に係る半導体メモリの構
造を示す断面図である。
FIG. 2 is a sectional view showing a structure of a semiconductor memory according to a second embodiment of the present invention.

【図3】 本発明の第3実施例に係る半導体メモリの構
造を示す断面図である。
FIG. 3 is a sectional view showing a structure of a semiconductor memory according to a third embodiment of the present invention.

【図4】 (A)乃至(C)は同半導体メモリにおける
パッド部とボンディング・ワイヤとの一般的な接続方法
を示す工程図である。
FIGS. 4A to 4C are process diagrams showing a general method of connecting a pad portion and a bonding wire in the semiconductor memory.

【図5】 (A)乃至(E)は同半導体メモリにおける
パッド部とボンディング・ワイヤとの改善された接続方
法を示す工程図である。
FIGS. 5A to 5E are process diagrams showing an improved connection method between a pad portion and a bonding wire in the semiconductor memory.

【図6】 従来における半導体メモリの構造の一例を示
す断面図である。
FIG. 6 is a cross-sectional view showing an example of the structure of a conventional semiconductor memory.

【符号の説明】[Explanation of symbols]

1・・・p型半導体基板 2・・・ゲート絶縁膜 3・・・多結晶シリコン・ゲート 4、5・・・高濃度n型のソース・ドレイン領域 6・・・LOCOS(局所酸化膜) 7・・・第1の層間絶縁膜 8・・・白金の下部平板電極 9・・・強誘電体たるPZT(Pb(Tix Zry
3)の誘電体膜 10・・・白金の上部平板電極 11・・・第2の層間絶縁膜 12a,12b・・・Al配線 12c・・・Alパッド部 13’・・・第3の層間絶縁膜 14、14’・・・水素バリア膜(スパッタ法等による
TiN膜やTiON膜) 15・・・腐食防止膜 16a・・・窓明け部 16b・・・コンタクト穴 17・・・ボンディング・ワイヤ T・・・転送トランジスタ C・・・ストレージ・キャパシタ X,Y・・・露出領域の広さ範囲
DESCRIPTION OF SYMBOLS 1 ... p-type semiconductor substrate 2 ... gate insulating film 3 ... polycrystalline silicon gate 4, 5 ... high-concentration n-type source / drain region 6 ... LOCOS (local oxide film) 7 ... first interlayer insulating film 8 ... platinum lower plate electrode 9 ... ferroelectric serving PZT (Pb (Ti x Zr y )
O 3 ) dielectric film 10: upper flat plate electrode of platinum 11: second interlayer insulating film 12a, 12b: Al wiring 12c: Al pad portion 13 ': third interlayer Insulating films 14, 14 ': hydrogen barrier film (TiN film or TiON film by sputtering or the like) 15: corrosion prevention film 16a: window opening 16b: contact hole 17: bonding wire T: transfer transistor C: storage capacitor X, Y: width of exposed area

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年7月12日(1999.7.1
2)
[Submission date] July 12, 1999 (1999.7.1)
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 半導体装置[Title of the Invention] Semiconductor device

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/092 H01L 29/78 301N 27/108 21/8242 29/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 27/092 H01L 29/78 301N 27/108 21/8242 29/78

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体膜又は多結晶シリコン・ゲート
を要素とする半導体装置であって、該要素の上部におい
て少なくとも該要素を覆う範囲に、水素不放出性の成膜
法によりなる耐湿性の水素バリア膜を具有することを特
徴とする半導体装置。
1. A semiconductor device comprising a ferroelectric film or a polycrystalline silicon gate as an element, wherein at least a part of the element covering at least the element is covered with moisture by a non-hydrogen deposition method. And a hydrogen barrier film.
【請求項2】 請求項第1項記載において、前記水素バ
リア膜の上部にはこれを覆う腐食防止膜を具有すること
を特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein an upper part of said hydrogen barrier film is provided with a corrosion prevention film covering said hydrogen barrier film.
【請求項3】 請求項第1項又は第2項記載において、
前記バリア膜がTiN膜であることを特徴とする半導体
装置。
3. The method according to claim 1, wherein
A semiconductor device, wherein the barrier film is a TiN film.
【請求項4】 請求項第1項又は第2項記載において、
前記水素バリア膜がTiON膜であることを特徴とする
半導体装置。
4. The method according to claim 1, wherein
A semiconductor device, wherein the hydrogen barrier film is a TiON film.
【請求項5】 請求項第2項乃至第4項記載のいずれか
一項記載において、前記腐食防止膜はSiN膜であるこ
とを特徴とする半導体装置。
5. The semiconductor device according to claim 2, wherein the corrosion prevention film is a SiN film.
【請求項6】 請求項第1項ないし第5項のいずれか一項
記載の半導体装置を用いた半導体メモリ。
6. A semiconductor memory using the semiconductor device according to claim 1. Description:
【請求項7】 請求項第1項ないし第5項のいずれか一
項記載の半導体装置を用いたCMOS半導体集積回路。
7. A CMOS semiconductor integrated circuit using the semiconductor device according to claim 1. Description:
【請求項8】 強誘電体膜又は多結晶シリコン・ゲート
を要素とする半導体装置の製造方法において、該強誘電
体膜又は多結晶シリコン・ゲートを形成した後に水素不
放出性の成膜法により層問絶縁膜を形成する工程と、該
要素の上部で少なくとも該要素を覆う範囲に、水素不放
出性の成膜法により耐湿性の水素バリア膜を形成する工
程と、を有することを特徴とする半導体装置の製造方
法。
8. A method of manufacturing a semiconductor device comprising a ferroelectric film or a polycrystalline silicon gate as an element, wherein the ferroelectric film or the polycrystalline silicon gate is formed and then a hydrogen non-releasing film forming method is performed. A step of forming an insulating film between layers, and a step of forming a moisture-resistant hydrogen barrier film by a non-hydrogen-forming film formation method in a range covering at least the element above the element. Semiconductor device manufacturing method.
【請求項9】 請求項第8項に記載の製造方法におい
て、前記水素バリア膜の形成工程の後、該水素バリア膜
の上に腐食防止膜を覆う工程、を有することを特徴とす
る半導体装置の製造方法。
9. The semiconductor device according to claim 8, further comprising, after the step of forming the hydrogen barrier film, a step of covering a corrosion prevention film on the hydrogen barrier film. Manufacturing method.
JP18167599A 1999-06-28 1999-06-28 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3332013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18167599A JP3332013B2 (en) 1999-06-28 1999-06-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18167599A JP3332013B2 (en) 1999-06-28 1999-06-28 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02220905A Division JP3131982B2 (en) 1990-08-21 1990-08-21 Semiconductor device, semiconductor memory, and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000091513A true JP2000091513A (en) 2000-03-31
JP3332013B2 JP3332013B2 (en) 2002-10-07

Family

ID=16104917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18167599A Expired - Lifetime JP3332013B2 (en) 1999-06-28 1999-06-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3332013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659124B2 (en) 2008-12-29 2014-02-25 Nxp B.V. Physical structure for use in a physical unclonable function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659124B2 (en) 2008-12-29 2014-02-25 Nxp B.V. Physical structure for use in a physical unclonable function

Also Published As

Publication number Publication date
JP3332013B2 (en) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3131982B2 (en) Semiconductor device, semiconductor memory, and method of manufacturing semiconductor device
US7170139B2 (en) Semiconductor constructions
US6188098B1 (en) Semiconductor device and method of manufacturing the same
US6455882B1 (en) Semiconductor device having a hydrogen barrier layer
JP3452800B2 (en) Highly integrated memory element and method of manufacturing the same
US6756282B2 (en) Semiconductor device and method of fabricating the same
US20050118734A1 (en) Ferroelectric memory and method for manufacturing the same
JP4800711B2 (en) Manufacturing method of semiconductor device
KR100295382B1 (en) Semiconductor memory device and fabrication method thereof
TW508756B (en) Method to produce a micro-electronic element and micro-electronic element
JP3362712B2 (en) Semiconductor device, semiconductor memory and CMOS semiconductor integrated circuit using the same, and method of manufacturing the semiconductor device
JP3332013B2 (en) Semiconductor device and manufacturing method thereof
JP3164105B2 (en) Semiconductor device, semiconductor memory and CMOS semiconductor integrated circuit using the same, and method of manufacturing the semiconductor device
JP3449298B2 (en) Semiconductor device
JP3467566B2 (en) Semiconductor device
JP2000091514A (en) Semiconductor device, semiconductor memory and manufacture of the semiconductor device
JPH07169854A (en) Semiconductor device and manufacture of it
US6982455B2 (en) Semiconductor device and method of manufacturing the same
KR100477835B1 (en) Ferroelectric Capacitor Formation Method
KR100358163B1 (en) Method for manufacturing ferroelectric memory device
JP2931612B2 (en) Semiconductor storage device
KR100949107B1 (en) Semiconductor device manufacturing method
KR20010005124A (en) Method for forming feram capable of preventing hydrogen diffusion
KR100326265B1 (en) Memory cell of semiconductor device and fabricating method trereof
KR20070081714A (en) Ferroelectric random access memory device and method for fabricating the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9