JP2000090951A - On-vehicle fuel cell power generating device - Google Patents

On-vehicle fuel cell power generating device

Info

Publication number
JP2000090951A
JP2000090951A JP10263530A JP26353098A JP2000090951A JP 2000090951 A JP2000090951 A JP 2000090951A JP 10263530 A JP10263530 A JP 10263530A JP 26353098 A JP26353098 A JP 26353098A JP 2000090951 A JP2000090951 A JP 2000090951A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
carbon monoxide
cell power
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10263530A
Other languages
Japanese (ja)
Inventor
Yohei Fukuoka
陽平 福岡
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Asahi Chemical Industry Co Ltd
Original Assignee
Noguchi Institute
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute, Asahi Chemical Industry Co Ltd filed Critical Noguchi Institute
Priority to JP10263530A priority Critical patent/JP2000090951A/en
Publication of JP2000090951A publication Critical patent/JP2000090951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an on-vehicle fuel cell power generating device having extremely high public interest and popularity. SOLUTION: This device has a reformed material storage means for storing a reformed material, a reforming means for reforming the reformed material to a hydrogen-rich reformed gas, an oxygen supply means for making the reformed gas into a mixed gas containing a small amount of oxygen, a carbon monoxide removal means for causing a mixed gas to come in contact with an oxidizing reaction catalyst in a temperature zone between -30 deg.C and 120 deg.C in a mixed gas flow passage and removing carbon monoxide contained in the reformed gas, and an electric power output means for outputting electric power upon receipt of the reforming gas reduced in carbon monoxide concentration to 10 ppm or less with the carbon monoxide removal means and an oxidant gas. Furthermore, the device has a means for controlling a gas flowrate, oxidizing reaction temperature, and cell reaction temperature for the stable performance of the above-mentioned means, and a means for controlling oxidizing reaction and cell reaction via the detection of a gas component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車載用燃料電池発電
装置に関し、特に電気自動車に搭載する好適な固体高分
子電解質型燃料電池(PEFC)発電装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-vehicle fuel cell power generator, and more particularly to a suitable solid polymer electrolyte fuel cell (PEFC) power generator mounted on an electric vehicle.

【0002】[0002]

【従来の技術】近年、地球環境保護の観点から、有害ガ
スの発生源となるガソリンエンジン等を駆動源とせず、
クリーンな電力によって車両を駆動させる電気自動車が
注目されている。電気自動車に搭載することを前提とし
た場合、燃料電池発電装置は、水素ボンベを使用せず、
炭化水素系やアルコール等の液体燃料を原料として用
い、これを燃料改質装置に導入して水素リッチな改質ガ
スを生成させ、この改質ガスを燃料電池の水素極に供給
するように構成することが望ましい。また、燃料電池と
しては、小型かつエネルギー効率の優れた固体高分子電
解質型燃料電池(PEFC)を用いることが最適であ
り、これに類する公知の提案は多い。また、公共性、普
及性の観点で言えば、車載用燃料電池発電装置の持つべ
き性質として、交換、修理等の手間がかからず、長期間
にわたって安定に機能し、かつ、地域や季節による温度
変化に対し、機能変動がないことなども重要であり、さ
らに省エネルギーの観点から言えば、燃料電池発電装置
自体が簡素かつ軽量であることが強く望まれる。
2. Description of the Related Art In recent years, from the viewpoint of protecting the global environment, a gasoline engine or the like, which is a source of harmful gas, is not used as a driving source.
An electric vehicle that drives a vehicle with clean electric power has attracted attention. Assuming that it is installed in an electric vehicle, the fuel cell power generator does not use a hydrogen cylinder,
A liquid fuel such as a hydrocarbon or alcohol is used as a raw material, which is introduced into a fuel reformer to generate a hydrogen-rich reformed gas, and this reformed gas is supplied to the hydrogen electrode of the fuel cell. It is desirable to do. As a fuel cell, it is optimal to use a solid polymer electrolyte fuel cell (PEFC) having a small size and excellent energy efficiency, and there are many known proposals similar to this. Also, from the viewpoint of publicity and popularization, the characteristics of an in-vehicle fuel cell power generator should have no troubles such as replacement and repair, function stably for a long time, and depend on the region and season. It is also important that there is no change in the function with respect to the temperature change, and from the viewpoint of energy saving, it is strongly desired that the fuel cell power generation device itself be simple and lightweight.

【0003】しかしながら、現状で提案されている車載
用燃料電池発電装置は上記のような要望を満たすために
解決しなくてはならない数多くの問題を未だ有してい
る。いくつかの例を上げると以下のようになる。PEF
Cの作動温度は常温から130℃程度であり、一般的に
は100℃前後である。従って電池反応促進に使用され
る触媒(一般的にはPt系の触媒が使用される)も類似
の温度領域で機能を果たすことになる。しかし、原料と
なる改質ガス中には通常数%の一酸化炭素が含まれ、ま
た、改質ガスの製法を複雑に工夫しても、一酸化炭素含
有量を1%程度に低減するのが現実的には限界になって
いる。一酸化炭素はPt触媒を被毒し、特に前述の温度
領域では著しい被毒効果により、電池反応の促進は瞬く
間に不能となるため、これを回避するための方法を講じ
なければならない。一つにはPt触媒の使用温度を極端
に高温とする方法が考えられるが、これはPEFCに使
用される固体高分子電解質の長期耐熱性の観点から非現
実的である。
[0003] However, the fuel cell power generator for vehicles currently proposed still has many problems that must be solved in order to satisfy the above demands. Here are some examples. PEF
The operating temperature of C is from ordinary temperature to about 130 ° C., and generally about 100 ° C. Therefore, the catalyst used for accelerating the battery reaction (in general, a Pt-based catalyst is used) also functions in a similar temperature range. However, the reformed gas used as a raw material usually contains several percent of carbon monoxide, and even if the production method of the reformed gas is devised in a complicated manner, the carbon monoxide content can be reduced to about 1%. However, it is practically the limit. Since carbon monoxide poisons the Pt catalyst, and particularly in the above-mentioned temperature range, due to the remarkable poisoning effect, the promotion of the battery reaction becomes instantly impossible, and a method for avoiding this must be taken. One possible method is to make the use temperature of the Pt catalyst extremely high. However, this is impractical from the viewpoint of the long-term heat resistance of the solid polymer electrolyte used in the PEFC.

【0004】もう一つの例としては改質ガス中の一酸化
炭素を予め除去し、燃料電池に供給する方法である。こ
の場合、改質ガス中の一酸化炭素は100ppm以下と
する必要があり、触媒寿命の観点からは、好ましくは1
0ppm以下に低減せしめる必要がある。しかし、一酸
化炭素をかかる低濃度まで除去するために、一般には改
質ガス中の一酸化炭素を貴金属系の触媒を用いて選択酸
化除去するが、この反応も100℃を越える温度領域を
使用している。従って、酸化反応に供給される改質ガス
の温度は100℃近傍もしくはそれ以上を要求され、特
に、寒冷地での燃料電池発電装置の初期駆動において
は、酸化反応帯域の予熱などの余分な操作を必要とす
る。また、酸化反応、電池反応は発熱反応であり、酸化
反応温度が高いと、燃料電池装置は蓄熱を繰り返し、好
適な作動温度を維持し得なくなるため、場合により複雑
な冷却システムを設けることを余儀なくされる。
[0004] Another example is a method in which carbon monoxide in a reformed gas is removed in advance and supplied to a fuel cell. In this case, carbon monoxide in the reformed gas needs to be 100 ppm or less, and from the viewpoint of catalyst life, it is preferably 1 ppm.
It is necessary to reduce it to 0 ppm or less. However, in order to remove carbon monoxide to such a low concentration, carbon monoxide in the reformed gas is generally selectively oxidized and removed using a noble metal-based catalyst, but this reaction also uses a temperature region exceeding 100 ° C. are doing. Therefore, the temperature of the reformed gas supplied to the oxidation reaction is required to be close to 100 ° C. or higher. In particular, in the initial drive of the fuel cell power generator in a cold region, extra operation such as preheating of the oxidation reaction zone is required. Need. In addition, the oxidation reaction and the cell reaction are exothermic reactions, and if the oxidation reaction temperature is high, the fuel cell device repeatedly stores heat and cannot maintain a suitable operating temperature, so that a complicated cooling system is sometimes required. Is done.

【0005】要するに従来の技術では、車載用燃料電池
発電装置がその公共性、普及性がゆえに要求される安
定、長寿命を満たすために、燃料電池発電装置として全
体的に狭い温度領域で保持する必要があり、かかる保持
のために様々な加熱、冷却装置、システムを必要とし、
これらは逆に他の要求性能である簡素化、軽量化を困難
ならしめていると考えることができる。
In short, in the prior art, the fuel cell power generator for a vehicle is generally held in a narrow temperature range as a fuel cell power generator in order to satisfy the stability and long life required for its public nature and widespread use. Need and need various heating, cooling devices and systems for such holding,
On the contrary, it can be considered that simplification and weight reduction which are other required performances are difficult.

【0006】[0006]

【発明が解決しようとしている課題】公共性、普及性の
観点から、車載用燃料電池発電装置は交換、修理等の手
間がかからず、長期間にわたって安定に機能し、かつ地
域や季節による温度変化に対し、機能変動がないことな
どの機能が要求される。また、省エネルギーの観点から
言えば、燃料電池発電装置自体が簡素かつ軽量であるこ
とが強く望まれる。本発明の目的はかかる要求に応える
車載用燃料電池装置を提供することにある。
SUMMARY OF THE INVENTION From the viewpoint of publicity and widespread use, an on-vehicle fuel cell power generator does not require replacement, repair, and the like, functions stably for a long period of time, and has a temperature depending on the region and season. A function such as no change in function is required for the change. Further, from the viewpoint of energy saving, it is strongly desired that the fuel cell power generation device itself be simple and lightweight. An object of the present invention is to provide an on-vehicle fuel cell device that meets such a demand.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的達成のため、鋭意検討を重ねた結果、下記知見を得、
本発明に到達した。すなわち、本発明は改質原料を貯蔵
する改質原料貯蔵手段と、前記改質原料貯蔵手段から供
給される改質原料を改質反応によって水素リッチな改質
ガスにする改質手段と、前記改質ガスに酸素を含むガス
を混入せしめて少量の酸素を含む混合ガスとする酸素の
供給手段と、前記混合ガスの流路において、−30℃か
ら120℃の温度帯域において混合ガスを酸化反応触媒
と接触し、改質ガス中に含まれる一酸化炭素濃度を10
ppm以下に低減させる一酸化炭素除去手段と、前記一
酸化炭素除去手段により一酸化炭素濃度が10ppm以
下に低減された改質ガスと酸化剤ガスとが供給されて電
池反応を起こすことにより電力を出力する手段と、これ
らの手段が安定的に機能するために必要に応じてガス流
量、酸化反応温度、電池反応温度を制御する手段、必要
に応じてガス成分を検知して酸化反応、電池反応を制御
する手段、を有することを特徴とする車載用燃料電池発
電装置である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and have obtained the following findings.
The present invention has been reached. That is, the present invention provides a reforming raw material storing means for storing a reforming raw material, a reforming means for converting a reforming raw material supplied from the reforming raw material storage means into a hydrogen-rich reformed gas by a reforming reaction, An oxygen supply means for mixing a gas containing oxygen into the reformed gas to form a mixed gas containing a small amount of oxygen, and an oxidation reaction of the mixed gas in a temperature range of -30 ° C to 120 ° C in the flow path of the mixed gas. Contact with the catalyst to reduce the concentration of carbon monoxide in the reformed gas to 10
a carbon monoxide removing means for reducing the carbon monoxide concentration to 10 ppm or less, and a reformed gas and an oxidizing gas whose carbon monoxide concentration is reduced to 10 ppm or less are supplied to cause a battery reaction, thereby reducing electric power. Means for outputting, means for controlling the gas flow rate, oxidation reaction temperature, and battery reaction temperature as necessary for these means to function stably, and oxidation and battery reaction by detecting gas components as necessary. , A vehicle fuel cell power generator.

【0008】本発明の酸化反応の温度帯域設定により、
車載用燃料電池発電装置が、地域や気候による温度変化
の影響を受けにくくなり、また、一酸化炭素濃度が10
ppm以下に低減された改質ガスを燃料電池に供給する
ことにより、燃料電池そのものの耐久性、寿命が向上
し、さらに本発明の他の構成要素を駆使することによ
り、車載用燃料電池発電装置の公共性、普及性を満足さ
せることができるとともに、装置全体が簡素化、軽量化
され、省エネルギーの観点からも優れた機能を持つこと
ができるようになる。
By setting the temperature zone of the oxidation reaction of the present invention,
In-vehicle fuel cell power generators are less susceptible to temperature changes due to local and climatic conditions.
By supplying the reformed gas reduced to less than ppm to the fuel cell, the durability and life of the fuel cell itself are improved, and by making full use of other components of the present invention, the on-vehicle fuel cell power generator Publicity and spreadability can be satisfied, and the entire device can be simplified and lightened, and can have excellent functions from the viewpoint of energy saving.

【0009】[0009]

【発明の実施の形態】本発明における電池反応は好まし
くは固体高分子電解質型燃料電池(PEFC)によって
生起される。本発明における改質原料とは、メタン、プ
ロパンなどの炭化水素、メタノールなどのアルコール類
をいう。また、該改質原料を改質反応によって水素リッ
チな改質ガスにする改質手段とは、一般に言われる水蒸
気改質をいうが、場合によっては一酸化炭素濃度を1体
積%程度に抑制するための変成反応、シフト反応などを
併用してもよい。
DETAILED DESCRIPTION OF THE INVENTION The cell reaction in the present invention is preferably initiated by a solid polymer electrolyte fuel cell (PEFC). The reforming raw material in the present invention refers to hydrocarbons such as methane and propane, and alcohols such as methanol. The reforming means for converting the reforming raw material into a hydrogen-rich reformed gas by a reforming reaction is generally referred to as steam reforming. In some cases, the concentration of carbon monoxide is suppressed to about 1% by volume. , A shift reaction, a shift reaction, and the like.

【0010】本発明においては、改質反応によって得ら
れる水素リッチな改質ガスに、酸素を含むガスを混入せ
しめて少量の酸素を含む混合ガスとし、この混合ガスを
−30℃〜120℃の温度帯域において、その流路にお
いて酸化反応触媒と接触させる。このような広範囲の温
度帯域を設定し、必要に応じ制御することにより、地域
や気候による温度変化の影響を受けにくくすることがで
き、また、温度制御においても非常に簡単な装置、操作
を必要とするのみで、場合によっては何ら制御の必要さ
えなくなり、全体として簡素な装置を提供することがで
きる。PEFCの作動性、加熱、冷却装置の極小化を考
慮すれば、さらに好ましい温度帯域は−20℃〜90℃
である。
In the present invention, a gas containing oxygen is mixed into a hydrogen-rich reformed gas obtained by a reforming reaction to form a mixed gas containing a small amount of oxygen. In the temperature zone, the channel is brought into contact with the oxidation reaction catalyst. By setting such a wide temperature range and controlling it as necessary, it is possible to make it less susceptible to changes in temperature due to local or climatic conditions. In this case, no control is required in some cases, and a simple device as a whole can be provided. Considering the operability of PEFC, minimization of heating and cooling devices, a more preferable temperature range is -20 ° C to 90 ° C.
It is.

【0011】上記酸素を含むガスとして、通常純酸素、
空気あるいは酸素富化空気が好ましく使用される。該酸
素を含むガスの添加量は、酸素/一酸化炭素(モル比)
が好ましくは0.5〜5、さらに好ましくは0.6〜
3、最も好ましくは0.7〜2となるように調整され
る。この比が小さいと一酸化炭素の除去率が低くなり、
大きいと水素の消費量が多くなりすぎて好ましくない。
該酸素を含むガスを連続的もしくは回分的に分けて混入
することはその添加量を減少することが出来、有効であ
る。
The oxygen-containing gas is usually pure oxygen,
Air or oxygen-enriched air is preferably used. The added amount of the gas containing oxygen is oxygen / carbon monoxide (molar ratio).
Is preferably 0.5 to 5, more preferably 0.6 to
3, most preferably 0.7-2. If this ratio is small, the removal rate of carbon monoxide will be low,
If it is large, the consumption of hydrogen becomes too large, which is not preferable.
It is effective to mix the oxygen-containing gas continuously or batchwise since the amount of addition can be reduced.

【0012】本発明に使用する酸化反応触媒は、前記温
度帯域で改質ガス中の一酸化炭素を現実的な空間処理速
度の範囲で10ppm以下とする能力を有する触媒であ
ればよい。具体的には好ましくはルテニウム金属を主成
分とする触媒があげられる。その触媒能力を充分に高め
るために、好ましくは酸化反応触媒として、実質的にハ
ロゲンを含有しないルテニウム金属を主成分とする触媒
を用いることも有用である。本発明において実質的にハ
ロゲンを含有しないとは、ルテニウムを担体に担持する
触媒調製段階でハロゲンの増加量が100ppm以下で
あることが好ましい。さらに好ましくは50ppm以下
である。最も好ましくは30ppm以下である。通常、
工業的に用いられる担体にはハロゲンが数十ppm含ま
れるものもあるが担体中のハロゲンの影響は小さい。
The oxidation reaction catalyst used in the present invention may be any catalyst capable of reducing the amount of carbon monoxide in the reformed gas in the above-mentioned temperature range to 10 ppm or less within a practical space treatment rate. Specifically, a catalyst mainly containing ruthenium metal is preferably used. In order to sufficiently increase the catalytic ability, it is also useful to use, as the oxidation reaction catalyst, a catalyst mainly containing ruthenium metal substantially containing no halogen. In the present invention, the phrase "substantially free of halogen" means that the amount of increase in halogen is preferably 100 ppm or less at the stage of preparing a catalyst supporting ruthenium on a carrier. More preferably, it is 50 ppm or less. Most preferably, it is 30 ppm or less. Normal,
Some industrially used carriers contain tens of ppm of halogen, but the effect of the halogen in the carrier is small.

【0013】また、さらに具体的な酸化反応触媒とし
て、一酸化炭素の吸着量が1mmol/g・ルテニウム
以上で、かつ下記で定義される一酸化炭素の吸着指数が
0.5以上のルテニウム金属を主成分とする触媒を用い
ることは好ましい結果をもたらす。 吸着指数=ΣX1/ΣX=ΣX1/(ΣX1+ΣX2) ここで、A=一酸化炭素導入量/パルス =0.002mmol/パルス =0.4mmol/g・ルテニウム/パルス X=1パルスあたりの吸着量 吸着量=ΣX B=可逆吸着量 (X+B)/A≧0.9の時のXをX1とし、(X+
B)/A<0.9の時のXをX2とする。
As a more specific oxidation reaction catalyst, ruthenium metal having an adsorption amount of carbon monoxide of 1 mmol / g.ruthenium or more and an adsorption index of carbon monoxide defined below of 0.5 or more is used. The use of a catalyst as a main component gives favorable results. Adsorption index = ΔX 1 / ΔX = ΔX 1 / (ΔX 1 + ΔX 2 ) where A = introduced amount of carbon monoxide / pulse = 0.002 mmol / pulse = 0.4 mmol / g ruthenium / pulse X = per pulse of X when the adsorption amount adsorbed amount = .SIGMA.X B = reversible adsorption (X + B) /A≧0.9 and X 1, (X +
The X at the time of B) / A <0.9 and X 2.

【0014】上記で定義される一酸化炭素の吸着指数を
図1を使って説明する。図1は各パルスごとに検出され
た一酸化炭素の量をグラフ化した例である。Aは触媒を
充填しない時の一酸化炭素の検出量、即ち、1パルスあ
たりの一酸化炭素の導入量(0.002mmol/パル
ス、0.4mmol/g・ルテニウム/パルス)を示
す。Xはパルスごとに変化する一酸化炭素の吸着量を示
す。Bは触媒への一酸化炭素の吸着が飽和し、一酸化炭
素の溶出量が一定となる時の溶出量とAとの差、即ち、
可逆吸着量を示す。一酸化炭素の吸着量は、1パルスあ
たりの吸着量Xの総和ΣXで表される。1パルスあたり
の吸着量Xのうち、(X+B)がAの0.9以上の時を
1 とし、(X+B)がAの0.9未満の時をX2 とす
ると、一酸化炭素の吸着指数はX1 の総和ΣX1 と、吸
着量、即ちXの総和ΣXに対する比で表される。このΣ
XはX1 の総和ΣX1 とX2 の総和ΣX2 との和であ
る。
The adsorption index of carbon monoxide defined above will be described with reference to FIG. FIG. 1 is an example in which the amount of carbon monoxide detected for each pulse is graphed. A indicates the detected amount of carbon monoxide when the catalyst is not charged, that is, the introduced amount of carbon monoxide per pulse (0.002 mmol / pulse, 0.4 mmol / g ruthenium / pulse). X indicates the amount of adsorbed carbon monoxide that changes with each pulse. B is the difference between the elution amount and A when the adsorption of carbon monoxide to the catalyst is saturated and the elution amount of carbon monoxide becomes constant, that is,
Shows the amount of reversible adsorption. The adsorption amount of carbon monoxide is represented by the sum of the adsorption amount X per pulse ΔX. Of adsorption X per pulse, (X + B) is the X 1 when more than 0.9 A, (X + B) is When X 2 when less than 0.9 A, the adsorption of carbon monoxide The index is expressed by the sum of X 1 ΣX 1 and the amount of adsorption, that is, the ratio of X to the sum ΣX. This Σ
X is the sum of the sum of X 1 ΣX 1 and the sum of X 2 ΣX 2 .

【0015】さらに本発明に用いられる酸化反応触媒
は、上記のルテニウム金属を担体に担持した担持触媒と
して用いられるのが好ましい。担体としては通常、担体
として用いられるものであればよい。例えば、アルミ
ナ、シリカアルミナ、シリカゲル、モレキュラシーブ3
A、ZSM−5、ゼオライト−X、ゼオライト−Y、ゼ
オライト−βに代表されるゼオライト、MCM−41に
代表されるメソポーラスゼオライト、ジルコニア、チタ
ニア、希土類の酸化物、カルシュウム、マグネシウム、
亜鉛の酸化物にに代表される塩基性酸化物、活性炭等が
有効である。
Further, the oxidation reaction catalyst used in the present invention is preferably used as a supported catalyst in which the above-mentioned ruthenium metal is supported on a carrier. The carrier may be any one that is generally used as a carrier. For example, alumina, silica alumina, silica gel, molecular sieve 3
A, ZSM-5, zeolite-X, zeolite-Y, zeolite represented by zeolite-β, mesoporous zeolite represented by MCM-41, zirconia, titania, rare earth oxide, calcium, magnesium,
Basic oxides represented by zinc oxide, activated carbon and the like are effective.

【0016】これらの担体のうち、アルミナ、シリカア
ルミナ、ゼオライト、メソポア分子ふるい、ジルコニ
ア、ハフニアが好ましく用いられる。さらに好ましくは
アルミナ、メソポア分子ふるい、ジルコニア、ハフニア
が、最も好ましくはメソポア分子ふるい、ジルコニア、
ハフニアが用いられる。ジルコニア、ハフニアはそれら
の混合物として用いるのも好ましい。また、ジルコニ
ア、ハフニアの前駆体を用い、上記のアルミナ、メソポ
ア分子ふるい等の担体の表面をジルコニア、ハフニアと
したものも好ましく用いられる。
Of these carriers, alumina, silica alumina, zeolite, mesopore molecular sieve, zirconia and hafnia are preferably used. More preferably alumina, mesopore molecular sieve, zirconia, hafnia, most preferably mesopore molecular sieve, zirconia,
Hafnia is used. Zirconia and hafnia are also preferably used as a mixture thereof. Further, a carrier made of zirconia or hafnia using a precursor of zirconia or hafnia and having the surface of a carrier such as the above-mentioned alumina or mesopore molecular sieve is preferably used.

【0017】形状は何でもよいが、球状、柱状等の粒
状、また、ハニカム等に代表される成型物として用いら
れるのも効果がある。また、メソポーラス分子ふるいに
担持したものを使用することは一層の好ましい結果を与
える。これらの担体に担持する方法はいろいろな方法で
行われる。例えば、共沈法等の沈殿法、ゾル−ゲル法、
イオン交換法、含浸法等が有効である。これらの方法に
より担持された触媒は還元剤により、ルテニウムは金属
に還元される。還元剤としては水素が有効である。ホル
マリン、ヒドラジン等の有機化合物による還元も有効で
ある。還元操作が気相で行われるのは有効である。また
水溶液中などの液相で行われるのも有効である。還元温
度はルテニウム化合物が金属となればよい。しかし、あ
まり高温ではルテニウムのシンタリングが起こり好まし
くない。この温度はその触媒の調整法によっても異なる
が、通常室温から700℃ぐらいが用いられる。好まし
くは室温から500℃で行われる。
Although the shape may be anything, it is also effective to use it as a granular material such as a sphere or a column, or as a molded product represented by a honeycomb or the like. Also, the use of a mesoporous molecular sieve supports a more favorable result. The method of supporting on these carriers is performed by various methods. For example, a precipitation method such as a coprecipitation method, a sol-gel method,
An ion exchange method, an impregnation method and the like are effective. The catalyst supported by these methods reduces ruthenium to metal by a reducing agent. Hydrogen is effective as a reducing agent. Reduction with an organic compound such as formalin or hydrazine is also effective. It is effective that the reduction operation is performed in the gas phase. It is also effective to carry out the reaction in a liquid phase such as in an aqueous solution. The reduction temperature may be such that the ruthenium compound becomes a metal. However, if the temperature is too high, sintering of ruthenium occurs, which is not preferable. This temperature varies depending on the preparation method of the catalyst, but usually from room temperature to about 700 ° C. It is preferably carried out at room temperature to 500 ° C.

【0018】酸化反応触媒を使用初期から充分に有効に
機能させるために、上記酸化反応触媒を使用に先だっ
て、水素を主成分とするガス中で処理し、その後も空気
に接触させることなく使用することは非常に好ましい結
果を与える。また、このような処理を車載用燃料電池発
電装置内で容易に行うために、酸素を含むガスを混入す
る前の改質ガス、もしくは該改質ガス以外の酸素を含ま
ない水素リッチなガスを酸化反応触媒に接触せしめる手
段を合わせて有する装置とすると、実用上有効である。
なぜならば、自動車事故や構造材の老朽化などにより、
装置の修理、交換が必要になった場合、酸化反応触媒が
大気に触れる場合が想定され、かかる場合に、酸化反応
触媒を再度、水素を主成分とするガス中で処理する煩雑
さを回避できるからである。また、酸素を含むガスを混
入する前の改質ガス、もしくは該改質ガス以外の酸素を
含まない水素リッチなガスを酸化反応触媒に接触せしめ
る手段を使用する際に、それらガスに一酸化炭素が含ま
れる場合においては、電池反応の触媒であるPt系の触
媒を一酸化炭素で被毒させないために、それらガスが電
池反応部と接触しないようにする手段を合わせて有する
装置とすることも実用上有効である。
In order for the oxidation reaction catalyst to function sufficiently effectively from the beginning of use, the oxidation reaction catalyst is treated in a gas containing hydrogen as a main component prior to use, and then used without being brought into contact with air. That gives very favorable results. Further, in order to easily perform such a process in a fuel cell power generator for a vehicle, a reformed gas before mixing a gas containing oxygen or a hydrogen-rich gas containing no oxygen other than the reformed gas is used. It is practically effective to use an apparatus having a means for bringing it into contact with the oxidation reaction catalyst.
Because of car accidents and aging of structural materials,
If the equipment needs to be repaired or replaced, the oxidation reaction catalyst may be exposed to the atmosphere. In such a case, it is possible to avoid the trouble of treating the oxidation reaction catalyst again in a gas containing hydrogen as a main component. Because. Further, when using a means for bringing a reformed gas before mixing a gas containing oxygen, or a hydrogen-rich gas containing no oxygen other than the reformed gas into contact with an oxidation reaction catalyst, the gas may contain carbon monoxide. In the case where is contained, in order not to poison the Pt-based catalyst which is a catalyst of the battery reaction with carbon monoxide, the apparatus may be provided with a means for preventing such gas from coming into contact with the battery reaction part. It is practically effective.

【0019】本発明においては、前記混合ガスの流路に
おいて、主として酸化反応触媒を充填してなる一酸化炭
素除去装置を設置することは有効である。充填する際
に、圧力損失回避や触媒飛散防止のために適当な希釈剤
を合わせて充填しても良い。また、前記混合ガスの流路
において、電池反応部直前で前記混合ガスを分散せしめ
るために多孔質拡散層を設置し、この多孔質拡散層に上
記酸化反応触媒を担持して、前記混合ガス中の一酸化炭
素を低減する手段を合わせ持つことも有効である。
In the present invention, it is effective to install a carbon monoxide removing device mainly filled with an oxidation reaction catalyst in the flow path of the mixed gas. At the time of filling, an appropriate diluent may be added to avoid pressure loss and prevent catalyst scattering. Further, in the flow path of the mixed gas, a porous diffusion layer is provided in order to disperse the mixed gas immediately before a battery reaction section. The porous diffusion layer supports the oxidation reaction catalyst, It is also effective to have means for reducing carbon monoxide.

【0020】一般にPEFCは電池反応の起こる膜・電
極アッセンブリー(MEA)と、電池反応触媒層、集電
体からなっているが、この外側、すなわち改質ガスが供
給される部分においては、改質ガスが電極全面に均一に
供給されるようにガス拡散器が設置されているのが普通
であり、熱伝導性の観点からカーボンブロックの加工品
がよく使われる。かかる拡散器内では改質ガスの空間速
度を低下せしめるように設計することも可能である。従
って、拡散器として多孔質拡散層を設置し、改質ガスと
接触する部分に酸化反応触媒を担持せしめることによ
り、一酸化炭素の除去能力を高めることができる。前記
の一酸化炭素除去装置と併用すればなお好ましい。場合
によっては前記の一酸化炭素除去装置を設置せず、装置
全体を簡素化することも可能である。
Generally, the PEFC is composed of a membrane / electrode assembly (MEA) in which a battery reaction occurs, a battery reaction catalyst layer, and a current collector. Generally, a gas diffuser is installed so that gas is uniformly supplied to the entire surface of the electrode, and a processed carbon block is often used from the viewpoint of thermal conductivity. It is also possible to design such a diffuser to reduce the space velocity of the reformed gas. Therefore, the ability to remove carbon monoxide can be increased by providing a porous diffusion layer as a diffuser and supporting the oxidation reaction catalyst in a portion that comes into contact with the reformed gas. It is more preferable to use in combination with the above-mentioned carbon monoxide removing device. In some cases, it is possible to simplify the entire apparatus without installing the carbon monoxide removing apparatus.

【0021】本発明では、前記混合ガス中の水蒸気の含
量を前記酸化反応触媒が存在する部分の温度における飽
和水蒸気圧未満とすると、車載用燃料電池発電装置の作
動安定性がさらに向上する。有機化合物の改質により製
造した改質ガスには水蒸気が含まれるが、起動時など酸
化反応触媒の温度が低い時、酸化反応触媒と接触する該
改質ガス中の水蒸気圧は飽和蒸気圧に近接あるいは飽和
蒸気圧を越すことがあり、触媒に水蒸気が過度に吸着あ
るいは凝縮し、触媒活性が抑圧されることがある。改質
ガス中の水蒸気圧は酸化反応触媒の温度の飽和蒸気圧未
満、好ましくは、飽和蒸気圧の50%未満が好都合であ
る。そのため、有機化合物の改質により製造した改質ガ
スが、本発明の触媒に接触する前に乾燥剤と接触させる
ことが望ましい。
In the present invention, when the content of water vapor in the mixed gas is less than the saturated water vapor pressure at the temperature of the portion where the oxidation reaction catalyst is present, the operation stability of the on-vehicle fuel cell power generator is further improved. The reformed gas produced by reforming the organic compound contains water vapor, but when the temperature of the oxidation reaction catalyst is low, such as during startup, the pressure of the water vapor in the reformed gas that comes into contact with the oxidation reaction catalyst becomes a saturated vapor pressure. In some cases, the vapor pressure may be close to or close to the saturated vapor pressure, and the water vapor may be excessively adsorbed or condensed on the catalyst, and the catalytic activity may be suppressed. The water vapor pressure in the reformed gas is conveniently less than the saturated vapor pressure of the temperature of the oxidation reaction catalyst, preferably less than 50% of the saturated vapor pressure. Therefore, it is desirable that the reformed gas produced by reforming the organic compound be brought into contact with the desiccant before coming into contact with the catalyst of the present invention.

【0022】本発明の車載用燃料電池発電装置は単独
で、自動車駆動用等の電力出力に使用しても良いが、搭
載する車種等によっては、エネルギー容量は燃料電池よ
りも小さいが、出力容量が大きい二次電池と組み合わせ
た、ハイブリッド電源装置として使用することも可能で
ある。
The on-vehicle fuel cell power generator of the present invention may be used alone for power output for driving a car, etc., although the energy capacity is smaller than that of a fuel cell depending on the type of vehicle to be mounted. It can also be used as a hybrid power supply device in combination with a secondary battery having a large value.

【0023】[0023]

【発明の効果】本発明によれば、燃料電池の耐久性、寿
命が向上し、公共性、普及性を満足し、かつ簡素化、軽
量化され、省エネルギーの観点からも優れた機能を持つ
車載用燃料電池発電装置を実現することができる。
According to the present invention, the durability and life of the fuel cell are improved, the publicity and spreadability are satisfied, and the fuel cell is simplified, lightened, and has excellent functions from the viewpoint of energy saving. Fuel cell power generation device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各パルスごとに検出された一酸化炭素の量をグ
ラフ化した図である。
FIG. 1 is a graph showing the amount of carbon monoxide detected for each pulse.

【符号の説明】[Explanation of symbols]

A 1パルスあたりの一酸化炭素の導入量 B 可逆吸着量 X パルスごとに変化する一酸化炭素の吸着量 A Amount of introduced carbon monoxide per pulse B Amount of reversible adsorption X Amount of adsorbed carbon monoxide that changes with each pulse

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/02 H01M 8/02 R 8/10 8/10 Fターム(参考) 5H018 AA06 5H026 AA06 5H027 AA06 BA01 BA16 DD03 KK31 KK41 MM01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/02 H01M 8/02 R 8/10 8/10 F term (Reference) 5H018 AA06 5H026 AA06 5H027 AA06 BA01 BA16 DD03 KK31 KK41 MM01

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 改質原料を貯蔵する改質原料貯蔵手段
と、前記改質原料貯蔵手段から供給される改質原料を改
質反応によって水素リッチな改質ガスにする改質手段
と、前記改質ガスに酸素を含むガスを混入せしめて少量
の酸素を含む混合ガスとする酸素の供給手段と、前記混
合ガスの流路において、−30℃から120℃の温度帯
域において混合ガスを酸化反応触媒と接触し、改質ガス
中に含まれる一酸化炭素濃度を10ppm以下に低減さ
せる一酸化炭素除去手段と、前記一酸化炭素除去手段に
より一酸化炭素濃度が10ppm以下に低減された改質
ガスと酸化剤ガスとが供給されて電池反応を起こすこと
により電力を出力する手段と、これらの手段が安定的に
機能するために必要に応じてガス流量、酸化反応温度、
電池反応温度を制御する手段、必要に応じてガス成分を
検知して酸化反応、電池反応を制御する手段、を有する
ことを特徴とする車載用燃料電池発電装置。
1. A reforming material storage means for storing a reforming material, a reforming means for converting a reforming material supplied from the reforming material storage means into a hydrogen-rich reformed gas by a reforming reaction, An oxygen supply means for mixing a gas containing oxygen into the reformed gas to form a mixed gas containing a small amount of oxygen, and an oxidation reaction of the mixed gas in a temperature range of -30 ° C to 120 ° C in the flow path of the mixed gas. A carbon monoxide removing means for contacting the catalyst and reducing the concentration of carbon monoxide contained in the reformed gas to 10 ppm or less; and a reformed gas wherein the carbon monoxide concentration is reduced to 10 ppm or less by the carbon monoxide removing means. And a means for outputting electric power by causing a battery reaction when supplied with an oxidizing gas, and a gas flow rate, an oxidation reaction temperature,
An on-vehicle fuel cell power generator comprising: means for controlling a battery reaction temperature; and, if necessary, means for detecting a gas component to control an oxidation reaction and a battery reaction.
【請求項2】 電池反応が固体高分子電解質型燃料電池
により行われる請求項1記載の車載用燃料電池発電装
置。
2. The on-vehicle fuel cell power generator according to claim 1, wherein the cell reaction is performed by a solid polymer electrolyte fuel cell.
【請求項3】 酸化反応触媒がルテニウム金属を主成分
とする触媒であることを特徴とする請求項1又は2記載
の車載用燃料電池発電装置。
3. The on-vehicle fuel cell power generator according to claim 1, wherein the oxidation reaction catalyst is a catalyst containing ruthenium metal as a main component.
【請求項4】 酸化反応触媒が実質的にハロゲンを含有
しないルテニウム金属を主成分とすることを特徴とする
請求項3記載の車載用燃料電池発電装置。
4. The on-vehicle fuel cell power generator according to claim 3, wherein the oxidation reaction catalyst is mainly composed of ruthenium metal containing substantially no halogen.
【請求項5】 酸化反応触媒として一酸化炭素の吸着量
が1mmol/g・ルテニウム以上で、かつ下記で定義
される一酸化炭素の吸着指数が0.5以上のルテニウム
金属を主成分とする触媒を用いることを特徴とする請求
項3又は4記載の車載用燃料電池発電装置。 吸着指数=ΣX1/ΣX=ΣX1/(ΣX1+ΣX2) ここで、A=一酸化炭素導入量/パルス =0.002mmol/パルス =0.4mmol/g・ルテニウム/パルス X=1パルスあたりの吸着量 吸着量=ΣX B=可逆吸着量 (X+B)/A≧0.9の時のXをX1とする (X+B)/A<0.9の時のXをX2とする
5. A catalyst mainly composed of a ruthenium metal having an adsorption amount of carbon monoxide of 1 mmol / g.ruthenium or more and an adsorption index of carbon monoxide of 0.5 or more as defined below as an oxidation reaction catalyst. The on-vehicle fuel cell power generator according to claim 3 or 4, wherein: Adsorption index = ΔX 1 / ΔX = ΔX 1 / (ΔX 1 + ΔX 2 ) where A = introduced amount of carbon monoxide / pulse = 0.002 mmol / pulse = 0.4 mmol / g ruthenium / pulse X = per pulse to the X-when the adsorption amount adsorbed amount = .SIGMA.X B = reversible adsorption (X + B) the X at the time of /A≧0.9 and X 1 (X + B) / a <0.9 and X 2
【請求項6】 酸化反応触媒がメソポア分子ふるいを担
体とする触媒であることを特徴とする請求項3、4又は
5記載の車載用燃料電池発電装置。
6. The on-vehicle fuel cell power generator according to claim 3, wherein the oxidation reaction catalyst is a catalyst having a mesopore molecular sieve as a carrier.
【請求項7】 酸化反応触媒を予め、水素を主成分とす
るガス中で処理し、その後も空気に接触させることなく
使用することを特徴とする請求項3、4、5又は6記載
の車載用燃料電池発電装置。
7. The on-vehicle vehicle according to claim 3, wherein the oxidation reaction catalyst is preliminarily treated in a gas containing hydrogen as a main component and then used without being brought into contact with air. For fuel cell power generator.
【請求項8】 酸素を含むガスを混入せしめる前の改質
ガス、もしくは該改質ガス以外の酸素を含まない水素リ
ッチなガスを、酸化反応触媒に接触せしめる手段を有す
る請求項1〜7のいずれかに記載の車載用燃料電池発電
装置。
8. A method according to claim 1, further comprising a step of bringing a reformed gas before mixing a gas containing oxygen or a hydrogen-rich gas containing no oxygen other than the reformed gas into contact with the oxidation reaction catalyst. An in-vehicle fuel cell power generator according to any one of the above.
【請求項9】 一酸化炭素を含有する、酸素を含むガス
を混入せしめる前の改質ガス、もしくは該改質ガス以外
の酸素を含まない水素リッチなガスが電池反応部と接触
しないようにする手段を有する請求項8記載の車載用燃
料電池発電装置。
9. Preventing a reformed gas containing carbon monoxide before mixing with a gas containing oxygen, or a hydrogen-rich gas containing no oxygen other than the reformed gas from coming into contact with the battery reaction section. 9. The on-vehicle fuel cell power generator according to claim 8, comprising means.
【請求項10】 混合ガスの流路において、主として酸
化反応触媒を充填してなる一酸化炭素除去装置を設置す
ることを特徴とする請求項1〜9のいずれかに記載の車
載用燃料電池発電装置。
10. The on-vehicle fuel cell power generator according to claim 1, wherein a carbon monoxide removing device mainly filled with an oxidation reaction catalyst is provided in a flow path of the mixed gas. apparatus.
【請求項11】 混合ガスの流路において、電池反応部
直前で混合ガスを分散せしめるために多孔質拡散層を設
置し、この多孔質拡散層に酸化反応触媒を担持して、上
記混合ガス中の一酸化炭素を低減することを特徴とする
請求項1〜10のいずれかに記載の車載用燃料電池発電
装置。
11. A mixed gas flow path, wherein a porous diffusion layer is provided immediately before the battery reaction section to disperse the mixed gas, and an oxidation reaction catalyst is supported on the porous diffusion layer. The on-vehicle fuel cell power generator according to any one of claims 1 to 10, wherein carbon monoxide is reduced.
【請求項12】 混合ガス中の水蒸気の含量を酸化反応
触媒が存在する部分の温度における飽和水蒸気圧未満と
することを特徴とする請求項1〜11のいずれかに記載
の車載用燃料電池発電装置。
12. The on-vehicle fuel cell power generation according to claim 1, wherein the content of water vapor in the mixed gas is less than the saturated water vapor pressure at the temperature of the portion where the oxidation reaction catalyst is present. apparatus.
【請求項13】 混合ガスが酸化反応触媒と接触する温
度帯域が−20℃〜90℃である請求項1〜12のいず
れかに記載の車載用燃料電池発電装置。
13. The on-vehicle fuel cell power generator according to claim 1, wherein the temperature zone in which the mixed gas contacts the oxidation reaction catalyst is −20 ° C. to 90 ° C.
【請求項14】 酸化反応触媒と接触後の改質ガス中に
含まれる一酸化炭素濃度を2ppm以下まで低減するこ
とを特徴とする請求項1〜13のいずれかに記載の車載
用燃料電池発電装置。
14. The on-vehicle fuel cell power generator according to claim 1, wherein the concentration of carbon monoxide contained in the reformed gas after contact with the oxidation reaction catalyst is reduced to 2 ppm or less. apparatus.
【請求項15】 出力容量の大きい二次電池とともに組
み合わされて使用されることを特徴とする請求項1〜1
4のいずれかに記載の車載用燃料電池発電装置。
15. The battery according to claim 1, which is used in combination with a secondary battery having a large output capacity.
5. The on-vehicle fuel cell power generator according to any one of 4.
JP10263530A 1998-09-17 1998-09-17 On-vehicle fuel cell power generating device Pending JP2000090951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10263530A JP2000090951A (en) 1998-09-17 1998-09-17 On-vehicle fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10263530A JP2000090951A (en) 1998-09-17 1998-09-17 On-vehicle fuel cell power generating device

Publications (1)

Publication Number Publication Date
JP2000090951A true JP2000090951A (en) 2000-03-31

Family

ID=17390825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10263530A Pending JP2000090951A (en) 1998-09-17 1998-09-17 On-vehicle fuel cell power generating device

Country Status (1)

Country Link
JP (1) JP2000090951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116785A1 (en) * 2006-04-04 2007-10-18 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell system including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116785A1 (en) * 2006-04-04 2007-10-18 Panasonic Corporation Polymer electrolyte fuel cell and fuel cell system including the same

Similar Documents

Publication Publication Date Title
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
US7833934B2 (en) Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
US6309768B1 (en) Process for regenerating a carbon monoxide oxidation reactor
JP2004284875A (en) Hydrogen production system, and fuel cell system
US20060272213A1 (en) Selective methanation reactor for reducing carbon monoxide in a reformate stream
JP2003144930A (en) Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JPH05201702A (en) Selective removing method of carbon monoxide and its device
JP4143028B2 (en) Fuel cell system and operation method thereof
US7029640B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JPH10302821A (en) Carbon monoxide reducing device for solid high polymer fuel cell and its operating method
JP4227777B2 (en) Water gas shift reaction method, hydrogen production apparatus and fuel cell system using the method
JP2000090951A (en) On-vehicle fuel cell power generating device
JP2005289439A (en) Container
US20040156771A1 (en) Method of reducing carbon monoxide concentration
JP4455040B2 (en) Fuel cell system and operation method thereof
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2003265956A (en) Catalyst for selectively oxidizing carbon monoxide, method of reducing concentration of carbon monoxide, and fuel cell system
EP1923939A2 (en) Fuel oxidizing catalyst, method for preparing the same, and reformer and fuel cell system including the same
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JP2005082409A6 (en) Hydrogen generator
JP2005082409A (en) Hydrogen generator
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2003048702A (en) Carbon monoxide removing apparatus for reducing amount of carbon monoxide in reformed gas
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2004223415A (en) Catalyst for selective oxidation of carbon monoxide, method for decreasing carbon monoxide concentration, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901