JP2000086348A - Ceramics compact and its production - Google Patents

Ceramics compact and its production

Info

Publication number
JP2000086348A
JP2000086348A JP10255298A JP25529898A JP2000086348A JP 2000086348 A JP2000086348 A JP 2000086348A JP 10255298 A JP10255298 A JP 10255298A JP 25529898 A JP25529898 A JP 25529898A JP 2000086348 A JP2000086348 A JP 2000086348A
Authority
JP
Japan
Prior art keywords
coal ash
inorganic
weight
ceramic molded
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255298A
Other languages
Japanese (ja)
Inventor
Toru Shiotani
徹 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10255298A priority Critical patent/JP2000086348A/en
Publication of JP2000086348A publication Critical patent/JP2000086348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a dense ceramics compact consisting essentially of a coal ash, especially a fly ash which is an industrial waste by sintering a coal ash and an inorganic sintering material and imparting a specific bulk density, a specified percentage of water absorption, a specific pore volume and a specified specific surface to the ceramics compact. SOLUTION: This ceramics compact has 1.0-2.0 g/cm3 bulk density, 0.01-0.8 vol.% percentage of water absorption, 0.01-0.2 cc/g pore volume and 0.1-0.4 m2/g specific surface area. The average particle diameter of a coal ash (e.g. a fly ash) used for producing the compact is 10-40 μm and the mixing ratio of the coal ash is 60-90 wt.% based on the dry weight. The melting temperature of an inorganic sintering material (e.g. feldspar) is 1,050-1 250 deg.C and the average particle diameter thereof is 0.2-15 μm. The mixing ratio of the inorganic sintering material is 10-40 wt.% based on the dry weight. When the viscosity of the mixture of the coal ash with the inorganic sintering material is low, an inorganic thickening material (e.g. kaolin) may be used. The mixing ratio thereof is 0-25 wt.% based on the dry weight. The amount of water used is 25-40 pts.wt. based on 100 pts.wt. of the total weight of the coal ash, inorganic sintering material, etc. The heat-treating temperature is 1,000-1,300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭灰、特にフラ
イアッシュ(飛散灰)を主成分とするセラミックス成形
体、およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic molded product mainly composed of coal ash, especially fly ash (fly ash), and a method for producing the same.

【0002】[0002]

【従来の技術】フライアッシュは、石炭、特に粉末状の
瀝青炭の燃焼によって生じる微粒の副産物である。一般
にフライアッシュは石炭燃焼動力プラントから極めて大
量に生成される。従来これらのフライアッシュは、埋め
立て等の陸上処理で処分されることがほとんどで、コン
クリート用の骨材等の形で有効に利用されるのは一部に
過ぎなかった。
BACKGROUND OF THE INVENTION Fly ash is a fine by-product of the combustion of coal, especially bituminous coal in powder form. Generally, fly ash is produced in very large quantities from coal-fired power plants. Conventionally, these fly ash are mostly disposed of by land treatment such as landfill, and only a part of them is effectively used in the form of aggregate for concrete.

【0003】そこで近年、このフライアッシュを有効に
利用しようとする提案がなされるようになった。例え
ば、特開昭52−78687号公報および特開昭55−
134640号公報では、フライアッシュに粘結剤であ
るベントナイトを相当量混ぜて水練りしたものを焼結さ
せて重金属捕集材を得る製造方法が提案されている。
[0003] In recent years, proposals have been made to use fly ash effectively. For example, JP-A-52-78687 and JP-A-55-78687.
Japanese Patent Application Publication No. 134640 proposes a production method in which bentonite, which is a binder, is mixed with fly ash in a considerable amount and water-mixed is sintered to obtain a heavy metal trapping material.

【0004】また特開平9−156998号公報には石
炭灰の微細粒子を成形焼結したセラミックス成形体に関
する技術が開示されている。しかしながらこの技術は、
原料の石炭灰として粒子径が1〜10μmと非常に小さ
いものを用いて製造した吸水率10〜50容量%の非常
に高い吸水率を有する多孔質のセラミックス成形体に関
するものである。このようなセラミックス成形体は、多
孔質で強度が小さいので用途が限られるという問題があ
る。
Japanese Patent Application Laid-Open No. 9-156998 discloses a technique relating to a ceramic molded body obtained by molding and sintering fine particles of coal ash. However, this technology
The present invention relates to a porous ceramic molded body having a very high water absorption of 10 to 50% by volume, which is manufactured using a very small particle diameter of 1 to 10 μm as a raw material coal ash. Such a ceramic molded body has a problem that its use is limited because it is porous and has low strength.

【0005】また本発明者らの調査では、近年利用され
る石炭は外国炭が多く、このような外国炭を用いたプラ
ントから発生するフライアッシュは粒子径が大きく、特
開平9−156998号公報の方法を採用するには粉砕
等の工程が必要になるので、工程が煩雑になったりコス
トが上昇する等の問題がある。
According to a study by the present inventors, coal used in recent years contains many foreign coals, and fly ash generated from a plant using such foreign coals has a large particle diameter. In order to adopt the above method, a process such as pulverization is required, so that there are problems that the process becomes complicated and the cost increases.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明は石炭
灰、特にフライアッシュを主成分とする緻密なセラミッ
クス成形体、およびその製造方法を提供することを課題
とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a dense ceramic molded body mainly composed of coal ash, especially fly ash, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、石炭灰と無機
質焼結材が焼結してなる嵩密度が1.0〜2.0g/c
3、吸水率が0.01〜0.8容量%、細孔容積が
0.01〜0.2cc/g、比表面積が0.1〜0.4
2/gであるセラミックス成形体である。
According to the present invention, a bulk density obtained by sintering coal ash and an inorganic sintered material is 1.0 to 2.0 g / c.
m 3 , water absorption 0.01 to 0.8 volume%, pore volume 0.01 to 0.2 cc / g, specific surface area 0.1 to 0.4
m 2 / g.

【0008】また本発明は、平均粒子径10〜40μm
の石炭灰が乾燥重量で60〜90重量%、溶融温度10
50〜1250℃で平均粒子径0.2〜15μmの無機
質焼結材が乾燥重量で10〜40重量%、無機質増粘材
が乾燥重量で0〜25重量%(石炭灰、無機質焼結材お
よび無機質増粘材の乾燥重量の合計を100重量%とす
る)および水を混合したものを、少なくとも一時的に脱
気しながら混練りおよび押出成形し、乾燥した後、10
00〜1300℃で熱処理する上記セラミックス成形体
の製造方法である。
In the present invention, the average particle diameter is 10 to 40 μm.
60 to 90% by weight of coal ash in dry weight, melting temperature 10
An inorganic sintered material having an average particle size of 0.2 to 15 μm at 50 to 1250 ° C. has a dry weight of 10 to 40% by weight, and an inorganic thickener has a dry weight of 0 to 25% by weight (coal ash, inorganic sintered material and A mixture obtained by mixing the dry weight of the inorganic thickener with 100% by weight) and water is kneaded and extruded while at least temporarily deaerated, dried, and dried.
This is a method for producing the ceramic molded body, which is heat-treated at 00 to 1300 ° C.

【0009】[0009]

【発明の実施の形態】本発明のセラミックス成形体は、
嵩密度が1.0〜2.0g/cm3、吸水率が0.01
〜0.8容量%、細孔容積が0.01〜0.2cc/
g、比表面積が0.1〜0.4m2/gであるが、好ま
しい嵩密度は1.1〜1.85g/cm3、好ましい吸
水率は0.02〜0.75容量%、好ましい細孔容積は
0.02〜0.18cc/g、好ましい比表面積は0.
15〜0.35m2/gである。尚、本発明において、
嵩密度はJIS R 2205、吸水率はJIS R 22
05、細孔容積は水銀圧入法、比表面積はBET法によ
り測定する。
BEST MODE FOR CARRYING OUT THE INVENTION
The bulk density is 1.0 to 2.0 g / cm 3 and the water absorption is 0.01
0.8% by volume, pore volume of 0.01 to 0.2 cc /
g, the specific surface area is 0.1 to 0.4 m 2 / g, the preferred bulk density is 1.1 to 1.85 g / cm 3 , the preferred water absorption is 0.02 to 0.75% by volume, and the preferred fineness. The pore volume is 0.02 to 0.18 cc / g, and the preferred specific surface area is 0.1 to 0.8 cc / g.
15 to 0.35 m 2 / g. In the present invention,
The bulk density is JIS R 2205 and the water absorption is JIS R 22
05, the pore volume is measured by the mercury intrusion method, and the specific surface area is measured by the BET method.

【0010】本発明のセラミックス成形体の形状は特に
限定されないが、板状、円柱状、円筒状、角柱状、角筒
状、ハニカム状、星型状、クローバー型状、ブロック状
または球状が好ましい。
[0010] The shape of the ceramic molded body of the present invention is not particularly limited, but is preferably a plate, a column, a cylinder, a prism, a prism, a honeycomb, a star, a clover shape, a block, or a sphere. .

【0011】本発明のセラミックス成形体は、石炭灰と
無機質焼結材を焼結させて得られたものである。所望の
物性のセラミックス成形体を得るために、原料の石炭灰
および無機質焼結材の粒径は適宜選択する。
The ceramic compact of the present invention is obtained by sintering coal ash and an inorganic sintered material. In order to obtain a ceramic molded body having desired physical properties, the particle diameters of the raw coal ash and the inorganic sintered material are appropriately selected.

【0012】本発明のセラミックス成形体は、外壁用タ
イル、外壁用タイルブロック、床用タイル、床用タイル
ブロック、壁材、軽量骨材、耐火・耐熱用建材、保温材
等の建築用資材、軽量骨材、路盤材、細骨材、庭の敷
石、宅地造成雨水浸透層用資材、公園グランド整備工事
浸透構造材料および道路・路床盛土材等の建設用資材、
樹木植裁、人工地盤植裁用、のり面植生吹付用および園
芸用土壌、タイル、タイル−ブロック等の園芸用資材、
磁性ラッシヒリング等の不規則充填資材として使用する
ことができる。
The ceramic molded article of the present invention can be used for building materials such as exterior wall tiles, exterior wall tile blocks, floor tiles, floor tile blocks, wall materials, lightweight aggregates, fire and heat resistant building materials, heat insulation materials, and the like. Construction materials such as lightweight aggregates, roadbed materials, fine aggregates, garden paving stones, residential land development rainwater infiltration layer materials, park ground maintenance work infiltration structural materials, road and subgrade embankment materials,
Gardening materials such as tree planting, artificial ground planting, slope vegetation spraying and horticultural soil, tiles, tile-blocks, etc.
It can be used as an irregular filling material such as a magnetic Raschig ring.

【0013】以下に、本発明のセラミックス成形体の製
造方法について説明する。
Hereinafter, the method for producing a ceramic molded body of the present invention will be described.

【0014】本発明のセラミックス成形体の製造方法で
は、まず石炭灰、無機質焼結材、任意に無機質増粘材お
よび適量の水を混合して混合物を得る。
In the method for producing a ceramic molded body of the present invention, first, coal ash, an inorganic sintered material, optionally an inorganic thickener and an appropriate amount of water are mixed to obtain a mixture.

【0015】本発明のセラミックス成形体の製造方法で
用いる石炭灰は、平均粒子径10〜40μm、好ましく
は13〜35μmのものである。このような石炭灰とし
ては例えば、石炭燃焼動力プラント等から発生するフラ
イアッシュ、ボトムアッシュ等が挙げられるが、特にフ
ライアッシュが好ましい。石炭灰の混合割合は、乾燥重
量で60〜90重量%である。
The coal ash used in the method for producing a ceramic molded article of the present invention has an average particle diameter of 10 to 40 μm, preferably 13 to 35 μm. Examples of such coal ash include fly ash and bottom ash generated from a coal combustion power plant or the like, with fly ash being particularly preferred. The mixing ratio of coal ash is 60 to 90% by weight on a dry weight basis.

【0016】本発明で平均粒子径とは、レーザー回析式
粒度分布測定法で得られる体積基準の累積分布曲線にお
いて、累積体積が50%に対応する粒子直径である。ま
た、本発明で混合割合を示す重量%とは、石炭灰、無機
質焼結材および無機質増粘材の乾燥重量の合計を100
重量%とした重量%を意味する。
In the present invention, the average particle diameter is a particle diameter corresponding to a cumulative volume of 50% in a volume-based cumulative distribution curve obtained by a laser diffraction type particle size distribution measuring method. In the present invention, the term “% by weight” indicating the mixing ratio means that the total of the dry weights of coal ash, inorganic sintered material and inorganic thickener is 100%.
% By weight means% by weight.

【0017】本発明のセラミックス成形体の製造方法で
用いる無機質焼結材は溶融温度が1050〜1250℃
のものである。このような無機質焼結材としては、石炭
灰、特にフライアッシュの溶融温度1100〜1200
℃と比較的近く、空隙部を埋める効果が大きい長石(溶
融温度が1150℃近辺)が好ましい。
The inorganic sintered material used in the method for producing a ceramic molded body of the present invention has a melting temperature of 1050 to 1250 ° C.
belongs to. As such an inorganic sintered material, coal ash, particularly fly ash has a melting temperature of 1100 to 1200.
Feldspar (melting temperature around 1150 ° C), which is relatively close to ° C and has a large effect of filling the voids, is preferable.

【0018】また、無機質焼結材の平均粒子径は0.2
〜15μm、好ましくは0.5〜5μmである。無機質
焼結材は溶融および焼結により石炭灰の粒子間の空隙部
を埋める役割を担っているため、無機質焼結材の平均粒
子径の選択は重要である。
The average particle diameter of the inorganic sintered material is 0.2
To 15 μm, preferably 0.5 to 5 μm. Since the inorganic sintered material has a role of filling the voids between the coal ash particles by melting and sintering, the selection of the average particle size of the inorganic sintered material is important.

【0019】このような無機質焼結材を使用することで
石炭灰粒子が相互に結合および緻密化するため、得られ
るセラミックス成形体の嵩密度は大きくなり、吸水率、
細孔容積および比表面積は小さくなる。
Since the coal ash particles are mutually bonded and densified by using such an inorganic sintered material, the bulk density of the obtained ceramic molded body is increased, and the water absorption,
The pore volume and specific surface area are reduced.

【0020】無機質焼結材の混合割合は乾燥重量で10
〜40重量%である。より緻密なセラミックス成形体を
得るためには無機質焼結材の添加割合は多い方が好まし
く、また無機質焼結材の溶融および焼結による熱処理後
のセラミックス成形体の収縮を小さくするためには無機
質焼結材の添加割合は少ない方が好ましい。
The mixing ratio of the inorganic sintered material is 10% by dry weight.
4040% by weight. In order to obtain a denser ceramic molded body, it is preferable to add a large amount of the inorganic sintered material, and in order to reduce shrinkage of the ceramic molded body after the heat treatment due to melting and sintering of the inorganic sintered material, an inorganic material is used. It is preferable that the proportion of the sintered material added is small.

【0021】また、石炭灰および無機質焼結材だけでは
混合物の粘性が小さい場合には、粘性を高めて押出成形
による賦型性を高めるために、石炭灰および無機質焼結
材の他に無機質増粘材を用いてもよい。このような無機
質増粘材としては例えば、カオリン、ベントナイト、ケ
イソウ土、タルク、活性白土等が挙げられるが、特に増
粘性が高く安価なベントナイトが好ましい。無機質増粘
材の混合割合は乾燥重量で0〜25重量%であり、好ま
しくは1〜25重量%である。成形し易いように粘性を
高めるためには無機質増粘材の混合割合は多い方が好ま
しく、成形後の成形体同士の付着をできるだけ少なくす
るためには、無機質増粘材の添加割合は少ない方が好ま
しい。
When the viscosity of the mixture is small using only coal ash and the inorganic sintered material, in order to increase the viscosity and enhance the moldability by extrusion molding, the inorganic sintering material is used in addition to the coal ash and the inorganic sintered material. A sticky material may be used. Examples of such an inorganic thickener include kaolin, bentonite, diatomaceous earth, talc, activated clay, and the like. Bentonite, which has a high viscosity and is inexpensive, is particularly preferable. The mixing ratio of the inorganic thickener is 0 to 25% by weight on a dry weight basis, and preferably 1 to 25% by weight. It is preferable that the mixing ratio of the inorganic thickener is large in order to increase the viscosity so as to facilitate molding, and the addition ratio of the inorganic thickening material is small in order to minimize the adhesion between the molded bodies after molding. Is preferred.

【0022】使用する水の量は石炭灰、無機質焼結材お
よび無機質増粘材の種類等の要因により様々であるが、
通常は石炭灰、無機質焼結材および無機質増粘材の合計
重量100重量部に対して25〜40重量部である。成
形し易いのように粘性を下げるためには水の量は多い方
が好ましく、成形後の保型性を高め、かつ成形体同士の
付着をできるだけ少なくするためるためには水の量は少
ない方が好ましい。
The amount of water used varies depending on factors such as the type of coal ash, inorganic sintering material and inorganic thickener,
Usually, it is 25 to 40 parts by weight based on 100 parts by weight of the total weight of the coal ash, the inorganic sintered material and the inorganic thickener. It is preferable that the amount of water is large in order to lower the viscosity so that molding is easy, and the amount of water is small in order to enhance the shape retention after molding and to minimize the adhesion between molded bodies. Is preferred.

【0023】混合物には、上記以外にメチルセルロー
ス、ヒドロキシメチルセルロース等の水溶性増粘材、ガ
ラス繊維、セラミックス繊維等の無機質繊維、硝酸アン
モニウム、炭酸アンモニウム等の細孔発現材等を添加し
ても差し支えない。
In addition to the above, water-soluble thickeners such as methylcellulose and hydroxymethylcellulose, inorganic fibers such as glass fibers and ceramic fibers, and pore-forming materials such as ammonium nitrate and ammonium carbonate may be added to the mixture. .

【0024】本発明では緻密な成形体を得るために、混
合物を混練りおよび押出成形する工程において、混合物
の入った混練り装置や押出成形装置の内部を少なくとも
一時的に脱気する。脱気時の圧力は、脱気用のポンプ等
の能力を必要以上に大きくせず、短時間で所定の減圧条
件に到達させるためには0.1kPa(絶対圧、以下省
略。)以上が好ましく、粒子間の空隙をより少なくして
緻密なセラミックス成形前駆体を得ることで熱処理によ
るセラミックス成形体の収縮をより小さくするためには
100kPa以下で行うことが好ましい。
In the present invention, in the step of kneading and extruding the mixture, the inside of the kneading device or the extruding device containing the mixture is at least temporarily degassed in order to obtain a dense compact. The pressure at the time of deaeration is preferably 0.1 kPa (absolute pressure, hereinafter abbreviated) or more so that the capacity of a deaeration pump or the like is not unnecessarily increased and a predetermined pressure reduction condition is reached in a short time. In order to further reduce the shrinkage of the ceramic molded body due to the heat treatment by reducing the voids between the particles to obtain a dense ceramic molding precursor, the pressure is preferably set to 100 kPa or less.

【0025】混練りに使用する装置は特に限定されず、
例えば、双腕型の攪拌羽根を使用するバッチ式の混練り
機、軸回転往復式やセルフクリーニング型等の連続式の
混練り機等が使用できるが、混練り品の状態を確認しな
がら混練りを行うことができる点では、バッチ式が好ま
しい。
The apparatus used for kneading is not particularly limited.
For example, a batch-type kneader using a double-armed stirring blade, a continuous kneader such as a shaft reciprocating type or a self-cleaning type can be used, but the kneading is performed while checking the state of the kneaded product. The batch type is preferable in that kneading can be performed.

【0026】また押出成形に用いる装置は特に限定され
ないが、例えば、オーガー式押出成形機またはピストン
式押出成形機等が挙げられる。押出成形された押出成形
体は適当な長さに適宜切断される。
The apparatus used for extrusion molding is not particularly limited, and examples thereof include an auger type extruder and a piston type extruder. The extruded product is appropriately cut into a suitable length.

【0027】このようにして得られたセラミックス成形
前駆体は、石炭灰、無機質焼結材および水等の成分が均
一に分散し、かつ緻密な構造となっているので、焼結時
のセラミックス成形体の収縮が少なく、焼結後のセラミ
ックス成形体の機械的強度が向上する。またこのような
セラミックス成形前駆体からは、再現性よく均質なセラ
ミックス成形体が得られるという効果もある。
The ceramic molding precursor thus obtained has a dense structure in which components such as coal ash, inorganic sintering material and water are uniformly dispersed and has a dense structure. The shrinkage of the body is small, and the mechanical strength of the sintered ceramic body after sintering is improved. Further, from such a ceramic molding precursor, there is also an effect that a homogeneous ceramic molded body can be obtained with good reproducibility.

【0028】セラミックス成形前駆体は次いで乾燥を行
いセラミックス成形前駆体の乾燥体とする。乾燥方法は
特に限定されず、例えば一般的に知られている熱風乾燥
法、自然乾燥法、湿度乾燥法等が挙げられるが、セラミ
ックス成形前駆体の外表面と内部の乾燥速度を近づける
ことができるので、自然乾燥法および湿度乾燥法が好ま
しい。
The ceramic molding precursor is then dried to obtain a dried ceramic molding precursor. The drying method is not particularly limited, for example, generally known hot air drying method, natural drying method, humidity drying method and the like, but it is possible to make the drying speed of the outer surface and the inner surface of the ceramic molding precursor close. Therefore, the natural drying method and the humidity drying method are preferred.

【0029】次いでセラミックス成形前駆体の乾燥体を
熱処理し、石炭灰および無機質焼結材を焼結させてセラ
ミックス成形体を得る。熱処理温度は通常1000〜1
300℃であり、好ましくは1120〜1250℃であ
る。より緻密、かつ機械的強度に優れたセラミックス成
形体を得るためには、熱処理温度までの昇温速度を小さ
くすることが好ましく、昇温速度は通常400℃/h以
下であり、好ましくは100〜350℃/hである。熱
処理時間は熱処理温度や石炭灰の混合割合により異なる
ので一概に言えないが、通常0.5〜5時間である。
Next, the dried body of the ceramic forming precursor is heat-treated, and the coal ash and the inorganic sintered material are sintered to obtain a ceramic formed body. Heat treatment temperature is usually 1000-1
The temperature is 300 ° C, preferably 1120 to 1250 ° C. In order to obtain a denser ceramic molded body having excellent mechanical strength, it is preferable to reduce the rate of temperature rise to the heat treatment temperature, and the rate of temperature rise is usually 400 ° C./h or less, preferably 100 to 100 ° C./h. 350 ° C./h. Since the heat treatment time varies depending on the heat treatment temperature and the mixing ratio of the coal ash, it cannot be specified unconditionally, but is usually 0.5 to 5 hours.

【0030】[0030]

【実施例】[実施例1]平均粒子径31μmの球状のフ
ライアッシュ80重量部および平均粒子径6μmの長石
20重量部を双腕式ニーダーにて均一になるまで混合
し、その後水を32重量部添加し粘土状になるまで混練
りした(材料A)。得られた混練り品を35kPaの減
圧条件下にて土練式真空押出し成形機で厚さ10mm、
幅95mmに押出し成形し、長さ45mmに切断して、
セラミックス成形前駆体を得た。これを1日間日陰で乾
燥し、室温から1200℃まで300℃/hで昇温し1
200℃で2時間熱処理を行った。得られたセラミック
ス成形体は、嵩密度1.39g/cm3、吸水率0.0
9容量%、細孔容積0.09cc/g、比表面積0.1
8m2/gであり、機械的強度に優れたセラミックス成
形体が得られた。このセラミックス成形体を走査型電子
顕微鏡にて形態観察したところ、フライアッシュ粒子が
相互に結合し、粒子間の空隙の大部分が長石で占められ
て緻密化していることを確認した。このセラミックス成
形体は、軽量骨材、耐火・耐熱用建建材および保温材等
の建築用資材に使用できるものであった。
Example 1 80 parts by weight of spherical fly ash having an average particle diameter of 31 μm and 20 parts by weight of feldspar having an average particle diameter of 6 μm were mixed by a double-arm kneader until uniform, and then 32 parts by weight of water was added. Was added and kneaded until it became clay-like (material A). The obtained kneaded product was 10 mm thick with a clay kneading type vacuum extruder under a reduced pressure condition of 35 kPa.
Extruded to a width of 95 mm, cut to a length of 45 mm,
A ceramic molding precursor was obtained. This was dried in the shade for one day, and the temperature was raised from room temperature to 1200 ° C. at 300 ° C./h.
Heat treatment was performed at 200 ° C. for 2 hours. The obtained ceramic compact had a bulk density of 1.39 g / cm 3 and a water absorption of 0.0.
9 volume%, pore volume 0.09 cc / g, specific surface area 0.1
It was 8 m 2 / g, and a ceramic molded body having excellent mechanical strength was obtained. When the morphology of the formed ceramic article was observed with a scanning electron microscope, it was confirmed that fly ash particles were bonded to each other, and that most of the voids between the particles were occupied by feldspar and were dense. This ceramic molded article could be used as a building material such as a lightweight aggregate, a fire- and heat-resistant building material and a heat insulating material.

【0031】[比較例1]実施例1において、材料Aを
土練式真空押出し成形機を用いて、真空脱気を行わなか
った点以外は、実施例1と同様に押出し成形、切断、乾
燥および熱処理を行いセラミックス成形体を得た。得ら
れたセラミックス成形体は、嵩密度1.09g/c
3、吸水率が0.95容量%、細孔容積が0.27c
c/g、比表面積が0.43m2/gであったが、機械
的強度は劣り、僅かな衝撃により部分的に破損するもの
であった。
Comparative Example 1 Extrusion molding, cutting and drying were performed in the same manner as in Example 1 except that the material A was not subjected to vacuum degassing using a clay-type vacuum extruder. And heat treatment was performed to obtain a ceramic molded body. The obtained ceramic molded body has a bulk density of 1.09 g / c.
m 3 , water absorption 0.95% by volume, pore volume 0.27c
c / g and the specific surface area were 0.43 m 2 / g, but the mechanical strength was poor, and it was partially broken by a slight impact.

【0032】[比較例2]実施例1において、石炭灰と
してボトムアッシュを粉砕した平均粒子径88μmの石
炭灰を用いた点以外は、実施例1と同様にセラミックス
成形体を製造した。得られたセラミックス成形体は、嵩
密度1.18g/cm3、吸水率1.29容量%、細孔
容積0.31cc/g、比表面積0.31m2/gであ
ったが、機械的強度は劣り、僅かな衝撃により部分的に
破損するものであった。
Comparative Example 2 A ceramic molded body was manufactured in the same manner as in Example 1 except that coal ash obtained by grinding bottom ash and having an average particle diameter of 88 μm was used as coal ash. The obtained ceramic molded body had a bulk density of 1.18 g / cm 3 , a water absorption of 1.29% by volume, a pore volume of 0.31 cc / g, and a specific surface area of 0.31 m 2 / g, but had a mechanical strength. Was inferior and was partially damaged by a slight impact.

【0033】[比較例3]実施例1において、フライア
ッシュを95重量部および長石を5重量部を双腕式ニー
ダーにて均一になるまで混合し、その後水を35重量部
添加し粘土状になるまで混練りした以外は、実施例1と
同様に押出し成形を行ったところ、粘性および保型性が
悪く、セラミックス成形前駆体同士の付着およびセラミ
ックス成形前駆体の変形により、成形以後の取り扱いが
不可能であった。
Comparative Example 3 In Example 1, 95 parts by weight of fly ash and 5 parts by weight of feldspar were mixed in a double-arm kneader until uniform, and then 35 parts by weight of water were added to form a clay. Extrusion molding was carried out in the same manner as in Example 1 except that the mixture was kneaded to the extent that the viscosity and shape retention were poor, and handling after molding was caused by adhesion between the ceramic forming precursors and deformation of the ceramic forming precursors. It was impossible.

【0034】[比較例4]実施例1において熱処理温度
を950℃とした点以外は、実施例1と同様にしてセラ
ミックス成形体を製造した。得られたセラミックス成形
体は、嵩密度0.92g/cm3、吸水率2.6容量
%、細孔容積0.49cc/g、比表面積0.54m2
/gであった。また、セラミックス成形体は磁性化が進
んでおらず、僅かな衝撃でも部分的に破損する機械的強
度の低いものであった。
Comparative Example 4 A ceramic molded body was manufactured in the same manner as in Example 1, except that the heat treatment temperature was changed to 950 ° C. The obtained ceramic molded body had a bulk density of 0.92 g / cm 3 , a water absorption of 2.6% by volume, a pore volume of 0.49 cc / g, and a specific surface area of 0.54 m 2.
/ G. Further, the ceramic molded body was not magnetically advanced, and had a low mechanical strength such that it was partially damaged by a slight impact.

【0035】[比較例5]実施例1において熱処理温度
を1350℃とした点以外は、実施例1と同様にしてセ
ラミックス成形体を製造した。しかしながら、熱処理時
にセラミックス成形体が溶融して形状を維持していない
ばかりか、隣接するセラミックス成形体同士が溶融固着
していた。
Comparative Example 5 A ceramic molded body was manufactured in the same manner as in Example 1 except that the heat treatment temperature was changed to 1350 ° C. However, not only did the ceramic molded body melt during the heat treatment, and the shape was not maintained, but also the adjacent ceramic molded bodies were fused and fixed.

【0036】[実施例2]平均粒子径26μmの球状の
フライアッシュ71重量部および平均粒子径6μmの長
石29重量部を双腕式ニーダーにて均一になるまで混合
し、その後水を37重量部添加し粘土状になるまで混練
りした。得られた混練り品を10kPaの減圧条件下に
て土練式真空押出し成形機で外径18mm、内径12m
mに押出し成形し、長さ18mmに切断して、ラッシヒ
リング状のセラミックス成形前駆体を得た。これを1日
間日陰で乾燥し、室温から1220℃まで300℃/h
で昇温し1220℃で2時間熱処理を行った。得られた
セラミックス成形体は、嵩密度1.16g/cm3、吸
水率0.05容量%、細孔容積0.07cc/g、比表
面積0.16m2/gであり、機械的強度に優れたセラ
ミックス成形体が得られた。このセラミックス成形体を
走査型電子顕微鏡にて形態観察したところ、フライアッ
シュ粒子が相互に結合し、粒子間の空隙の大部分が長石
で占められて緻密化していることを確認した。このセラ
ミックス成形体は、磁性ラッシヒリングとして不規則充
填物等に使用できるものであった。
Example 2 71 parts by weight of spherical fly ash having an average particle diameter of 26 μm and 29 parts by weight of feldspars having an average particle diameter of 6 μm were mixed by a double-arm kneader until uniform, and then 37 parts by weight of water was used. The mixture was added and kneaded until it became clay-like. The obtained kneaded product was 18 mm in outer diameter and 12 m in inner diameter by a clay kneading vacuum extrusion molding machine under a reduced pressure condition of 10 kPa.
m and extruded to a length of 18 mm to obtain a Raschig-shaped ceramic molding precursor. This is dried in the shade for one day, and 300 ° C./h from room temperature to 1220 ° C.
And heat-treated at 1220 ° C. for 2 hours. The obtained ceramic molded body has a bulk density of 1.16 g / cm 3 , a water absorption of 0.05 volume%, a pore volume of 0.07 cc / g, and a specific surface area of 0.16 m 2 / g, and has excellent mechanical strength. A ceramic molded body was obtained. When the morphology of the formed ceramic article was observed with a scanning electron microscope, it was confirmed that fly ash particles were bonded to each other, and that most of the voids between the particles were occupied by feldspar and were dense. This ceramic molded body could be used as a magnetic Raschig ring for irregular packing or the like.

【0037】[実施例3]平均粒子径29μmの球状の
フライアッシュ86重量部および平均粒子径3μmの長
石14重量部を双腕式ニーダーにて均一になるまで混合
し、その後水を40重量部添加し粘土状になるまで混練
りした。得られた混練り品を60kPaの減圧条件下に
て土練式真空押出し成形機で外径1.5mmに押出し成
形し、長さ2mmに切断して、円柱状のセラミックス成
形前駆体を得た。これを1日間日陰で乾燥し、室温から
1185℃まで300℃/hで昇温し1185℃で2時
間熱処理を行った。得られた成形体は、嵩密度1.44
g/cm3、吸水率0.17容量%、細孔容積0.16
cc/g、比表面積0.34m2/gであり、機械的強
度に優れたセラミックス成形体が得られた。このセラミ
ックス成形体を走査型電子顕微鏡にて形態観察したとこ
ろ、フライアッシュ粒子が相互に結合し、粒子間の空隙
の大部分が長石で占められて緻密化していることを確認
した。このセラミックス成形体は、庭の敷石、宅地造成
雨水浸透層用資材、公園グラウンド整備工事浸透構造材
料および道路・路床盛土材の建設用資材、並びに樹木植
裁、人工地盤植裁用、のり面植生吹付用および園芸用土
壌を含む園芸用資材等として使用できるものであった。
Example 3 86 parts by weight of spherical fly ash having an average particle diameter of 29 μm and 14 parts by weight of feldspars having an average particle diameter of 3 μm were mixed by a double-arm kneader until uniform, and then 40 parts by weight of water. The mixture was added and kneaded until it became clay-like. The obtained kneaded product was extruded to an outer diameter of 1.5 mm with a clay kneading vacuum extruder under a reduced pressure of 60 kPa, and cut into a length of 2 mm to obtain a cylindrical ceramic molding precursor. . This was dried in the shade for one day, heated from room temperature to 1185 ° C. at 300 ° C./h, and heat-treated at 1185 ° C. for 2 hours. The obtained molded body has a bulk density of 1.44.
g / cm 3 , water absorption 0.17% by volume, pore volume 0.16
cc / g, the specific surface area was 0.34 m 2 / g, and a ceramic molded body having excellent mechanical strength was obtained. When the morphology of the formed ceramic article was observed with a scanning electron microscope, it was confirmed that fly ash particles were bonded to each other, and that most of the voids between the particles were occupied by feldspar and were dense. This ceramic molded body is used for garden paving stones, materials for rainwater infiltration layer in residential land development, infiltration structural materials for park ground maintenance work, construction materials for road and subgrade embankment materials, and for tree planting, artificial ground planting, and slopes. It could be used as a horticultural material or the like including vegetation spraying and horticultural soil.

【0038】[実施例4]平均粒子径33μmの球状の
フライアッシュ78重量部、平均粒子径8μmの長石1
3重量部およびベントナイト9重量部を双腕式ニーダー
にて均一になるまで混合し、その後水を35重量部添加
し粘土状になるまで混練りした。得られた混練り品を7
kPaの減圧条件下にて土練式真空押出し成形機で外径
3mmに押出し成形し、長さ3mmに切断した後、これ
を転動造粒機にて直径約3mmの球状のセラミックス成
形前駆体を得た。これを1日間日陰で乾燥し、室温から
1185℃まで300℃/hで昇温し1185℃で2時
間熱処理を行った。得られた成形体は、嵩密度1.42
g/cm3、吸水率0.04容量%、細孔容積0.06
cc/g、比表面積0.22m2/gであり、機械的強
度に優れたセラミックス成形体が得られた。このセラミ
ックス成形体を走査型電子顕微鏡にて形態観察したとこ
ろ、フライアッシュ粒子が相互に結合し、粒子間の空隙
の大部分が長石で占められて緻密化していることを確認
した。このセラミックス成形体は、庭の敷石、宅地造成
雨水浸透層用資材、公園グラウンド整備工事浸透構造材
料および道路・路床盛土材の建設用資材、並びに樹木植
裁、人工地盤植裁用、のり面植生吹付用および園芸用土
壌を含む園芸用資材等として使用できるものであった。
Example 4 78 parts by weight of spherical fly ash having an average particle diameter of 33 μm, feldspar 1 having an average particle diameter of 8 μm
3 parts by weight and 9 parts by weight of bentonite were mixed by a double-arm kneader until uniform, then 35 parts by weight of water was added and kneaded until it became clay-like. 7
Under a reduced pressure condition of kPa, the extruder was extruded to an outer diameter of 3 mm by a clay-type vacuum extruder, cut into a length of 3 mm, and then formed into a spherical ceramic precursor having a diameter of about 3 mm by a rolling granulator. I got This was dried in the shade for one day, heated from room temperature to 1185 ° C. at 300 ° C./h, and heat-treated at 1185 ° C. for 2 hours. The obtained molded body has a bulk density of 1.42.
g / cm 3 , water absorption 0.04% by volume, pore volume 0.06
cc / g, the specific surface area was 0.22 m 2 / g, and a ceramic molded body having excellent mechanical strength was obtained. When the morphology of the formed ceramic article was observed with a scanning electron microscope, it was confirmed that fly ash particles were bonded to each other, and that most of the voids between the particles were occupied by feldspar and were dense. This ceramic molded body is used for garden paving stones, materials for rainwater infiltration layer in residential land development, infiltration structural materials for park ground maintenance work, construction materials for road and subgrade embankment materials, and for tree planting, artificial ground planting, and slopes. It could be used as a horticultural material or the like including vegetation spraying and horticultural soil.

【0039】[0039]

【発明の効果】本発明によれば、石炭灰、特に産業廃棄
物であるフライアッシュを主成分とする緻密なセラミッ
クス成形体を製造することができる。本発明の方法によ
り製造されたセラミックス成形体は、建設用資材、建築
用資材、園芸用資材および不規則充填資材等の広範囲の
用途に使用することができるものである。
According to the present invention, it is possible to produce a dense ceramic compact mainly containing coal ash, particularly fly ash, which is industrial waste. The ceramic molded article produced by the method of the present invention can be used for a wide range of applications such as construction materials, construction materials, horticultural materials, and randomly filled materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/64 C04B 35/14 35/64 L ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/64 C04B 35/14 35/64 L

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭灰と無機質焼結材が焼結してなる嵩
密度が1.0〜2.0g/cm3、吸水率が0.01〜
0.8容量%、細孔容積が0.01〜0.2cc/g、
比表面積が0.1〜0.4m2/gであるセラミックス
成形体。
A bulk density obtained by sintering coal ash and an inorganic sintered material is 1.0 to 2.0 g / cm 3 , and a water absorption is 0.01 to 2.0 g / cm 3 .
0.8 volume%, pore volume of 0.01 to 0.2 cc / g,
A ceramic molded body having a specific surface area of 0.1 to 0.4 m 2 / g.
【請求項2】 平均粒子径10〜40μmの石炭灰が乾
燥重量で60〜90重量%、溶融温度1050〜125
0℃で平均粒子径0.2〜15μmの無機質焼結材が乾
燥重量で10〜40重量%、無機質増粘材が乾燥重量で
0〜25重量%(石炭灰、無機質焼結材および無機質増
粘材の乾燥重量の合計を100重量%とする)および水
を混合したものを、少なくとも一時的に脱気しながら混
練りおよび押出成形し、乾燥した後、1000〜130
0℃で熱処理する請求項1記載のセラミックス成形体の
製造方法。
2. Coal ash having an average particle size of 10 to 40 μm is 60 to 90% by weight on a dry weight basis, and has a melting temperature of 1050 to 125%.
At 0 ° C., the inorganic sintered material having an average particle diameter of 0.2 to 15 μm is 10 to 40% by weight on a dry weight basis, and the inorganic thickener is 0 to 25% by weight on a dry weight basis (coal ash, inorganic sintered material and inorganic thickener). The mixture obtained by mixing the dry weight of the viscous material with 100% by weight) and water is kneaded and extruded while at least temporarily degassed, dried, and then dried.
The method for producing a ceramic molded article according to claim 1, wherein the heat treatment is performed at 0 ° C.
JP10255298A 1998-09-09 1998-09-09 Ceramics compact and its production Pending JP2000086348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255298A JP2000086348A (en) 1998-09-09 1998-09-09 Ceramics compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255298A JP2000086348A (en) 1998-09-09 1998-09-09 Ceramics compact and its production

Publications (1)

Publication Number Publication Date
JP2000086348A true JP2000086348A (en) 2000-03-28

Family

ID=17276839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255298A Pending JP2000086348A (en) 1998-09-09 1998-09-09 Ceramics compact and its production

Country Status (1)

Country Link
JP (1) JP2000086348A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512326A (en) * 2011-04-20 2014-05-22 ヴェカー アイピー ホールディングス リミテッド Method for forming ceramic articles from recycled aluminosilicates
CN109095891A (en) * 2018-09-07 2018-12-28 刘淑臣 The method for making ceramic mold pug as raw material using coal ash and its ceramics being made
JP2021525216A (en) * 2018-04-18 2021-09-24 ベコー アイピー ホールディングス リミテッド Manufacturing method of ceramic articles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512326A (en) * 2011-04-20 2014-05-22 ヴェカー アイピー ホールディングス リミテッド Method for forming ceramic articles from recycled aluminosilicates
KR20180049260A (en) * 2011-04-20 2018-05-10 베커 아이피 홀딩스 리미티드 A method of forming ceramic articles from recycled aluminosilicates
KR102011233B1 (en) * 2011-04-20 2019-08-14 베커 아이피 홀딩스 리미티드 A method of forming ceramic articles from recycled aluminosilicates
EP2699529B1 (en) * 2011-04-20 2023-06-07 Tipco Bv A method of forming ceramic articles from recycled aluminosilicates
JP2021525216A (en) * 2018-04-18 2021-09-24 ベコー アイピー ホールディングス リミテッド Manufacturing method of ceramic articles
JP7307975B2 (en) 2018-04-18 2023-07-13 ベコー アイピー ホールディングス リミテッド Method for manufacturing ceramic article
US11827568B2 (en) 2018-04-18 2023-11-28 Vecor Ip Holdings Limited Process for the production of a ceramic article
CN109095891A (en) * 2018-09-07 2018-12-28 刘淑臣 The method for making ceramic mold pug as raw material using coal ash and its ceramics being made

Similar Documents

Publication Publication Date Title
JP5232984B2 (en) Porous brick and method for producing the same
EP2617696A1 (en) Porous ceramic sintered body
KR100729677B1 (en) Porous ceramic and method for manuracturing the same
JP4962915B2 (en) Manufacturing method of water retention block
CN103086698B (en) Manufacture of articles from fly ash
JP5435255B2 (en) Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same
JPS60176978A (en) Manufacture of high strength cement product
CN106007499B (en) A kind of water-retaining lightweight grass-planting brick and preparation method thereof
JP2007145669A (en) Water-retainable block and its production method
JP2000154068A (en) Ceramic molding using coal ash as principal starting material, its production and material using same
CN112047695A (en) Municipal RPC curb material and preparation method thereof
KR100742620B1 (en) Manufacturing method of permeable tree transplant block based on recycled aggregate and charcoal ocher solid
JP2000086348A (en) Ceramics compact and its production
JPWO2013005689A1 (en) Interlocking block
KR100611331B1 (en) Porous sintered paving material and manufacturing method thereof
KR101631276B1 (en) Manufacturing method of recycled aggregates using bauxite residue
WO2007049136A2 (en) Method of making constructional elements
JP2003020265A (en) Method for producing multicolored brick
JP5004013B2 (en) Water retention block and method for producing the same
DE3207623A1 (en) Porous ceramic shaped body, method for its manufacture, and its use
JPH03232783A (en) Production of water-permeable paving block and water-permeable paving block
KR100742617B1 (en) Manufacturing method of permeable street protection plate mainly composed of recycled aggregate and charcoal ocher solid
CN113651638B (en) Preparation method of baking-free anti-blocking water permeable brick
JP2002180410A (en) Paving material and method of manufacturing its mold
JPH1036152A (en) Artificial aggregate and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050328

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Effective date: 20070514

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110815

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120815

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120815

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130815