JP2000086374A - Boron carbide-silicon carbide complex carbon material having oxidation resistance, crucible for sintering, crucible for vacuum deposition, die for continuous casting, crucible for melting metal, roller for transporting glass, uniformly heating pipe for annealing steel wire material, jig for high-temperature burning and jig for hot press using the complex carbon material - Google Patents

Boron carbide-silicon carbide complex carbon material having oxidation resistance, crucible for sintering, crucible for vacuum deposition, die for continuous casting, crucible for melting metal, roller for transporting glass, uniformly heating pipe for annealing steel wire material, jig for high-temperature burning and jig for hot press using the complex carbon material

Info

Publication number
JP2000086374A
JP2000086374A JP10335905A JP33590598A JP2000086374A JP 2000086374 A JP2000086374 A JP 2000086374A JP 10335905 A JP10335905 A JP 10335905A JP 33590598 A JP33590598 A JP 33590598A JP 2000086374 A JP2000086374 A JP 2000086374A
Authority
JP
Japan
Prior art keywords
crucible
carbon material
jig
silicon carbide
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10335905A
Other languages
Japanese (ja)
Other versions
JP4166350B2 (en
Inventor
Takashi Matsumoto
喬 松本
Yuji Takimoto
裕治 瀧本
Takashi Takatsu
崇 高津
Masatoyo Okazaki
正豊 岡崎
Toshiomi Fukuda
利臣 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP33590598A priority Critical patent/JP4166350B2/en
Publication of JP2000086374A publication Critical patent/JP2000086374A/en
Application granted granted Critical
Publication of JP4166350B2 publication Critical patent/JP4166350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/181Materials, coatings, loose coverings or sleeves thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/185Construction of the conveyor rollers ; Materials, coatings or coverings thereof having a discontinuous surface for contacting the sheets or ribbons other than cloth or fabric, e.g. having protrusions or depressions, spirally wound cable, projecting discs or tires
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/189Disc rollers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To obtain a B4C-SiC complex carbon material having an economically formed dense SiC layer having excellent oxidation resistance and abrasion resistance at a fixed part (the whole face or a part) of the surface layer part of a carbon base by a simpler method than a CVD method or a CVR method. SOLUTION: This boron carbide-silicon carbide complex carbon material has an outermost surface layer part containing B4C-SiC in 3-20 μm thickness on the surface layer part of a carbon base and forms a SiC-containing layer in >=1 mm thickness on a SiC-containing complex layer. The boron carbide-silicon carbide complex carbon material having oxidation resistance is applied to the whole or part of the surface of a crucible for sintering, a crucible for vacuum deposition, a die for continuous casting, a crucible for melting a metal, a roller for transporting glass, a uniformly heating pipe for annealing a steel wire material, a jig for high-temperature burning and a jig for hot press.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温雰囲気下で使
用できる耐酸化性に優れた炭化ホウ素ー炭化ケイ素複合
炭素材料(以下B4 C−SiC複合炭素材料)及びそれ
を用いた焼結用ルツボ、真空蒸着用ルツボ、連続鋳造用
ダイス、ガラス管搬送用ローラー、鋼線材焼鈍用均熱
管、高温焼成用治具及びホットプレス用治具に関する。
The present invention relates to the sintering with excellent boron carbide over silicon carbide composite carbon material (hereinafter B 4 C-SiC composite carbon material) and its oxidation resistance which can be used in a high temperature atmosphere The present invention relates to a crucible, a crucible for vacuum evaporation, a die for continuous casting, a roller for conveying a glass tube, a soaking tube for annealing a steel wire, a jig for high-temperature firing, and a jig for hot pressing.

【0002】[0002]

【従来の技術】炭素材料は、熱伝導性、耐摩耗性、耐薬
品性、高温での機械的特性に優れた特性を有しているた
め、高純度処理された炭素基材単独で焼結用ルツボ、真
空蒸着用ルツボ、連続鋳造用ダイス、溶融金属用ルツ
ボ、ガラス管搬送用ローラー、鋼線材焼鈍用均熱管、高
温焼成用治具及びホットプレス用治具等に広く利用され
ている一方、炭素基材単独では酸化されやすく、酸化消
耗に伴う強度劣化や精度劣化による寿命の短命等の問題
があった。
2. Description of the Related Art Carbon materials have excellent thermal conductivity, abrasion resistance, chemical resistance, and mechanical properties at high temperatures. Widely used for crucibles for vacuum deposition, crucibles for vacuum evaporation, dies for continuous casting, crucibles for molten metal, rollers for conveying glass tubes, soaking tubes for annealing steel wire rods, jigs for high-temperature firing, jigs for hot pressing, etc. However, the carbon substrate alone is liable to be oxidized, and there are problems such as deterioration in strength due to oxidative consumption and short life due to deterioration in accuracy.

【0003】上記の問題に対しては、炭素基材表面に、
耐酸化性に優れ、炭素と相性の良い炭化ケイ素(以下S
iC)を被覆する手段が有効であるとされ、SiC被覆
の一般的手法として化学蒸着法(CVD法)、転化法
(CVR法)等がよく知られている。
[0003] To solve the above problem, the surface of the carbon substrate,
Silicon carbide with excellent oxidation resistance and good compatibility with carbon (hereinafter referred to as S
Means for coating iC) is considered to be effective, and chemical vapor deposition (CVD), conversion (CVR), and the like are well known as general techniques for SiC coating.

【0004】CVD法で形成されたSiC層は、非常に
緻密で優れたガス不透過性を有しており、耐酸化性の改
善には効果的であるが、炭素基材表面に物理的に付着し
ているだけであり、また、炭素基材との熱膨張率が異な
ることから、熱衝撃を受けると層の剥離や微小クラック
が発生するという欠点がある。そのため、SiCと熱膨
張率の近い炭素基材を用いなければならない。また、そ
の製造方法上、部分的に被覆したり、孔内部への均一な
被覆が難しく、製造コストがかかるという問題もある。
[0004] The SiC layer formed by the CVD method is very dense and has excellent gas impermeability, and is effective for improving oxidation resistance. Since they are only attached and have a different coefficient of thermal expansion from the carbon substrate, there is a drawback that when subjected to a thermal shock, peeling of the layers and microcracks occur. Therefore, a carbon base material having a thermal expansion coefficient close to that of SiC must be used. In addition, there is also a problem that it is difficult to partially coat the inside of the hole or to uniformly cover the inside of the hole due to the manufacturing method, and the manufacturing cost is high.

【0005】一方、CVR法は、Si又はSiOガスを
炭素基材に反応させて基材の表層部又は全体をSiCに
転化する方法であり、CVD法と異なり、SiC層が化
学的に形成されるため、SiC層の剥離等の問題は解決
されるが、その製法に起因して緻密性にかけ、耐酸化性
の改善に、あまり効果が無く、CVD法同様製造コスト
がかかるという問題も合わせて有している。
On the other hand, the CVR method is a method in which a Si or SiO gas is reacted with a carbon substrate to convert the surface layer or the entire surface of the substrate into SiC. Unlike the CVD method, the SiC layer is formed chemically. Therefore, the problem such as peeling of the SiC layer can be solved. However, there is also a problem that the production cost is increased due to the production method, which is not so effective in improving the oxidation resistance, and the production cost is high as in the CVD method. Have.

【0006】本発明は、上記の問題点を鑑みてなされた
ものであり、その目的とするところは、CVD法やCV
R法に比較して、簡単な方法で耐酸化性、耐摩耗性に優
れ、緻密なSiC層が炭素基材の表層部の所定部位(全
面または一部)に、経済的に形成されてなるB4 C−S
iC複合炭素材料及びそれを用いた焼結用ルツボ、真空
蒸着用ルツボ、連続鋳造用ダイス、溶融金属用ルツボ、
ガラス管搬送用ローラー、鋼線材焼鈍用均熱管、高温焼
成用治具、ホットプレス用治具を提供する点である。
The present invention has been made in view of the above problems, and has as its object the purpose of the present invention is to provide a CVD method or a CV method.
Compared to the R method, a simple SiC layer is excellent in oxidation resistance and abrasion resistance by a simple method and is economically formed on a predetermined portion (entire or partial) of a surface layer portion of a carbon base material. B 4 CS
iC composite carbon material and crucible for sintering, crucible for vacuum deposition, continuous casting die, crucible for molten metal using the same,
An object of the present invention is to provide a glass tube conveying roller, a steel wire rod annealing tube, a high-temperature firing jig, and a hot pressing jig.

【0007】[0007]

【課題を解決するための手段】本発明者らは、先に炭素
質基材の表面に、Si粉末、B4 C粉末、熱可塑性樹
脂、及び該樹脂の溶媒を含むスラリーを塗布し、乾燥し
た後、非酸化性雰囲気中で1500℃以上で熱処理する
ことにより、緻密で耐酸化性、耐摩耗性に優れた新規な
4 C−SiC複合炭素材料及び製造方法を提案した
(特開平7─144982号参照)。本発明者らは、そ
の後、試行錯誤の結果、優れた耐酸化性、耐摩耗性を有
するに必要な具体的な組成比、各層の厚みを見出し、本
発明を完成させるに至ったものである。
The present inventors first applied a slurry containing Si powder, B 4 C powder, a thermoplastic resin, and a solvent for the resin to the surface of a carbonaceous substrate, and dried the slurry. after, by heat treatment at 1500 ° C. or higher in a non-oxidizing atmosphere, dense and oxidation resistance, it has proposed an excellent novel B 4 C-SiC composite carbon material and a method for manufacturing the wear resistance (JP-7 No. 144982). The present inventors have subsequently found out, as a result of trial and error, an excellent oxidation resistance, a specific composition ratio necessary for having abrasion resistance, and the thickness of each layer, thereby completing the present invention. .

【0008】請求項1の発明は、炭素基材の表層部の所
定部位(全体もしくは一部)に、厚さ1mm以上のSi
C含有複合層を有し、このSiC複合層の上に厚さ1〜
50μmのB4 C−SiCを含有する最外表層部が形成
されてなることを特徴とする耐酸化性の炭化ホウ素ー炭
化ケイ素複合炭素材料である。
According to the first aspect of the present invention, a Si layer having a thickness of 1 mm or more is formed on a predetermined portion (whole or part) of a surface portion of a carbon base material.
A C-containing composite layer having a thickness of 1 to
An oxidation-resistant boron carbide-silicon carbide composite carbon material comprising an outermost surface layer containing 50 μm of B 4 C—SiC.

【0009】請求項2の発明は、請求項1において、最
外表層部のB4 C−SiCの2成分の組成比が、B4
/SiC=1〜22/78〜99で形成されてなる請求
項1記載の炭化ホウ素ー炭化ケイ素複合炭素材料であ
る。
According to a second aspect of the present invention, in the first aspect, the composition ratio of the two components of B 4 C—SiC in the outermost surface layer is B 4 C
2. The boron carbide-silicon carbide composite carbon material according to claim 1, wherein the composite material is formed of / SiC = 1 to 22/78 to 99. 3.

【0010】請求項3の発明は、請求項1において、前
記SiC含有複合層における前記炭化ケイ素化率が深さ
方向に略均一である請求項1記載の炭化ホウ素ー炭化ケ
イ素複合炭素材料である。
A third aspect of the present invention is the boron carbide-silicon carbide composite carbon material according to the first aspect, wherein the silicon carbide conversion rate in the SiC-containing composite layer is substantially uniform in a depth direction. .

【0011】請求項4の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料の表層部の一部又は全部を
用いてなる焼結用ルツボである。
According to a fourth aspect of the present invention, there is provided a sintering crucible comprising a part or all of the surface layer of the composite carbon material according to any one of the first to third aspects.

【0012】請求項5の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料の表層部の一部又は全部を
用いてなる真空蒸着用ルツボである。
According to a fifth aspect of the present invention, there is provided a crucible for vacuum deposition using a part or all of the surface layer of the composite carbon material according to any one of the first to third aspects.

【0013】請求項6の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料の表層部の一部又は全部を
用いてなる連続鋳造用ダイスである。
According to a sixth aspect of the present invention, there is provided a continuous casting die using a part or all of the surface layer portion of the composite carbon material according to any one of the first to third aspects.

【0014】請求項7の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料の表層部の一部又は全部を
用いてなる溶融金属用ルツボである。
According to a seventh aspect of the present invention, there is provided a molten metal crucible using a part or all of the surface layer of the composite carbon material according to any one of the first to third aspects.

【0015】請求項8の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料の表層部の一部又は全部を
用いてなるガラス管搬送用ローラーである。
[0015] The invention of claim 8 is a glass tube transporting roller using a part or all of the surface layer portion of the composite carbon material according to any one of claims 1 to 3.

【0016】請求項9の発明は、請求項1〜3のいずれ
か一項に記載の複合炭素材料を表層部の一部又は全部に
用いてなる鋼線材焼鈍用均熱管である。
According to a ninth aspect of the present invention, there is provided a soaking tube for annealing a steel wire rod, wherein the composite carbon material according to any one of the first to third aspects is used for part or all of a surface layer.

【0017】請求項10の発明は、請求項1〜3のいず
れか一項に記載の複合炭素材料を表層部の一部又は全部
に用いてなる高温焼成用治具である。
A tenth aspect of the present invention is a high-temperature firing jig using the composite carbon material according to any one of the first to third aspects for part or all of a surface layer portion.

【0018】請求項11の発明は、 請求項1〜3のい
ずれか一項に記載の複合炭素材料を表層部の一部又は全
部に用いてなるホットプレス用治具である。
According to an eleventh aspect of the present invention, there is provided a hot press jig using the composite carbon material according to any one of the first to third aspects for a part or all of a surface layer portion.

【0019】本発明のB4 C−SiC複合炭素材料に係
る最外表層部には、少なくともB4C成分が含まれてい
る必要があり、また周囲に混在するSiCと必ずしも均
質に混じり合った状態で分布している必要はない。こ
の、最外表層部のB4 Cは酸化されやすく、高温酸化雰
囲気中でB23 を形成し、ガラス質のB23 が形成
されることによってSiとの共晶温度が低下し、最終的
にSiO2 −B23 系のガラス質が形成され、このガ
ラスが最外表面層をさらに被覆し、緻密な酸化保護皮膜
を形成することになる。従って、最外層にガス不透過性
に優れた緻密な酸化保護皮膜が形成された状態になる。
The outermost surface layer portion of the B 4 C—SiC composite carbon material of the present invention must contain at least the B 4 C component, and is necessarily homogeneously mixed with the surrounding SiC. It does not need to be distributed in a state. B 4 C in the outermost surface layer is easily oxidized, and forms B 2 O 3 in a high-temperature oxidizing atmosphere. By forming vitreous B 2 O 3 , the eutectic temperature with Si decreases. finally SiO 2 -B 2 O 3 -based glassy is formed, the glass further covers the outermost surface layer, will form a dense oxide protective coating. Therefore, a state in which a dense oxide protective film having excellent gas impermeability is formed on the outermost layer is obtained.

【0020】このような機能を有する最外表層部は、あ
まり厚すぎると、割れや欠けが生じ易くなるため、厚み
としては3〜20μm、望ましくは5〜15μmとなる
ように形成しておく。最外表層部の厚みをこのように設
定する事により、B23 による耐酸化性の効果を十分
に発揮させつつも、必要以上の最外表層部の形成に要す
る製造コストの無駄を省き、製品コストの上昇を防止す
る事ができる。
If the outermost layer having such a function is too thick, cracks and chippings are likely to occur. Therefore, the outermost layer is formed to have a thickness of 3 to 20 μm, preferably 5 to 15 μm. By setting the thickness of the outermost surface layer in this way, the oxidation resistance effect of B 2 O 3 can be sufficiently exerted, while at the same time eliminating unnecessary manufacturing costs for forming the outermost surface layer more than necessary. In addition, an increase in product cost can be prevented.

【0021】SiCとB4 Cの組成比としてはSiC成
分が78〜99重量%、B4 C成分が1〜22重量%で
あるものが望ましい。この範囲にある2元組成(Si
C、B 4 C)を含む最外層表層部を有するSiC層が形
成されている場合に、最も効率よく耐酸化性が付与され
たB4 C−SiC複合炭素材料とすることができるから
である。さらに言えば、B4 Cは3〜20重量%が望ま
しい。SiC含有複合層の形成を促進させるうえで、下
限として3重量%以上が好ましく、又最外表層部が高温
酸化されたとき、その最外表層部にSiO2 ─B23
系のガラス質が形成されるだけのB4 Cが存在すれば十
分であり、この点を考慮すると、上限として20重量%
以下が好ましいからである。
SiC and BFourThe composition ratio of C is
78-99% by weight, BFourC component is 1 to 22% by weight
Some are desirable. Binary compositions (Si
C, B FourThe SiC layer having the outermost surface layer portion containing C) is shaped
Is most efficiently provided with oxidation resistance.
BFourBecause it can be a C-SiC composite carbon material
It is. Furthermore, BFourC is preferably 3 to 20% by weight.
New In promoting the formation of the SiC-containing composite layer,
3% by weight or more is preferable, and the outermost surface layer is
When oxidized, the outermost layerTwo─BTwo OThree
B only forms vitreous systemFourTen if C exists
Minutes, considering this point, the upper limit is 20% by weight.
This is because the following is preferable.

【0022】以上説明した最外表層部に続くSiC含有
複合層は、少なくともSiCを含む必要がある。このS
iC含有複合層は、耐酸化性を付与する。仮に最外表層
部のSiO2 ─B23 のガラス質酸化保護膜が無くな
った場合でも、このSiC含有複合層のSiCにより炭
素質基材の酸化進行が抑制される。従って、このような
機能を有するSiC含有複合層は1mm以上の厚みが必
要であるとともに、また、1mm以上の厚みで形成され
るSiC−C層は、厚み方向で略均一に形成されること
が望ましい。厚み方向での耐酸化性が変化しないからで
ある。ここで、厚み方向の略均一とは、SiC含有複合
層の浅い所のケイ化率と深い所のケイ化率の比が0.8
以内にあることをいう。
The SiC-containing composite layer following the outermost surface layer described above needs to contain at least SiC. This S
The iC-containing composite layer imparts oxidation resistance. Even if the outermost surface layer portion of the SiO 2 ─B 2 O 3 vitreous oxidation protective film disappears, the oxidation progress of the carbonaceous substrate is suppressed by the SiC of the SiC-containing composite layer. Therefore, the SiC-containing composite layer having such a function needs to have a thickness of 1 mm or more, and the SiC-C layer formed with the thickness of 1 mm or more is formed almost uniformly in the thickness direction. desirable. This is because the oxidation resistance in the thickness direction does not change. Here, “substantially uniform in the thickness direction” means that the ratio of the silicidation ratio at the shallow portion to the deep portion of the SiC-containing composite layer is 0.8.
It is within.

【0023】このように深くて、均一なSiC層は次の
理由により簡単に形成できる。最外層表面に含まれるB
4 Cは基材内部に浸透せず、何らかの作用、例えば触媒
的作用で、炭素基材中にSiを浸透させる働きがあり、
その結果として、Siが深さ方向に1mm以上炭素基材
中に拡散し、SiC含有複合層に1mm以上の均一な厚
みを有するSiC層が形成された状態とすることができ
る。
Such a deep and uniform SiC layer can be easily formed for the following reasons. B contained in the outermost layer surface
4 C does not penetrate into the interior base material, in some action, for example, catalytic activity, there is work to infiltrate Si into the carbon base material,
As a result, Si diffuses in the carbon substrate in the depth direction by 1 mm or more, so that a SiC layer having a uniform thickness of 1 mm or more can be formed in the SiC-containing composite layer.

【0024】本発明に使用する炭素基材としては特に限
定されるものではなく、炭素のみから実質的になる炭素
材料、又は炭素を主成分とする黒鉛化品、例えば高密度
等方性黒鉛材等が挙げられ、これら、炭素基材のうち水
銀圧入法で測定した平均細孔半径が1μm以上である炭
素基材を製品形状に加工したものを使用する事が望まし
い。
The carbon substrate used in the present invention is not particularly limited, and is a carbon material consisting essentially of carbon or a graphitized product containing carbon as a main component, for example, a high density isotropic graphite material. It is desirable to use a carbon substrate obtained by processing a carbon substrate having an average pore radius of 1 μm or more measured by a mercury intrusion method into a product shape.

【0025】平均細孔半径が1μmよりも小さい炭素基
材を使用すると、SiとB4 Cを混合したスラリーを炭
素基材に塗布する時に、炭素基材の微小細孔にまでスラ
リーが浸透しにくくなるためあまり望ましくない。な
お、炭素基材の平均細孔半径の上限については、特に制
限はなく、炭素繊維強化炭素複合材料等の平均細孔半径
が大きい炭素基材は、炭素基材内部奥深くまでスラリー
が浸透するため、熱処理後にほぼ全体が複合化したもの
になる。
When a carbon substrate having an average pore radius smaller than 1 μm is used, when a slurry in which Si and B 4 C are mixed is applied to the carbon substrate, the slurry penetrates into the fine pores of the carbon substrate. It is not so desirable because it becomes difficult. The upper limit of the average pore radius of the carbon substrate is not particularly limited, and the carbon substrate having a large average pore radius such as a carbon fiber reinforced carbon composite material is such that the slurry permeates deep inside the carbon substrate. After heat treatment, almost the whole is composited.

【0026】まず、平均粒径10〜100μmのSi粉
末、平均粒径5〜100μmのB4C粉末、熱可塑性樹
脂及びその樹脂の溶媒からなるスラリーを準備する。こ
こで使用する熱可塑性樹脂は造膜性が高く、かつ残炭率
が低い樹脂を使用し、例えばポリアミドイミド、ポリビ
ニルアルコール、ポリアミド樹脂の内より選ばれたもの
が特に好ましい。中でもポリアミドが更に望ましく、ジ
メチルアセトアミド、ジメチルホルムアミド、ジメチル
スルホキサイド、Nメチル─2ピロリドン等の溶媒に溶
解させて使用する。
First, a slurry comprising an Si powder having an average particle size of 10 to 100 μm, a B 4 C powder having an average particle size of 5 to 100 μm, a thermoplastic resin and a solvent for the resin is prepared. As the thermoplastic resin used here, a resin having a high film-forming property and a low residual carbon ratio is used. For example, a resin selected from polyamideimide, polyvinyl alcohol, and a polyamide resin is particularly preferable. Among them, polyamide is more preferable, and is used by dissolving it in a solvent such as dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and the like.

【0027】しかしながら、樹脂として残炭率の高い樹
脂、例えばフルフリルアルコール、フェノール樹脂等の
熱硬化性樹脂を使用すると、後の工程で高温熱処理を行
ったときに炭素基材の表面に樹脂の炭化物、Si及びB
4 Cとの反応生成物が固着して、これらを容易に除去で
きなくなることがあるため好ましくない。
However, when a resin having a high residual carbon ratio, for example, a thermosetting resin such as furfuryl alcohol or phenol resin is used as the resin, the resin will not adhere to the surface of the carbon substrate when a high-temperature heat treatment is performed in a later step. Carbide, Si and B
It is not preferable because the reaction product with 4 C is sometimes fixed and cannot be easily removed.

【0028】Si粉末とB4 C粉末を混合する際の混合
割合は、Si粉末80〜97重量%に対してB4 C粉末
3〜20重量%が望ましい。B4 C粉末が3重量%未満
では、B4 C粉末の混合による効果が少ないからであ
る。具体的には、B4 C粉末を混合することにより、B
4 Cによる何らかの作用、例えば、触媒的作用効果が発
現する。すなわち、3重量%未満では、この効果があま
り発現せず、高温熱処理後も溶融Siが炭素基材中の気
孔に完全に浸透せず、冷却後炭素基材表面に金属Siと
して固着した状態で残ってしまう。逆に3重量%以上含
有させた場合は、溶融Siが気孔中に深くまで浸透し、
炭素基材との反応が進み、SiC化され、請求項1記載
の厚みで深さ方向に均一なSiC層が形成されやすくな
るという効果が得られるからである。
The mixing ratio when mixing the Si powder and the B 4 C powder is desirably 3 to 20% by weight of the B 4 C powder with respect to 80 to 97% by weight of the Si powder. If the B 4 C powder is less than 3% by weight, the effect of mixing the B 4 C powder is small. Specifically, by mixing B 4 C powder,
Some action by 4 C, for example, a catalytic action effect appears. That is, when the content is less than 3% by weight, this effect is not so much exhibited, and the molten Si does not completely penetrate into the pores in the carbon substrate even after the high-temperature heat treatment, and is fixed as metallic Si on the surface of the carbon substrate after cooling. Will remain. Conversely, when the content is 3% by weight or more, the molten Si penetrates deeply into the pores,
This is because the reaction with the carbon base material proceeds to form SiC, and the effect of easily forming a uniform SiC layer in the depth direction with the thickness according to claim 1 is obtained.

【0029】この場合、炭素基材の表面には金属Siと
しての残留物は存在せず、使用した樹脂の炭化物、Si
C、B4 Cの成分の残留物が残るが、本発明では、この
残留物を残せる程度にB4 C粉末を添加すれば十分であ
るので、B4 C粉末の上限は20重量%程度が望まし
い。もちろん要求仕様に応じて、20%以上のB4 C粉
末を添加してSiC層をより深めに形成させ、耐酸化性
の更なる向上及び耐磨耗性やそれ以外の特性の向上を付
加させた製品とすることも可能である。
In this case, there is no residue as metal Si on the surface of the carbon substrate, and the carbide of the resin used, Si
Although the residue of the components C and B 4 C remains, in the present invention, it is sufficient to add the B 4 C powder to such an extent that the residue can be left. Therefore, the upper limit of the B 4 C powder is about 20% by weight. desirable. Of course, according to the required specifications, more than 20% of B 4 C powder is added to form a deeper SiC layer to further improve oxidation resistance and abrasion resistance and other properties. Products.

【0030】上記のように調製されたスラリーをはけ塗
り、へら塗り等の適宜な手段で表面全体、又は必要な部
分に塗布する。また、スラリー中に浸漬しても良い。こ
の時に塗布する厚みについては、任意の厚みとすること
ができるが炭素基材表面から1〜2mmが望ましい。1
00μm未満ではSiC層の形成が浅くなり、好ましく
ない。この後、約80℃から200℃まで5時間乾燥す
ることにより、溶媒を揮散させ、樹脂を完全に硬化させ
る。こうして得られた材料を、10Torr以下の真空
で高温熱処理する。昇温速度は400℃/時間とし、約
1600〜1800℃で1時間保持する。加熱手段は特
に限定されるものではなく、適当な手段で行えばよい。
この操作によって、Si成分は溶融し、樹脂の炭化層を
通って炭素基材の細孔中に侵入し、炭素と反応してSi
C化する。
The slurry prepared as described above is applied to the entire surface or a necessary portion by a suitable means such as brushing and spatula coating. Moreover, you may immerse in a slurry. The thickness applied at this time can be any thickness, but is preferably 1 to 2 mm from the surface of the carbon substrate. 1
If it is less than 00 μm, the formation of the SiC layer becomes shallow, which is not preferable. Thereafter, by drying from about 80 ° C. to 200 ° C. for 5 hours, the solvent is volatilized, and the resin is completely cured. The material thus obtained is subjected to a high-temperature heat treatment in a vacuum of 10 Torr or less. The heating rate is 400 ° C./hour, and the temperature is maintained at about 1600 to 1800 ° C. for 1 hour. The heating means is not particularly limited, and may be performed by an appropriate means.
By this operation, the Si component is melted, penetrates into the pores of the carbon substrate through the carbonized layer of the resin, reacts with the carbon, and reacts with the carbon.
Convert to C.

【0031】前記の一連の処理を得て最終的には、スラ
リーが塗布された部分に相当する炭素基材の表層部がS
iC層に転化するとともに、その表面には、B4 C成分
を含む緻密な最外表層部が形成された構造のB4 C−S
iC複合炭素材料を得ることができる。
After obtaining the above series of treatments, finally, the surface portion of the carbon base material corresponding to the portion to which the slurry was applied is S
A B 4 C—S structure having a structure in which a dense outermost layer containing a B 4 C component is formed on the surface while being converted into an iC layer.
An iC composite carbon material can be obtained.

【0032】このような構造からなるB4 C−SiC複
合炭素材料であれば、高温で酸化されても、最外表層部
にSiO2 ─B23 系ガラスの溶融物が生じ、この溶
融物が最外表層部の空隙を埋めるように侵入し、かつ被
覆する状態となり新たに酸化保護皮膜が形成された状態
となる。この酸化保護皮膜が以後の酸化を抑制する働き
を行なうことになる。この結果CVD法で得られるSi
C皮膜なみのガス不透過性に優れた緻密な保護皮膜が形
成できる。しかも、本発明に係るB4 C−SiC複合炭
素材料の場合には、SiC層を炭素基材の表層部の一部
もしくは全体に形成することが容易であり、結局、耐酸
化物性に優れたSiC層が任意の所定部位に経済的に形
成されてなる炭素複合材料を提供することができる。
In the case of a B 4 C—SiC composite carbon material having such a structure, even if it is oxidized at a high temperature, a melt of SiO 2 ─B 2 O 3 system glass is generated on the outermost surface layer, An object enters and covers the voids in the outermost surface layer, and a new oxidation protective film is formed. This oxidation protective film functions to suppress the subsequent oxidation. As a result, Si obtained by the CVD method
A dense protective film having excellent gas impermeability comparable to the C film can be formed. Moreover, in the case of the B 4 C—SiC composite carbon material according to the present invention, it is easy to form the SiC layer on a part or the whole of the surface layer of the carbon base material, and as a result, it has excellent oxide resistance. It is possible to provide a carbon composite material in which a SiC layer is economically formed at any given site.

【0033】以下に本発明によるB4 C−SiC複合炭
素材料を用いた具体的な用途例を説明する。
A specific application example using the B 4 C—SiC composite carbon material according to the present invention will be described below.

【0034】まず、焼結用ルツボに対する適用例を説明
する。従来から、焼結用ルツボの炭素基材は、主に還元
炉内で等方性高密度黒鉛が使用されているが、焼結処理
品を交換する際にルツボ表面が大気中に曝され、大気中
の水分等が炭素基材に吸着する。また、還元炉内でも水
素ガスと酸素の反応で微量な水分が発生する。これら水
分等が酸化源となり、炭素材を酸化させ、又その際に発
生するガスがルツボ内の焼結処理品と反応し、処理品の
不純物混入の一因となる問題がある。
First, an example of application to a sintering crucible will be described. Conventionally, the carbon substrate of sintering crucibles is mainly made of isotropic high-density graphite in a reduction furnace, but when exchanging sintered products, the crucible surface is exposed to the atmosphere, Atmospheric moisture and the like are adsorbed on the carbon substrate. Also, a small amount of water is generated in the reduction furnace due to the reaction between hydrogen gas and oxygen. There is a problem that the water or the like becomes an oxidizing source, oxidizes the carbon material, and the gas generated at that time reacts with the sintered product in the crucible, thereby contaminating the processed product with impurities.

【0035】本発明のB4 C−SiC複合炭素材料を前
記焼結用ルツボの表面の全部又は一部に適用すると、こ
れらの問題を解決できる。焼結用ルツボ1は、図1に示
す形状を有するルツボ2及び上蓋3からなり、大気に直
接触れる外表面を、B4 C−SiC複合炭素材料で形成
する。具体的には、ルツボの側面2a、底面2b及び上
蓋3との合わせ面2cと、上蓋3の上面3a、側面3b
とルツボ2との合わせ面3cとを本発明によるB4 C−
SiC複合炭素材料で形成する。
These problems can be solved by applying the B 4 C—SiC composite carbon material of the present invention to all or a part of the surface of the sintering crucible. Sintering crucible 1 comprises a crucible 2 and the upper lid 3 has a shape shown in FIG. 1, the outer surface in direct contact with the air, formed by B 4 C-SiC composite carbon material. Specifically, the mating surface 2c of the crucible side 2a, the bottom surface 2b and the upper lid 3, and the upper surface 3a and the side 3b of the upper lid 3
And the mating surface 3c of the crucible 2 with the B 4 C-
It is formed of a SiC composite carbon material.

【0036】ルツボ1の外表面2a、2b、2c、及び
上蓋の外表面3a、3b、3cがガス不透過性の酸化保
護皮膜であるB4 C−SiC複合炭素材料で形成されて
いるため、ルツボ自身の寿命を伸ばすとともに、ルツボ
外部からの不純物ガスの侵入を防ぎ、ルツボ内部の焼結
用金属粉末の純度を維持する効果も得られる。
Since the outer surfaces 2a, 2b, 2c of the crucible 1 and the outer surfaces 3a, 3b, 3c of the upper lid are formed of a B 4 C—SiC composite carbon material which is a gas-impermeable oxidation protective film, The effect of extending the life of the crucible itself, preventing intrusion of impurity gas from the outside of the crucible, and maintaining the purity of the sintering metal powder inside the crucible can be obtained.

【0037】つぎに、真空蒸着用ルツボに対する適用例
を説明する。従来から真空蒸着用ルツボは、通常炭素基
材の細孔部に溶融金属が浸透しないようにピッチ含浸、
焼成等の工程を繰り返し行った炭素材が使用されてい
る。例えば、アルミニウムの様に炭素材と反応する金属
の場合、さらに無機材塩類の溶液を含浸、焼成等の処理
を行うが、完全に金属との反応を防止することはできな
いという問題がある。
Next, an example of application to a crucible for vacuum evaporation will be described. Conventionally, crucibles for vacuum deposition are usually pitch impregnated so that molten metal does not penetrate into the pores of the carbon substrate,
A carbon material obtained by repeating steps such as firing is used. For example, in the case of a metal that reacts with a carbon material such as aluminum, treatments such as impregnation with a salt solution of an inorganic material and calcination are further performed, but there is a problem that the reaction with the metal cannot be completely prevented.

【0038】本発明のB4 C−SiC複合炭素材料を前
記真空蒸着用ルツボの表面の全部又は一部特に内面に適
用すると、これらの問題を解決できる。図2に示すよう
に、本発明の真空蒸着用ルツボ11は、炭素基材として
嵩密度1.90g/cm3 以上、固有抵抗1200μΩ
cm以下の等方性黒鉛を使用し、該黒鉛を図示の形状に
機械加工後、蒸着用溶融金属と接する面であるルツボ内
面11aに、本発明に係る前記スラリーをはけ塗りし、
4 C−SiC複合炭素材料を形成してなる。本発明に
よって得られる真空蒸着用ルツボは、耐酸化性が向上
し、ルツボ内の蒸着用溶融金属との反応を抑制すること
が可能となり、ルツボの寿命を向上させることが可能と
なる。
These problems can be solved by applying the B 4 C—SiC composite carbon material of the present invention to all or part of the surface of the crucible for vacuum evaporation, particularly to the inner surface. As shown in FIG. 2, the crucible for vacuum evaporation 11 of the present invention has a bulk density of 1.90 g / cm 3 or more and a specific resistance of 1200 μΩ as a carbon substrate.
cm or less of isotropic graphite, after machining the graphite into the shape shown in the figure, brushing the slurry according to the present invention on the crucible inner surface 11a which is a surface in contact with the molten metal for vapor deposition,
It is formed by forming a B 4 C—SiC composite carbon material. The crucible for vacuum evaporation obtained by the present invention has improved oxidation resistance, can suppress the reaction with the molten metal for evaporation in the crucible, and can improve the life of the crucible.

【0039】つぎに、連続鋳造用部材に対する適用例を
説明する。連続鋳造用部材としては、従来から高温機械
特性、熱伝導性、潤滑性等の物性面で優れた炭素基材が
多く使用されているが、炭素基材単独では非常に酸化し
やすく耐摩耗性も十分ではなく、また酸化消耗に伴う強
度劣化により早期破損に至等、寿命が非常に短いという
欠点がある。
Next, an example of application to a continuous casting member will be described. As a material for continuous casting, carbon substrates with excellent physical properties such as high-temperature mechanical properties, thermal conductivity, and lubricity have been used in many cases, but carbon substrates alone are extremely oxidized and wear-resistant. However, there is a drawback that the life is very short, for example, the strength is deteriorated due to oxidative consumption, leading to early breakage.

【0040】本発明のB4 C−SiC複合炭素材料を前
記連続鋳造用部材の表面の全部又は一部特に鋳造面に適
用すると、これらの問題を解決できる。図3に示すよう
に、連続鋳造用部材21は、炭素基材として嵩密度が
1.75g/cm3 以上、平均細孔半径が2.0μm以
下、曲げ強度が400kgf/cm2 以上であって、熱
伝導率が80kcal/hrm℃以上の等方性黒鉛を、
割り型22,23に加工してなる。なお、平均細孔半径
は、水銀圧入法による測定値(水銀と試料との接触角1
41.3°、最大圧力1000kg/cm2 の時の累積
気孔容積の半分の値)を採用した。次に、前記スラリー
を、溶湯及び鋳塊24と接する鋳造面25のみはけ塗り
を行い、該部分にのみ本発明に係るB4 C−SiC複合
炭素材料を形成する。
These problems can be solved by applying the B 4 C—SiC composite carbon material of the present invention to all or a part of the surface of the continuous casting member, particularly to the casting surface. As shown in FIG. 3, the continuous casting member 21 has a bulk density of 1.75 g / cm 3 or more, an average pore radius of 2.0 μm or less, and a bending strength of 400 kgf / cm 2 or more as a carbon base material. Isotropic graphite having a thermal conductivity of 80 kcal / hrm ° C or more,
It is processed into split dies 22 and 23. The average pore radius is a value measured by a mercury intrusion method (a contact angle of 1 between mercury and a sample).
41.3 °, half the cumulative pore volume at a maximum pressure of 1000 kg / cm 2 ). Next, the slurry is performed only brushing the casting surface 25 in contact with the molten metal and ingot 24 to form a B 4 C-SiC composite carbon material according to the invention only the partial.

【0041】ところで、複合処理を施した直後の表面
は、処理前の炭素基材表面に比べて粗くなっており、こ
のような表面のままでダイスとして使用した場合、冷却
・凝固した鋳塊を間欠的に引き出す時に両者間に大きな
摩擦力が作用し、ダイス内面が鋳塊により傷つけられ、
この傷が鋳塊に転写されて鋳塊表面を粗くするおそれが
あるからである。従って、必ず連続鋳造用部材の内面は
鏡面加工を行う。鏡面加工の手段としては、特別限定は
なく、例えばダイス砥粒による湿式研磨方法が挙げられ
る。また、最終的な研磨度としては、JIS平均表面粗
さ(Ra)で0.75μm以下であれば良い。なお、鏡
面加工後の面(SiC転化層)の熱伝導率はほぼ50kc
al/hrm℃確保されていれば、金属の冷却凝固能力として
は十分である。
By the way, the surface immediately after the composite treatment is rougher than the surface of the carbon substrate before the treatment, and when such a surface is used as a die, the cooled and solidified ingot is used. When it is pulled out intermittently, a large frictional force acts between them, and the inner surface of the die is damaged by the ingot,
This is because the scratch may be transferred to the ingot and roughen the surface of the ingot. Therefore, the inner surface of the continuous casting member is always mirror-finished. There is no particular limitation on the mirror finishing means, and examples thereof include a wet polishing method using die abrasive grains. The final polishing degree may be 0.75 μm or less in JIS average surface roughness (Ra). The heat conductivity of the mirror-finished surface (SiC conversion layer) is approximately 50 kc
If al / hrm ° C is secured, the cooling and solidifying ability of the metal is sufficient.

【0042】上記の如く、本発明で得られる連続鋳造用
部材は、炭素基材の溶融金属及び鋳塊と接する部分にS
iCの被覆層が深めに形成された後、鏡面加工を施した
4C−SiC複合層が設けられた構造である。このた
め、炭素基材の表面をB4 C−SiC複合層で覆うこと
により、本発明の目的である耐酸化性及び耐摩耗性の向
上を、確実に実効あるものにできる。その結果、この連
続鋳造用部材の一層の延命化を可能とし、同時に鋳肌の
滑らかな鋳塊を長時間安定して確実に製造することがで
きる。
As described above, the member for continuous casting obtained by the present invention is characterized in that the portion of the carbon substrate in contact with the molten metal and the ingot is S
After the coating layer of iC is formed deeper, a structure in which B 4 C-SiC composite layer subjected to mirror surface processing is provided. Therefore, by covering the surface of the carbon substrate with B 4 C-SiC composite layer, the improvement object of the oxidation resistance and wear resistance are of the present invention, can in some reliably effective. As a result, the life of the continuous casting member can be further extended, and at the same time, an ingot with a smooth casting surface can be stably and reliably produced for a long time.

【0043】つぎに、溶融金属用ルツボに対する適用例
を説明する。溶融金属用ルツボは、炭素基材として等方
性高密度黒鉛が多く用いられているが、その多くは常圧
大気中で使用されるため大気により酸化されたり、ルツ
ボ内部が溶融金属と反応するなどの問題がある。
Next, an example of application to a crucible for molten metal will be described. Crucibles for molten metal are often made of isotropic high-density graphite as a carbon substrate, but most of them are used in normal pressure atmosphere, so they are oxidized by the atmosphere or the inside of the crucible reacts with the molten metal. There is such a problem.

【0044】本発明のB4 C−SiC複合炭素材料を前
記溶融金属ルツボの表面の全部又は一部特に内面に適用
すると、これらの問題を解決できる。図4に示すよう
に、本発明の溶融金属用ルツボ31は、炭素基材を図示
の形状に加工し、溶融金属と接するルツボ内面32に本
発明に係るB4 C−SiC複合炭素材料が形成されてな
る。
These problems can be solved by applying the B 4 C—SiC composite carbon material of the present invention to all or part of the surface of the molten metal crucible, particularly to the inner surface. As shown in FIG. 4, the molten metal crucible 31 of the present invention is obtained by processing a carbon base material into the shape shown in the drawing, and forming a B 4 C—SiC composite carbon material according to the present invention on the crucible inner surface 32 in contact with the molten metal. Be done.

【0045】本発明によるC−B4 C−SiC複合層を
ルツボ内面に形成させることにより、溶融金属との反応
を抑制でき、ルツボの延命化が可能となる。
By forming the CB 4 C—SiC composite layer according to the present invention on the inner surface of the crucible, the reaction with the molten metal can be suppressed, and the life of the crucible can be extended.

【0046】つぎに、ガラス管搬送用ローラーに対する
適用例を説明する。ガラス管搬送用ローラーには、鋳鉄
が使用されていたが、製品であるガラス管に傷を付ける
点、酸化劣化による整形精度が低下する点などに問題が
あった。そこで、製品に傷を付けない事を目的に、鋳鉄
に替え炭素材が使用されるようになったが、炭素材単独
では酸化消耗による強度劣化、ガラス管の整形精度の劣
化等の問題があり、耐酸化性に優れた炭素材が要求され
ている。
Next, an example of application to a glass tube conveying roller will be described. Although cast iron was used for the glass tube transport roller, there were problems in that the glass tube, which is a product, was damaged, and that the shaping accuracy was reduced due to oxidative deterioration. Therefore, carbon materials have been used in place of cast iron in order to prevent damage to the product.However, carbon materials alone have problems such as deterioration in strength due to oxidative consumption and deterioration in shaping accuracy of glass tubes. There is a demand for a carbon material having excellent oxidation resistance.

【0047】本発明のB4 C−SiC複合炭素材料を前
記ガラス管搬送用ローラーの表面の全部又は一部特に鋳
造面に適用すると、これらの問題を解決できる。図5に
示すように、本発明のガラス管搬送用ローラー41は、
一本の軸に円板二枚を取り付けた図示の形状に炭素基材
を加工し、好ましくはその全面に本発明に係るB4 C−
SiC複合炭素材料が形成されてなる。
These problems can be solved by applying the B 4 C—SiC composite carbon material of the present invention to all or part of the surface of the glass tube transporting roller, particularly to the casting surface. As shown in FIG. 5, the glass tube transporting roller 41 of the present invention includes:
The carbon base material is processed into the shape shown in the figure in which two disks are attached to one shaft, and preferably, the B 4 C-
An SiC composite carbon material is formed.

【0048】全面にB4 C−SiC複合層を形成させる
ことにより、該表面層のガラスによる酸化を抑制するた
め、酸化による整形精度の劣化を防ぐとともに、ローラ
ーの延命化も可能となる。
By forming the B 4 C—SiC composite layer on the entire surface, the oxidation of the surface layer by the glass is suppressed, so that the deterioration of the shaping accuracy due to the oxidation can be prevented and the life of the roller can be extended.

【0049】つぎに、鋼線材焼鈍用均熱管に対する適用
例を説明する。鋼線材を焼鈍する工程において、従来、
線材はステンレス単独でなる均熱管内を摺動をともなっ
て、移動し処理が行なわれていた。その際、ステンレス
均熱管と線材の溶着により、製品線材に傷が発生する問
題が多々有り、その防止策として、炭素管をステンレス
均熱管に挿入し、線材の溶着防止が行なわれていた。し
かしながら、この場合、炭素管の酸化消耗や、線材への
侵炭等の問題が新たに発生し、炭素材に代わる鋼線材焼
鈍用均熱管向けの材料が要望されている。
Next, an example of application to a soaking tube for annealing a steel wire rod will be described. Conventionally, in the process of annealing steel wire,
The wire rod has been moved and processed in a soaking tube made of stainless steel alone with sliding. At that time, there are many problems that the product wire is damaged due to welding between the stainless steel soaking tube and the wire, and as a preventive measure, a carbon tube is inserted into the stainless steel soaking tube to prevent welding of the wire. However, in this case, problems such as oxidative consumption of the carbon tube and carburization of the wire material newly arise, and a material for a soaking tube for annealing a steel wire material instead of the carbon material is demanded.

【0050】本発明のB4 C−SiC複合炭素材料を、
前記鋼線材焼鈍用均熱管に挿入する炭素管の内表面全面
に形成させる。図6に鋼線材焼鈍用均熱管の一例の断面
概略図を示す。本発明のB4 CーSiC複合層を炭素管
52の内表面、好ましくは全面に形成することにより、
耐酸化性が向上するとともに、鋼線材53の炭素管52
への溶着が防止でき、加えて、鋼線材53への侵炭が防
止できる。また、本発明品の有する優れた潤滑性によっ
て、線材に傷を付けることがなくなり、鋼線材の品質が
安定し且つ歩留りが大きく改善される。
The B 4 C—SiC composite carbon material of the present invention is
It is formed on the entire inner surface of the carbon tube inserted into the soaking tube for annealing a steel wire rod. FIG. 6 is a schematic cross-sectional view of an example of a soaking tube for annealing a steel wire rod. By forming the B 4 C—SiC composite layer of the present invention on the inner surface, preferably the entire surface, of the carbon tube 52,
The oxidation resistance is improved and the carbon tube 52 of the steel wire 53 is improved.
Welding can be prevented, and in addition, carburization of the steel wire rod 53 can be prevented. Further, the excellent lubricity of the product of the present invention prevents the wire from being damaged, thereby stabilizing the quality of the steel wire and greatly improving the yield.

【0051】つぎに、高温焼成用治具に対する適用例を
説明する。高温焼成用治具としては、焼成炉用棚板、金
属ろう付け用治具等の高温雰囲気下で使用される治具で
あり、黒鉛材やステンレス材が使用されていた。しかし
ながら、前述してきたように高温雰囲気下では黒鉛材を
使用した場合、酸化の問題や、処理表面への浸炭の問題
があり、また、ステンレス材の場合は、熱歪み等による
経時形状変化によって、製品寸法の精度劣化等の問題が
あった。
Next, an example of application to a high-temperature firing jig will be described. The high-temperature firing jig is a jig used in a high-temperature atmosphere such as a firing furnace shelf, a metal brazing jig, and the like, and a graphite material or a stainless steel material has been used. However, as described above, when a graphite material is used in a high-temperature atmosphere, there is a problem of oxidation and a problem of carburization of a treated surface, and in the case of a stainless steel material, the shape changes with time due to thermal distortion and the like. There were problems such as deterioration of the accuracy of product dimensions.

【0052】本発明のB4 C−SiC複合材料を、高温
雰囲気下で処理表面と接する部分に形成させる。これに
より、前記問題を解消することができ、経時形状変化が
なく、耐酸化特性に優れた炭素製の高温焼成用治具とす
ることが可能となる。
The B 4 C—SiC composite material of the present invention is formed at a portion in contact with the treated surface under a high temperature atmosphere. Thus, the above problem can be solved, and a carbon high-temperature firing jig having no change in shape over time and excellent in oxidation resistance can be obtained.

【0053】次に、ホットプレス用治具に対する適用例
を説明する。ホットプレスに使用されているダイスや、
上下のパンチ等の治具は、黒鉛の優れた高温特性のた
め、従来より黒鉛がよく使用されている。その際には、
処理品との溶着を防止するため、治具表面に離型剤を塗
布する必要があった。この離型剤は、処理物への不純物
混入の原因となっていた。
Next, an example of application to a hot press jig will be described. Dies used for hot pressing,
For the jigs such as the upper and lower punches, graphite is often used conventionally because of the excellent high-temperature characteristics of graphite. In that case,
It was necessary to apply a release agent to the surface of the jig in order to prevent welding with the processed product. This release agent causes impurities to be mixed into the processed product.

【0054】そこで、本発明のB4 C−SiC複合材料
を、ホットプレスの上下パンチおよびダイス表面に形成
させることにより、表面の酸化を防止することが出来る
とともに、処理表面への不純物の混入も少なくなり、離
型剤を最小限に抑えることが出来る。ホットプレス用治
具は図7に示すように一体型若しくは分割型のダイス6
1と上下パンチ62、63から構成されている。
Therefore, by forming the B 4 C—SiC composite material of the present invention on the upper and lower punches and the die surface of the hot press, it is possible to prevent the surface from being oxidized and to mix impurities into the treated surface. And the amount of release agent can be minimized. As shown in FIG. 7, the jig for hot pressing is an integrated or split die 6.
1 and upper and lower punches 62 and 63.

【0055】[0055]

【実施例】以下に実施例を示し、本発明を具体的に説明
する。 (実施例1)炭素基材として、嵩密度1.77g/cm
3 、平均細孔半径が1.5μm、曲げ強度が400kg
f/cm2 の等方性黒鉛(東洋炭素(株)製) を、図1
に示す形状を有するルツボとその上蓋に加工した。ま
た、バインダーとしてのポリビニールアルコール(日本
合成産業(株)製)8%溶液を分散媒とした。ケイ素粉
末(和光純薬工業(株)製、平均粒度40μm)と、炭
化ホウ素粉末(共立窯業社製、平均粒度20μm)を重
量比で80:20の比率に混合し、分散媒中に混合分散
させてスラリーとした。
The present invention will be specifically described below with reference to examples. (Example 1) As carbon substrate, bulk density 1.77 g / cm
3 , average pore radius is 1.5μm, bending strength is 400kg
f / cm 2 isotropic graphite (manufactured by Toyo Tanso Co., Ltd.)
A crucible having the shape shown in FIG. An 8% solution of polyvinyl alcohol (manufactured by Nippon Gosei Sangyo Co., Ltd.) as a binder was used as a dispersion medium. Silicon powder (manufactured by Wako Pure Chemical Industries, Ltd., average particle size: 40 μm) and boron carbide powder (manufactured by Kyoritsu Ceramics Co., Ltd., average particle size: 20 μm) are mixed in a weight ratio of 80:20, and mixed and dispersed in a dispersion medium. This was made into a slurry.

【0056】このスラリーを、炭素基材が、大気に直接
触れる外表面であるルツボ及び上蓋の所定部分にはけで
塗布した後、乾燥機の中で200℃で溶媒を蒸発させ、
さらに3Torrの窒素ガス雰囲気下、真空加熱炉において
1600℃まで4時間で昇温市、1時間保持した後、冷
却して取り出した。ケイ化部の厚みは3mmであった。
4 Cを含む最外表層部は10μmであった。また、ケ
イ化部の浅い所のケイ化率と深い所のケイ化率の比は、
0.8であった。
The slurry is applied to a crucible, which is an outer surface directly in contact with the atmosphere, and a predetermined portion of an upper lid by a brush, and then the solvent is evaporated at 200 ° C. in a dryer.
Further, in a 3 Torr nitrogen gas atmosphere, the temperature was raised to 1600 ° C. for 4 hours in a vacuum heating furnace, held for 1 hour, cooled, and taken out. The thickness of the silicified portion was 3 mm.
The outermost surface layer containing B 4 C was 10 μm. In addition, the ratio of the silicidation rate at the shallow part of the silicide part to that at the deep part
0.8.

【0057】(比較例1)実施例1と同一材質の等方性
黒鉛(東洋炭素(株)製)を使用し、図1に示す形状に
加工し、試験用焼結用ルツボを得た。
(Comparative Example 1) Using isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 1, it was processed into the shape shown in FIG. 1 to obtain a crucible for sintering for testing.

【0058】前記実施例1及び比較例1で得られた試験
用焼結用ルツボを用いて、焼結用金属として黒鉛粉末と
タングステン粉末を混合した状態で炭化タングステンの
焼結試験を行った。
Using the test sintering crucibles obtained in Example 1 and Comparative Example 1, a sintering test of tungsten carbide was performed in a state where graphite powder and tungsten powder were mixed as sintering metals.

【0059】(実施例2)炭素基材として、嵩密度1.
9g/cm3 、平均細孔半径が0.4μm 、曲げ強度が
650kgf/cm2 、固有抵抗1200μΩcm以下の
等方性黒鉛(東洋炭素( 株)製) を、図2に示す形状を
有するルツボに加工し、溶融金属と接するルツボ内面6
に、実施例1と同様の手順により、ケイ化処理を行った
試験用真空蒸着用ルツボを得た。ケイ化部の厚みは2m
mであった。B4 Cを含む最外表層部は8μmであっ
た。また、ケイ化部の浅い所のケイ化率と深い所のケイ
化率の比は、0.8であった。
Example 2 As a carbon substrate, a bulk density of 1.
9 g / cm 3 , an average pore radius of 0.4 μm, a bending strength of 650 kgf / cm 2 and a specific resistance of 1200 μΩcm or less isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) were added to a crucible having the shape shown in FIG. Processed, crucible inner surface 6 in contact with molten metal
In accordance with the same procedure as in Example 1, a crucible for test vacuum deposition which was subjected to a silicidation treatment was obtained. The thickness of the silicified part is 2m
m. The outermost surface layer containing B 4 C was 8 μm. In addition, the ratio of the silicidation rate at the shallow portion of the silicide portion to that at the deep portion was 0.8.

【0060】(比較例2)実施例2と同一材質の等方性
黒鉛(東洋炭素(株)製)を使用し、図2に示す形状に
加工し、試験用真空蒸着用ルツボを得た。
(Comparative Example 2) Using isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 2, it was processed into the shape shown in FIG. 2 to obtain a crucible for vacuum deposition for testing.

【0061】前記実施例2及び比較例2で得られた試験
用真空蒸着用ルツボを用いて、蒸着用溶融金属としてア
ルミニウムを用い、真空蒸着試験を行った。
Using the crucible for test vacuum evaporation obtained in Example 2 and Comparative Example 2, a vacuum evaporation test was conducted using aluminum as the molten metal for evaporation.

【0062】(実施例3)炭素基材として、嵩密度1.
87g/cm3 、平均細孔半径が1.5μm 、曲げ強度
が650kgf/cm2 、熱伝導率120kcal/hm ℃の
等方性黒鉛(東洋炭素( 株)製) を、図3に示す形状を
有する角形ダイスに加工し、鋳造面に実施例1と同様の
手順により、ケイ化処理を行った試験用連続鋳造用ダイ
スを得た。ケイ化部の厚みは2mmであった。表面を研
磨剤を用いてRa=0.75μmまで研磨し、試験用連
続鋳造用ダイスを得た。
(Example 3) As a carbon substrate, a bulk density of 1.
An isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) having an average pore radius of 87 g / cm 3 , an average pore radius of 1.5 μm, a bending strength of 650 kgf / cm 2 and a thermal conductivity of 120 kcal / hm ° C. This was processed into a rectangular die, and a continuous casting die for test was prepared by subjecting the casting surface to a silicidation treatment in the same procedure as in Example 1. The thickness of the silicified portion was 2 mm. The surface was polished to Ra = 0.75 μm using an abrasive to obtain a continuous casting die for testing.

【0063】(比較例3)実施例3と同一材質、同一形
状の等方性黒鉛基材(東洋炭素(株)製)を使用し、実
施例3と同様の研磨処理を施して、試験用連続鋳造用ダ
イスを得た。
Comparative Example 3 An isotropic graphite base material (manufactured by Toyo Tanso Co., Ltd.) of the same material and the same shape as in Example 3 was subjected to the same polishing treatment as in Example 3 for the test. A continuous casting die was obtained.

【0064】前記実施例3及び比較例3で得られた試験
用連続鋳造用ルツボを用いて、銅合金を用い、連続鋳造
試験を行った。
Using the crucible for continuous casting for test obtained in Example 3 and Comparative Example 3, a continuous casting test was performed using a copper alloy.

【0065】(実施例4)炭素基材として、嵩密度1.
82g/cm3 、平均細孔半径が1μm 、曲げ強度が7
80kgf/cm2 の等方性黒鉛(東洋炭素( 株)製)
を、図4に示す形状を有するルツボに加工し、溶融金属
と接するルツボ内面に、実施例1と同様の手順により、
ケイ化処理を行った試験用溶融金属用ルツボを得た。ケ
イ化部の厚みは3mmであった。B4 Cを含む最外表層
部は8μmであった。また、ケイ化部の浅い所のケイ化
率と深い所のケイ化率の比は、0.8であった。
Example 4 As a carbon substrate, a bulk density of 1.
82 g / cm 3 , average pore radius 1 μm, flexural strength 7
80 kgf / cm 2 isotropic graphite (manufactured by Toyo Tanso Co., Ltd.)
Is processed into a crucible having the shape shown in FIG. 4, and on the inner surface of the crucible in contact with the molten metal, in the same procedure as in Example 1,
A crucible for a molten metal for a test subjected to a silicidation treatment was obtained. The thickness of the silicified portion was 3 mm. The outermost surface layer containing B 4 C was 8 μm. In addition, the ratio of the silicidation rate at the shallow portion of the silicide portion to that at the deep portion was 0.8.

【0066】(比較例4)実施例4と同一材質の等方性
黒鉛(東洋炭素(株)製)を使用し、図4に示す形状に
加工し、試験用溶融金属用ルツボを得た。
(Comparative Example 4) Using isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 4, it was worked into the shape shown in FIG. 4 to obtain a crucible for a molten metal for testing.

【0067】前記実施例4及び比較例4で得られた試験
用溶融金属用ルツボを用いて、鉄を溶解し、溶融試験を
行った。
Using the crucible for molten metal for test obtained in Example 4 and Comparative Example 4, iron was dissolved and a melting test was performed.

【0068】(実施例5)炭素基材として、嵩密度1.
90g/cm3 、平均細孔半径が0.2μm、曲げ強度
が950kgf/cm2 の等方性黒鉛(東洋炭素( 株)
製) を、図5に示す形状に加工し、全面にわたり実施例
1と同様の手順により、ケイ化処理を行った試験用ガラ
ス搬送用ローラーを得た。ケイ化部の厚みは1mmであ
った。B4Cを含む最外表層部は10μmであった。
Example 5 As a carbon substrate, a bulk density of 1.
90 g / cm 3 , an average pore radius of 0.2 μm, a bending strength of 950 kgf / cm 2 , isotropic graphite (Toyo Carbon Co., Ltd.)
Was processed into the shape shown in FIG. 5, and a silicification-treated glass transporting roller was obtained in the same procedure as in Example 1 over the entire surface. The thickness of the silicified portion was 1 mm. The outermost surface layer containing B 4 C was 10 μm.

【0069】(比較例5)実施例5と同一材質の等方性
黒鉛(東洋炭素(株)製)を使用し、図5に示す形状に
加工し、試験用ガラス管搬送用ローラーを得た。
(Comparative Example 5) Using isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 5, it was processed into the shape shown in FIG. 5 to obtain a roller for transporting a glass tube for testing. .

【0070】(実施例6)炭素基材として、嵩密度1.
82g/cm3 、平均細孔半径が1.5μm 、曲げ強度
が550kgf/cm2 、熱伝導率120kcal/hm ℃の
等方性黒鉛(東洋炭素( 株)製) を、図6に示すような
外径40mm、肉厚5mmの管状に加工し、その全面に
実施例1と同様の手順により、ケイ化処理を行った試験
用鋼線材焼鈍用均熱管を得た。ケイ化部の厚みは2mm
であった。
(Example 6) As a carbon substrate, a bulk density of 1.
FIG. 6 shows isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) having 82 g / cm 3 , an average pore radius of 1.5 μm, a bending strength of 550 kgf / cm 2 and a thermal conductivity of 120 kcal / hm ° C. A tube having an outer diameter of 40 mm and a wall thickness of 5 mm was processed, and the entire surface thereof was subjected to the same procedure as in Example 1 to obtain a test steel wire rod soaking tube for silicidation. The thickness of silicide is 2mm
Met.

【0071】(比較例6)実施例6と同一材質の等方性
黒鉛基材(東洋炭素(株)製)を使用し、実施例3と同
様に、図6に示すような外径40mm、肉厚5mmの管
状に加工し、試験用鋼線材焼鈍用均熱管を得た。
(Comparative Example 6) An isotropic graphite substrate (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 6 was used, and an outer diameter of 40 mm as shown in FIG. The tube was processed into a tube having a thickness of 5 mm to obtain a soaking tube for annealing a test steel wire rod.

【0072】(実施例7)高温焼成用治具の一例とし
て、焼成炉用棚板を例にとり、高温焼成用治具について
説明する。炭素基材として、嵩密度1.77g/c
3 、平均細孔半径が1.5μm、曲げ強度が400k
gf/cm2 の等方性黒鉛(東洋炭素( 株)製)を、4
50×350×4.0mmの形状に加工し、全面にわた
り実施例1と同様の手順により、ケイ化処理を行い、試
験用焼成炉用棚板を得た。ケイ化部の厚みは2.0mm
であった。B4 Cを含む最外表層部は10μmであっ
た。
(Embodiment 7) As an example of a jig for high-temperature firing, a jig for high-temperature firing will be described using a shelf plate for a firing furnace as an example. 1.77 g / c bulk density as carbon substrate
m 3 , average pore radius 1.5 μm, flexural strength 400 k
gf / cm 2 of isotropic graphite (manufactured by Toyo Tanso Co., Ltd.)
It was processed into a shape of 50 × 350 × 4.0 mm, and silicidation was performed on the entire surface in the same procedure as in Example 1 to obtain a shelf for a test firing furnace. 2.0mm thickness of silicide
Met. The outermost surface layer containing B 4 C was 10 μm.

【0073】(比較例7)実施例7と同一材質の等方性
黒鉛(東洋炭素(株)製)を使用し、実施例7と同形状
に加工し、試験用焼成炉用棚板を得た。
(Comparative Example 7) Using isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) of the same material as in Example 7, processed into the same shape as in Example 7, and obtained a shelf plate for a firing furnace for testing. Was.

【0074】(実施例8)炭素基材として、嵩密度1.
85g/cm3 、平均細孔半径が1.7μm、曲げ強度
が530kgf/cm2 、熱伝導率110kcal/hm ℃の
等方性黒鉛(東洋炭素( 株)製) を、図7に示す形状を
有するホットプレス用ダイスおよびパンチに加工し、実
施例1と同様の手順により、ケイ化処理を行った試験用
ホットプレス用ダイスを得た。ケイ化部の厚みは3.0
mmであった。B4 Cを含む最外表層部は10μmであ
った。
Example 8 As a carbon substrate, a bulk density of 1.
An isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) having 85 g / cm 3 , an average pore radius of 1.7 μm, a bending strength of 530 kgf / cm 2 , and a thermal conductivity of 110 kcal / hm ° C. was manufactured by using the shape shown in FIG. A hot press die and a die for silicification were obtained in the same procedure as in Example 1. The thickness of the silicified part is 3.0
mm. The outermost surface layer containing B 4 C was 10 μm.

【0075】(比較例8)実施例8と同一材質、同一形
状の等方性黒鉛基材(東洋炭素(株)製)を使用し、試
験用ホットプレス用ダイスを得た。
Comparative Example 8 An isotropic graphite substrate (manufactured by Toyo Tanso Co., Ltd.) of the same material and the same shape as in Example 8 was used to obtain a test hot press die.

【0076】上記実施例1〜8及び比較例1〜8で得ら
れた各試験用製品をそれぞれの用途に適した試験を行っ
た。試験結果を表1に示す。
Each of the test products obtained in Examples 1 to 8 and Comparative Examples 1 to 8 was subjected to a test suitable for each use. Table 1 shows the test results.

【0077】[0077]

【表1】 [Table 1]

【0078】表1からも明らかなように、実施例1〜8
は、比較例1〜8のものに対して良好な製品を長時間製
造するに耐えうることができるものである。
As is clear from Table 1, Examples 1 to 8
Can withstand the production of a good product for a long time with respect to those of Comparative Examples 1 to 8.

【0079】[0079]

【発明の効果】請求項1〜3記載の本発明は、炭素質基
材、最外表層部に厚みが1〜50μmである炭化ホウ素
ー炭化ケイ素ー複合炭素層、SiC含有複合層に厚みが
1mm以上である炭化ケイ素含有層が形成されてなる耐
酸化性の炭化ホウ素ー炭化ケイ素複合炭素材料を形成す
ることを基本とするものであり、従来のCVD法、転化
法、焼結法等とは異なり、比較的容易に炭素質基材の表
層部の任意の場所や全体に形成でき、CVD法により得
られる被覆層と同等の緻密な、耐酸化性に優れたB4
−SiC複合炭素材料とすることができる。また、本発
明のB4 C−SiC複合炭素材料は、上記最外表層部の
SiC/B4 C比(重量%)を、SiC/B4 C=78
〜99/1〜22に設定したものであり、深さ方向に均
一な層を形成できる。従って、上記の効果を経済性を考
慮しつつ確実に発揮させることができる。
According to the present invention, the carbonaceous substrate, the boron carbide-silicon carbide-composite carbon layer having a thickness of 1 to 50 μm on the outermost surface layer, and the SiC-containing composite layer have a thickness of It is based on forming an oxidation-resistant boron carbide-silicon carbide composite carbon material in which a silicon carbide-containing layer having a thickness of 1 mm or more is formed, and includes a conventional CVD method, a conversion method, a sintering method, and the like. Unlike, relatively easy to form anywhere and overall surface portion of the carbonaceous substrate, dense equivalent to the coating layer obtained by a CVD method, B 4 C having excellent oxidation resistance
—SiC composite carbon material. In the B 4 C—SiC composite carbon material of the present invention, the SiC / B 4 C ratio (% by weight) of the outermost surface layer is set as follows: SiC / B 4 C = 78.
9999/1 to 2222, and a uniform layer can be formed in the depth direction. Therefore, the above-mentioned effects can be surely exerted while considering economy.

【0080】また、請求項4記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、焼結用ルツボの外面
に形成させることにより、ルツボ外表面をがす不透過性
の酸化保護皮膜で被覆し、ルツボ自身の寿命を伸ばすと
ともに、ルツボ外部からの不純物ガスの侵入を防ぎ、ル
ツボ内部の焼結用金属の純度を維持する効果を得ること
ができる。。
Further, according to the present invention, the B 4 C—SiC composite carbon material according to the present invention is formed on the outer surface of a sintering crucible, so that the outer surface of the crucible is removed. By coating with a protective film, the life of the crucible itself can be prolonged, the effect of preventing the intrusion of impurity gas from the outside of the crucible, and the effect of maintaining the purity of the sintering metal inside the crucible can be obtained. .

【0081】また、請求項5記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、真空蒸着用ルツボと
して、ルツボ内面に形成させることにより、耐酸化性が
向上し、ルツボ内の蒸着用溶融金属との反応を抑制する
ことが可能となり、寿命の延命化を図ることができる。
The invention according to claim 5 is characterized in that the B 4 C—SiC composite carbon material according to the present invention is formed on the inner surface of a crucible as a crucible for vacuum vapor deposition, so that the oxidation resistance is improved, and Can be suppressed from reacting with the molten metal for vapor deposition, and the life can be prolonged.

【0082】また、請求項6記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、連続鋳造用ダイスと
して、ダイス内面の溶融金属及び鋳塊と接する鋳造面に
形成するものである。これにより、連続鋳造用部材の耐
酸化性及び耐摩耗性の向上を、確実に実効あるものとし
てこの連続鋳造用部材の一層の延命化を可能とし、同時
に金属の冷却・凝固能力を十分なものとして、鋳肌の滑
らかな鋳塊を長時間安定して確実に製造することができ
る。
The invention according to claim 6 is to form the B 4 C—SiC composite carbon material according to the present invention as a continuous casting die on the casting surface in contact with the molten metal and the ingot on the inner surface of the die. is there. As a result, the improvement of the oxidation resistance and wear resistance of the continuous casting member is ensured, and the life of the continuous casting member can be further extended, and at the same time, the cooling and solidifying ability of the metal is sufficient. As a result, an ingot with a smooth casting surface can be stably and reliably produced for a long time.

【0083】また、請求項7記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、溶融金属用ルツボと
して、ルツボ内面に形成させることにより、耐酸化性が
向上し、溶融金属との反応を抑制でき、寿命の延命化の
効果を得ることが可能となる。
The invention according to claim 7 is characterized in that the B 4 C—SiC composite carbon material according to the present invention is formed on the inner surface of a crucible as a crucible for molten metal, so that oxidation resistance is improved and molten metal is improved. Reaction can be suppressed, and the effect of extending the life can be obtained.

【0084】また、請求項8記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、ガラス管搬送用ロー
ラーの全面に形成させることにより、酸化消耗による強
度劣化、ガラス管の整形精度の劣化を防ぐことが可能と
なり、ガラス管の整形精度が向上するという効果に合わ
せ、ローラーの寿命の延命化が可能となる。
Further, according to the invention of claim 8, the B 4 C—SiC composite carbon material according to the present invention is formed on the entire surface of the glass tube transporting roller, thereby deteriorating the strength due to oxidative consumption and shaping the glass tube. It is possible to prevent the deterioration of accuracy, and it is possible to extend the life of the roller in accordance with the effect of improving the shaping accuracy of the glass tube.

【0085】また、請求項9記載の発明は、本発明に係
るB4 C−SiC複合炭素材料を、鋼線材焼鈍用均熱管
の全面に形成させることにより、鋼線材の均熱管への溶
着を防止するとともに、本発明品の有する優れた潤滑性
によって、線材に傷を付けることがなくなり、鋼線材の
品質が安定し、歩留り向上の効果が得られる。
Further, according to the ninth aspect of the present invention, the B 4 C—SiC composite carbon material according to the present invention is formed on the entire surface of the soaking tube for annealing a steel wire, thereby welding the steel wire to the soaking tube. In addition to the above, the excellent lubricity of the product of the present invention prevents the wire rod from being damaged, thereby stabilizing the quality of the steel wire rod and improving the yield.

【0086】また、請求項10記載の発明は、本発明に
係るB4 C−SiC複合炭素材料を、高温焼成用治具、
例えば、金属ロウ付け用治具や、焼成炉用棚板等の高温
雰囲気下で使用される熱処理用治具の全面に形成させる
ことにより、処理品への浸炭を抑制するとともに、治具
の経時形状変化が抑制でき、処理品の製品寸法精度が一
定に確保する事が可能となる。
The invention according to claim 10 provides a jig for high-temperature firing of the B 4 C—SiC composite carbon material according to the present invention,
For example, by forming a jig for metal brazing or a jig for heat treatment used in a high-temperature atmosphere such as a shelf plate for a firing furnace, the carburizing of the processed product is suppressed, and the The shape change can be suppressed, and the product dimensional accuracy of the processed product can be kept constant.

【0087】また、請求項11記載の発明は、本発明に
係るB4 C−SiC複合炭素材料を、ホットプレス用治
具に形成させることにより、治具の酸化を抑制するとと
もに、ダイスやパンチと処理品との離型性に優れ、離型
剤の使用を最小限にすることが可能となる。
Further, according to the invention, the B 4 C—SiC composite carbon material according to the present invention is formed on a hot press jig, thereby suppressing oxidation of the jig and forming a die or a punch. It is excellent in the releasability between the product and the processed product, and the use of the release agent can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で使用した焼結用ルツボの概略図であ
る。
FIG. 1 is a schematic view of a sintering crucible used in Examples.

【図2】実施例で使用した真空蒸着用ルツボの概略図で
ある。
FIG. 2 is a schematic view of a crucible for vacuum evaporation used in Examples.

【図3】実施例で使用した連続鋳造用ダイスの概略斜視
図である。
FIG. 3 is a schematic perspective view of a continuous casting die used in Examples.

【図4】実施例で使用した金属溶融用ルツボの概略図で
ある。
FIG. 4 is a schematic view of a crucible for melting metal used in Examples.

【図5】実施例で使用したガラス管搬送用ローラーの概
略図である。
FIG. 5 is a schematic view of a glass tube transport roller used in the examples.

【図6】実施例で使用した鋼線材焼鈍用均熱管の概略図
である。
FIG. 6 is a schematic view of a soaking tube for annealing a steel wire rod used in an example.

【図7】実施例で使用したホットプレス用治具の概略図
である。
FIG. 7 is a schematic diagram of a hot press jig used in an example.

【符号の説明】[Explanation of symbols]

1 焼結用ルツボ 11 真空蒸着用ルツボ 21 連続鋳造用ダイス 31 金属溶融用ルツボ 41 ガラス管搬送用ローラー 52 鋼線材焼鈍用均熱管 61 ホットプレス用ダイス DESCRIPTION OF SYMBOLS 1 Crucible for sintering 11 Crucible for vacuum evaporation 21 Die for continuous casting 31 Crucible for melting metal 41 Roller for conveying glass tube 52 Heat equalizing tube for annealing steel wire rod 61 Dice for hot pressing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/52 103 C21D 9/52 103A C23C 14/24 C23C 14/24 A (72)発明者 高津 崇 香川県三豊郡大野原町萩原850 東洋炭素 株式会社内 (72)発明者 岡崎 正豊 香川県三豊郡大野原町萩原850 東洋炭素 株式会社内 (72)発明者 福田 利臣 香川県三豊郡大野原町萩原850 東洋炭素 株式会社内 (54)【発明の名称】 耐酸化性の炭化ホウ素−炭化ケイ素複合炭素材料及びそれを用いた焼結用ルツボ、真空蒸着用ル ツボ、連続鋳造用ダイス、溶融金属用ルツボ、ガラス管搬送用ローラー、鋼線材焼鈍用均熱管、 高温焼成用治具、ホットプレス用治具──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21D 9/52 103 C21D 9/52 103A C23C 14/24 C23C 14/24 A (72) Inventor Takashi Takatsu Kagawa (72) Inventor Masatoyo Okazaki, Onohara-cho, Mitoyo-gun, Kagawa Prefecture Toyo Carbon Co., Ltd. Co., Ltd. (54) [Title of the Invention] Oxidation-resistant boron carbide-silicon carbide composite carbon material and crucible for sintering, crucible for vacuum deposition, continuous casting die, crucible for molten metal, glass using the same Roller for pipe transfer, soaking tube for annealing steel wire, jig for high temperature firing, jig for hot press

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 炭素質基材の表層部に厚み1mm以上の
炭化ケイ素含有複合層が形成されて、前記炭化ケイ素含
有複合層の上に厚み3〜20μmである炭化ホウ素ー炭
化ケイ素含有複合層が形成されてなることを特徴とする
耐酸化性の炭化ホウ素ー炭化ケイ素複合炭素材料。
1. A boron carbide-silicon carbide-containing composite layer having a thickness of 3 to 20 μm on which a silicon carbide-containing composite layer having a thickness of 1 mm or more is formed on a surface layer of a carbonaceous substrate. An oxidation-resistant boron carbide-silicon carbide composite carbon material characterized by being formed with:
【請求項2】 前記炭化ホウ素ー炭化ケイ素含有複合層
の炭化ホウ素と炭化ケイ素の2成分についての組成比
(重量%)が、炭化ケイ素/炭化ホウ素=78〜99/
1〜22である請求項1記載の炭化ホウ素ー炭化ケイ素
複合炭素材料。
2. The composition ratio (% by weight) of the two components of boron carbide and silicon carbide in the boron carbide-silicon carbide-containing composite layer is silicon carbide / boron carbide = 78 to 99 /
The boron carbide-silicon carbide composite carbon material according to claim 1, which is 1 to 22.
【請求項3】 前記炭化ケイ素含有複合層における前記
炭化ケイ素化率が深さ方向に略均一である請求項1記載
の炭化ホウ素ー炭化ケイ素複合炭素材料。
3. The boron carbide-silicon carbide composite carbon material according to claim 1, wherein the silicon carbide conversion ratio in the silicon carbide-containing composite layer is substantially uniform in a depth direction.
【請求項4】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなる焼結用
ルツボ。
4. A sintering crucible using the composite carbon material according to any one of claims 1 to 3 for a part or all of a surface layer portion.
【請求項5】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなる真空蒸
着用ルツボ。
5. A crucible for vacuum vapor deposition using the composite carbon material according to claim 1 for a part or all of a surface layer portion.
【請求項6】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなる連続鋳
造用ダイス。
6. A continuous casting die using the composite carbon material according to claim 1 for a part or all of a surface layer portion.
【請求項7】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなる溶融金
属用ルツボ。
7. A molten metal crucible using the composite carbon material according to claim 1 for a part or all of a surface layer portion.
【請求項8】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなるガラス
管搬送用ローラー。
8. A roller for transporting a glass tube, wherein the composite carbon material according to claim 1 is used for a part or all of a surface layer portion.
【請求項9】 請求項1〜3のいずれか一項に記載の複
合炭素材料を表層部の一部又は全部に用いてなる鋼線材
焼鈍用均熱管。
9. A soaking tube for annealing a steel wire rod, wherein the composite carbon material according to claim 1 is used for a part or all of a surface layer portion.
【請求項10】 請求項1〜3のいずれか一項に記載の
複合炭素材料を表層部の一部又は全部に用いてなる高温
焼成用治具。
10. A high-temperature firing jig using the composite carbon material according to claim 1 for part or all of a surface layer.
【請求項11】 請求項1〜3のいずれか一項に記載の
複合炭素材料を表層部の一部又は全部に用いてなるホッ
トプレス用治具。
11. A hot press jig using the composite carbon material according to claim 1 for a part or all of a surface layer portion.
JP33590598A 1998-06-26 1998-11-26 Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig Expired - Lifetime JP4166350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33590598A JP4166350B2 (en) 1998-06-26 1998-11-26 Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-180263 1998-06-26
JP18026398 1998-06-26
JP33590598A JP4166350B2 (en) 1998-06-26 1998-11-26 Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig

Publications (2)

Publication Number Publication Date
JP2000086374A true JP2000086374A (en) 2000-03-28
JP4166350B2 JP4166350B2 (en) 2008-10-15

Family

ID=26499854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33590598A Expired - Lifetime JP4166350B2 (en) 1998-06-26 1998-11-26 Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig

Country Status (1)

Country Link
JP (1) JP4166350B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder
US20170211182A1 (en) * 2014-02-06 2017-07-27 Kgt Graphit Technologie Gmbh Protective layer for pecvd graphite boats
US20210107841A1 (en) * 2019-10-14 2021-04-15 Corning Incorporated Rapid forming of glass and ceramics
CN113816755A (en) * 2021-10-14 2021-12-21 西安鑫垚陶瓷复合材料有限公司 Two-dimensional silicon carbide/silicon carbide composite material bar and connecting piece preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder
US20170211182A1 (en) * 2014-02-06 2017-07-27 Kgt Graphit Technologie Gmbh Protective layer for pecvd graphite boats
US10151030B2 (en) * 2014-02-06 2018-12-11 Kgt Graphit Technologie Gmbh Protective layer for PECVD graphite boats
US20210107841A1 (en) * 2019-10-14 2021-04-15 Corning Incorporated Rapid forming of glass and ceramics
US11753347B2 (en) * 2019-10-14 2023-09-12 Corning Incorporated Rapid forming of glass and ceramics
CN113816755A (en) * 2021-10-14 2021-12-21 西安鑫垚陶瓷复合材料有限公司 Two-dimensional silicon carbide/silicon carbide composite material bar and connecting piece preparation method

Also Published As

Publication number Publication date
JP4166350B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP2005509724A (en) Functional grade coatings for abrasive particles and use of said coatings in glass matrix composites
JPH10279376A (en) Member for continuous casting using carbon-silicon carbide composite material
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JP6110852B2 (en) Carbon material with thermal spray coating
CA1152536A (en) Dense sintered silicon carbide ceramic
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
US3287478A (en) Method of sintering aluminum nitride refractories
JPH10212182A (en) Carbon-silicon carbide composite material and its production
JP4037969B2 (en) Graphite products using boron carbide-coated silicon carbide-carbon composites
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
CN112144011A (en) Method for preparing anti-oxidation coating on surface of molybdenum and molybdenum alloy protection tube
JPH0657873B2 (en) Roll for heat treatment furnace
JPS6340766A (en) High temperature steel contacting member
KR20010003819A (en) Ceramics-aluminum composite and its preparation method
JP3923622B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP4170544B2 (en) Boron nitride dispersed silicon carbide-carbon composite
JPH10236893A (en) Carbon material coated with silicon carbide
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
KR101039631B1 (en) Hardmetal cemented carbide tools and its producing method
JP2005131656A (en) Member for molten aluminum
US20070086937A1 (en) Use of a silicon carbide-based ceramic material in aggressive environments
JPS6310115B2 (en)
CN117125999A (en) Antioxidant coating applicable to carbon-ceramic composite material and preparation method thereof
KR100490991B1 (en) Refractories composition containing carbon
JP3160218B2 (en) Oxidation resistant carbon material for molten light metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term