JP2000088854A - High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method - Google Patents

High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method

Info

Publication number
JP2000088854A
JP2000088854A JP29596898A JP29596898A JP2000088854A JP 2000088854 A JP2000088854 A JP 2000088854A JP 29596898 A JP29596898 A JP 29596898A JP 29596898 A JP29596898 A JP 29596898A JP 2000088854 A JP2000088854 A JP 2000088854A
Authority
JP
Japan
Prior art keywords
antibody
microorganism
reaction
sample
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29596898A
Other languages
Japanese (ja)
Inventor
Hidemichi Kariyama
英理 狩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMA KK
Original Assignee
UMA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMA KK filed Critical UMA KK
Priority to JP29596898A priority Critical patent/JP2000088854A/en
Publication of JP2000088854A publication Critical patent/JP2000088854A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To quantitatively detect a microorganism at a high sensitivity by producing a product by adding dropwise an enzyme substrate to a microorganism dual antibody binding substance remained on a solid phase matrix. SOLUTION: A solid phase matrix requires a pore diameter through which a microorganism can not be passed. For example, the pore diameter is particularly preferably 0.22-0.45 μm in a bacteria inspection and 0.80 μm in the case of a fungus. After the microorganism is filtered and accumulated on the solid phase matrix if necessary, a sample solution remained on the solid phase matrix is washed with a washing liquid. A specific antibody to be detected is added dropwise to the microorganism on the solid phase matrix and a reaction of the microorganism with the antibody is carried out. As the antibody, an antibody against a specific microorganism is sometimes used if desired. A substance necessary for an enzymatic reaction is added dropwise to an enzyme labeled antibody binding microorganism captured and remained on the solid phase matrix and an enzymatic reaction is carried out. A product is finally produced and is measured. A determination of the desired microorganism is carried out by previously preparing a calibration line representing a reaction amount in the case of using a constant amount of antigen and applying it thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明が活用されるべき分野
は医学,食品産業等が主である。本発明の技術的特徴は
従来からの免疫学的微生物検査法に比べ、その応用範囲
の広さと柔軟性である。従来の免疫学的微生物測定法は
特定の微生物の検出のみを目的として開発されてきた
が、本発明は菌種名の決定(同定)はむろんのこと、大
きな括りでの分別、例えば細菌種共通の抗原(細菌細胞
壁ペプチドグリカン:細菌細胞壁構成成分で人細胞には
存在しない)あるいはグラム陽性菌のみに共通する抗原
(細菌細胞壁リポティコ酸)に特異的な抗体を使用し
て、検査試料中に細菌種が存在するか否かと存在すれ
ば、それがグラム陽性菌なのか否かを判定することが可
能である(この鑑別法は現在、グラム染色が代表的であ
るが、この染色よりも高感度である)。真菌類にも真菌
類独自の共通な特異抗体(例えば、ガラクトマンナンな
ど)も存在するため、試料中に真菌類が存在するか否か
も測定可能である。しかも測定法に定量性があるため、
存在菌数が判別できる。加えて検査試料ごとに対応さ
せ、試料分析で意義ある特定菌種数種の存在の有無を特
異抗体を混合させてのスクリーニング検査ができる。更
に菌数や菌名の判定のみならず、ウイルス抗原やクラミ
ジア抗原にも対応でき、更に微生物が産生する代謝産物
(特に毒素類)の検出又は定量する測定方法及び試薬に
関するものである。
BACKGROUND OF THE INVENTION The fields to which the present invention should be applied are mainly in the medical and food industries. The technical features of the present invention are its wide range of application and flexibility as compared with conventional immunological microbiological testing methods. Conventional immunological microbial assays have been developed solely for the detection of specific microorganisms. However, the present invention is not limited to the determination (identification) of bacterial species names. Bacterial species in the test sample using antibodies specific for the antigen (bacterial cell wall peptidoglycan: a component of the bacterial cell wall that is not present in human cells) or an antigen (bacterial cell wall lipoticoic acid) that is common only to Gram-positive bacteria It is possible to determine whether or not is present and whether or not it is a Gram-positive bacterium. (This discrimination method is currently typical of Gram staining, but is more sensitive than this staining. is there). Since fungi also have fungus-specific common specific antibodies (eg, galactomannan), it is also possible to determine whether a fungus is present in a sample. And because the measurement method is quantitative,
The number of bacteria present can be determined. In addition, a screening test can be performed by mixing specific antibodies to determine the presence or absence of several types of specific bacterial species that are significant in sample analysis. Further, the present invention relates to a method and a reagent for detecting or quantifying metabolites (especially toxins) produced by microorganisms, which can be used not only for determination of the number of bacteria and the name of bacteria but also for viral antigens and chlamydia antigens.

【従来の技術】微生物(細菌、真菌、ウイルス、クラミ
ジアなど)感染症診断には現在も種々の培地を活用する
増殖培養法や特定細胞培養法が基本的に実施され、培地
培養法ならびに細胞培養法は標準法(ゴールド・スタン
ダード)と言われている。これら培養法は確実な測定法
であるが,結果が得られるまで時間(日数)がかかるこ
とが大きな欠点と言われて久しい。この時間的な問題点
は長い間解決できないでいたが、最近になって培養に依
らない迅速な測定法が研究されており、その代表的な測
定法として遺伝学的検査法と免疫学的検査法があげられ
る。遺伝学的検査法はPolymerase Chai
n Reaction法(PCR法)が代表的な測定法
であり、微生物のDNAを抽出し,ポリメラーゼ耐熱酵
素を使用してこれを増幅させて高感度に検出できる方法
で、実質測定感度は10〜10CFU(Colon
y forming Unit)/mlとされる。現
在、大学病院や大規模検査センターで結核菌検査を中心
として活用されているが、一般的な病院施設や小規模の
検査施設では特殊な測定機器の準備と汚染防止のための
部屋スペースの必要性、試料前処理の煩雑性から敬遠さ
れている。食品微生物検査でも同様で遺伝学的検査法を
実施しているところは極めて少ない。一方,免疫字的検
査方法は腫瘍マーカー,微量ホルモン,投与薬物血中濃
度,血液分析で検出できる肝炎ウイルスなどの幅広い項
目の検査が既に血清検査部門で自動化され、遺伝学的検
査の普及性に比べると遥かに幅広く、一般的な検査室で
も大いに活用されている。免疫学的検査法は遺伝学的検
査法に比べると簡便で自動化されやすいところに大きな
特徴を持っている。ところが微生物(細菌、真菌、ウイ
ルス、クラミジア)抗原検出検査に利用されることはほ
ぼ無い。最近になって,病原性大腸菌O−157の用手
的免疫学的検出法が市販され,保険収載も初めて決定さ
れた現状にある。これら用手的方法は簡便で迅速である
が,測定感度が10〜10CFU/ml以上(平均
的には10CFU/ml前後)と培地培養法ならびに
遺伝学的測定法に比べて低感度である。現状での免疫学
的微生物検出法の測定感度の限界域は10/ml以上
と認識されている。
2. Description of the Related Art At present, propagation culture methods and specific cell culture methods utilizing various media are basically used for diagnosis of infectious diseases of microorganisms (bacteria, fungi, viruses, chlamydia, etc.). The method is called the standard method (gold standard). Although these culture methods are reliable measurement methods, it takes a long time (number of days) for obtaining results to be said to be a major drawback. Although this temporal problem could not be solved for a long time, a rapid assay method that does not rely on culture has been studied recently, and a typical assay method is a genetic test or an immunological test. Law. Genetic testing method is Polymerase Chai
n Reaction method (PCR method) is a typical measurement method to extract DNA of a microorganism, by amplifying it using a polymerase resistant enzyme in a way that can be detected with high sensitivity, substantially measurement sensitivity is 10 1 - 10 3 CFU (Colon
y forming Unit) / ml. Currently, tuberculosis tests are used mainly in university hospitals and large-scale testing centers, but general hospital facilities and small-scale testing facilities require special measurement equipment and room space to prevent contamination. Properties and the complexity of sample pretreatment. Very few genetic testing methods have been implemented in food microbiology. On the other hand, the immunological test method has already been automated by the serum test department for a wide range of items such as tumor markers, trace hormones, administered drug blood concentrations, and hepatitis virus that can be detected by blood analysis, which has led to the spread of genetic testing. It is much more widespread and is widely used in general laboratories. The immunological test has a major feature in that it is simple and easy to automate as compared with the genetic test. However, it is hardly used for detecting microorganisms (bacteria, fungi, viruses, chlamydia) antigens. Recently, a manual immunological detection method for pathogenic Escherichia coli O-157 has been marketed, and insurance coverage has been determined for the first time. These manual methods are simple and quick, but have a measurement sensitivity of 10 4 to 10 5 CFU / ml or more (on average around 10 5 CFU / ml), which is lower than that of the medium culture method and the genetic measurement method. Low sensitivity. It is recognized that the current limit of the measurement sensitivity of the immunological microorganism detection method is 10 4 / ml or more.

【発明が解決しようとする課題】本発明の目的は,微生
物の感染診断を行うに当り,遺伝学的検査法(PCR
法)に匹敵する高感度な酵素免疫学的微生物検査法を構
築し、その測定法を免疫学的自動機器で実施可能にし、
当測定法実施のために使用する試薬を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a genetic test (PCR) for diagnosing infection of microorganisms.
Method), a highly sensitive enzyme-immunological microbiological test method comparable to that of
An object of the present invention is to provide a reagent used for performing the measurement method.

【課題を解決するための手段】従来からの微生物抗原免
疫学的検出法はマイクロプレートのウエル内壁やセルロ
ース繊維内などに,まず検出したい微生物に対する特異
抗体を安定に固着させて、試料中に含まれる雑多な微生
物菌群から目的とする微生物だけを抗体に選択的に結合
させ、他の微生物と分別する手法を採用している。この
手段は目的菌の捕捉を抗体の特異性により達成できる
が、捕捉させた微生物を検出させる手段には酵素あるい
は金コロイド物質を標識させた第二次抗体を使用し、そ
れのターゲットは第一抗体で捕捉した目的微生物そのも
のに結合させる方法を採用するしかない。換言すれば従
来からの免疫学的微生物検出法は試験管壁などに安定に
固着させた第一抗体+微生物+標識第二抗体(微生物を
ターゲット)の順に検査を進めるしかないため、結果と
して微生物細胞を中間に位置させてのサンドイッチ検出
法と言える。このサンドイッチ測定手段は第一次抗体お
よび標識第二抗体も微生物表面の抗原部にしか結合出来
ない。微生物は人血中タンパク物質に比べ非常に大きな
物体であるが、細菌群の菌種が極めて多いため、交差反
応を防ぐ必要があり、微生物そのものに結合できる菌種
独特の抗原基は以外と少ない。その結果、従来からの免
疫学的微生物検出法は雑多な微生物群が混在する試料か
ら目的微生物を選択分別する方法ばかりを採用してきた
ため、その測定感度が従来からの培養法ならびに遺伝学
的検査のPCR法に比べ低感度であったと考える。本発
明はこの問題点を打破すべく,新規に考案した反応容器
に微生物(特に細菌あるいは真菌類の場合:ウイルス、
クラミジアは通過する)を含有すると疑われる試料を滴
下することで,強制吸引すること無く,自然な吸収力で
試料中の溶液を下層に吸収させ、微生物を固相マトリッ
クス上に漏れなく捕捉する工程。捕捉後,目的の微生物
と結合反応する抗体(モノクローナル抗体が特異性の点
で好ましい)を滴下し吸引すること無く微生物に抗体を
結合させる工程。未結合の一次抗体を洗浄除去する工程
(B/F分離)。次に微生物にでは無く、微生物に結合
した一次抗体をターゲットとする酵素標識抗体(結合力
の強さの点でポリクローナル抗体が好ましい)を更に固
相マトリックスに滴下する工程。酵素標識抗体液を吸引
すること無く、固相マトリックス表面上で微生物抗原と
一次抗体と一次抗体を抗原にした酵素標識二次抗体との
結合物を作製させる工程。未結合の標識二次抗体は下層
吸収層に洗浄除去(B/F分離)させる工程。固相マト
リックス上に残る微生物二種抗体結合物に酵素の基質を
滴下し生成物を産生させる工程。以上の工程から成るサ
ンドイッチ法(二種抗体によるTwo step法から
なる)での微生物の検出または定量方法に関するもので
ある。一方、一次抗体そのものに酵素標識させたものを
使用することも可能である。一次抗体に酵素が標識され
た商品はポリクローナル抗体のものが多い。逆に品数の
多い菌種特異的なモノクローナル抗体は酵素標識させた
製品が少ないため、使用者が酵素標識させる場合が多く
なり、酵素標識度合いに注意しなければならない。この
第一次酵素標識抗体による Onestep法は手技的
に簡便となるが、現行の免疫学的微生物検査法と同等感
度である。実際、検出しようとする目的微生物は試料中
に含まれているか否かは試験前には判らないばかりか、
含まれている場合も極く少量か極めて多量かも判らな
い。免疫学的検出法で最も困惑する問題点で、いわゆる
抗原抗体最適比率での反応検出が難しく、プロゾーン現
象が起こりやすい。この抗原抗体最適比を幅広くカバー
するため、第一次抗体を酵素標識して目的微生物に直接
結合させる測定法(ポリクローナル抗体のものが多い)
は測定感度が低いが結合力は強く、目的微生物が多量に
存在する場合には打って付けである。一方、目的微生物
が少量しか存在しない場合は第二次反応が的確で高測定
感度であるが多量に存在する場合はプロゾーン現象が出
やすい傾向がある。よって双方の特徴を生かし、第一次
抗体に酵素非標識のものと、酵素標識のものを混和させ
て検査試験に供せば、試料中に目的菌が少量の含まれる
場合も多量に含まれる場合も偽陰性が出なく、菌数に比
例した酵素反応呈色が得られ易い。
Means for Solving the Problems In the conventional method for detecting a microorganism antigen immunologically, first, a specific antibody for a microorganism to be detected is stably fixed on the inner wall of a well of a microplate or in a cellulose fiber and is contained in a sample. The method employs a method of selectively binding only the desired microorganism from the various microbial microorganism groups to the antibody and separating the antibody from other microorganisms. Although this means can capture the target bacterium by the specificity of the antibody, a secondary antibody labeled with an enzyme or a colloidal gold substance is used as a means for detecting the captured microorganism, and its target is the first. The only option is to employ a method of binding to the target microorganism itself captured by the antibody. In other words, the conventional immunological microorganism detection method has no choice but to proceed in the order of the first antibody + microorganism + labeled second antibody (microorganism target) stably fixed to the test tube wall etc. It can be said that this is a sandwich detection method in which cells are positioned in the middle. This sandwich measurement means can bind the primary antibody and the labeled secondary antibody only to the antigen portion on the surface of the microorganism. Microorganisms are very large objects compared to protein substances in human blood.However, because there are so many bacterial species, it is necessary to prevent cross-reactivity, and there are only a few unique antigen groups that can bind to the microorganisms themselves. . As a result, the conventional immunological microorganism detection method has only adopted the method of selecting and separating the target microorganism from a sample in which various microbial groups are mixed, and the measurement sensitivity is lower than that of the conventional culture method and genetic test. It is considered that the sensitivity was lower than that of the PCR method. In order to overcome this problem, the present invention provides a newly designed reaction vessel with microorganisms (especially in the case of bacteria or fungi: viruses,
Chlamydia is passed through) by dropping a sample suspected of containing, without forced aspiration, the solution in the sample is absorbed into the lower layer by natural absorption, and the microorganisms are captured on the solid phase matrix without leakage. . After the capture, a step of dropping an antibody (a monoclonal antibody is preferable in terms of specificity) that reacts with the target microorganism and binding the antibody to the microorganism without aspiration. Washing and removing unbound primary antibody (B / F separation); Next, a step of further dropping an enzyme-labeled antibody (preferably a polyclonal antibody in terms of binding strength) targeting the primary antibody bound to the microorganism, not to the microorganism, to the solid phase matrix. A step of preparing a conjugate of a microbial antigen, a primary antibody, and an enzyme-labeled secondary antibody having the primary antibody as an antigen on the surface of the solid phase matrix without aspirating the enzyme-labeled antibody solution. A step of washing and removing (B / F separation) the unbound labeled secondary antibody in the lower absorbent layer. A step of dropping an enzyme substrate onto the microorganism-two-body antibody conjugate remaining on the solid phase matrix to produce a product. The present invention relates to a method for detecting or quantifying a microorganism by a sandwich method (comprising a two step method using two kinds of antibodies) comprising the above steps. On the other hand, it is also possible to use the primary antibody itself which is labeled with an enzyme. Many products in which the primary antibody is labeled with an enzyme are polyclonal antibodies. Conversely, bacterial species-specific monoclonal antibodies with a large number of products have a small number of enzyme-labeled products, so that users often use enzyme labeling, and the degree of enzyme labeling must be carefully monitored. The Onestep method using the primary enzyme-labeled antibody is technically simple, but has the same sensitivity as the current immunological microbiological test method. In fact, it is not known before the test whether the target microorganism to be detected is contained in the sample,
Even if it is included, it is not known whether it is very small or very large. The most confusing problem in immunological detection methods is that it is difficult to detect a reaction at a so-called optimal antigen-antibody ratio, and the prozone phenomenon is likely to occur. In order to cover a wide range of the optimal antigen-antibody ratio, a measurement method in which the primary antibody is enzymatically labeled and directly bound to the target microorganism (mostly polyclonal antibodies)
Is low in measurement sensitivity but strong in binding force, and is particularly important when a large amount of the target microorganism is present. On the other hand, when the target microorganism is present in a small amount, the secondary reaction is accurate and has high measurement sensitivity, but when the target microorganism is present in a large amount, the prozone phenomenon tends to occur easily. Therefore, taking advantage of both characteristics, if the primary antibody is mixed with an enzyme-unlabeled one and an enzyme-labeled one and subjected to an inspection test, the sample will contain a large amount even if the target bacterium is contained in a small amount. In this case, false negatives are not produced, and coloration of the enzyme reaction in proportion to the number of bacteria is easily obtained.

【発明の実施の概略】固相マトリックス表面上に微生物
を捕捉させる方法としては、生体試料を直接または必要
に応じて処理した生体試料を支持体上に添加するだけで
よい。固相マトリックスの孔径としては、微生物が通過
出来ない孔径であることが必要である。微生物試料が細
菌の場合は、例えば0.5μm以下の孔径が好ましく、
真菌の場合には5.0μm以下の孔径が好ましい。より
具体的には、細菌検査では0.22μmまたは0.45
μmの孔径が特に好ましく、真菌の場合は0.80μm
の孔径が特に好ましい。この一定孔のマトリックスでは
自然濾過捕捉できない、ウイルスやクラミジア及び微生
物が産生する物質(特に毒素類)の検出の場合は孔径は
厳密に規定する必要は無く、毒素に対する抗体が安定に
繊維に結合した状態を供給できれば良い。それには、ガ
ラス繊維あるいはセルロース繊維性の緻密なフィルター
でも良いし、一定孔を有するイモビロンフィルター(抗
体を安定に固着しやすいとされる:ミリポア社)でも良
い。当然、試料の滴下量を増加させれば、検出感度は滴
下量に比例して増加させることが出来る。本発明の具体
的操作法は微生物が固相マトリックスに濾過集積された
後、必要に応じて固相マトリックスに残存した試料溶液
を洗浄液で洗浄する。次いで固相マトリックス上の微生
物に検出目的とする特異的な抗体を滴下し、微生物と抗
体との反応を行わせる。抗体は、目的に応じて、特定の
微生物に対する抗体(例えば病原性大腸菌O−157や
サルモネラ、結核菌など)を使用する場合が多い。しか
し本発明においては全細菌種に共通な抗原となる細菌細
胞壁主成分のペプチドグリカンに反応する抗体やグラム
陽性菌だけが有するリポティコ酸に対する抗体を用いて
もよい。また特定試料(例えば下利便を検査する場合は
サルモネラとかO−157とかビブリオなどが検出され
ることが多いため)で特定の菌種を絞って検索したい場
合では、意義のある複数菌種に特異的な抗体を混合して
用いて、試料中に確当菌種が存在するか否かのスクリー
ニング検査の実施も測定可能である柔軟性を持つ。以上
の免疫学的微生物検査で固相マトリックス上に捕捉残存
させた酵素標識抗体結合微生物に対して酵素反応に必要
な物質を滴下させ酵素反応を行わせ、最終的に生成物を
産成させて測定するのであるが、その量を検出または定
量するに対し、目的とする微生物の定量は予め一定量の
抗原を用いた場合の反応量を示す検量線を作成し、これ
を用いることにより定量を行う。
DETAILED DESCRIPTION OF THE INVENTION As a method for capturing microorganisms on the surface of a solid phase matrix, it is only necessary to add a biological sample, which is obtained by treating a biological sample directly or as required, onto a support. The pore size of the solid phase matrix needs to be a pore size through which microorganisms cannot pass. When the microorganism sample is a bacterium, for example, a pore size of 0.5 μm or less is preferable,
In the case of fungi, a pore size of 5.0 μm or less is preferred. More specifically, 0.22 μm or 0.45 μm for bacterial testing
Particularly preferred is a pore size of 0.8 μm for fungi.
Is particularly preferred. In the case of detecting substances produced by viruses, chlamydia and microorganisms (especially toxins) which cannot be captured by natural filtration with this fixed pore matrix, the pore size does not need to be strictly defined, and antibodies against the toxin stably bound to the fiber. It suffices if the state can be supplied. For this purpose, a dense filter made of glass fiber or cellulose fiber may be used, or an immobilon filter having a fixed pore (it is said that antibodies are easily stably fixed: Millipore) may be used. Naturally, if the drop amount of the sample is increased, the detection sensitivity can be increased in proportion to the drop amount. According to a specific operation method of the present invention, after the microorganisms are filtered and accumulated on the solid phase matrix, the sample solution remaining on the solid phase matrix is washed with a washing solution, if necessary. Next, a specific antibody to be detected is dropped onto the microorganism on the solid phase matrix, and the microorganism is reacted with the antibody. As the antibody, an antibody against a specific microorganism (for example, pathogenic Escherichia coli O-157, Salmonella, Mycobacterium tuberculosis, etc.) is often used depending on the purpose. However, in the present invention, an antibody that reacts with peptidoglycan, which is a main component of the bacterial cell wall, which serves as an antigen common to all bacterial species, or an antibody against lipotic acid that only Gram-positive bacteria have may be used. In addition, if you want to narrow down the search for a specific sample in a specific sample (for example, Salmonella, O-157, Vibrio, etc. are often detected when examining convenience), it is necessary to identify specific multiple bacterial species. By using a mixture of specific antibodies, it is possible to measure whether a screening test is performed to determine whether or not a certain bacterial species is present in a sample. The enzyme-labeled antibody-bound microorganisms captured and left on the solid-phase matrix in the above immunological microbiological test are allowed to drop the substance necessary for the enzymatic reaction to allow the enzymatic reaction to proceed, and finally produce the product. The amount of the target microorganism is detected or quantified.On the other hand, for the quantification of the target microorganism, a calibration curve showing the reaction amount when a certain amount of antigen is used is created in advance, and the quantification is performed by using this. Do.

【発明の柔軟性の例示】微生物を対象とした免疫学的検
査検査は特定菌種を検出する測定法しか無かった。この
方法のみでは微生物の存在が疑われる試料では何の菌種
かが判らないないため、結果が陽性になるまで、各種の
抗体をエンドレスに使用しつずけることになる。この点
はPCR法でも同様で、特定菌種に対するプローブをエ
ンドレスに使用しつずければならない。しかし命回の測
定法では、例えば髄膜炎は小児に致死的な感染症である
が、細菌性かウイルス性か他の要因による炎症なのかの
判断は極めて重要であり、一刻を競う。第一に髄液中に
細菌が存在するか否かが必要で(PCR法では全細菌に
共通となるプローブが今のところ無い)あり、次にグラ
ム陽性菌かどうかPCR法ではグラム陽性菌共通のプロ
ーブが今のところ無い)が判明すれば、髄液から度々検
出されるグラム陽性菌、肺炎双球菌もしくはB群連鎖球
菌、ブドウ球菌、リステリア菌の4菌種程に絞れた検査
で済む。そして菌名が迅速に判明すれば、投与する抗生
物質も盲目的な使用では無く、かなり限局できた治療が
可能となるが、この様な判断が出来る免疫学的微生物検
査法はかつて無かった。本発明では全細菌種に共通に存
在する細菌細胞壁構成主成分のペプチドグリカンに対す
るモノクローナル抗体が利用でき、細菌の存在を数個/
ml〜数十個/ml感度で検出できる。そしてグラム陽
性菌の細胞壁にのみ存在するリポティコ酸に対するモノ
クローナル抗体でグラム陽性菌を区別でき、4菌種に対
するモノクローナル抗体も簡単に入手可能で、その結
果、菌種の決定も可能となる。ペプチドグリカンおよび
リポティコ酸に対して人体成分にはN−アセティルグル
クトサミン(NAG)、チチン体(polymer o
f NAG、NAG oligomers)などの類似
物質も存在するが、本方法は固相マトリックスではNA
G系物質は通過し、下層の吸収層に移行するため、偽反
応を回避できる特色を有する。次の事例であるが、激し
い腹痛を伴った食中毒を疑う下痢便が検査試料の場合、
現時点での免疫学的微生物検査法は対象菌種として、病
原性大腸菌O−157検出キットしか無い。下痢を伴う
ものはO−157だけではなく、サルモネラ、ビブリ
オ、キャンピロバクターなどが主たる細菌性原因菌であ
る。本発明はO−157の検査と同時進行で前処理した
同じサンプルで並行、同時進行で免疫学的微生物検査が
実施可能である。
Exemplification of the flexibility of the present invention An immunological test for a microorganism has been limited to an assay for detecting a specific bacterial species. With this method alone, it is not possible to know the species of the sample in which the presence of the microorganism is suspected, so that various antibodies are used endlessly until the result becomes positive. This is the same in the PCR method, and it is necessary to continuously use a probe for a specific strain endlessly. However, in the measurement of life cycle, for example, meningitis is a fatal infection in children, but it is extremely important to judge whether it is bacterial, viral, or other inflammation. First, it is necessary to determine whether bacteria are present in the cerebrospinal fluid (there is no probe that is common to all bacteria in the PCR method at present). If there is no probe at this time), the test can be narrowed down to about 4 species of Gram-positive bacteria, Streptococcus pneumoniae or Streptococcus group B, Staphylococcus, and Listeria which are frequently detected from cerebrospinal fluid. If the name of the bacterium is quickly found out, the antibiotic to be administered is not blindly used, and a rather localized treatment can be performed. However, there has never been an immunological microbiological test method capable of making such a judgment. In the present invention, a monoclonal antibody against peptidoglycan, which is a main component of the bacterial cell wall, commonly present in all bacterial species can be used, and the presence of several bacteria /
It can be detected with a sensitivity of ml to several tens / ml. Gram-positive bacteria can be distinguished by a monoclonal antibody against lipotic acid present only in the cell wall of the gram-positive bacteria, and monoclonal antibodies against four bacterial species can be easily obtained. As a result, the bacterial species can be determined. For peptidoglycan and lipoticoic acid, human body components include N-acetyl gluctosamine (NAG) and titin body (polymer o).
fNAG, NAG oligomers) and the like exist, but the method involves the use of NA
Since the G-based substance passes through and moves to the lower absorption layer, it has a characteristic that a false reaction can be avoided. In the following example, if the test sample is diarrhea stool suspected of food poisoning with severe abdominal pain,
At present, the only immunological microbiological test method is a kit for detecting pathogenic Escherichia coli O-157 as a target bacterial species. Those with diarrhea are not only O-157, but also Salmonella, Vibrio, Campylobacter and the like are the main bacterial causative bacteria. In the present invention, immunological microbiological tests can be performed in parallel and simultaneously with the same sample pretreated in parallel with the test of O-157.

【発明の実施の詳細:試料の前処理】本発明で用いる試
料としては微生物を含有すると疑われる試料であり、医
学分野では各種感染症患者から採取した生体試料があげ
られる。たとえば血液、尿、喀痰、髄液、大便、膿など
があげられる。一方、食品生産分野では食肉、卵、野
菜、ミルクなどの原材料や種々の加工品があげられる。
固相マトリックスの一定孔はμm単位と極めて小さい孔
径であるため、目詰まりし易い欠点がある。例えば、結
核菌を検査する場合、最も多い試料は喀痰であるが、喀
痰は粘液が多くて粘調度が高く肺炎では膿球も多い。し
かも挟雑物質も雑多であるので喀痰の前処理は必須とな
る。遺伝学的検査法の場合は本発明よりも数段煩雑な前
処理が必要で、かつ菌体を破壊して菌体内の核酸を抽出
しなければ検査は始まらないが、免疫学的検査法では簡
易な前処理でよく、核酸の抽出も必要ない。要は均等な
菌浮遊液を作成し、菌表面の抗原部位が抗体と結合しや
すい様に処理されることだけがポイントとなる。具体的
には喀痰を綿棒で綿球部分一杯に採取し、ガラスビーズ
1〜2個を入れた希釈液2.0ml添加した試験管に投
入し、ボルテックスミキサーで激しく混和し、希釈液の
回転力とガラスビーズの回転で物理的に喀痰を均一化さ
せる。綿棒から試料を絞り出した後、2500回転、3
分間遠心して喀痰残査を試験管管底に、上清を5.0μ
m孔径のオムニポアメンブラン(ミリポア社製)と綿球
をピペットチップ2個を連結させて改良作製させた前処
理容器(図.2)で濾過させたものをサンプルとする。
所要時間は約5分程ですむ。また尿が試料の場合、浴場
やプール水と同様、一定菌量の存在の有無がカットオフ
値として定義されている。尿の場合は10/mlとさ
れるため、尿を希釈液で500倍に希釈したサンプルを
20μl量を使う。次に糞便が試料の場合、喀痰の場合
と同様に、有形便から軟便、下利便、粘血便など試料性
状に著しい差異があるため、材料から一定量を採取する
ため、喀痰の場合と同様に綿棒で採取する。綿棒綿球部
に満遍無く便試料をしみ込ませる。この綿棒を1.5m
lの希釈液とクロロホルム0.025ml入りの試験管
に投入し、ボルテックスミキサーで激しく混和した後、
綿棒を試験管管壁でしごき、均等な便浮遊液を作成す
る。それを2500回転、3分間遠心すると便中の脂肪
タンパク成分はクロロホルムに移行し、試験管管底にス
ポット状に沈殿する。沈殿上清は透明度を増し、かつ細
菌類は上清中で均等に浮遊している。これを結核菌の場
合と同様、綿球ならびに5.0μm孔径のオムニポアメ
ンブランを連結させた前処理容器(図.2)で濾過させ
たものをサンプルとして使用する。
DETAILED DESCRIPTION OF THE INVENTION Pretreatment of Sample The sample used in the present invention is a sample suspected of containing microorganisms, and in the medical field, includes biological samples collected from various infectious disease patients. Examples include blood, urine, sputum, cerebrospinal fluid, stool, and pus. On the other hand, in the field of food production, there are raw materials such as meat, eggs, vegetables, and milk, and various processed products.
Since the fixed pores of the solid phase matrix have a very small pore size of the order of μm, they have a disadvantage that they are easily clogged. For example, when testing for Mycobacterium tuberculosis, the most common sample is sputum, but sputum has a large amount of mucus and a high degree of viscosity, and pneumonia often has a large number of purulent cells. Moreover, since the interstitial substances are also various, pretreatment of sputum is indispensable. In the case of a genetic test method, several steps more complicated pretreatment than in the present invention are required, and the test does not start unless the cells are destroyed and the nucleic acid in the cells is extracted. Simple pretreatment is sufficient, and no nucleic acid extraction is required. The only point is that a uniform bacterial suspension is prepared and the antigen site on the bacterial surface is treated so that it can easily bind to the antibody. Specifically, the sputum was collected with a cotton swab to fill a cotton ball portion, put into a test tube containing 2.0 ml of a diluent containing one or two glass beads, and mixed vigorously with a vortex mixer. And the sputum is physically homogenized by rotating glass beads. After squeezing the sample from the swab, 2500 rotations, 3
After centrifugation for 5 minutes, put the sputum residue on
A sample obtained by filtering an omnipore membrane (millipore) having an m-pore diameter and a cotton ball through a pretreatment container (FIG. 2) improved by connecting two pipette tips to each other is used as a sample.
The time required is about 5 minutes. When urine is a sample, the presence or absence of a certain amount of bacteria is defined as a cutoff value, as in the case of a bath or pool water. In the case of urine, the concentration is 10 5 / ml, so use a 20 μl sample of urine diluted 500 times with a diluent. Next, when feces is a sample, as in the case of sputum, there is a marked difference in sample properties such as stool, loose stool, nausea, and mucous stool, as in the case of sputum. Collect with a cotton swab. The stool sample is soaked evenly in the swab swab. 1.5m of this swab
l into a test tube containing 0.025 ml of chloroform and mixed vigorously with a vortex mixer.
Iron the swab with the test tube wall to create an even stool suspension. When it is centrifuged at 2,500 rpm for 3 minutes, the fat protein component in the stool is transferred to chloroform and precipitates in the form of a spot on the bottom of the test tube. The sedimentation supernatant becomes more transparent and the bacteria are evenly suspended in the supernatant. As in the case of Mycobacterium tuberculosis, a sample that has been filtered through a pretreatment container (FIG. 2) to which a cotton ball and an omnipore membrane having a pore size of 5.0 μm are connected is used as a sample.

【発明の実施の詳細:反応容器】本発明で用いる固相マ
トリックスは,緻密な繊維材又は多孔質材から構成され
る。繊維材又は多孔質材を構成する物質としては,ガラ
ス,石英,セラミック,紙及びナイロン,ポリスチレ
ン,ニトロセルロース,セルロース混合エステル,セル
ロースアセテート,ポリビニリデンジフロライド,ポリ
テトラフルオロエチレン,ポリカーボネート等の樹脂が
あげられ,ろ紙,ガラス繊維ろ紙,セルロースろ紙,セ
ルロース混合エステルろ紙,セルロースアセテートろ
紙,親水性ポリビニリデンジフロライドろ紙,疎水性ポ
リビニリデンジフロライドろ紙,親水性ポリテトラフル
オロエチレンろ紙,ポリカーボネートろ紙等が好まし
い。本発明では一定の孔径をもつ固相支持体が好まし
い。孔径としては0.1〜5.0μm,好ましくは0.
2〜1.0μmである。具体的な固相支持体としては,
細菌類には孔径0.22μm又は0.45μmのメンブ
ランフィルターがあげられる。一方,真菌類には孔径
0.80μmのメンブランフィルターがあげられる。こ
のメンブランフィルターは市販されているものが用いう
る。特に好ましいメンブランフィルターとしては細菌,
真菌などの微生物を集積付着させるものとしてADVA
NTEC東洋社のセルロース混合エステル性メンブラ
ン,セルロースアセテート性メンブラン,ポリカーボネ
ート性メンブラン,ミリポア社のセルロース混合エステ
ル性メンブラン,親水性ポリビニリデンジフロライド性
メンブラン,親水性ポリテトラフルオロエチレン性メン
ブラン,ポリカーボネート性メンブランがあげられる。
一方,細菌,真菌などが産生する毒素の検出又は定量用
として抗体をフィルター繊維に安定固定させておくのに
好ましい多孔性フィルターは前記の各種メンブランフィ
ルター類に加え,ミリポア社のイモビロンPフィルタ
ー、及びTOYOBO社のガラス繊維性フィルター,セ
ルロース繊維性フィルター等があげられる。溶液吸収手
段は、検出または定量操作中に、試験装置内へ流入する
液を吸収するのに十分な吸収力を有する細孔性材料とし
ては、例えば吸収性セルロース紙、ガラス繊維紙等があ
げられる。反応容器の形状は一定の孔径を有する多孔性
のマトリックスおよび固相マトリックスの下層に溶液吸
収手段を備えているものであれば特に限定されないが、
例えば円筒状および円形状のもので多層に使えるものが
あげられる。(容器構成の詳細は図.1に)
Detailed Description of the Invention: Reaction vessel The solid phase matrix used in the present invention is composed of a dense fiber material or a porous material. Materials constituting the fiber material or the porous material include glass, quartz, ceramic, paper, and resins such as nylon, polystyrene, nitrocellulose, cellulose mixed ester, cellulose acetate, polyvinylidene difluoride, polytetrafluoroethylene, and polycarbonate. Filter paper, glass fiber filter paper, cellulose filter paper, cellulose mixed ester filter paper, cellulose acetate filter paper, hydrophilic polyvinylidene difluoride filter paper, hydrophobic polyvinylidene difluoride filter paper, hydrophilic polytetrafluoroethylene filter paper, polycarbonate filter paper Are preferred. In the present invention, a solid support having a fixed pore size is preferred. The pore size is 0.1 to 5.0 μm, preferably 0.1 to 5.0 μm.
2 to 1.0 μm. As a specific solid support,
Bacteria include membrane filters with a pore size of 0.22 μm or 0.45 μm. On the other hand, fungi include membrane filters having a pore size of 0.80 μm. As this membrane filter, a commercially available one can be used. Particularly preferred membrane filters include bacteria,
ADVA for accumulating and attaching microorganisms such as fungi
NTTEC Toyo's cellulose mixed ester membrane, cellulose acetate membrane, polycarbonate membrane, Millipore's cellulose mixed ester membrane, hydrophilic polyvinylidene difluoride membrane, hydrophilic polytetrafluoroethylene membrane, polycarbonate membrane Is raised.
On the other hand, in order to detect or quantify toxins produced by bacteria, fungi, etc., preferred porous filters for stably fixing antibodies to filter fibers are the above-mentioned various membrane filters, Immobilon P filter manufactured by Millipore, and Examples include a glass fiber filter and a cellulose fiber filter manufactured by TOYOBO. The solution absorbing means includes, as a porous material having a sufficient absorbing power to absorb the liquid flowing into the test apparatus during the detection or quantitative operation, for example, absorbent cellulose paper, glass fiber paper, and the like. . The shape of the reaction vessel is not particularly limited as long as it has a solution absorption means in a lower layer of a porous matrix having a certain pore size and a solid phase matrix,
For example, there can be mentioned those having a cylindrical shape and a circular shape which can be used in multiple layers. (Details of the container configuration are shown in Fig. 1.)

【発明の実施の詳細:希釈液、洗浄液】モノクローナル
抗体は単一の抗原基としか反応しないので、きわめて特
異性が高く、交差反応がほとんど無い。しかし可溶性抗
原や細胞性抗原を沈降させたり凝集させる能力は一般的
に弱く、多種の抗体基が含まれるポリクローナル抗体の
ほうが結合能力は圧倒的に強い。そして細菌などの微生
物そのものをターゲットにした場合、微生物側の表面構
造(グラム陰性桿菌は最外膜は粘液状物質に覆われる)
も考慮しなくてはならない。これらが複雑な要因として
免疫学的微生物検査法の前に立ちはだかるため、現時点
でもポリクローナル抗体を使用した試薬あるいはキット
しか市販されていない。モノクローナル抗体は純培養さ
れた特定細菌のみを浮遊させた純系列においても、一般
的に頻用されるリン酸緩衝液やトリス緩衝液を試料の希
釈液に用いても特定細菌とは簡単に結合しない。ところ
がポリクローナル抗体では強い結合反応が起こる。モノ
クローナル抗体が微生物抗原に対し、適切に結合を完了
するには測定条件として最適なPH、イオン強度、反応
容量によって著しい影響を受けるが、反応液(希釈液)
に一定量のタンパク質を添加する工夫が必要があった。
その添加タンパク質にはウシ血清アルブミン、ウシ胎児
血清、新生コウシ血清、ヤギ血清、ウサギ血清、ウマ血
清、ブタ血清、ニワトリ血清を添加させて検討した結
果、ウシ血清アルブミンの添加は抗原抗体反応の明瞭化
が少し改善された。その添加量は30%の製品で、Bu
ffer1L当たり、0.05〜2.5ml(最適量は
0.2ml)でよい。しかし最も顕著な改善が現れたタ
ンパク物質はモノクローナル抗体を産生するマウス血清
の添加であった。マウス血清の添加は特定菌種、結核菌
やサルモネラ、病原性大腸菌O−157の同定にも良好
であるが、全菌種に共通な細菌細胞壁に対する抗ペプチ
ドグリカン・モノクローナル抗体ではウシ血清アルブミ
ン添加では抗原抗体結合がうまく出ないが、マウス血清
では明瞭な反応が得られることが判明した。その原因は
緩衝液だけだと細菌細胞表面がカルボキシル基によって
電化的にマイナス荷電しているが、リン酸やトリス緩衝
生理食塩水中に浮遊させると生理食塩水のNaClは解
離してNa+とCl−に分かれ、細菌表面のマイナス荷
電がNa+を引っ張り、終局的にプラス+荷電で菌細胞
表面が覆われているためである。一方、抗体タンパクも
同様にブラス+荷電しているため、細菌表面の抗原部と
抗体結合部位は電気的に反発し、結合し難い状態にな
る。ポリクローナル抗体はこの荷電状況を打ち破る結合
力を有するが、モノクローナル抗体は動物タンパクを添
加して、荷電+力を弱めなければ結合出来ない程、結合
力が弱いものと推察する。動物種は数多くあるが、なか
でもマウス血清が最も荷電状態を低く出来るためと考え
られる。マウス血清のの添加量は微量で良く、その添加
量は0.01〜1.0MolトリスNaCl緩衝液ある
いは0.01〜1.0Molリン酸NaCl緩衝液1.
0Lに対し、純培養菌での浮遊液に使用する場合ならば
0.1mg/1L〜1000mg/1Lに対し、1.0
mg〜1000mg/dl(最適量は5.0mg〜10
0mg/dl)であった。ただしマウス血清はモノクロ
ーナル抗体と同じ動物由来のため、その添加量はブラン
ク値に影響するため厳重な注意が必要である。一方、洗
浄液の組成は抗原抗体結合物に影響が無く、固相マトリ
ックスの呈色ブランク値が低くなるものを選択しなけれ
ばならない。洗浄液に含まれる塩類は少ないほうが洗浄
効果は強い。よって検討の結果、0.01Molリン酸
緩衝液あるいは0.01Molトリス緩衝液(ともにN
aClは除外)1.0Lに対し界面活性剤Tween8
0を1.0ml〜10.0ml(最適量は2.0〜6.
0ml)、22%アルキルエーテル硫酸エステルナトリ
ウム含有(ファミリー:花王)5.0ml〜600ml
(最適量は50〜300ml)の添加のものがバックグ
ラウンドの色付きも低く、マウス血清添加の影響も低く
できた。
Detailed Description of the Invention: Diluent, Washing Solution Since monoclonal antibodies react only with a single antigen group, they have extremely high specificity and little cross-reactivity. However, the ability to precipitate or aggregate soluble antigens and cellular antigens is generally weak, and the binding ability of polyclonal antibodies containing various antibody groups is overwhelmingly stronger. And when targeting microorganisms such as bacteria, the surface structure on the microorganism side (the outermost membrane of Gram-negative bacilli is covered with a mucous substance)
Must also be considered. At present, only reagents or kits using polyclonal antibodies are commercially available because these stand out before the immunological microbiological test as a complicated factor. Monoclonal antibodies do not easily bind to specific bacteria even in a pure series in which only pure cultures of specific bacteria are suspended, or when a commonly used phosphate buffer or Tris buffer is used as a sample diluent. . However, a strong binding reaction occurs with polyclonal antibodies. In order for the monoclonal antibody to properly bind to the microbial antigen, the optimal pH, ionic strength, and reaction volume are significantly affected as measurement conditions.
It was necessary to devise a method of adding a certain amount of protein to the mixture.
As a result of adding bovine serum albumin, fetal bovine serum, newborn calf serum, goat serum, rabbit serum, horse serum, pig serum, and chicken serum to the added protein, the addition of bovine serum albumin showed a clear antigen-antibody reaction. Has been slightly improved. The addition amount is 30% product, Bu
The amount may be 0.05 to 2.5 ml (the optimal amount is 0.2 ml) per liter of ffer. However, the protein substance that showed the most significant improvement was the addition of mouse serum producing monoclonal antibodies. The addition of mouse serum is good for the identification of specific strains, Mycobacterium tuberculosis, Salmonella, and pathogenic Escherichia coli O-157. Although antibody binding was not successful, it was found that a clear reaction was obtained with mouse serum. The cause is that the bacterial cell surface is electrically negatively charged by the carboxyl group when the buffer alone is used, but when suspended in phosphoric acid or Tris buffered saline, the NaCl in the saline is dissociated and Na + and Cl− This is because the minus charge on the bacterial surface pulls Na +, and the bacterial cell surface is eventually covered with plus + charge. On the other hand, since the antibody protein is similarly brass + charged, the antigen portion on the bacterial surface and the antibody binding site are electrically repelled and are hardly bound. Although polyclonal antibodies have binding ability to overcome this charge situation, monoclonal antibodies are presumed to be weak enough to bind unless animal proteins are added and the charge + power is reduced. Although there are many animal species, it is considered that mouse serum can minimize the charge state among them. The amount of mouse serum to be added may be very small. The amount of addition may be 0.01 to 1.0 Mol Tris NaCl buffer or 0.01 to 1.0 Mol NaCl phosphate buffer.
0 L, 0.1 mg / 1 L to 1000 mg / 1 L if used for suspension of pure culture bacteria, 1.0 mg / L
mg to 1000 mg / dl (the optimal amount is 5.0 mg to 10 mg / dl).
0 mg / dl). However, since mouse serum is derived from the same animal as the monoclonal antibody, strict attention is required since the amount of addition affects the blank value. On the other hand, the composition of the washing solution has no influence on the antigen-antibody binding substance, and a solid color matrix having a low color blank value must be selected. The less salt contained in the washing solution, the stronger the washing effect. Therefore, as a result of the examination, a 0.01 Mol phosphate buffer or a 0.01 Mol Tris buffer (both of N
aCl is excluded) Surfactant Tween 8 for 1.0 L
0 to 1.0 ml to 10.0 ml (the optimal amount is 2.0 to 6.0 ml).
0 ml), containing 22% sodium alkyl ether sulfate (Family: Kao) 5.0 ml to 600 ml
(The optimal amount was 50 to 300 ml), the background coloring was low and the effect of mouse serum addition was low.

【発明の実施の詳細:第一次抗体】微生物(細菌類,真
菌類、クラミジア、リケッチャ、ウイルス)に対する特
異的な抗体,ならびに微生物が産生する多くの毒素に対
する抗体は実に多数類のものが国内はもとより,世界中
のメーカー(例として,アメリカのケミコン社,イタリ
アのバイオライン社,アメリカのバアイロスタット社,
イギリスのバイオジエネシス社,その他等)で開発精製
され,市販されている。これらの多種類の市販抗体が本
発明に用いうる。特定細菌名の決定に使用される代表的
な抗体を例示すると,ヒト型結核菌(Mycobact
erium tuberculosis)マウスモノク
ローナル抗体(以下,略して抗ヒト型結核菌用とす
る),抗トリ型結核菌(Mycobacterium
avium)用,抗肺炎連鎖球菌(Strptococ
cus pneumoniae)用,抗Strepto
coccus A group用,抗Streptoc
occus B group用,抗Streptoco
ccus D group用,抗虫歯レンサ球菌(St
reptococcus mutans)用,抗黄色ブ
ドウ球菌(Staphylococcus aureu
se)用,抗表皮ブドウ球菌(Staphylococ
cus epidermidis)用,抗大腸菌(Es
herichia coli)用,抗腸管出血性病原性
大腸菌(Echerichia coli O−15
7:H7)用,抗サルモネラ(Salmonella
sp.)用,抗赤痢(Shigella sp.)用,
抗キャンピロバクター(Campylobacter
sp.)用,抗ビブリオ(Vibrio choler
ae,paraheamoliticase)用,抗ク
レブシエラ(Klebsiella sp.)用,抗ブ
ロテウス(Proteus sp.)用,抗レイジョネ
ラ(Legionella pneumophila)
用,抗ヘリコバクター(Hellcobacter p
ylori)用,抗緑膿菌(Pseudomonas
aeruginosa)用,抗ヘモフィリス(Heam
ophilisinflenzae,Heamophi
lis sp.)用,抗パスツレラ菌(Pasteur
ella sp.)用,抗髄膜炎菌(Neisseri
a meningitidis group A,B,
C,X,Y,Z,W,E)用,抗リン菌(Neisse
ria gonorrhea)用,抗リステリア菌(L
isteria sp.)用,抗ボツリヌス菌(Clo
stridium botulium)用,抗ディフィ
シル菌(Clostridium difficil
e)用,その他があげられる。真菌類に対する抗体には
例として抗カンジダ(Candida albican
se Candida tropicalsCandi
da stllatoidea)用が代表にあげられ
る。更に、特定菌種の検索用ではなく、細菌全種に共通
する抗原に対しての抗体も数種類が市販されるが、その
活用も可能で代表的のものに抗細菌細胞壁ペプチドグリ
カン(Bacterial peptidoglyca
n)用、抗グラム陽性細菌細胞壁リポティコ酸(Bac
terial Lipoteichoicacid)用
等があげられる。また大きなグループ別に対応できる抗
体としては腸管内に生息する細菌群別が出来る抗腸内細
菌(Enterobacteriaceaeα,β)用
抗体がある。そして真菌に対する共通抗体しては抗マン
ナン、抗ガラクトマンナン、1−3β−Dグルカンなど
があげられる。一方細菌、真菌類が産生する毒素に対す
る抗体としては黄色ブドウ球菌が産生するエンテロトキ
シンA、B,C,DならびにTSST−1用が、コレラ
菌が産生するエンテロトキシン、病原性大腸菌が産生す
るベロトキシンVT1,VT2、Clostridiu
m difficileが産生するD1トキシン、トキ
シンA、Clostridium perfringe
sが産生するエンテロトキシンなどがあげられる。一
方、ウイルスやクラミジアはもともと培養しにくい菌群
であるため、抗原抗体免疫学的検査法に期待される点が
多大であるため、市販される抗体は細菌種に比較しても
多い。一方、酵素(パーオキシダーゼやアルカリホスフ
ァターゼなど)で標識された第一次抗体も少しながら市
販されるが、代表的なものとして、抗病原性大腸菌(E
sherichia coli)O−157:H7用、
抗サルモネラ用(salmonella sp.),抗
リステリア(Listeria sp.)用,抗キャン
ピロバクター(Campylobacter sp.)
等がある。ただ断然に酵素非標識の抗体のほうが多い。
よって,非標識の抗体しか市販されていない場合はパー
オキシダーゼを標識させたい場合はNAKANE法でも
って標識させる。一方、標識第二次抗体は数多く市販さ
れ、ポリクローナル抗体が多い。ポリクローナル抗体は
数多くの抗原基に結合する能力が強いので、マウス由来
のモノクローナル抗体をターゲットにしても結合できる
エピトープ数が多くて利用価値が高い。最も頻回に利用
するものはパーオキシダーゼ標識抗マウス−ヤギならび
にウサギ免疫抗体であるが、第一次抗体がマウス以外の
他動物の場合はその動物種に対応して、パーオキシダー
ゼ標識抗ウサギ−ヤギ免疫抗体、パーオキシダーゼ標識
抗抗ウサギ−ヒツジ免疫抗体,パーオキシダーゼ標識−
ラット免疫抗体等があげられる。以上の抗体の使用濃度
は入手抗体の濃度や反応結合能力に対応して変化させる
必要があるが、各抗体の使用説明書の指示を大きく逸脱
することは無く、ほとんどの市販抗体は液状のものが凍
結されているが、凍結品を原液とした場合、本発明の固
相マトリックス法では3×〜60×倍に希釈したものを
使用する場合が多い。ただ使用量は第一次抗体も標識第
二次抗体も極微量の2.0μl前後で十分な反応が得ら
れる。
Detailed Description of the Invention: Primary Antibodies: Antibodies specific to microorganisms (bacteria, fungi, chlamydia, rickettsia, viruses), as well as antibodies to many toxins produced by microorganisms, are numerous in Japan. In addition, manufacturers around the world (eg, Chemicon in the United States, Bioline in Italy, Baylostat in the United States,
Biogenesis, UK, etc.), developed and purified, and commercially available. These various types of commercially available antibodies can be used in the present invention. An example of a typical antibody used to determine a specific bacterial name is Mycobacterium tuberculosis (Mycobacter).
erium tuberculosis) mouse monoclonal antibody (hereinafter abbreviated to anti-M. tuberculosis), mycobacterium avian (Mycobacterium)
avium) for Streptococcus pneumoniae
cus pneumoniae), anti-Strepto
anti-Streptoc for coccus A group
Occus B group, anti-Streptoco
For Ccus D group, anti-caries streptococci (St
anti-Staphylococcus aureu for S. reptococcus mutans
se), anti-Staphylococcus
cus epidermidis), anti-E. coli (Es)
Herechia coli, anti-enterohemorrhagic pathogenic Escherichia coli O-15 (Echerichia coli O-15)
7: H7), anti-Salmonella (Salmonella)
sp. ), For anti-dysentery (Shigella sp.),
Anti Campylobacter (Campylobacter)
sp. ), Anti-vibrio (Vibrio choler)
ae, parahemolyticase, anti-Klebsiella sp., anti-Brotheus (Proteus sp.), anti-rayionella (Legionella pneumophila)
For use, anti-Helicobacter p
ylori), anti-Pseudomonas
aeruginosa), anti-haemophilis (Heam)
opilisinflenzae, Heamorphi
lis sp. ), Anti-pasteurella (Pasteur)
ella sp. ), For anti-meningococci (Neisseri)
a meningitidis group A, B,
C, X, Y, Z, W, E), anti-phosphorus bacteria (Neisse)
ria gonorrhea, anti-Listeria monocytogenes (L
isteria sp. ), Anti-botulinum (Clo
Clostridium difficill for Strium botulium
e) and others. Antibodies to fungi include, for example, anti-Candida albican
se Candida tropicals Candi
da stlatoidea). In addition, several types of antibodies against antigens common to all bacterial species are commercially available, not for searching for specific bacterial species, but they can also be used, and typical ones are antibacterial cell wall peptidoglycan (Bacterial peptidoglyca).
n), anti-gram-positive bacterial cell wall lipoticoic acid (Bac
terminal lipoteichoic acid) and the like. Antibodies that can be classified into large groups include antibodies for anti-enterobacteria (Enterobacteriaceae α, β) that can be classified into bacteria that inhabit the intestinal tract. Examples of common antibodies to fungi include anti-mannan, anti-galactomannan, and 1-3β-D glucan. On the other hand, antibodies against toxins produced by bacteria and fungi are for enterotoxins A, B, C, D and TSST-1 produced by Staphylococcus aureus, enterotoxins produced by Vibrio cholerae, and verotoxins VT1 produced by pathogenic Escherichia coli. VT2, Clostridu
D1 toxin, toxin A, Clostridium perfringe produced by m difficile
s produced enterotoxin. On the other hand, since viruses and chlamydia are originally a group of bacteria that are difficult to culture, there are great expectations for antigen-antibody immunoassay, and thus commercially available antibodies are more common than bacterial species. On the other hand, a primary antibody labeled with an enzyme (peroxidase, alkaline phosphatase, etc.) is also commercially available, although it is a typical example.
sherichia coli) O-157: for H7,
Anti-Salmonella sp., Anti-Listeria sp., Anti-Campylobacter sp.
Etc. However, there is definitely more enzyme-unlabeled antibody.
Therefore, when only unlabeled antibodies are commercially available, peroxidase is labeled by the NAKONE method when labeling is desired. On the other hand, many labeled secondary antibodies are commercially available, and many are polyclonal antibodies. Since the polyclonal antibody has a strong ability to bind to a large number of antigen groups, it is highly useful because the number of epitopes that can be bound to a mouse-derived monoclonal antibody is large. The most frequently used is a peroxidase-labeled anti-mouse-goat and rabbit immunizing antibody, but when the primary antibody is other than a mouse, the peroxidase-labeled anti-rabbit-antibody is used depending on the animal species. Goat immunized antibody, peroxidase-labeled anti-rabbit -sheep immunized antibody, peroxidase-labeled-
Rat immune antibodies and the like. It is necessary to change the working concentration of the above antibodies according to the concentration of the obtained antibody and the reaction binding capacity, but it does not greatly deviate from the instruction manual of each antibody, and most commercial antibodies are liquid Is frozen, but when a frozen product is used as a stock solution, the solid-phase matrix method of the present invention often uses a 3 × to 60 × dilution. However, a sufficient reaction can be obtained with a very small amount of about 2.0 μl for both the primary antibody and the labeled secondary antibody.

【発明の実施の詳細:反応時間】本発明では固相マトリ
ックス上に微生物の存在を疑う試料を一定量滴下するこ
とにより微生物が本固相マトリックス下層にある溶液吸
収システムにより吸引されること無く試料中の溶液が除
かれ、固相マトリックス上に微生物が濾過され集積捕捉
される。この時点で微生物周囲の水分は極めて微量とな
り、微生物表面はむき出しに近い状態になり、次の段階
で滴下される第一次抗体との距離は極めて近く、微生物
側の抗原基と第一次抗体の抗体基は結合しやすい状態と
なっている。そのため十分な抗原抗体結合物が得られる
までの反応時間は数分と短時間(2〜5分)でよい。未
結合の第一次抗体も洗浄液の滴下でマトリックス下層の
吸収層に吸引されること無く吸収されるため、標識第二
次抗体もターゲットとする微生物に結合した第一次抗体
の接触距離も極めて近い状態であるため、数分(2〜5
分)で第一次抗体との結合反応時間が終了する。未結合
の標識第二次抗体を洗浄液で下層に除去させた後の酵素
反応による呈色もマトリックス面が色調を呈すればよい
ため、微量添加でかつ短時間で呈色する。これら一連の
反応行程は6〜15分で終了する迅速性を持つ。
Detailed Description of the Invention: Reaction time In the present invention, a certain amount of a sample suspected of being a microorganism is dropped on a solid phase matrix, so that the microorganism is not sucked by a solution absorption system below the solid phase matrix. The solution is removed and the microorganisms are filtered and collected on the solid phase matrix. At this point, the water around the microorganism becomes extremely small, the surface of the microorganism is almost bare, the distance between the primary antibody dropped in the next stage is very short, and the antigen group on the microorganism side and the primary antibody Are in a state where they can be easily bound. Therefore, the reaction time until a sufficient antigen-antibody conjugate is obtained may be as short as several minutes (2 to 5 minutes). The unbound primary antibody is also absorbed by the dropping of the washing solution without being sucked into the absorption layer below the matrix, so that the contact distance between the labeled secondary antibody and the primary antibody bound to the target microorganism is extremely high. Because it is in a close state, it takes several minutes (2-5
Minutes), the binding reaction time with the primary antibody ends. After the unbound labeled secondary antibody has been removed to the lower layer by the washing solution, the color can be formed in an enzymatic reaction as long as the matrix surface exhibits a color tone. These series of reaction steps have a speed of completion in 6 to 15 minutes.

【酵素反応呈色液】酵素呈色の基質としては、例えば標
識酵素がパーオキシダーゼの場合は、ベンジジン誘導体
またはトリフェニィルメタン誘導体が好ましい。ベンジ
ジン誘導体としては、例えば3,3’,5,5’,−テ
トラメチィルベンジジン(ウルトラブルー)があげられ
る。トリフェニィルメタン誘導体としては、例えばトリ
[4−N,N−ジ(3−スルホプロピル)アミノフェニ
ル] メタン6ナトリウム塩などがあげられる。ウルト
ラブルーはインタージェン社より入手できる。この試薬
は遮光すれば過酸化水素水と混和させていても安定共存
させることが出来るため、用事調整する必要は無く、一
試薬として使用出来る。本色素呈色色調は青色であるた
め、測定波長は675nmと長波長域であるため、生体
材料に混在してくるビリルビンやヘモグロビンなどの影
響が回避しやすい。またトリフェニルメタン誘導体は富
士レビオ社から入手出来る。
[Enzyme Reaction Coloring Solution] As a substrate for enzyme coloring, for example, when the labeling enzyme is peroxidase, a benzidine derivative or a triphenylmethane derivative is preferable. Examples of the benzidine derivative include 3,3 ′, 5,5 ′,-tetramethylbenzidine (Ultra Troy). Examples of the triphenylmethane derivative include tri [4-N, N-di (3-sulfopropyl) aminophenyl] methane hexasodium salt. ULTRAVO is available from Intergen. If this reagent is shielded from light, it can be stably coexisted even if it is mixed with aqueous hydrogen peroxide, so that there is no need to make necessary adjustments and it can be used as one reagent. Since the coloring color tone of the present dye is blue, the measurement wavelength is a long wavelength range of 675 nm, so that the influence of bilirubin, hemoglobin, and the like mixed in the biomaterial can be easily avoided. The triphenylmethane derivative can be obtained from Fujirebio.

【実施例1】 :結核菌での測定 使用菌株:患者喀痰より分離し、保存のMycobac
terium tuberclosis株 使用抗体:抗結核菌(Mycobacterium
tuberculosis)マウス・モノクローナル抗
体(Chemicon社 MAB−738)0.1ml
製品(凍結)を0.01Molリン酸NaCl緩衝液
2.0mlで解凍し、ストックする。使用時に一件/
2.0μlを滴下する。 抗マウス/ヤギ免疫グロブリン・パーオキシダーゼ標
識抗体 IgG(H+L)(Caltag Labor
atories INC.CodeNo.M3000
7):2.0ml製品を同緩衝液18.0mlを加えス
トックし、使用時に×3倍希釈したものを2.0μlを
滴下する。 ブロック液:ブロックエース(大日本製薬cat.No
−UK−B25)を脱イオン水で×4倍希釈したものを
使用。 菌浮遊希釈液:前記のごとく、マウス血清を添加したも
の。 洗浄液 : 前記のごとく、界面活性剤2種を添加し
た溶液 菌液の調整:結核菌は分離培地での発育コロニーはラフ
型であり、コロニー採取からは均等菌浮遊は作成出来な
い。そこで均等菌浮遊液が作れるマイコブロス(極東製
薬)に接種し、14日間静置培養(1日1回震倒混和さ
せたものを原液菌浮遊液とし、マウス血清添加の希釈液
で10倍ずつの段階希釈系列を作成して実験に供した。
なお正確な菌数を把握するため、作成した菌液系列より
1%小川培地に接種して、4週間後に発育してきた菌数
を算定した。 ◎ 本発明;固層マトリックス測定法 ブロッキング:ブロック液 (20.0μl) サンプリング:希釈菌浮遊液 (25.0μl) 膜洗浄 :洗浄液2回 ( 8.0μl) 第一次抗体 :Chemicon:MAB−738(2.0μl)反応時 間2.5分 膜洗浄 :洗浄液 (8.0μl)4回繰り返す 標識二次抗体:Caltag上記 (2.0μl)反応時間2.5分 膜洗浄 :洗浄液 (8.0μl)5回繰り返す 酵素反応液 :ウルトラブルー液 (8.0μl)反応時間1分 肉眼判定 :コントロール・ブランクは菌接種無しの希釈液 結果;マイコブロスに発育した原液の菌数は4.3×1
コ/mlであった。この原液から希釈菌系列を作成
させたが、実験は5回繰り返して実施した。5回の実験
いずれにおいても同じ成績であり、最少菌浮遊液で陽性
値が得られたのは4.3コ/mlで陽性値が5回中2回
出現した、43コ/mlでは強陽性、以後菌数が多くな
るほど酵素呈色は強かった。この結果、本免疫学的検査
法に付きまとうプロゾーン現象は弱く、10コ/ml
では呈色が強いが10コ/mlとほぼ同等の色調であ
った。固相マトリックスの菌数濾過能力は10コ/m
lでは100μl以上が濾過出来たが、菌原液の10
コ/mlでは菌濃度が濃すぎて、サンプル量25.0μ
l程が限度量であった。最少菌濃度陽性値を基に算出す
ると、本発明の測定感度は4.3コ/ml菌濃度サンプ
ルで陽性結果が得られるため、固相マトリックスに捕捉
される菌数は1〜2コあれば陽性値が得られることが判
明した。菌希釈各濃度を同一の測定条件で実施するた
め、サンプル量は25.0μlに統一させたが、菌濃度
が低い場合、サンプル量は200μlでも実験可能であ
る。 追試;一定微口径のマトリックスを本発明では使用する
ため、濾過菌数に比例してマトリックスの目詰まりが発
生し、免疫学的検査各工程でのテーリングが検査結果に
影響を及ぼすことが懸念されるので、結核菌以外の細菌
菌種を使用して、本発明の成績を吟味した。使用した菌
種はStaphylococcus aureus,S
teptococcus feacalis,Cory
nebacterium sp.,Escherici
a coli,Klebsiellapneumoni
ae,Pseudomonas aeruginosa
の6菌種である。これらの菌種を純培養し、マウス血清
添加の希釈液で段階希釈菌浮遊液を作成し、上記の結核
菌固相マトリックス測定法の手技をそのまま実施した。
その結果、6菌種において25.0μlのサンプル量の
場合、菌原液10コ/mlサンプル以外は影響が見ら
れなっかた。すなわち10コ/ml以下の菌濃度では
結核菌未接種の陰性コントロールと同じであったが、1
コ/ml存在すれば、結核菌数コ/mlのときの呈
色と同等の呈色が出ることが判明した。本発明の検出測
定感度は10コ/ml以上で、この菌数以下の場合は他
菌種の影響を考慮しなければいけないことも判明した。
Example 1: Measurement with Mycobacterium tuberculosis Mycobacterium strain used: Mycobac isolated from patient sputum and stored
terium tuberclosis strain Antibody used: antituberculosis (Mycobacterium)
0.1 ml of mouse monoclonal antibody (Chemicon MAB-738)
Thaw the product (frozen) with 2.0 ml of 0.01 Mol NaCl phosphate buffer and stock. One case /
Add 2.0 μl dropwise. Anti-mouse / goat immunoglobulin / peroxidase-labeled antibody IgG (H + L) (Caltag Labor
attories INC. CodeNo. M3000
7): 2.0 ml of the product was added with 18.0 ml of the same buffer and stocked, and 2.0 μl of a × 3 dilution diluted at the time of use was dropped. Blocking solution: Block Ace (Dainippon Pharmaceutical cat. No.
-UK-B25) diluted 4 times with deionized water. Bacterial suspension diluent: As described above, mouse serum is added. Washing liquid: As described above, a solution to which two kinds of surfactants are added Bacterial solution preparation: Mycobacterium tuberculosis has a rough growth type colony in a separation medium, and a uniform bacterial suspension cannot be created from colony collection. Then, inoculate Mycobros (Far East Pharmaceutical Co., Ltd.), which can produce a suspension of equivalent bacteria, and incubate for 14 days in static culture (shaking mixed once a day to obtain a stock suspension). A serial dilution series was prepared and used for the experiment.
In addition, in order to grasp the accurate number of bacteria, 1% of Ogawa medium was inoculated from the prepared bacterial solution series, and the number of bacteria that grew 4 weeks later was calculated. ◎ The present invention; solid matrix measurement method Blocking: blocking solution (20.0 μl) Sampling: suspension of diluted bacteria (25.0 μl) Membrane washing: twice washing solution (8.0 μl) Primary antibody: Chemicon: MAB-738 (2.0 μl) Reaction time 2.5 minutes Membrane wash: Wash solution (8.0 μl) Repeated 4 times Labeled secondary antibody: above Caltag (2.0 μl) Reaction time 2.5 minutes Membrane wash: Wash solution (8.0 μl) ) Repeat 5 times Enzyme reaction solution: Ultra Trouble solution (8.0 μl) Reaction time 1 minute Visual judgment: Control blank is diluted solution without bacterial inoculation Result: The number of bacteria in the stock solution grown on mycobros is 4.3 × 1
It was 0 8 co / ml. A dilution series was prepared from this stock solution, but the experiment was repeated five times. The same results were obtained in all of the five experiments. Positive values were obtained in the minimal bacterial suspension at 4.3 cells / ml, and positive values appeared twice out of 5 times, and 43 cells / ml were strongly positive. Thereafter, as the number of bacteria increased, the color of the enzyme became stronger. As a result, prozone phenomenon haunt the immunoassay method is weak, 10 5 U / ml
In strong coloration was almost equal color tone with 10 7 U / ml. The filtration capacity of the solid phase matrix is 10 7 cells / m
but in more than 100μl l was able filtration, bacteria stock 10 8
In the case of ko / ml, the bacterial concentration was too high, and the sample amount was 25.0μ.
1 was the limit. When calculated based on the minimum bacterial concentration positive value, the measurement sensitivity of the present invention is 4.3 cells / ml. Since a positive result is obtained with a bacterial concentration sample, if the number of bacteria captured on the solid phase matrix is 1 to 2 cells, It turned out that a positive value was obtained. In order to perform each dilution of the bacteria under the same measurement conditions, the sample volume was standardized to 25.0 μl. However, when the bacterial concentration is low, the experiment can be performed with a sample volume of 200 μl. Additional test: Since a matrix having a constant fine diameter is used in the present invention, clogging of the matrix occurs in proportion to the number of filtered bacteria, and there is a concern that tailing in each step of the immunological test may affect the test results. Therefore, the results of the present invention were examined using bacterial species other than Mycobacterium tuberculosis. The strain used was Staphylococcus aureus, S
stepococcus featurealis, Cory
nebacterium sp. , Escherici
a coli, Klebsiellapneumoni
ae, Pseudomonas aeruginosa
6 species. These bacterial species were subjected to pure culture, serial dilutions of the bacterial suspension were prepared using a diluent to which mouse serum was added, and the above-described technique for the tuberculosis solid phase matrix measurement method was carried out as it was.
As a result, 6 when the sample volume of 25.0μl in bacterial species, person other than bacteria stock 10 8 U / ml sample Na' observed effects. I.e. in the following cell concentration 10 7 U / ml was the same as the negative control of tuberculosis uninoculated, 1
If there 0 8 U / ml, were found to color equivalent coloration when M. tuberculosis count co / ml exits. It was also found that the sensitivity of detection and measurement of the present invention was 10 cells / ml or more, and when the number of cells was less than this, the influence of other bacterial species had to be considered.

【実施例2】:病原性大腸菌O−157:H7での成績 (オーソー社O−157検出キットと比較した成績) 使用菌株; Escherichia coli O−
157:H7保存菌株を使用した。 使用抗体; パーオキシダーゼ標識Escheric
hia coli O−157:H7ヤギポリクローナ
ル抗体(KIRKEGAAD and PERRY L
ABRATORIES,INC.Code No.04
−95−90):0.1mg製品を1.0mol Tr
is Buffer(TAKARA)1.0mlで溶解
し、使用時に×30倍希釈し、2.0μl/1容器を滴
下。 抗O−157:H7マススモノクローナル抗体 Im
munoprecipitate LPS of O−
157:H7(ViroStatINC.Code N
o.1031):1.0ml製品を同緩衝液2.0ml
を加えてストックし、3.0μl/1容器を滴下。 抗マウス/ヤギ免疫グロブリン・パーオキシダーゼ標
識抗体 IgG(H+L)(Caltag Labor
atories INC.CodeNo.M3000
7):2.0ml製品を同緩衝液18.0mlを加えス
トックし、使用時に×3倍希釈したものを2.0μlを
滴下した。 ブロック液;ブロックエース(大日本製薬cat.No
−UK−B25)を脱イオン水で×3倍希釈したものを
使用。 菌浮遊希釈液;前記のごとく、ウシ血清アルブミンを添
加したもの。 洗浄液 ; 前記のごとく、界面活性剤3種を添加し
た溶液 比較方法; オーソ社 Escherichia co
li O−157検出キット 96回用 (実験準備); 使用菌株を保存培地より採取し,5%
トリソイ・ヒツジ血液寒天平板培地で35℃20時間培
養する操作を3回継代し,発育した純菌苔を実験に供し
た。菌苔の一部を採取し、マウス血清添加の希釈液に均
等浮遊させたものを原液とし、それを同希釈液で10倍
ずつの段階希釈菌液系列を作成し、サンプルとした。
(具体的な表現では菌浮遊濁度がやや白濁した程度に肉
眼で認知できる濃度(マックファーランド0.5程度=
1.0〜2.0×10コ/ml相当)に均等浮遊させ
た。この菌液を原液として,以下×10倍希釈を繰り返
し,段階希釈菌液系列を作成した。各段階菌液濃度はn
×10コ/ml,n×10コ/ml,・・・・〜n
×10コ/mlまでの9段階とした。ここでnコの確
認はn×10コ/mlからは0.05mlをn×10
コ/mlからは0.1mlを採取し,血液平板寒天培
地に塗布し,35℃20時間培養して発育してきたコロ
ニーを算出して,nを割だした。その結果,今回のn=
1.7であった。よって,初めに調整した原液は1.7
×10コ/mlを浮遊させたことになる。 ◎ 本発明;固層マトリックス測定法(二種抗体法) ブロッキング:ブロック液 (20.0μl) サンプリング:希釈液菌液 (25.0μl) 膜洗浄 :洗浄液 ( 8.0μl)2回繰り返す 第一次抗体 :Virostat上記 ( 3.0μl)反応時間2.5分 膜洗浄 :洗浄液 ( 8.0μl)4回繰り返す 標識二次抗体:Caltag上記 ( 2.0μl)反応時間2.5分 膜洗浄 :洗浄液 ( 8.0μl)5回繰り返す 酵素反応液 :ウルトラブルー液 ( 8.0μl)反応時間1分 肉眼判定 :コントロール・ブランクは菌接種無しの希釈液 成績;本発明の固相マトリックス法では菌未接種のコン
トトル・ブランクと比較した場合明確に酵素反応による
呈色変化が認められた最少菌濃度は17コ/mlであっ
た。サンプリング量から逆算すると固相マトリックスに
は1〜2コ捕捉されれば陽性反応が得られることが判明
した。また段階的な菌濃度浮遊液では菌その菌濃度に比
例した呈色強度が観察されるが、高菌濃度では若干、呈
色は劣化しているように見えるが、プロゾーン現象は小
さい現象のようである。 ◎オーソ社のキット試薬の検討 オーソ社の検出キットは使用説明書どうりに使用した。
結果がでるまでの検査必要時間は約60分程である。そ
の測定原理はマイクロプレートウエルに第一次抗体(抗
O−157:H7抗原ウサギポリクローナル抗体を固相
化し,試料中のO−157:H7を選択結合させる。ウ
ェルから試料を廃棄後、厳密にウェルを数回洗浄してウ
ェル管壁のの第一次抗体で結合捕捉したO−157菌体
そのものに対して、第二次抗体としてパーオキシダーゼ
標識抗O−157:H7ヤギポリクローナル抗体を添加
結合させ,酵素呈色させるELISA法である。キット
添付の検体処理液に純菌苔(O−157:H7)を少
し,白濁が肉眼で認知できる濃度(マックファーランド
0.5程度=1.0〜2.0×10コ/ml相当)に
均等浮遊させた。この菌液を原液として,上記の固相マ
トリックス法と同様、×10倍希釈を繰り返し,段階希
釈菌液系列を作成した。この希釈系列菌液の一部を血液
平板寒天培地に塗布し,35℃20時間培養して発育し
てきたコロニーを算出し、正確な菌数をもとめたところ
調整原液は2.1×10コ/mlであった。以下の9
段階の希釈菌液と細菌無添加の検体処理液をブランクと
して,オーソ社のマイクロプレート固相(ELISA)
法を実験した。 成績: オーソ社(ELISA)法は2.1×10
/mlで弱い呈色は認知されマイクロプレート・リーダ
ー(450nm単波長測定)の吸光度は0.150であ
り,キット陰性コントロール限度吸光度0.140より
若干高い吸光度を示した。2.1×10コ/mlは陰
性で吸光度は0.140でブランク値と同じであった。
2.1×10コ/mlでは吸光度が急に高くなり,
0.850を示していた。この成績はオーソ社の説明書
に記され成績に近似し、キット測定感度は10コ/m
l前後と判定された。 ◎固相マトリックス(第一抗体標識法) 前記の固相マトリックス二抗体法で実験に供した同じ段
階希釈菌液系列を利用し、のヤギ・ポリクローナル標
識抗体で実験した。本測定法は固相マトリックスに捕捉
した細菌に第一次抗体を結合させるが、その抗体が酵素
標識させてあるため、ワンステップ法で結果が得られ
る。この測定法での最少菌濃度陽性成績は1.7×10
コ/mlであった。オーソ社のキットとほぼ同等の測
定感度であるが、固相マトリックス測定法で使用した酵
素標識抗体はオーソ社の第二抗体と同じ,パーオキシダ
ーゼ標識O−157:H7抗原ヤギポリクローナル抗体
である。微生物(O−157)に直接結合させる抗体を
酵素標識させた場合はマイクロブレートを用いたELI
SA法であれ、固相マトリックス法であれ、10コ/
ml前後の菌濃度が最少測定感度と言える成績であっ
た。,の二種抗体を用いる固相マトリックス測定法
はオーソ社のELISA法及び抗体のOne Ste
p法と比較して高感度がえられた原因として,細菌検査
免疫学的測定法に対し重要な事を示唆している。ELI
SA法とOne Step法とも菌種特異抗体タンパク
に酵素を標識させて酵素呈色検出させているが、この測
定法では約10゜コ/ml測定感度が限界値とな
ることである。目的の微生物に特異モノクローナル抗体
を結合させた後,細菌細胞その物では無く、細菌細胞に
結合させた第一次抗体(モノクローナル抗体)を他動物
に免疫して得られた第二次異種抗体(ポリクローナル抗
体が好ましい)を酵素標識させたものを結合させると、
著しい高感度が得られることが判明した。
Example 2: Results with pathogenic Escherichia coli O-157: H7 (Results compared with Osou O-157 detection kit) Escherichia coli O-
157: H7 stock strain was used. Antibody used: Peroxidase-labeled Escheric
ia coli O-157: H7 goat polyclonal antibody (KIRKEGAD and PERRY L)
ABRATORIES, INC. Code No. 04
-95-90): 0.1 mg product to 1.0 mol Tr
Dissolve with 1.0 ml of is Buffer (TAKARA), dilute × 30 times before use, and drop 2.0 μl / 1 container. Anti-O-157: H7 mass monoclonal antibody Im
munoprecipitate LPS of O-
157: H7 (ViroStat INC. Code N)
o. 1031): 1.0 ml product was converted to the same buffer 2.0 ml
And stock it, and drop 3.0 μl / 1 container. Anti-mouse / goat immunoglobulin / peroxidase-labeled antibody IgG (H + L) (Caltag Labor
attories INC. CodeNo. M3000
7): A 2.0 ml product was added with 18.0 ml of the same buffer solution, stocked, and 2.0 μl of a × 3 dilution diluted at the time of use was dropped. Block solution; Block Ace (Dainippon Pharmaceutical cat. No.
-UK-B25) diluted 3 times with deionized water. Bacterial suspension diluent; as described above, to which bovine serum albumin has been added. Cleaning solution; as described above, a solution to which three kinds of surfactants are added. Comparison method; Ortho Escherichia co.
li O-157 detection kit for 96 times (preparation for experiment);
The operation of culturing on a Trisoi sheep blood agar plate medium at 35 ° C. for 20 hours was subcultured three times, and the grown pure moss was subjected to the experiment. A portion of the bacterial moss was collected and evenly suspended in a diluent to which mouse serum had been added to obtain a stock solution, which was serially diluted with the same diluent by 10-fold to prepare a serially diluted bacterial solution series, which was used as a sample.
(Specifically, the concentration that can be recognized by the naked eye to the extent that the bacterial suspension turbidity is slightly clouded (Mac Farland 0.5 =
1.0-2.0 × 10 8 cells / ml). Using this bacterial solution as a stock solution, dilution by a factor of 10 was repeated to prepare a serially diluted bacterial solution series. The bacterial concentration at each stage is n
× 10 8 cells / ml, n × 10 7 cells / ml,...
× was 9 levels from 10 0 U / ml. Here, for confirmation of n pieces, 0.05 ml was added to n × 10 3 pieces / ml from n × 10 3 pieces / ml.
From 2 colonies / ml, 0.1 ml was collected, applied to a blood plate agar medium, cultured at 35 ° C. for 20 hours, and the number of colonies that grew was calculated and n was divided. As a result, this time n =
1.7. Therefore, the stock solution prepared first was 1.7.
This means that × 10 8 cells / ml were suspended. ◎ The present invention; solid-layer matrix measurement method (two-antibody method) Blocking: blocking solution (20.0 μl) Sampling: diluent bacterial solution (25.0 μl) Membrane washing: washing solution (8.0 μl) repeated twice Primary Antibody: Virostat above (3.0 μl) Reaction time 2.5 min Membrane washing: Washing liquid (8.0 μl) repeated 4 times Labeled secondary antibody: Caltag above (2.0 μl) Reaction time 2.5 min Membrane washing: Washing liquid ( 8.0μl) Repeat 5 times Enzyme reaction solution: Ultra-low solution (8.0μl) Reaction time 1 minute Visual judgment: Control blank is diluent without bacterial inoculation Results; As compared with the control blank, the minimum bacterial concentration at which a color change was clearly observed due to the enzyme reaction was 17 cells / ml. Back calculation from the sampling amount revealed that a positive reaction could be obtained if 1-2 were captured on the solid phase matrix. In the stepwise bacterial concentration suspension, the color intensity is proportional to the bacterial concentration, but at high bacterial concentration, the color appears to be slightly degraded, but the prozone phenomenon is a small phenomenon. It seems. Examination of Ortho kit reagents Ortho detection kits were used according to the instruction manual.
The time required for the test until a result is obtained is about 60 minutes. The measurement principle is that a primary antibody (anti-O-157: H7 antigen rabbit polyclonal antibody is immobilized on a microplate well and O-157: H7 in the sample is selectively bound. After the sample is discarded from the well, strictly The wells were washed several times, and the peroxidase-labeled anti-O-157: H7 goat polyclonal antibody was added as a secondary antibody to the O-157 cells themselves bound and captured by the primary antibody on the well tube wall. A concentration of pure moss (O-157: H7) in the sample treatment solution attached to the kit and a level at which white turbidity can be recognized by the naked eye (Mac Farland 0.5 = 1.0). to to 2.0 × 10 8 U / ml equivalent) was uniformly suspended. the bacterial solution as a stock solution, as with the solid phase matrix method described above, repeated × 10-fold dilution, creating serial dilutions bacterial suspension series Was. A portion of this dilution series bacterial solution was applied to a blood agar plate medium, and calculates the colonies has been developing and cultured 35 ° C. 20 h, adjusted stock was determined the correct number of bacteria 2.1 × 10 It was 8 cells / ml.
Ortho microplate solid phase (ELISA) using the diluted bacterial solution of the step and the sample treatment solution without bacteria as blanks
The method was experimented. Results: The ELISA method was 2.1 × 10 4 cells / ml, a weak color was recognized, the absorbance of the microplate reader (450 nm single wavelength measurement) was 0.150, and the kit negative control limit absorbance was 0. The absorbance was slightly higher than .140. 2.1 × 10 3 cells / ml was negative and the absorbance was 0.140, which was the same as the blank value.
At 2.1 × 10 5 cells / ml, the absorbance suddenly increased,
0.850. The grades approximate results noted in Ortho's instructions, the kit measurement sensitivity is 10 4 U / m
It was determined to be around l.固 相 Solid phase matrix (first antibody labeling method) Using the same serially diluted bacterial solution series used for the experiment in the solid phase matrix two antibody method, experiments were carried out with goat polyclonal labeled antibodies. In this assay, the primary antibody is bound to the bacteria captured on the solid phase matrix. Since the antibody is labeled with an enzyme, the result can be obtained by a one-step method. The minimum bacterial concentration positive result in this assay is 1.7 × 10
It was 4 cells / ml. Although the measurement sensitivity is almost the same as that of the kit of Ortho, the enzyme-labeled antibody used in the solid phase matrix measurement method is the same as the second antibody of Ortho, a peroxidase-labeled O-157: H7 antigen goat polyclonal antibody. When an antibody directly bound to a microorganism (O-157) is labeled with an enzyme, ELI using a microplate is used.
It is SA method, any solid matrix method, 10 4 U /
Bacterial concentration around ml was the result which can be said to be the minimum measurement sensitivity. The solid-phase matrix measurement method using two kinds of antibodies is ELISA method of Ortho and One Ste
The reason for the higher sensitivity compared to the p method is that it is important for bacterial immunoassay. ELI
In both the SA method and the One Step method, enzyme coloration is detected by labeling an enzyme with a bacterial species-specific antibody protein, but this measurement method has a limit of about 10 4 to 5゜ / ml measurement sensitivity. . After binding the specific monoclonal antibody to the target microorganism, the secondary heterologous antibody (monoclonal antibody) obtained by immunizing other animals with the primary antibody (monoclonal antibody) bound to the bacterial cells instead of the bacterial cells themselves (Preferably polyclonal antibody)
It has been found that extremely high sensitivity can be obtained.

【実施例:3】液体試料中(特に尿中)の細菌数定量 液体試料.患者尿14件を前処理せず、希釈液で500
倍したものをサンプルとした。この理由は尿材料の場
合、採尿時点で外陰部でのコンタミがしばしば10
コ/ml程度に達する。本当の尿路感染の場合は細菌数
が10 コ/ml以上が有意な菌数と医学的に提唱さ
れているためである。もし検査試料が髄液で菌の存在そ
のものに意義がある場合は試料は希釈せず試験にきよう
する必要がある。 使用抗体:抗細菌細胞壁(ペプチドグリカン)マウス
・モノクローナル抗体(Chemicon社 MAB−
997:IgM分画)0.1ml製品(凍結)を0.0
1Molリン酸NaCl Buffer2.0mlで解
凍する。同じく抗細菌細胞壁(ペプチドグリカン)マウ
ス・モノクローナル抗体(Chemicon社 MAB
−983:IggG3分面)0.1ml製品(凍結)を
0.01Mol リン酸NaCl Buffer2.0
mlで解凍する。この2種の溶解抗体を等量混和したも
のを−80℃でストックする。使用時に一件/3.0μ
lを滴下する。 抗マウス/ヤギ免疫グロブリン・パーオキシダーゼ標
識抗体 IgG(H+L) (Caltag Labo
ratories INC.CodeNo.M3000
7):2.0ml製品を同緩衝液18.0mlを加えス
トックし、使用時に×3倍希釈したものを2.0μlを
滴下した。 ブロック液:ブロックエース(大日本製薬cat.No
−UK−B25)を脱イオン水で×3倍希釈したものを
使用。 希釈液 :上記のマウス血清を添加したもの。 洗浄液 :上記のリン酸Bufferに界面活性剤を添
加したもの。 呈色液 :上記のウルトラブルー液。 測定法 :次の操作法の順に実施した。 ブロッキング:ブロック液 (20.0μl) サンプリング:希釈液尿液 (20.0μl) 膜洗浄 :洗浄液 ( 8.0μl)2回繰り返す 第一次抗体 :ペプチドグリカン抗体( 3.0μl)反応時間2.5分 膜洗浄 :洗浄液 ( 8.0μl)4回繰り返す 標識二次抗体:Caltag上記 ( 2.0μl)反応時間2.5分 膜洗浄 :洗浄液 ( 8.0μl)5回繰り返す 酵素反応液 :ウルトラブルー液 ( 8.0μl)反応時間1分 肉眼判定 : コントロール・ブランクは希釈液のサンプリング比較方 法:尿細菌検査標準法に準じ、原尿と滅菌生理食塩水で100倍に希釈した
Example 3 Quantification of bacterial count in liquid sample (particularly in urine) Liquid sample. 14 urine cases of patients were not pre-treated and 500
The doubled product was used as a sample. The reason is that in the case of urine material, contamination in the vulva often occurs at the time of urine collection at 10 3
To about コ / ml. If true urinary tract infection is due to the number of bacteria is more than 10 6 U / ml has been proposed a medically significant number of bacteria. If the test sample is cerebrospinal fluid and the presence of the bacterium is significant, it is necessary to come to the test without diluting the sample. Antibody used: Antibacterial cell wall (peptidoglycan) mouse monoclonal antibody (Chemicon MAB-
997: IgM fraction) 0.1 ml product (frozen) in 0.0
Thaw with 2.0 ml of 1 Mol NaCl Buffer. Anti-bacterial cell wall (peptidoglycan) mouse monoclonal antibody (Chemicon MAB)
-983: IgG3 plane) 0.1 ml product (frozen) was added to 0.01 Mol NaCl phosphate buffer 2.0
Thaw with ml. An equal mixture of the two lysed antibodies is stocked at -80 ° C. One case / 3.0μ when used
1 is added dropwise. Anti-mouse / goat immunoglobulin / peroxidase-labeled antibody IgG (H + L) (Caltag Labo)
ratories INC. CodeNo. M3000
7): A 2.0 ml product was added with 18.0 ml of the same buffer solution, stocked, and 2.0 μl of a × 3 dilution diluted at the time of use was dropped. Blocking solution: Block Ace (Dainippon Pharmaceutical cat. No.
-UK-B25) diluted 3 times with deionized water. Diluent: A solution to which the above-mentioned mouse serum is added. Washing liquid: A solution obtained by adding a surfactant to the above-mentioned phosphate buffer. Coloring solution: The above-mentioned urethane solution. Measurement method: The measurement was performed in the following operation order. Blocking: blocking solution (20.0 μl) Sampling: diluent urine (20.0 μl) Membrane washing: washing solution (8.0 μl) repeated twice Primary antibody: peptidoglycan antibody (3.0 μl) Reaction time 2.5 minutes Membrane washing: Repeat washing solution (8.0 µl) 4 times Labeled secondary antibody: Caltag above (2.0 µl) Reaction time 2.5 minutes Membrane washing: Washing solution (8.0 µl) Repeat 5 times Enzyme reaction solution: Ultra trouble solution ( 8.0 μl) Reaction time 1 minute Visual judgment: Control blank was diluted 100 times with raw urine and sterile physiological saline according to the standard method of sampling diluent for diluent.

【表1】 [Table 1]

【発明の効果】本発明により、微生物(細菌、真菌、産
生物質)を高感度に免疫学的検査法で検出または定量で
きる。本発明の特色は高感度のみならず、幅広い応用性
と柔軟性をを持つため、用手法のみならず、自動機器化
の可能性が極めて高い。
According to the present invention, microorganisms (bacteria, fungi, produced substances) can be detected or quantified with high sensitivity by immunological testing. The feature of the present invention is not only high sensitivity, but also wide applicability and flexibility. Therefore, the possibility of automatic instrumentation as well as the use method is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 反応容器の詳細な図を示した。反応膜の下
面に吸収剤を置いている。
FIG. 1 shows a detailed view of a reaction vessel. An absorbent is placed on the lower surface of the reaction membrane.

【図2】 資料の採取器の詳細図である。FIG. 2 is a detailed view of a material collecting device.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/543 521 G01N 33/543 521 525 525C 33/577 33/577 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G01N 33/543 521 G01N 33/543 521 525 525C 33/577 33/577 B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 新規考案の反応容器について====一
定の孔径を有する多孔性の固相マトリックス(メンブラ
ン・フィルターも含む)及び本固相マトリックスの下層
に溶液自然吸収手段を備え,微生物を含有すると疑われ
る試料を滴下させると,強制吸引すること無く、試料中
の溶液を自然吸収し、試料中の微生物を固相マトリック
スに捕捉する工程から成る反応容器を考案した。本反応
容器の固相マトリックス上で捕捉された微生物に対し免
疫学的微生物検出手段を実施させるが、微生物結合抗体
と未結合抗体の分別(B/F分離)は固相マトリックス
を境界にして未結合抗体を自然吸収手段によって簡便に
行える。固相マトリックスを通過する、試料溶液や試薬
溶液は全てマトリックス下層の吸収体に完全に吸収され
て、反応容器外に出ない構造になっている。感染性を有
する試料を扱うため、衛生、防疫などの安全性の面で反
応容器は有益である。免疫学的測定法実施の最終局面で
は酵素反応による呈色生成物を産生させ、それを肉眼的
観察による用手的測定法ならびに積分反射計による機器
測定法への応用が可能となる反応容器で、緻密な繊維ま
たは多孔質材料からなる免疫反応を行う固相マトリック
スの孔経が0.1〜5.0μm(最適孔径は0.22μ
m〜0.65μmで、より最適な孔径は0.45μm)
あるところの測定法に関する請求。なお反応容器構成を
図.1に示した。
1. A newly-developed reaction vessel ==== A porous solid matrix (including a membrane filter) having a fixed pore size and a natural solution absorbing means below the solid phase matrix are provided to remove microorganisms. When a sample suspected of being contained was dropped, a reaction vessel was devised, comprising a step of naturally absorbing the solution in the sample without forcibly aspirating and capturing microorganisms in the sample in a solid phase matrix. The microorganisms captured on the solid phase matrix of the present reaction vessel are subjected to immunological microorganism detection means, but the separation of the microorganism-bound antibody and the unbound antibody (B / F separation) is not performed with the solid phase matrix as the boundary. The bound antibody can be conveniently obtained by natural absorption means. All of the sample solution and the reagent solution passing through the solid phase matrix are completely absorbed by the absorber under the matrix and do not go out of the reaction vessel. Since infectious samples are handled, the reaction container is useful in terms of safety such as sanitation and epidemics. In the final phase of the immunoassay, a colored product is produced by an enzymatic reaction, which is used in a reaction vessel that can be applied to manual measurement by visual observation and instrumental measurement by an integrated reflectometer. The pore diameter of the solid phase matrix for performing an immune reaction composed of a dense fiber or a porous material is 0.1 to 5.0 μm (the optimal pore diameter is 0.22 μm).
m to 0.65 μm, the more optimal pore size is 0.45 μm)
Claims regarding certain measurement methods. The configuration of the reaction vessel is shown. 1 is shown.
【請求項2】 酵素標識第二次抗体の結合ターゲット=
===従来の免疫学的微生物検出測定法は第一次反応を
マイクロプレートの管壁や、特殊試験紙繊維などに安定
固着させ、試料中の目的微生物を抗体の特異性でもって
選択的に捕捉させるものばかりである。その手段を用い
ると、第二次反応は捕捉された微生物に第二次抗体を結
合させるしか検出方法は無い(この展開により、従来か
らの測定法は測定感度が低いのでは)。本発明の方法は
固相マトリックスに微生物を含有すると疑われる試料中
の微生物(細菌及び真菌など)を滴下し、強制吸引する
こと無く、試料溶液を反応容器下層の吸収体で自然吸収
させて、試料中の微生物を固相マトリックスに集積付着
させ,検出させたい微生物に特異的である抗体(第一次
抗体:好ましくはマウス・モノクローナル抗体)を滴下
して目的の微生物に結合させる(第一次反応)。未結合
の抗体をマトリックス下層に洗浄除去させる。固相マト
リックス上に残った微生物+第一次抗体結合物に,目的
の微生物をターゲットにするのでは無く(この第二次反
応の着眼点に従来法との大きな違いがある)。微生物に
特異的に結合した第一次抗体に対して特異的な酵素標識
抗体(第二次抗体:好ましくはポリクローナル抗体)を
滴下させる(第二次反応)。次に未結合の酵素標識第二
次抗体を固相マトリックス下層に洗浄除去させ,固相マ
トリックス上の残った微生物+第一次抗体+第二次酵素
標識抗体結合物に,酵素呈色手段を行使し,生成する色
素を検出又は定量することを特徴とする微生物(細菌及
び真菌など)の検出又は定量方法を示す。一方、微生物
に直接に結合する第一次抗体を酵素標識しての測定も本
請求測定法では可能である。その測定感度は従来法と同
等程度であるところの、より簡便な微生物検出ならびに
定量可能な測定法に関する請求。
2. Binding target of enzyme-labeled secondary antibody =
=== Conventional immunological microorganism detection and measurement methods use a primary reaction stably fixed to the tube wall of a microplate or special test paper fiber, and selectively target microorganisms in a sample with antibody specificity. It just captures. With that means, the only secondary reaction is to bind the secondary antibody to the captured microorganisms (though this development would make conventional measurement methods less sensitive). In the method of the present invention, microorganisms (such as bacteria and fungi) in a sample suspected of containing microorganisms are dropped into the solid phase matrix, and the sample solution is naturally absorbed by the absorber at the lower layer of the reaction vessel without forced aspiration, The microorganisms in the sample are accumulated and attached to the solid phase matrix, and an antibody (primary antibody: preferably a mouse monoclonal antibody) specific to the microorganism to be detected is dropped and bound to the target microorganism (primary antibody). reaction). Unbound antibody is washed off the lower layer of the matrix. The target microorganism is not targeted to the microorganism + primary antibody conjugate remaining on the solid-phase matrix (the focus of this secondary reaction is greatly different from the conventional method). An enzyme-labeled antibody (secondary antibody: preferably polyclonal antibody) specific to the primary antibody specifically bound to the microorganism is dropped (secondary reaction). Next, the unbound enzyme-labeled secondary antibody is washed off the lower layer of the solid phase matrix, and an enzyme coloring means is applied to the remaining microorganisms + primary antibody + secondary enzyme-labeled antibody conjugate on the solid phase matrix. Describes a method for detecting or quantifying microorganisms (such as bacteria and fungi), which is characterized by detecting or quantifying a dye produced by exercise. On the other hand, the present assay can also measure a primary antibody that directly binds to a microorganism by enzyme labeling. Claims relating to a simpler method for detecting and quantifying microorganisms whose measurement sensitivity is equivalent to that of the conventional method.
【請求項3】 プロゾーン現象の回避と効率的スクリー
ニング法====検出しようとする目的微生物は試料中
に含まれているか否かは試験前には判らないばかりか、
含まれている場合も極く少量か極めて多量かも判らな
い。免疫学的検出法で最も困惑する問題点で、いわゆる
抗原抗体最適比率での反応検出が難しく、プロゾーン現
象が起こりやすい。この抗原抗体最適比を幅広くカバー
するため、第一次抗体を酵素標識して目的微生物に直接
結合させる測定法は測定感度が低いが、目的微生物が多
量に存在する場合には良い。一方、目的微生物が少量し
か存在しない場合は第二次反応が的確で高測定感度であ
るが多量に存在する場合はプロゾーン現象が出やすい傾
向がある。よって双方の特徴を生かし、第一次抗体に酵
素非標識のものと、酵素標識のものを混和させて検査試
験に供せば、試料中に目的菌が少量の含まれる場合も多
量に含まれる場合も偽陰性が出ない。また一方、特定試
料から度々検出される意義ある微生物の特異的抗体を混
合させ、意義ある微生物数種の存在の有無を効率良くス
クリーニング出来る測定法も実施可能である。具体的に
は細菌性食中毒の起因菌種はサルモネラが最も多く、次
いで病原性大腸菌(特にO−157)やビブリオ、キャ
ンビロバクターが多い。多人数の食中毒が発生した場合
の多量患者の下利便を検索する場合、これら4菌種が存
在するか否かを先ずスクリーニング出来れば4菌種に焦
点が絞れ、その後、4菌種の精査を実施して起因菌を決
定させる段階的絞り込みは有益で効率的である。散発の
少数食中毒でも4菌種について陽性結果が得られた試料
についてのみ、個別の菌種の抗体を使用しての菌名決定
を実施するか培養検査に持っていくかが短時間内で判断
できる。この免疫学的微生物スクリーニングに関する実
施可能な請求項1,2,記載の方法に関する請求。
3. A method for avoiding the prozone phenomenon and an efficient screening method ==== It is not known before a test whether or not a target microorganism to be detected is contained in a sample.
Even if it is included, it is not known whether it is very small or very large. The most confusing problem in immunological detection methods is that it is difficult to detect a reaction at a so-called optimal antigen-antibody ratio, and the prozone phenomenon is likely to occur. In order to widely cover the optimal antigen-antibody ratio, a measurement method in which the primary antibody is enzymatically labeled and directly bound to the target microorganism has low measurement sensitivity, but is preferable when a large amount of the target microorganism exists. On the other hand, when the target microorganism is present in a small amount, the secondary reaction is accurate and has high measurement sensitivity, but when the target microorganism is present in a large amount, the prozone phenomenon tends to occur easily. Therefore, taking advantage of both characteristics, if the primary antibody is mixed with an enzyme-unlabeled one and an enzyme-labeled one and subjected to an inspection test, the sample will contain a large amount even if the target bacterium is contained in a small amount. There are no false negatives. On the other hand, a measurement method capable of efficiently screening for the presence or absence of several types of significant microorganisms by mixing specific antibodies of significant microorganisms frequently detected from a specific sample is also feasible. Specifically, Salmonella is the most common bacterial species causing bacterial food poisoning, followed by pathogenic Escherichia coli (especially O-157), Vibrio and Canbylobacter. When searching for the convenience of a large number of patients when food poisoning occurs in a large number of people, if screening for the presence of these four bacterial species can be performed first, the focus will be on the four bacterial species, and then the scrutiny of the four bacterial species will be conducted. The stepwise refinement that is performed to determine the causative organism is beneficial and efficient. It is possible to determine within a short time whether to determine the name of bacteria using antibodies of individual strains or to bring them to culture tests only for samples that have obtained positive results for four strains even in sporadic minor food poisoning. it can. Claims relating to the method according to claims 1, 2 and 3, which are operable for this immunological microorganism screening.
【請求項4】 新規反応容器でのウイルス、クラミジ
ア、産生毒素の検出====微生物そのものでは無く、
微生物が産生する多種類の物質(特に人体に有害な毒素
類や菌代謝物質など)やウイルス抗原、ウイルス抗体、
クラミジア抗原、クラミジア抗体の検出には請求項1,
2,3記載の一定孔を有する固相マトリックスでの物理
的な捕捉は不可能なため、従来からの免疫学的検出法の
ごとく固相マトリックス繊維内に微生物(細菌及び真菌
など)が産生する物質やウイルス抗体やクラミジア抗体
などに特異的な抗体を安定に結合させ,そこに試料中の
微生物産生物質やウイルス、クラミジアが含まれると疑
う試料を通過させながら目的物質を繊維内に安定に固着
させた抗体で捕捉する。試料中に共存する他物質は下層
吸収層に洗浄除去させた後,目的物質に特異的であって
酵素で標識された抗体を結合させ(未結合の標識抗体を
マトリックス下層に洗浄除去させ),マトリックス内に
残った抗体+目的物質+目的物質対応標識抗体結合体
に,酵素反応に必要な物質を滴下し,生成物を産生させ
ることを特徴とする微生物産生物質(特に細菌及び真菌
などが産生する毒素など)ならびにウイルスの検出又は
定量するが、請求、請求項1記載の反応容器を使用する
ため、反応廃液は容器外には出ない特徴はそのままであ
ることに関する請求。
4. Detection of virus, chlamydia, and toxin in a new reaction vessel ==== not a microorganism itself,
Various types of substances produced by microorganisms (particularly toxins and bacterial metabolites harmful to the human body), viral antigens, viral antibodies,
Claim 1 for the detection of chlamydia antigens and chlamydia antibodies.
Since it is impossible to physically capture the solid phase matrix having a fixed pore as described in a few items, microorganisms (such as bacteria and fungi) are produced in the solid phase matrix fiber as in the conventional immunological detection method. Stably binds specific antibodies to substances, virus antibodies, chlamydia antibodies, etc., and stably fixes the target substance to the fiber while passing the sample suspected of containing microbial substances, viruses, and chlamydia in the sample. Capture with the allowed antibody. After the other substances coexisting in the sample are washed and removed to the lower absorbent layer, an antibody specific to the target substance and labeled with an enzyme are bound (unbound labeled antibodies are washed and removed to the lower layer of the matrix). A substance required for the enzyme reaction is dropped onto the antibody + target substance + target substance-labeled antibody conjugate remaining in the matrix to produce the product. Toxins, etc.) and viruses are detected or quantified, but the claim relates to the fact that the reaction vessel according to claim 1 is used, so that the reaction waste liquid does not come out of the vessel.
【請求項5】 モノクローナル抗体の結合力の増強==
==人血液中の各種タンパク物質に比べ、巨大細胞と言
える細菌や真菌を免疫学的に検出するのにモノクローナ
ル抗体を使用したキットやセット試薬類はほとんど市販
されていない。その要因はモノクローナル抗体の微生物
に対する結合力がポリクローナル抗体ほど強くないため
である。しかしモノクローナル抗体はポリクローナル抗
体に比べ特異性が高く、製品Lot.にバラツキが少な
い特色を有し、多菌種に対応できる商品が多い。多種類
のモノクローナル抗体が各々の特定菌種に強く安定に結
合出来る反応環境を整備する必要があった。微生物(細
菌,真菌、ウイルス、クラミジアならびに微生物産生物
質)の抗原部位と各種動物を免疫して得られた微生物に
対し特異的な抗体(特にマウスモノクローナル抗体)が
最適測定条件で反応させる場合,試料処理液ならびに菌
浮遊液には単なるリン酸生理食塩緩衝液やトリス生理食
塩緩衝液ではモノクローナル抗体は微生物とはまったく
結合しない。結合させるには動物血清、特にモノクロー
ナル抗体を産生するマウス血清の添加(上記の緩衝液
に)が最も強い結合が得られる。他の動物種の血清成分
でも少しは結合性が増すが、マウス血清ほどでは無い。
マウス血清の添加は抗原抗体反応の原理から特に、微生
物表面の電気的二重層、電圧的に電気二重層界面電位
(ζ−potential)を低下させ、加えて疎水結
合、水素結合、クーロンの静電位力、Van der
Waalsの力を増強させるものと考えられる。これら
の抗体結合能力増強を引き出すサポート面に固相マトリ
ックスの効用が大きい。固相マトリックスに捕捉された
微生物表面の水分はマトリックス下層の吸収体により極
めて少ない状態になっている。この状態は次に滴下され
る抗体との距離はほとんど無いことを意味し、抗原抗体
結合は至近距離で実施されることになり、確実に短時間
で結合反応が終了する。マウス血清の添加量は微量で良
く1.0〜1000mg/dl(最適量は5.0〜10
0mg/dl)であることに関する請求。
5. Enhancement of binding strength of monoclonal antibody ==
== Compared with various protein substances in human blood, kits and set reagents using monoclonal antibodies for immunologically detecting bacteria and fungi, which can be called giant cells, are hardly available on the market. The cause is that the binding ability of the monoclonal antibody to the microorganism is not as strong as the polyclonal antibody. However, monoclonal antibodies have higher specificity than polyclonal antibodies, and the product Lot. There are many products that have the characteristic that there is little variation and can respond to various bacterial species. It was necessary to prepare a reaction environment in which various types of monoclonal antibodies could strongly and stably bind to each specific bacterial species. When the antigen site of microorganisms (bacteria, fungi, viruses, chlamydia, and microorganism-producing substances) and a specific antibody (especially mouse monoclonal antibody) against microorganisms obtained by immunizing various animals react under the optimal measurement conditions, the sample The monoclonal antibody does not bind to the microorganism at all if the treatment solution or the bacterial suspension is a simple phosphate buffer solution or Tris buffer solution. For binding, the addition of animal sera, especially mouse sera producing monoclonal antibodies (in the buffer described above) gives the strongest binding. Serum components from other animal species also increase binding slightly, but not as much as mouse serum.
From the principle of antigen-antibody reaction, the addition of mouse serum, in particular, lowers the electric double layer on the surface of the microorganism and the electric double layer interfacial potential (ζ-potential) in addition to the electrostatic potential of hydrophobic bonds, hydrogen bonds, and Coulomb. Power, Van der
It is thought to enhance the power of Waals. The solid-phase matrix has a great effect on the support surface that brings out the enhancement of the antibody binding ability. The moisture on the surface of the microorganisms captured by the solid phase matrix is extremely low due to the absorber under the matrix. This state means that there is almost no distance to the next antibody to be dropped, and the antigen-antibody binding is performed at a short distance, and the binding reaction is surely completed in a short time. The amount of mouse serum to be added may be very small and may be 1.0 to 1000 mg / dl (the optimal amount is 5.0 to 10 mg / dl).
0 mg / dl).
【請求項6】 強力な洗浄液の考案====請求項5記
載のごとくモノクローナル抗体の結合を確実なものにす
べく、モノクローナル抗体そのものと同じ動物のマウス
血清を菌浮遊液や試料前処理液に添加すると結合が明瞭
となることが判明したが、同動物種血清の添加のため固
相マトリックス上の酵累呈色反応はバックグラウンドが
著しく高くなる。そのため現状までに報告される通常の
免疫学的試験法に使用する洗浄液ではバックグラウンド
の抜けが悪く、使用に耐えないため強力な洗浄力を有す
る新たな洗浄液組成のものが必要である。洗浄液組成は
含有させる塩類は極力少なくするが、抗原抗体結合物に
は影響しないようPH、緩衝能は保持させる必要があ
る。その洗浄液構成組成は0.01Mol.のリン酸液
あるいは0.01Mol.トリス緩衝液(生理食塩は除
外)に1.0Lに界面活性剤を多量に添加するもので、
22%アルキリエーテル硫酸エステルナトリウムを5.
0〜600ml(最適量は50ml〜300ml)とT
ween80を1.0ml〜10.0ml(最適量は
2.0ml〜6.0ml)を添加する洗浄液を使用する
とマウス血清を添加した微生物浮遊液を活用しても固相
マトリックスのバックグラウンド呈色を低く押さえ、モ
ノクローナル抗体による結合反応が鮮明に観察出来るこ
とに関する請求。
6. Invention of a strong washing solution ==== In order to ensure the binding of the monoclonal antibody, mouse serum of the same animal as the monoclonal antibody itself is used as a bacterial suspension or a sample pretreatment solution. It was found that the binding became clear when the enzyme was added, but the background color of the enzyme color reaction on the solid phase matrix was significantly higher due to the addition of the same species serum. Therefore, the washing solution used in the conventional immunological test method reported up to the present time has a poor background removal and is not usable, so that a new washing solution composition having a strong washing power is required. The washing solution composition should contain as few salts as possible, but it is necessary to maintain the pH and buffer capacity so as not to affect the antigen-antibody conjugate. The composition of the cleaning solution was 0.01 Mol. Phosphoric acid solution or 0.01 Mol. A large amount of surfactant is added to 1.0 L of Tris buffer (excluding physiological saline).
4. 22% sodium alkyl ether sulfate.
0-600ml (optimal amount is 50ml-300ml) and T
When a washing solution containing 1.0 ml to 10.0 ml of ween80 (the optimal amount is 2.0 ml to 6.0 ml) is used, the background coloration of the solid phase matrix can be obtained even if a microorganism suspension containing mouse serum is used. Claims that the binding reaction by the monoclonal antibody can be clearly observed while holding it low.
【請求項7】 検査試料の前処理時の工夫====細
菌、真菌、ウイルス、クラミジアならびにこれらが産生
する物質(特に毒素)を検査する場合,生体由来の材料
(大便、喀たん、尿、膿等)は雑多物質が混然と混じり
合って抗原抗体反応を妨害することが多い。また食品材
料(食肉、卵、ミルク等の素材ならびに調理させた加工
品等)も同様であるため,請求項1,2,3,4、5,
6記載の検出又は定量法を実施させるには検査試料の前
処理に留意を払う必要がある。大きな不溶性物質は放置
して沈殿を待つか、遠心沈殿させるが、汚染度の高い医
学的試料の大便や喀痰などは脂肪タンパクや糖脂質、糖
タンパクなど可溶性食物残査を比重の高いクロロホルム
に吸収させて沈殿させ、その上清を前処理準備サンプル
とする。しかし医学的検査試料中には人体液中に白血球
や赤血球、ヘモグロビン、扁平上皮細胞などが混在する
ため、遠心操作だけでは抗原抗体阻害物質を除去しきれ
ない。そこで綿球で大きな粒子を除去させて、より細か
い不溶性物質(細菌種より大きい)を濾過させないが、
微生物類は通過可能であるところの3.0〜5.0μm
の孔径を持つフィルターとを綿球とともに二層二連一体
化させたサンプルの前処理容器(チップ形状)の内容に
関する請求。なおサンプル前処理容器の詳細は図.2に
示した。
7. A device for pretreatment of a test sample ==== When testing bacteria, fungi, viruses, chlamydia and substances (especially toxins) produced by these, materials derived from living bodies (stool, sputum, urine) , Pus, etc.) are often mixed with miscellaneous substances and interfere with the antigen-antibody reaction. In addition, the same applies to food materials (materials such as meat, eggs, milk, and processed processed foods).
In order to carry out the detection or quantification method described in 6, it is necessary to pay attention to the pretreatment of the test sample. Large insoluble substances are left to wait for sedimentation or centrifugal sedimentation, but stool or sputum of highly contaminated medical samples absorbs soluble food residues such as fat proteins, glycolipids, and glycoproteins into chloroform, which has a high specific gravity. The supernatant is used as a pretreatment preparation sample. However, in the medical test sample, leukocytes, erythrocytes, hemoglobin, squamous epithelial cells, and the like are mixed in the human body fluid, so that the antigen-antibody inhibitor cannot be completely removed only by centrifugation. So we remove large particles with a cotton ball and do not filter finer insoluble substances (larger than bacterial species),
3.0 to 5.0 μm where microorganisms can pass
Claims relating to the contents of a sample pretreatment container (tip shape) in which a filter having a pore size of 2 and a cotton ball are integrated in two layers in a double-layered manner. The details of the sample pretreatment container are shown in the figure. 2 is shown.
【請求項8】 高感度酵素反応呈色試薬====抗体標
識酵素がパーオキシダーゼで、酵素反応の基質がベンチ
ジン誘導体(なかでも3,3’、5,5’−テトタメチ
ィルベンチジンが好ましい)またはトリフェニルメタン
誘導体(なかでもトリ[4−N,N−ジ(スルホプロピ
ル)アミノフェニィル]メタン6ナトリウムが好まし
い)である方法であり、酵素反応呈色による生成物の検
出が,肉眼観察で可能な用手法的測定法ならびに積分反
射計による機器的比色測定が可能な請求項1,2,3,
4、5、6、7記載の測定方法に関する。併せて、上記
の請求項1,2,3,4,5,6,7記載項から成る細
菌、真菌、ウイルスおよび毒素などの産生物を免疫学的
に検出出来るキット試薬に関する請求。
8. Highly sensitive enzyme reaction coloring reagent ==== The antibody labeling enzyme is peroxidase, and the substrate for the enzyme reaction is a benzidine derivative (among others, 3,3 ′, 5,5′-tetotamethylylbenzidine) Is preferable) or a triphenylmethane derivative (preferably tri [4-N, N-di (sulfopropyl) aminophenyl] methane 6 sodium), and the detection of a product by coloration with an enzyme reaction is preferred. And a method for measuring colorimetrically with a naked eye and a method for measuring colorimetrically with an integrating reflectometer.
The present invention relates to the measurement methods described in 4, 5, 6, and 7. In addition, the present invention relates to a kit reagent capable of immunologically detecting products such as bacteria, fungi, viruses, and toxins according to claims 1, 2, 3, 4, 5, 6, and 7.
JP29596898A 1998-09-11 1998-09-11 High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method Pending JP2000088854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29596898A JP2000088854A (en) 1998-09-11 1998-09-11 High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29596898A JP2000088854A (en) 1998-09-11 1998-09-11 High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method

Publications (1)

Publication Number Publication Date
JP2000088854A true JP2000088854A (en) 2000-03-31

Family

ID=17827429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29596898A Pending JP2000088854A (en) 1998-09-11 1998-09-11 High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method

Country Status (1)

Country Link
JP (1) JP2000088854A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062052A1 (en) * 2003-12-24 2005-07-07 Denka Seiken Co.,Ltd. Simple membrane assay method and kit
WO2016175269A1 (en) * 2015-04-28 2016-11-03 デンカ生研株式会社 Method for collecting microbial antigen
CN111471592A (en) * 2020-05-11 2020-07-31 华中科技大学同济医学院附属协和医院 Cell culture bottle and manufacturing method thereof
CN113588610A (en) * 2021-07-21 2021-11-02 重庆创芯生物科技有限公司 Filtering membrane pretreatment liquid for improving immunofluorescence detection sensitivity and preparation method and application thereof
WO2022154096A1 (en) * 2021-01-15 2022-07-21 旭化成株式会社 Method and kit for detecting presence and/or amount of bacteria of enterobacteriaceae in food/drink sample, environmental sample, or biological sample
WO2022154094A1 (en) * 2021-01-15 2022-07-21 旭化成株式会社 Method and kit for detecting presence and/or amount of bacteria in food/drink sample, environmental sample, or biological sample

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062052A1 (en) * 2003-12-24 2005-07-07 Denka Seiken Co.,Ltd. Simple membrane assay method and kit
US7579195B2 (en) 2003-12-24 2009-08-25 Denka Seiken Co., Ltd Simple membrane assay method and kit
US8404479B2 (en) 2003-12-24 2013-03-26 Denka Seiken Co., Ltd Simple membrane assay method and kit
WO2016175269A1 (en) * 2015-04-28 2016-11-03 デンカ生研株式会社 Method for collecting microbial antigen
CN111471592A (en) * 2020-05-11 2020-07-31 华中科技大学同济医学院附属协和医院 Cell culture bottle and manufacturing method thereof
WO2022154096A1 (en) * 2021-01-15 2022-07-21 旭化成株式会社 Method and kit for detecting presence and/or amount of bacteria of enterobacteriaceae in food/drink sample, environmental sample, or biological sample
WO2022154094A1 (en) * 2021-01-15 2022-07-21 旭化成株式会社 Method and kit for detecting presence and/or amount of bacteria in food/drink sample, environmental sample, or biological sample
CN113588610A (en) * 2021-07-21 2021-11-02 重庆创芯生物科技有限公司 Filtering membrane pretreatment liquid for improving immunofluorescence detection sensitivity and preparation method and application thereof
CN113588610B (en) * 2021-07-21 2024-02-02 重庆创芯生物科技有限公司 Filtering membrane pretreatment liquid for improving immunofluorescence detection sensitivity, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4847199A (en) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
EP0281327B1 (en) Immunoreactive reagent, method of preparation and its use to determine an immunoreactive species
US20030073073A1 (en) Method for simultaneous detection of multiple microbial antigens in biological specimens from mastitic animals
Vermunt et al. Isolation of salmonellas by immunomagnetic separation
EP0280559B1 (en) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
DK174032B1 (en) Kit as well as immunometric dosing method that can be applied to whole cells
JPH0782021B2 (en) Non-immunochemical binding of lipopolysaccharide and its sandwich analysis method
CN107533059A (en) The recovery method of microbial antigen
WO2014055995A1 (en) Multi-analyte assay
JPH02156157A (en) Measurement of chlamydia antigen or gonococcus antigen using positive charge ionic binding support
US4812414A (en) Immunoreactive reagent particles having tracer, receptor molecules and protein of pI less than 6
JP4268358B2 (en) Antibody and immunological assay
JP2000088854A (en) High sensitive immunological detection measuring method for microorganism (bacteria, fungus, virus, producing substance) and quantitative method
JP3773633B2 (en) Analysis method and reagent for E. coli O157
EP0868665A1 (en) Fecal test method and device
KR101894489B1 (en) Igm semiquantitative diagnostic kit for leptospirosis
EP1278065A1 (en) Method of detecting streptococcus sobrinus and antibody therefor
EP0233048B1 (en) Method of detecting urinary tract infection or inflammation
JP4022005B2 (en) Simple antibody test method and test kit
JP2002181823A (en) Detection method for microorganism
WO2013006034A2 (en) A diagnostic kit for the detection of early acute leptospirosis
CA2576726A1 (en) Method and kit for determining the immunisation status of a person
WO1992014156A1 (en) Immunofluorescent test for mycobacterial antigens in biological fluids
SU1143411A1 (en) Method of diagnosis of chronic pyelonephritis
JP4217516B2 (en) Method for producing polyclonal antibody against Streptococcus mutans