JP2000088870A - Evaluation method for fluid turbulence - Google Patents

Evaluation method for fluid turbulence

Info

Publication number
JP2000088870A
JP2000088870A JP10259821A JP25982198A JP2000088870A JP 2000088870 A JP2000088870 A JP 2000088870A JP 10259821 A JP10259821 A JP 10259821A JP 25982198 A JP25982198 A JP 25982198A JP 2000088870 A JP2000088870 A JP 2000088870A
Authority
JP
Japan
Prior art keywords
average
turbulence
flow
turbulence intensity
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10259821A
Other languages
Japanese (ja)
Inventor
Tsukasa Yoneda
主 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP10259821A priority Critical patent/JP2000088870A/en
Publication of JP2000088870A publication Critical patent/JP2000088870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a quantitative evaluation of a fluid in a flowing field as a plane by evaluating a fluid turbulence based on a turbulence strength average M represented by a specific formula. SOLUTION: A turbulence strength obtained by dividing a square average of a deviation from an average flowing speed by the average flow speed can only grasp a turbulence of a field having a flow speed distribution at a point. However, a weighted coefficient Sij at each point represented by the formula I here is determined. The weighted coefficient Sij is also called as a flow speed ratio. In each coordinate in a direction of an object to be evaluated, one-dimensional turbulence strength Mj in an orthogonal direction is calculated based on the formula II. A turbulence strength average M is calculated as defined in the formula III and a flowing turbulence having the flow speed distribution can be grasped not at a point but at a plane if it is used. Since a flowing analysis in the flowing field is carried out based on the turbulence strength average M, an analysis of a numerical value capable of grasping a stirring state in the flowing field can be carried out while corresponding to the numerical value of the turbulence strength average M. The flow analysis in the flowing field can be carried out based on an object numerical value without using a qualitative expression.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流れ場内における
流体の乱れの評価方法に関する。
The present invention relates to a method for evaluating turbulence of a fluid in a flow field.

【0002】[0002]

【従来の技術】流れ場内における流体の乱れを評価する
方法に、評価対象に関する流れ場の模型を用い、流れの
可視化による流れ場の解析検討を行う方法がある。例え
ば、流れ場の模型を用い、タフトといわれる糸を観察し
たい領域に設置し、実際の流れ場と同様の風が通過する
ように流れ場の模型にエアを流通させる。タフトは風が
攪拌混合される場所においては激しくゆれて動くため、
流れ場内における攪拌混合の状態が観察されるのであ
る。また、流れ場の二次元水路模型を用いた場合は、水
面にアルミ粉を浮遊させアルミ粉の動きを検討すること
や、水面にインクを流しインクの流れを観察することな
どの流れの観察が行われている。水面に浮かしたアルミ
粉やインクなどをトレーサというが、このトレーサが水
面上で激しく渦巻いて乱れている場所は、混合攪拌が促
進されていることが理解できる。
2. Description of the Related Art As a method of evaluating turbulence of a fluid in a flow field, there is a method of analyzing a flow field by visualizing a flow using a model of the flow field relating to an evaluation object. For example, using a model of a flow field, a thread called a tuft is installed in an area where observation is desired, and air is circulated through the model of the flow field so that the same wind as the actual flow field passes. Because the tuft moves violently in the place where the wind is stirred and mixed,
The state of stirring and mixing in the flow field is observed. In addition, when a two-dimensional flow channel model of the flow field is used, flow observations such as floating aluminum powder on the water surface and examining the movement of the aluminum powder, and flowing ink on the water surface and observing the flow of ink are required. Is being done. Aluminum powder or ink floating on the water surface is called a tracer. It can be understood that mixing and agitation are promoted where the tracer is violently swirled and disturbed on the water surface.

【0003】[0003]

【発明が解決しようとする課題】しかし、流れ場の流動
解析方法として可視化による流れの観察のみでは、例え
ば、「攪拌が激しくなっている。」とか「よく混ざって
いる。」などのように、流れの解析を定性的にしか把握
できず、定量的評価が必要な場合にはこの方法は採用で
きないという問題点があった。一方、流体力学などで使
用される、流れ場内における平均流速からの偏差の二乗
平均を平均流速で割って求められる乱流強度は、場の乱
れの指標としてよく用いられるが、計測する点において
把握できるに過ぎず、流れ場の全体またはある領域にお
ける定量的評価を行う場合に適用できないという問題点
があった。
However, only flow observation by visualization as a flow analysis method for a flow field is, for example, such as "the stirring is intense" or "the mixture is well mixed". There is a problem that this method cannot be adopted when the analysis of the flow can be grasped only qualitatively and quantitative evaluation is required. On the other hand, the turbulence intensity obtained by dividing the root mean square of the deviation from the average flow velocity in the flow field by the average flow velocity, which is used in fluid dynamics, etc., is often used as an indicator of the turbulence of the field, but it is understood at the measurement point There is a problem that the method cannot be applied to the case where a quantitative evaluation is performed only in the entire flow field or in a certain area.

【0004】本発明の課題は、流れ場の全体またはある
領域における流体の乱れの評価を定量的に行いうる流体
の乱れの評価方法を提供する点にある。
An object of the present invention is to provide a method for evaluating fluid turbulence that can quantitatively evaluate fluid turbulence in the entire flow field or in a certain region.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明に係る流体の乱れの評価方法は、評価対象方向
と前記評価対象方向と直交する方向で定義された二次元
平面内の流れ場において、任意の時刻tで、任意の点P
ijにおける前記評価対象方向成分の流速をuij(t)、
前記任意の点Pijにおける前記評価対象方向成分のt時
間の平均流速をUij、前記評価対象方向成分のt時間の
平均流速Uijからの偏差をvij(t)とした場合、
According to the present invention, there is provided a method for evaluating a turbulence of a fluid, comprising: a flow in a two-dimensional plane defined by a direction to be evaluated and a direction orthogonal to the direction to be evaluated; In the field, at any time t, any point P
flow rate of the evaluation direction component in ij and u ij (t),
When the average flow velocity of the evaluation target direction component at the arbitrary point P ij at time t is U ij , and the deviation of the evaluation target direction component from the average flow velocity U ij of t at time t is v ij (t),

【0006】[0006]

【数5】 (Equation 5)

【0007】で定義される乱流強度Tijを求め、前記評
価対象方向と直交する方向について、
[0007] The turbulence intensity T ij defined by

【0008】[0008]

【数6】 (Equation 6)

【0009】で定義される各点の乱流強度Tijに対する
重み付け係数Sijを求め、前記評価対象方向の各座標に
おいて、その直交方向にわたる一次元乱流強度Mjを、
A weighting coefficient S ij is obtained for the turbulence intensity T ij at each point defined by the following equation. At each coordinate in the evaluation target direction, a one-dimensional turbulence intensity M j in the orthogonal direction is calculated.

【0010】[0010]

【数7】 (Equation 7)

【0011】に基づいて求め、得られた一次元乱流強度
jに対して、
And the obtained one-dimensional turbulence intensity M j

【0012】[0012]

【数8】 (Equation 8)

【0013】で定義される乱流強度平均Mを求め、その
乱流強度平均Mに基づいて流体の乱れを評価することに
ある。
An object of the present invention is to obtain a turbulence intensity average M defined by the following equation, and to evaluate fluid turbulence based on the turbulence intensity average M.

【0014】[作用]流体力学などで使用される、平均流
速からの偏差の二乗平均を平均流速で割った乱流強度
(もしくは乱れ強さとも言う。)は、任意の時刻tで、
任意の点Pijにおける前記評価対象方向成分の流速をu
ij(t)、前記任意の点Pijにおける前記評価対象方向
成分のt時間の平均流速をUij、前記評価対象方向成分
のt時間の平均流速Uijからの偏差をvij(t)とした
場合、数5で表現される。この乱流強度は、流速分布を
持つ場の乱れを点において把握できるに過ぎない。しか
し、ここで数6で表現される各点の重み付け係数Sij
求める。この、重み付け係数Sijは流速比ともいう。次
に、前記評価対象方向の各座標においてその直交方向に
わたる一次元乱流強度Mjを数7に基づいて算出する。
次に、数8で定義されるように乱流強度平均Mを算出し
それを用いれば、流速分布を持つ流れの乱れを点ではな
く面として把握できるのである。また、乱流強度平均M
をもとに流れ場内の流動解析を行うから、乱流強度平均
Mの数値に対応させて流れ場内の攪拌状態を把握できる
数値の解析を行うことができ、定性的な表現を用いるこ
となく客観的数値に基づいて流れ場内の流動解析を行う
ことができるのである。
[Operation] The turbulence intensity (or turbulence intensity) obtained by dividing the root mean square of the deviation from the average flow velocity by the average flow velocity, which is used in fluid dynamics or the like, is given by
Let u be the flow velocity of the directional component to be evaluated at an arbitrary point P ij
ij (t), the average flow velocity of the evaluation target direction component at the arbitrary point P ij at time t is U ij , and the deviation of the evaluation target direction component from the average flow velocity U ij of t at time t is v ij (t). In this case, it is expressed by Expression 5. This turbulence intensity can only grasp the turbulence of the field having the flow velocity distribution at a point. However, here, the weighting coefficient S ij of each point expressed by Expression 6 is obtained. This weighting coefficient S ij is also called a flow velocity ratio. Then calculated based on the one-dimensional turbulence intensity M j over the perpendicular direction to the number 7 in the coordinates of the evaluation direction.
Next, the turbulence intensity average M is calculated as defined by Expression 8, and by using this, the turbulence of the flow having the flow velocity distribution can be grasped not as a point but as a surface. Also, the turbulence intensity average M
The flow analysis in the flow field is performed on the basis of the numerical value of the turbulence intensity average M, so that the numerical value that can grasp the stirring state in the flow field can be analyzed, and objective analysis can be performed without using a qualitative expression. The flow analysis in the flow field can be performed based on the numerical values.

【0015】[0015]

【発明の効果】従って、流れ場内の流体の評価を定量的
に、かつ、点ではなく面として行うことができ、流れ場
の流体の乱れの検討を容易に行うことが可能になった。
As described above, the fluid in the flow field can be quantitatively evaluated as a surface, not as a point, and it is possible to easily examine the turbulence of the fluid in the flow field.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を、都
市ごみ焼却炉の二次燃焼領域の設計に適用する場合につ
いて説明する。都市ごみ焼却炉から排出されるダイオキ
シン類は、その毒性の強さと国内の汚染状況から徹底し
た低減が求められているが、ダイオキシン類の低減には
完全燃焼が重要とされており、焼却炉の二次燃焼領域の
混合攪拌を促進することが完全燃焼を実現するための重
要な要素となるからである。焼却炉の二次燃焼領域の混
合攪拌状態を考慮するには、焼却炉の炉形状と二次エア
の吹き込み方法を検討することが重要である。例えば、
適正な位置に設けたノズルから十分な量の二次空気をガ
ス中に貫通させることや、ガスと空気の乱流攪拌を促進
するような炉形状は、完全燃焼に貢献する傾向にあるこ
とが古くから指摘されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a case where an embodiment of the present invention is applied to the design of a secondary combustion zone of a municipal waste incinerator will be described. Thorough reduction of dioxins discharged from municipal solid waste incinerators is required due to its toxicity and domestic pollution situation.To reduce dioxins, complete combustion is considered important. This is because promoting the mixing and stirring in the secondary combustion region is an important factor for achieving complete combustion. In order to consider the mixing and stirring state in the secondary combustion zone of the incinerator, it is important to consider the furnace shape of the incinerator and the method of blowing the secondary air. For example,
Furnace shapes that allow a sufficient amount of secondary air to penetrate into the gas from properly positioned nozzles and that promote turbulent agitation of the gas and air tend to contribute to complete combustion. It has been pointed out since ancient times.

【0017】本発明では、図1に示すようなQ1、Q
2、Q3の3個所から二次エアを吹き込む混合攪拌対策
を施してある全連続式ストーカ炉(230t/d×2
炉)を基準炉とし、アクリル板と発泡スチロールによっ
て形成した基準炉の1/10の大きさの二次元水路模型
1を採用した。二次元水路模型1のストーカおよび二次
エアQ1、Q2、Q3に相当する部分から水を流し、比
重が水とほぼ等しいポリスチレン粒子(φ2×3mm)
をトレーサに用い、トレーサの動きから流れ場を観察し
た。図2に示すように、流れ場は、水を所定の水槽2か
らポンプ3を通して流し、一定の水量に保つ流量形4を
経て、所定の架台5に取り付けられた二次元水路模型1
に流入させ、再び水槽2にもどる循環経路で構成されて
いる。さらに、二次元水路模型1の一次エアおよび二次
エアQ1、Q2、Q3に相当する場所からは、 水が流
入するように構成されている。架台5の上方にはカメラ
6が取り付けられ二次元水路模型1を流れる水の様子を
観察することができる。
In the present invention, Q1, Q as shown in FIG.
2. A continuous stoker furnace (230 t / d × 2) with measures against mixing and agitation by blowing secondary air from three locations Q3
Furnace) was used as a reference furnace, and a two-dimensional water channel model 1 having a size 1/10 that of the reference furnace formed of an acrylic plate and styrene foam was used. Water flows from the stoker of the two-dimensional waterway model 1 and the portion corresponding to the secondary air Q1, Q2, Q3, and polystyrene particles having a specific gravity almost equal to water (φ2 × 3 mm)
Was used as a tracer, and the flow field was observed from the movement of the tracer. As shown in FIG. 2, the flow field includes a two-dimensional water channel model 1 attached to a predetermined base 5 via a flow type 4 for flowing water from a predetermined water tank 2 through a pump 3 and maintaining a constant amount of water.
To the water tank 2 again. Further, the two-dimensional waterway model 1 is configured such that water flows in from places corresponding to the primary air and the secondary air Q1, Q2, Q3. A camera 6 is mounted above the gantry 5 so that the state of water flowing through the two-dimensional channel model 1 can be observed.

【0018】流れ場の流れの相似則に付いては、炉出口
でのレイノルズ数が基準炉と二次元水路模型1で一致す
るように総水量を決定した。また、一次エア、二次エア
Q1、Q2、Q3の各ゾーンから投入する水の質量流速
比は、基準炉と二次元水路模型1で一致するように水量
を配分した。また、炉下エアと二次エアの流速比を基準
炉と二次元水路模型1で一致するように、二次エアの突
出面積を変化させた。
Regarding the similarity rule of the flow in the flow field, the total water amount was determined so that the Reynolds number at the furnace outlet coincided with the reference furnace and the two-dimensional channel model 1. In addition, the amounts of water were distributed such that the mass flow rate ratio of the water supplied from each zone of the primary air and the secondary air Q1, Q2, and Q3 was the same between the reference furnace and the two-dimensional channel model 1. Further, the area of the secondary air protruding was changed so that the flow velocity ratio between the under-furnace air and the secondary air coincided between the reference furnace and the two-dimensional channel model 1.

【0019】流れ場の観察は、カメラ6で撮影した1/
60秒間隔の画像をデジタル変換してコンピューター上
に取り組み、連続するトレーサを追跡することにより、
流れ場全体の速度分布を求めることで行った。カメラ6
に取り込んだ画像から、面内の瞬時の速度分布を算出す
る手法としては、PTV演算(Particle tracking ve
locimetry)を用いた。PTV演算は、撮影された動画
像上のトレーサ粒子の重心座標を計測し、トレーサ粒子
座標を一定時刻パターンマッチング法により追跡するこ
とによってベクトルデータを算出することで行うもので
ある。
The observation of the flow field was performed by using the camera 1
By digitally converting images at 60-second intervals, working on a computer, and tracking successive tracers,
This was done by finding the velocity distribution over the flow field. Camera 6
As a method of calculating the instantaneous velocity distribution in the plane from the image captured in the PTV, PTV calculation (Particle tracking ve
locimetry) was used. The PTV calculation is performed by measuring the coordinates of the center of gravity of the tracer particles on a captured moving image, and calculating vector data by tracking the coordinates of the tracer particles by a fixed time pattern matching method.

【0020】本発明ではPTV演算のうち3時刻パター
ンマッチング法を用いるが、3時刻パターンマッチング
法とは、2又は3時刻分の座標データを第1時刻から第
2時刻へ、第2時刻から第3時刻へと座標データを追跡
していくための演算手法である。PTVは画像上のトレ
ーサ粒子の座標を計測してその座標の追跡を行うだけな
ので、比較的演算量を少なくすることができる。3時刻
パターンマッチング法によるトレーサ粒子の探索は、以
下のような手順で行われる。 第1時刻から第2時刻の追跡 まず、第1時刻から第2時刻の追跡として、第1時刻の
着目粒子の追跡は、着目粒子を中心とする第1探索領域
(探索半径)内に存在する第2時刻の候補粒子をリスト
アップし、着目粒子と各候補粒子の「マッチング度」を
計算し上位3つを残す。 第2時刻から第3時刻の追跡 次に、第2時刻から第3時刻の追跡として、着目粒子か
ら3つの候補粒子へのベクトルを延長し、第3粒子位置
を推定し、その位置を中心とした第2探索領域内に存在
する第3時刻粒子をリストアップし、第1から第2時刻
追跡と同様に、第2から第3時刻の粒子間の「マッチン
グ度」を計算し、上位3つの候補を残す。 最適ペアの判定 もし、第1−第2−第3時刻のペアが1つしか見つから
なかった場合はそれを最適ペアとし、複数の組合せ(最
大3×3=9通り)が存在する場合は、それぞれの組み
合わせに付いて『3時刻マッチング度』を計算し、最大
となるものを最適ペアとする。尚、『3時刻マッチング
度』は下記の計算式に基づいて行う。 『3時刻マッチング度』=(第1−第2時刻マッチング
度)×(第2−第3時刻マッチング度)×(第3−第1
時刻マッチング度) このとき、最大の3時刻マッチング度が2番目以下のも
のの1.5倍以上であるだけを最適ペアとし、確実に最
大のマッチング度を持つもののみ最適ペアとして認識す
る。なお、第2、第3時刻の粒子の中で2回以上最適ペ
アに含まれる場合、最大の3時刻マッチング度を持つペ
アだけ残しその他は棄却する。 反復処理 前記からまでの処理を最適ペアが見つからなくまで
繰り返す。尚、2回目以降は既に最適ペアに含まれてい
る粒子を除いて処理を行う。 低マッチング度ペアの棄却 前記からまでの処理によって得られた全ての最適ペ
アについて3時刻マッチング度を比較し、その値が下位
3パーセントに含まれるものを信頼度が低いものとして
棄却する。
In the present invention, the three-time pattern matching method is used in the PTV calculation. The three-time pattern matching method is a method of transferring coordinate data for two or three times from the first time to the second time and from the second time to the second time. This is an arithmetic method for tracking coordinate data to three times. Since the PTV only measures the coordinates of the tracer particles on the image and tracks the coordinates, the amount of calculation can be relatively reduced. The search for tracer particles by the three-time pattern matching method is performed in the following procedure. Tracking from the first time to the second time First, as the tracking from the first time to the second time, the tracking of the particle of interest at the first time exists in a first search area (search radius) centering on the particle of interest. The candidate particles at the second time are listed, and the “matching degree” between the target particle and each candidate particle is calculated, and the top three are left. Tracking from the second time to the third time Next, as tracking from the second time to the third time, the vector from the particle of interest to the three candidate particles is extended, the position of the third particle is estimated, and the position is defined as the center. The third time particles present in the second search area thus obtained are listed, and the “matching degree” between the particles at the second to third times is calculated in the same manner as in the first to second time tracking, and the top three Leave a candidate. Determination of Optimal Pair If only one pair at the first-second-third time is found, it is determined as the optimal pair, and if there are a plurality of combinations (maximum 3 × 3 = 9), The “three-time matching degree” is calculated for each combination, and the largest one is determined as the optimal pair. The “3 time matching degree” is calculated based on the following formula. “3 time matching degree” = (first-second time matching degree) × (second-third time matching degree) × (third-first time)
(Time Matching Degree) At this time, an optimum pair is determined only when the maximum three time matching degree is 1.5 times or more that of the second or lower one, and only the one having the maximum matching degree is surely recognized as the optimum pair. If the particles at the second and third times are included in the optimal pair two or more times, only the pair having the maximum three-time matching degree is retained and the others are rejected. Iterative processing The above processing is repeated until no optimum pair is found. In the second and subsequent times, the processing is performed excluding particles already included in the optimum pair. Rejection of low matching degree pairs The three-time matching degrees are compared for all the optimal pairs obtained by the above processing, and those whose values are included in the lower 3% are rejected as having low reliability.

【0021】トレーサの動きをカメラ6で撮影した可視
化写真を図3(イ)に示す。また、PTV解析した流速
分布を図3(ロ)に示す。また、乱流強度分布の模式図
を図3(ハ)に示す。二次エアQ1、Q2で燃焼ガスの
流れが二個所で曲げられている様子が、カメラ6で撮影
した可視化写真のみならず、PTV解析で得られた速度
分布や乱流強度分布の模式図でも良くとらえられている
ことがわかる。
FIG. 3A shows a visualized photograph of the movement of the tracer taken by the camera 6. FIG. 3B shows the flow velocity distribution obtained by the PTV analysis. FIG. 3C shows a schematic diagram of the turbulence intensity distribution. The appearance that the flow of the combustion gas is bent at two places by the secondary air Q1 and Q2 is not only a visualized photograph taken by the camera 6 but also a schematic diagram of a velocity distribution and a turbulent flow intensity distribution obtained by PTV analysis. It turns out that it is well caught.

【0022】乱流強度平均は、以下の手順によって算出
する。例えば図10に示すような、評価対象y方向と前
記評価対象y方向と直交するx方向で定義された二次元
xy平面内の流れ場において、即ち、まず、流れ場内の
任意の点Pijにおける評価対象y方向成分の流速u
ij(t)を求める。そして、前記任意の点Pijにおけ
る、y方向成分のt時間の平均流速Uijからの偏差v
ij(t)の二乗平均を、y方向成分のt時間の平均流速
ijで割った乱流強度Tijを求める。この乱流強度Tij
は、点Pにおいて流れがどの程度乱れているかを示すも
のであり、数5で示される。次に、前記任意の点Pij
おけるy方向成分のt時間の平均流速Uijを、y座標がj
である流れ場内の全ての点におけるy方向成分の平均流
速の合計で割った重み付け係数Sijを求める。重み付け
係数Sijは数6で示される。次に、前記乱流強度Tij
前記重み付け係数Sijを乗じた値を、y座標がjである流
れ場内の全ての点で合計した一次元乱流強度Mjを求め
る。一次元乱流強度Mjは数7で示される。最後に、流
れ場内の全てのy座標での前記一次元乱流強度Mjの合計
を、流れ場内のy座標数で割って、流れ場全体の乱流強
度平均Mを求めることができる。乱流強度平均Mは数8
で示される。
The average turbulence intensity is calculated by the following procedure. For example, as shown in FIG. 10, in a flow field in a two-dimensional xy plane defined by an evaluation target y direction and an x direction orthogonal to the evaluation target y direction, that is, first, at an arbitrary point P ij in the flow field Flow velocity u of the evaluation target y-direction component
ij (t) is obtained. Then, at the arbitrary point P ij , the deviation v from the average flow velocity U ij of the y-direction component at time t is calculated.
The turbulence intensity T ij is obtained by dividing the mean square of ij (t) by the average flow velocity U ij of the y-direction component at time t. This turbulence intensity T ij
Shows how much the flow is disturbed at the point P, and is shown by Expression 5. Next, the average flow velocity U ij of the arbitrary point P ij at the time t of the y-direction component is calculated using the y coordinate j
Determining a weighting factor S ij divided by the sum of the average flow velocity in the y-direction component definitive in all points of the flow field is. The weighting coefficient S ij is represented by Expression 6. Next, a one-dimensional turbulence intensity M j is obtained by summing a value obtained by multiplying the turbulence intensity T ij by the weighting coefficient S ij at all points in the flow field whose y coordinate is j. The one-dimensional turbulence intensity M j is shown by Expression 7. Finally, the sum of the one-dimensional turbulence intensities M j at all y-coordinates in the flow field can be divided by the number of y-coordinates in the flow field to obtain the average turbulence intensity M of the entire flow field. The average turbulence intensity M is
Indicated by

【0023】二次元水路模型1において、3個所から吹
き込む水量の流速比を(Q1:Q2:Q3)=(5:
4:1)、(5:3:2)、(5:1:4)と変化させ
た場合における乱流強度平均Mを求めた。また、図1に
示した基準炉において、3個所から吹き込む二次エアの
流速比を(Q1:Q2:Q3)=(5:4:1)、
(5:3:2)、(5:1:4)と変化させた場合にお
ける燃焼排ガス煙道における一酸化炭素濃度を計測し
た。そして、それらの値を比較した結果を図4に示す。
乱流強度平均Mが増加するに伴ない、一酸化炭素濃度が
低下しているのがわかる。
In the two-dimensional waterway model 1, the flow rate ratio of the amount of water blown from three locations is (Q1: Q2: Q3) = (5:
4: 1), (5: 3: 2), and (5: 1: 4). Further, in the reference furnace shown in FIG. 1, the flow rate ratio of the secondary air blown from three places is (Q1: Q2: Q3) = (5: 4: 1),
The carbon monoxide concentration in the flue gas of the flue gas when the ratio was changed to (5: 3: 2) and (5: 1: 4) was measured. And the result of having compared those values is shown in FIG.
It can be seen that the carbon monoxide concentration decreases as the turbulence intensity average M increases.

【0024】一方、図5は基準炉において、3個所から
吹き込む二次エアの流速比を(Q1:Q2:Q3)=
(5:4:1)、(5:3:2)、(5:1:4)と変
化させた場合における二次燃焼領域酸素濃度、二次燃焼
領域滞留時間、二次燃焼領域入り口温度および二次燃焼
領域炉出口温度を示す図である。二次エアの流速比を変
更しても、二次燃焼領域酸素濃度、二次燃焼領域滞留時
間、二次燃焼室入り口温度および二次燃焼領域炉出口温
度はほとんど変化しておらず、一酸化炭素濃度低下は燃
焼ガスと余剰エアの混合攪拌に起因していると考えられ
る。従って、乱流強度平均Mを混合攪拌の指標にするこ
とができ、乱流強度平均Mが高ければ混合攪拌が促進さ
れており、逆に乱流強度平均Mが低くければ混合攪拌が
進行していないことが証明できた。
On the other hand, FIG. 5 shows that the flow rate ratio of the secondary air blown from three places in the reference furnace is (Q1: Q2: Q3) =
The secondary combustion region oxygen concentration, the secondary combustion region residence time, the secondary combustion region entrance temperature, and (5: 4: 1), (5: 3: 2), and (5: 1: 4). It is a figure which shows the secondary combustion zone furnace exit temperature. Even if the flow rate ratio of the secondary air was changed, the oxygen concentration in the secondary combustion zone, the residence time in the secondary combustion zone, the inlet temperature of the secondary combustion chamber, and the outlet temperature of the secondary combustion zone hardly changed. It is considered that the decrease in carbon concentration is caused by mixing and stirring of the combustion gas and the excess air. Accordingly, the turbulence intensity average M can be used as an indicator of mixing and stirring. If the turbulence intensity average M is high, the mixing and stirring is promoted. Conversely, if the turbulence intensity average M is low, the mixing and stirring proceeds. I could prove it wasn't.

【0025】乱流強度平均を混合攪拌の促進状況の指標
として、新炉形状の決定を試みた。図6に示すように、
ストーカ面、ボイラ第一パスおよび一次燃焼領域容積を
固定したまま、絞り位置が異なる炉の二次元水路模型を
用意した。図6(イ)に示す炉形状を炉形状1とし、図
6(ロ)に示す炉形状を炉形状2とする。ここで、図6
(ロ)に示す炉形状2は、炉形状1よりも、絞り位置を
乾燥帯側へ移動させ、かつ、二次燃焼室出口の高さを高
くしたものである。炉形状1、2に対応する乱流強度平
均を算出した。基準炉における乱流強度平均とともに図
7にその結果を示した。混合攪拌の指標である乱流強度
平均は、炉形状1と2で差がなく、基準炉で二次エアを
吹き込まない場合より小さいことが理解される。
An attempt was made to determine the shape of the new furnace using the turbulence intensity average as an index of the promotion of mixing and stirring. As shown in FIG.
With the stoker surface, the first pass of the boiler and the volume of the primary combustion area fixed, two-dimensional water channel models of furnaces with different drawing positions were prepared. The furnace shape shown in FIG. 6A is furnace shape 1 and the furnace shape shown in FIG. Here, FIG.
Furnace shape 2 shown in (b) is obtained by moving the throttle position to the drying zone side and increasing the height of the outlet of the secondary combustion chamber from furnace shape 1. Turbulence intensity averages corresponding to furnace shapes 1 and 2 were calculated. FIG. 7 shows the results together with the average turbulence intensity in the reference furnace. It is understood that the average turbulence intensity, which is an index of the mixing and stirring, does not differ between the furnace shapes 1 and 2, and is smaller than when the secondary air is not blown in the reference furnace.

【0026】炉形状1と2について二次エアを対向型と
ジグザグ型に吹き込んだ。この吹き込みの様子を図8に
示す。図8(イ)は二次エアを対向型に吹き込む場合
で、図8(ロ)は二次エアをジグザグ型に吹き込む場合
である。基準炉における乱流強度平均とともに、炉形状
1と2の対向型、ジグザグ型に二次エアを吹き込んだ場
合を図9に示した。炉形状1でも2でも、二次エアをジ
グザグ型に吹き込むよりも対向型に吹き込む方が乱流強
度平均は大きくなる。また、二次エアを対向型に吹き込
む場合、炉形状1と2の乱流強度平均はほとんど差異は
見られないが、いずれの場合も基準炉より大きくなる。
炉形状1の方が炉形状2より二次燃焼出口が低くいの
で、炉形状1で二次エアを対向型に吹き込む方法が最適
と考えられる。
For furnace shapes 1 and 2, secondary air was blown into the opposed type and the zigzag type. FIG. 8 shows this blowing. FIG. 8 (a) shows a case where secondary air is blown in a facing type, and FIG. 8 (b) shows a case where secondary air is blown in a zigzag type. FIG. 9 shows a case where secondary air was blown into the opposed type and zigzag type of the furnace shapes 1 and 2 together with the average turbulence intensity in the reference furnace. Regardless of the furnace shape 1 or 2, the turbulence intensity average is larger when the secondary air is blown into the opposed type than when the secondary air is blown into the zigzag type. When secondary air is blown into the opposed type, there is almost no difference in the average turbulence intensity between the furnace shapes 1 and 2, but in each case, the average is larger than the reference furnace.
Since the secondary combustion outlet is lower in the furnace shape 1 than in the furnace shape 2, it is considered that the method of blowing the secondary air in the facing shape in the furnace shape 1 is optimal.

【0027】[別実施形態]上述の実施例では焼却炉の二
次燃焼領域における流動解析を示したが、本発明はそれ
に限定されるものではなく、例えば、浄化槽の担体流動
槽の流動解析にも用いることが可能である。浄化槽の担
体流動槽は、微生物に空気を接触させることと微生物と
下水汚泥を接触させることが望ましいため、担体流動槽
中の水が攪拌されていることが望ましいのである。
[Alternative Embodiment] In the above embodiment, the flow analysis in the secondary combustion region of the incinerator has been described. However, the present invention is not limited to this. Can also be used. In the carrier fluidization tank of the septic tank, it is desirable that the microorganisms are brought into contact with air and the microorganisms are brought into contact with sewage sludge. Therefore, it is desirable that the water in the carrier fluidization vessel be stirred.

【0028】カメラに取り込んだ画像から、面内の瞬時
の速度分布を算出する手法として、PIV演算(Partic
le imaging velocimetry)を用いることも可能であ
る。PIV演算とは、連続して動作するトレーサ(Part
icle)を撮影した画像データ中のある部分に注目し、そ
の部分が次の時刻の画像上ではどこへ移動したかを求め
るための演算である。演算は、画像上に設定する等間隔
メッシュ上において実行することにより、画像全体のベ
クトル成分を算出することで行う。PIV演算は画像そ
のものを比較することにより画像上の各点での移動量を
求めるのである。
As a method of calculating an instantaneous velocity distribution in a plane from an image captured by a camera, a PIV operation (Partic
le imaging velocimetry). PIV operation is a tracer (Part
This is an operation for focusing on a certain part in the image data obtained by photographing the icle) and calculating where the part has moved on the image at the next time. The calculation is performed by calculating a vector component of the entire image by executing the calculation on an equally-spaced mesh set on the image. In the PIV operation, the movement amount at each point on the image is obtained by comparing the images themselves.

【0029】上述の発明の実施の形態では、流れ場内の
流速のうち評価対象方向としてy方向成分の流速を求め
乱流強度平均を算出したが、本発明はこれに限定される
ものではなく、流れ場内の流速のうち評価対象方向とし
てx方向成分の流速、流速のスカラー量、流速の角度な
どを用いて、乱流強度平均を算出することもできる。ま
た、流れ場内の流速のうち評価対象方向としてy方向成
分の流速、x方向成分の流速、流速のスカラー量、流速
の角度などを用いて乱流強度平均を算出しても等しく流
動解析を行うことができる。
In the above embodiment of the present invention, the turbulence intensity average is calculated by obtaining the flow velocity of the y-direction component as the evaluation target direction among the flow velocities in the flow field, but the present invention is not limited to this. The average turbulence intensity can also be calculated using the flow velocity of the x-direction component, the scalar amount of the flow velocity, the angle of the flow velocity, and the like as the evaluation target direction among the flow velocities in the flow field. In addition, even if the turbulence intensity average is calculated using the flow velocity of the y-direction component, the flow velocity of the x-direction component, the scalar amount of the flow velocity, the angle of the flow velocity, etc. among the flow velocity in the flow field, the flow analysis is performed equally. be able to.

【0030】上述の発明の実施の形態では2次元におけ
る流動解析を示したが、本発明はそれに限定されるもの
ではなく、3次元の可視化実験やシュミレーションへの
適用も応用可能であると考える。
Although the two-dimensional flow analysis has been described in the embodiment of the present invention, the present invention is not limited to this, and it is considered that the present invention can be applied to a three-dimensional visualization experiment and a simulation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基準炉の模式図FIG. 1 is a schematic diagram of a reference furnace.

【図2】実験装置の模式図FIG. 2 is a schematic diagram of an experimental apparatus.

【図3】二次元水路模型を流れる水の様子を示す図。そ
のうち、(イ)はカメラで撮影した可視化写真図。
(ロ)はPTV解析した流速分布図。(ハ)は乱流強度
分布の模式図
FIG. 3 is a diagram showing a state of water flowing through a two-dimensional waterway model. Among them, (a) is a visualized photograph taken by a camera.
(B) is a flow velocity distribution chart obtained by PTV analysis. (C) Schematic diagram of turbulence intensity distribution

【図4】乱流強度平均と一酸化炭素濃度の関係を表す図FIG. 4 is a diagram showing the relationship between the average turbulence intensity and the concentration of carbon monoxide.

【図5】基準炉での二次エア流速比と温度、滞留時間、
酸素濃度の関係を表す図
FIG. 5: Secondary air flow rate ratio and temperature, residence time,
Diagram showing the relationship between oxygen concentrations

【図6】新炉形状を示す図FIG. 6 is a diagram showing a new furnace shape.

【図7】新炉形状における乱流強度平均を示す図FIG. 7 is a diagram showing an average turbulence intensity in a new furnace shape.

【図8】二次エアの吹き込み状態を表す図FIG. 8 is a diagram showing a state of blowing secondary air.

【図9】新炉形状における二次エアの吹き込み方法と乱
流強度平均の関係を示す図
FIG. 9 is a diagram showing a relationship between a secondary air blowing method and a turbulence intensity average in a new furnace shape.

【図10】xy平面におけるy方向の流速を示す図FIG. 10 is a diagram showing the flow velocity in the y direction on the xy plane.

【符号の説明】[Explanation of symbols]

1 二次元水路模型 2 水槽 3 ポンプ 4 流量形 5 架台 6 カメラ 7 PTV解析システム DESCRIPTION OF SYMBOLS 1 Two-dimensional water channel model 2 Water tank 3 Pump 4 Flow rate type 5 Mount 6 Camera 7 PTV analysis system

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年9月14日(1998.9.1
4)
[Submission date] September 14, 1998 (1998.9.1)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 評価対象方向と前記評価対象方向と直交
する方向で定義された二次元平面内の流れ場において、 任意の時刻tで、任意の点Pijにおける前記評価対象方
向成分の流速をuij(t)、前記任意の点Pijにおける
前記評価対象方向成分のt時間の平均流速をUij、前記
評価対象方向成分のt時間の平均流速Uijからの偏差を
vij(t)とした場合、 【数1】 で定義される乱流強度Tijを求め、 前記評価対象方向と直交する方向について、 【数2】 で定義される各点の乱流強度Tijに対する重み付け係数
ijを求め、 前記評価対象方向の各座標において、その直交方向にわ
たる一次元乱流強度M jを、 【数3】 に基づいて求め、得られた一次元乱流強度Mjに対し
て、 【数4】 で定義される乱流強度平均Mを求め、 その乱流強度平均Mに基づいて流体の乱れを評価する流
体の乱れの評価方法。
1. An evaluation target direction is orthogonal to the evaluation target direction.
In a flow field in a two-dimensional plane defined by the directionsijEvaluation target in
Uij(T), the arbitrary point PijIn
The average flow velocity of the evaluation target direction component at time t is UijAnd said
Average flow rate U at t time of the directional component to be evaluatedijDeviation from
vij(T),Turbulence intensity T defined byij, And in a direction orthogonal to the evaluation target direction,Turbulence intensity T at each point defined byijWeighting factor for
SijAt each coordinate in the evaluation target direction,
Barrel one-dimensional turbulence intensity M jIs given byAnd the obtained one-dimensional turbulence intensity MjAgainst
Then,Turbulence intensity average M defined by
How to evaluate body turbulence.
JP10259821A 1998-09-14 1998-09-14 Evaluation method for fluid turbulence Pending JP2000088870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10259821A JP2000088870A (en) 1998-09-14 1998-09-14 Evaluation method for fluid turbulence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10259821A JP2000088870A (en) 1998-09-14 1998-09-14 Evaluation method for fluid turbulence

Publications (1)

Publication Number Publication Date
JP2000088870A true JP2000088870A (en) 2000-03-31

Family

ID=17339471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10259821A Pending JP2000088870A (en) 1998-09-14 1998-09-14 Evaluation method for fluid turbulence

Country Status (1)

Country Link
JP (1) JP2000088870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119395A (en) * 2012-12-18 2014-06-30 Mitsubishi Heavy Ind Ltd Tuft test alternate device, tuft test alternative method, and tuft test alternative program
JP2020056650A (en) * 2018-10-01 2020-04-09 一般財団法人電力中央研究所 Image analysis device, image analysis method, and image analysis program
US10718680B2 (en) 2014-12-18 2020-07-21 Nitta Corporation Sensor sheet
CN113654921A (en) * 2021-09-03 2021-11-16 西南石油大学 Tapered plate variable volume turbulence resistance reduction evaluation device and method
CN113806946A (en) * 2021-09-22 2021-12-17 北京美科华仪科技有限公司 Method for correcting vertical flow velocity according to standard flow velocity distribution diagram

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119395A (en) * 2012-12-18 2014-06-30 Mitsubishi Heavy Ind Ltd Tuft test alternate device, tuft test alternative method, and tuft test alternative program
US10718680B2 (en) 2014-12-18 2020-07-21 Nitta Corporation Sensor sheet
JP2020056650A (en) * 2018-10-01 2020-04-09 一般財団法人電力中央研究所 Image analysis device, image analysis method, and image analysis program
CN113654921A (en) * 2021-09-03 2021-11-16 西南石油大学 Tapered plate variable volume turbulence resistance reduction evaluation device and method
CN113654921B (en) * 2021-09-03 2024-05-07 西南石油大学 Variable-volume turbulence drag reduction evaluation device and method for conical plate
CN113806946A (en) * 2021-09-22 2021-12-17 北京美科华仪科技有限公司 Method for correcting vertical flow velocity according to standard flow velocity distribution diagram

Similar Documents

Publication Publication Date Title
Yang et al. Experiments on particle dispersion in a plane wake
Frank et al. Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV
Crimaldi et al. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume
Leifer et al. Optical measurement of bubbles: system design and application
Cheng et al. Bubble velocity measurement with a recursive cross correlation PIV technique
Karpetis et al. An experimental study of well-defined turbulent nonpremixed spray flames
Guillard et al. Mixing in a confined turbulent impinging jet using planar laser-induced fluorescence
Lucchesi et al. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame
JP2000088870A (en) Evaluation method for fluid turbulence
Takahashi et al. Bubble sizes and coalescence rates in an aerated vessel agitated by a Rushton turbine
Huang et al. An experimental study of elevated round jets deflected in a crosswind
Larsson et al. Experimental study of confined coaxial jets in a non-axisymmetric co-flow
Radhouane et al. Twin inclined jets in crossflow: experimental investigation of different flow regimes and jet elevations
Zimmer et al. Simultaneous laser-induced fluorescence and Mie scattering for droplet cluster measurements
Bingham et al. Crossed-plane laser tomography: Direct measurement of the flamelet surface normal
Sahu et al. Two-phase characterization for turbulent dispersion of sprays: a review of optical techniques
Knaus et al. Assessment of crossed-plane tomography for flamelet surface normal measurements
Dulin et al. Application of planar laser-induced fluorescence for interfacial transfer phenomena
Saga et al. A comparative study of the PIV and LDV measurements on a self-induced sloshing flow
Huang et al. Capture envelopes of rectangular hoods in cross drafts
WO1999036762A1 (en) Method and means for measuring velocity and concentration of particles in a fluidized bed
Ghirelli et al. Reactor residence time analysis with CFD
Su et al. Simultaneous measurements of velocity and scalar fields: application in crossflowing jets and lifted jet diffusion flames
Nakanishi et al. Investigation of air flow passing through louvers
Papps Merging buoyant jets in stationary and flowing ambient fluids

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040311