JP2000083386A - Pwm control device for self-exciting power converter unit - Google Patents

Pwm control device for self-exciting power converter unit

Info

Publication number
JP2000083386A
JP2000083386A JP10248548A JP24854898A JP2000083386A JP 2000083386 A JP2000083386 A JP 2000083386A JP 10248548 A JP10248548 A JP 10248548A JP 24854898 A JP24854898 A JP 24854898A JP 2000083386 A JP2000083386 A JP 2000083386A
Authority
JP
Japan
Prior art keywords
phase
self
voltage
pulse
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10248548A
Other languages
Japanese (ja)
Other versions
JP3598308B2 (en
Inventor
Naoki Morishima
直樹 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24854898A priority Critical patent/JP3598308B2/en
Publication of JP2000083386A publication Critical patent/JP2000083386A/en
Application granted granted Critical
Publication of JP3598308B2 publication Critical patent/JP3598308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a PWM control device for self-exciting power converter unit that can output a voltage with an optimum PWM pulse waveform suited for the purpose. SOLUTION: A PWM control device 10 used for a self-exciting power converter unit 1 is provided with phase detection means 5 and 6 of an AC voltage, an AC current detection means 4, a means 7 for calculating the effective power/ reactive power of an AC current, means 8 and 9 for calculating the effective power/reactive power of a voltage command signal based on the effective power/reactive power of the AC current and a command value, means 17 and 18 for calculating an amplitude value and a phase from the effective power/reactive power of the voltage command signal, a means 21 for obtaining the start/end phase of each pulse of a specific PWM pulse waveform based on the amplitude value, and means 19, 20, 22, 23, and 24 for outputting the control signal of the PWM pulse, based on the starting/ending phase of each pulse and the phase of the voltage command signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自己消弧形素子を
用いた自励式電力変換装置のPWM制御装置に関し、特
に目的に応じた最適なPWMパルス波形を発生させるこ
とができるものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PWM control device for a self-excited power converter using a self-extinguishing element, and more particularly to a device capable of generating an optimum PWM pulse waveform according to a purpose. is there.

【0002】[0002]

【従来の技術】電気学会半導体電力変換方式調査専門委
員会編「半導体電力変換回路」第6章に一般的な三角波
キャリア信号比較によるPWM(Pulse Width Modulati
n) 制御方式が記載されている。この内容に基づいて、
単相ブリッジでの三角波キャリア信号比較による電圧パ
ルスの生成方法を図9を用いて簡単に説明する。
2. Description of the Related Art In Chapter 6, "Semiconductor Power Conversion Circuits" edited by the Institute of Electrical Engineers of Japan, "Pulse Width Modulati" based on a general triangular wave carrier signal comparison.
n) The control method is described. Based on this content,
A method of generating a voltage pulse by comparing a triangular carrier signal in a single-phase bridge will be briefly described with reference to FIG.

【0003】図9(a)に示す制御整流素子102からな
る単相ブリッジの出力端子T1,T2間に発生する電圧
は、各パルスの極性,幅,及び位置が図9(c)に示すよ
うに変化するパルス列からなるPWMパルス波形(10
6)となる。この例では、半サイクル中に3パルスを有
する波形を示している。このようなPWMパルス波形
は、図9(b) に示すように、電圧指令値(電圧指令信
号:変調信号)の1サイクル中に3周期を有する三角波
キャリア信号(上段用104,下段用105)を考え、
これと出力したい正弦波状の電圧指令値103とを比較
し、両者の交点にて制御整流素子102のスイッチング
を行わせることにより、生成することができる。
The voltage generated between the output terminals T1 and T2 of the single-phase bridge composed of the control rectifier 102 shown in FIG. 9A has the polarity, width and position of each pulse as shown in FIG. 9C. A PWM pulse waveform (10
6). In this example, a waveform having three pulses in a half cycle is shown. As shown in FIG. 9B, such a PWM pulse waveform has a triangular wave carrier signal having three periods in one cycle of a voltage command value (voltage command signal: modulation signal) (upper stage 104, lower stage 105). Thinking,
This can be generated by comparing this with the sinusoidal voltage command value 103 to be output and causing the control rectifier 102 to switch at the intersection of the two.

【0004】この三角波キャリア信号比較によるPWM
制御方式を用いた従来の自励式電力変換装置の構成及び
制御方法を図8を用いて説明する。図において、1は自
励式電力変換装置であり、自己消弧形の制御整流素子を
用いた3相ブリッジ等で構成され、該制御整流素子にゲ
ートパルスが入力されると該入力されるゲートパルスに
応じて、直流電圧から矩形のパルス列からなる交流電圧
を発生する。2は自励式電力変換装置1の交流側と3相
交流系統との間に配設された変換装置用変圧器、3は自
励式電力変換装置1の直流側の電圧を安定化するための
直流コンデンサである。4は変換装置用変圧器2の交流
系統側の3相の交流電流を検出してこれを交流電流検出
信号として出力する交流電流検出器、5は変換装置用変
圧器2の交流系統側の3相の交流電圧を検出してこれを
交流電圧検出信号として出力する交流電圧検出器であ
る。6は交流電圧検出器5から出力される3相の交流電
圧検出信号のうちのいずれか1相の交流電圧検出信号の
位相を同期検出してこれを交流電圧位相検出信号として
出力するPLL装置、7はPLL装置6から出力される
交流電圧位相検出信号を用いて、交流電流検出器から出
力される交流電流検出信号を有効電流成分と無効電流成
分の2成分に変換する3相/2相変換器、8,9は、そ
れぞれ、外部から入力される有効電流指令,及び無効電
流指令に対する3相/2相変換器から出力される交流電
流検出信号の有効電流成分,及び無効電流成分の差分を
算出する減算器、10は減算器8の出力を増幅する有効
電流制御器、11は減算器9の出力を増幅する無効電流
制御器である。12は有効電流制御器10の出力と無効
電流制御器11の出力とを、自励式電力変換装置1が実
際に発生すべき交流電圧を表す電圧指令値に変換する2
相/3相変換器である。13はPLL装置6から出力さ
れる交流電圧位相検出信号に同期した三角波キャリア信
号を3相分出力するキャリア発生器、14,15,16
は2相/3相変換器13から出力される電圧指令値とキ
ャリア発生器14〜16から出力される三角波キャリア
信号とを比較して、自励式電力変換装置1の制御整流素
子を制御するためのゲートパルスを発生するPWM制御
器である。ここで、交流電流検出器4、交流電圧検出器
5、PLL装置6、3相/2相変換器7、減算器8,
9、有効電流制御器10、無効電流制御器11、2相/
3相変換器12、キャリア発生器13、PWM制御器1
4〜16がPWM制御装置101を構成する。
[0004] PWM based on this triangular wave carrier signal comparison
The configuration and control method of a conventional self-excited power converter using a control method will be described with reference to FIG. In the figure, reference numeral 1 denotes a self-excited power converter, which is constituted by a three-phase bridge or the like using a self-extinguishing type control rectifier, and when a gate pulse is input to the control rectifier, the input gate pulse , An AC voltage composed of a rectangular pulse train is generated from the DC voltage. Reference numeral 2 denotes a converter transformer disposed between the AC side of the self-excited power converter 1 and the three-phase AC system, and 3 denotes a DC for stabilizing the voltage on the DC side of the self-excited power converter 1. It is a capacitor. Reference numeral 4 denotes an AC current detector for detecting three-phase AC currents on the AC system side of the converter transformer 2 and outputting this as an AC current detection signal. Reference numeral 5 denotes an AC system side 3 of the converter transformer 2. This is an AC voltage detector that detects an AC voltage of a phase and outputs this as an AC voltage detection signal. 6, a PLL device for synchronously detecting the phase of any one of the three-phase AC voltage detection signals output from the AC voltage detector 5 and outputting this as an AC voltage phase detection signal; Reference numeral 7 denotes a three-phase / two-phase converter for converting an AC current detection signal output from the AC current detector into two components, an active current component and a reactive current component, using the AC voltage phase detection signal output from the PLL device 6. And 8 and 9 respectively determine the difference between the active current component and the reactive current component of the AC current detection signal output from the three-phase / two-phase converter with respect to the active current command and the reactive current command input from the outside. The subtractor 10 to be calculated is an active current controller that amplifies the output of the subtractor 8, and 11 is a reactive current controller that amplifies the output of the subtractor 9. Numeral 12 converts the output of the active current controller 10 and the output of the reactive current controller 11 into a voltage command value representing an AC voltage to be actually generated by the self-excited power converter 1.
It is a phase / 3-phase converter. Reference numeral 13 denotes a carrier generator which outputs a triangular carrier signal synchronized with the AC voltage phase detection signal output from the PLL device 6 for three phases.
Is for comparing the voltage command value output from the two-phase / 3-phase converter 13 with the triangular carrier signal output from the carrier generators 14 to 16 to control the control rectifier of the self-excited power converter 1. Is a PWM controller that generates a gate pulse of the PWM controller. Here, an AC current detector 4, an AC voltage detector 5, a PLL device 6, a three-phase / two-phase converter 7, a subtractor 8,
9, active current controller 10, reactive current controller 11, 2 phase /
Three-phase converter 12, carrier generator 13, PWM controller 1
4 to 16 constitute the PWM control device 101.

【0005】次に、以上のように構成された自励式電力
変換装置及びPWM制御装置の動作を説明する。自励式
電力変換装置1は、直流電圧から図9(c) に示すような
PWMパルス波形の交流電圧を3相の各相について発生
する。この発生した3相の交流電圧は変換装置用変圧器
2を介して交流系統の交流電圧と平衡する。
Next, the operation of the self-excited power converter and the PWM controller configured as described above will be described. The self-excited power converter 1 generates an AC voltage having a PWM pulse waveform as shown in FIG. 9C for each of the three phases from the DC voltage. The generated three-phase AC voltage is balanced with the AC voltage of the AC system via the converter transformer 2.

【0006】この交流電圧によって流れる交流電流は交
流電流検出器4で検出され、この検出された交流電流検
出信号(3相分)は、3相/2相変換器7で、PLL装
置6から出力される交流電圧位相検出信号を用いて、該
交流電圧位相検出信号と同期して回転する座標系(d−
q座標系)に変換され、有効電流成分と無効電流成分と
の2成分に分解される。
The AC current flowing by the AC voltage is detected by an AC current detector 4, and the detected AC current detection signal (for three phases) is output from a PLL device 6 by a three-phase / two-phase converter 7. The coordinate system (d−) that rotates in synchronization with the AC voltage phase detection signal by using the detected AC voltage phase detection signal.
(q coordinate system) and is decomposed into two components, an active current component and a reactive current component.

【0007】次いで、減算器8,9で、この分解された
交流電流検出信号の有効電流成分,及び無効電流成分
と、上位の制御系から指令される有効電流指令値,及び
無効電流指令値との差分がそれぞれ算出され、それぞ
れ、有効電流制御器10,及び無効電流制御器11で増
幅される。
Next, in the subtracters 8 and 9, the active current component and the reactive current component of the separated AC current detection signal, the active current command value and the reactive current command value commanded from the upper control system, and Are calculated and amplified by the active current controller 10 and the reactive current controller 11, respectively.

【0008】この増幅された各差分は、2相/3相変換
器12で、再びPLL装置6から出力される交流電圧位
相検出値を用いて、自励式電力変換装置1が実際に出力
すべき3相交流電圧を表す3相の電圧指令値に変換され
る。この変換された各相の電圧指令値は、PWM制御器
14,15,16で、キャリア発生器13から出力され
る三角波キャリア信号とそれぞれ比較され、それにより
ゲートパルスが発生される。そして、この発生したゲー
トパルスが自励式電力変換装置1の制御整流素子に入力
され、それにより、直流側の直流電圧から、該入力され
たゲートパルスに応じたPWMパルス波形の交流電圧が
発生する。このPWMパルス波形生成の詳細は、図9で
説明した通りである。
The amplified differences are actually output from the self-excited power converter 1 by the two-phase / three-phase converter 12 using the AC voltage phase detection value output from the PLL device 6 again. It is converted into a three-phase voltage command value representing a three-phase AC voltage. The converted voltage command values of the respective phases are respectively compared with the triangular wave carrier signals output from the carrier generator 13 by the PWM controllers 14, 15, and 16, whereby gate pulses are generated. Then, the generated gate pulse is input to the control rectifier of the self-excited power converter 1, whereby an AC voltage having a PWM pulse waveform corresponding to the input gate pulse is generated from the DC voltage on the DC side. . The details of the generation of the PWM pulse waveform are as described with reference to FIG.

【0009】[0009]

【発明が解決しようとする課題】ところで、このような
電圧指令値と三角波キャリア信号との比較によるPWM
制御方式の場合、以下のような問題点がある。図10
は、自励式電力変換装置の出力電圧波形の一例として、
半サイクル中に3パルスを有するPWMパルス波形を一
般的な形で表したものである。図10に示すように、本
来、3パルスのPWMパルス波形には中央のパルスのパ
ルス幅θ1と、両サイドのパルスのパルス幅θ2と、そ
の位置の位相±γとの3つの自由度(パラメータ)があ
る。この3つのパラメータをうまく選ぶことにより、目
的に応じた最適な電圧を発生できるはずである。例え
ば、5次、7次の高調波を完全に消去して発生しないよ
うにし、しかも任意の基本波電圧(振幅値Vo)を発生
させたければ、周波数解析の結果から下記の式が成立す
るような3つのパラメータとすればよい。
By the way, PWM based on a comparison between such a voltage command value and a triangular carrier signal is described.
The control method has the following problems. FIG.
Is an example of the output voltage waveform of the self-excited power converter.
Fig. 3 is a general representation of a PWM pulse waveform having three pulses during a half cycle. As shown in FIG. 10, the three-degree PWM pulse waveform originally has three degrees of freedom (pulse width θ1 of the center pulse, pulse width θ2 of the pulses on both sides, and the phase ± γ of the position) (parameters). ). By properly selecting these three parameters, it is possible to generate an optimum voltage according to the purpose. For example, if the fifth and seventh harmonics are completely eliminated so as not to generate them and an arbitrary fundamental voltage (amplitude value Vo) is to be generated, the following equation is established from the result of the frequency analysis. These three parameters may be used.

【0010】 (4Ed / π ){sin(θ1 / 2) +2sin(θ2 / 2)cosγ}=Vo (1)式 sin(5θ1 / 2)+2sin(5θ2 / 2)cos 5γ=0 (2)式 sin(7θ1 / 2)+2sin(7θ2 / 2)cos 7γ=0 (3)式 これらの式からもわかるように、基本波振幅Voからパ
ルスの位相や幅が決定されるわけである。
[0010] (4Ed / π) {sin ( θ 1/2) + 2sin (θ 2/2) cosγ} = Vo (1) equation sin (5θ 1/2) + 2sin (5θ 2/2) cos 5γ = 0 ( 2) sin (7θ 1/2) + 2sin (7θ 2/2) cos 7γ = 0 (3) equation as is apparent from these equations, not the phase and width of the pulse from the fundamental wave amplitude Vo is determined is there.

【0011】このような関係を持ったパルスを三角波キ
ャリア信号比較によるPWM制御方式で作り出すことは
不可能である。三角波キャリア信号比較によるPWM制
御方式では、PWMパルス波形は三角波キャリア信号の
波形によって制約されるため、θ1、θ2、γの3つの
パラメータは独立のパラメータではなく、従って、基本
波振幅Voに関連してパルスを作り出すことはできない
からである。
It is impossible to generate a pulse having such a relationship by a PWM control method based on a triangular wave carrier signal comparison. In the PWM control method based on the triangular carrier signal comparison, since the PWM pulse waveform is restricted by the waveform of the triangular carrier signal, the three parameters θ1, θ2, and γ are not independent parameters, and are therefore related to the fundamental wave amplitude Vo. A pulse cannot be created.

【0012】このように、目的に応じて、パルス波形が
本来持つ自由度をうまく使って最適な電圧を発生させよ
うとしても、従来の三角波キャリア信号を利用したPW
M制御方式では不可能である。一方、PWMパルス波形
の電圧をうまく発生させることにより、高調波低減、変
換器損失低減、電圧利用率向上による自励式電力変換装
置のコンパクト化、電圧時間積低減による変換装置用変
圧器のコンパクト化など、多くの実用的なメリットが生
まれる。
As described above, according to the purpose, even if an attempt is made to generate an optimum voltage by making good use of the degree of freedom inherent in a pulse waveform, a conventional PW using a triangular wave carrier signal is used.
This is not possible with the M control method. On the other hand, by successfully generating the voltage of the PWM pulse waveform, it is possible to reduce the harmonics, reduce the converter loss, make the self-excited power converter compact by improving the voltage utilization rate, and make the transformer for the converter compact by reducing the voltage-time product. Many practical benefits are born.

【0013】このように従来の三角波キャリア信号比較
によるPWM制御方式では、PWMパルス波形の電圧パ
ルスが本来持っている自由度を生かし切れないので、高
調波特性改善、電圧利用率向上、電圧時間積低減、自励
式電力変換装置の損失低減、制御性能向上などといった
目的に応じた最適なPWMパルス波形の電圧を出力する
ことができないという問題があった。
As described above, in the conventional PWM control system based on triangular wave carrier signal comparison, since the inherent freedom of the voltage pulse of the PWM pulse waveform cannot be utilized, the improvement of the harmonic characteristics, the improvement of the voltage utilization rate, and the improvement of the voltage time There has been a problem that it is not possible to output a voltage having an optimum PWM pulse waveform according to purposes such as a reduction in product, a loss in a self-excited power converter, and an improvement in control performance.

【0014】本発明はこのような問題点を解決するため
になされたもので、目的に応じた最適なPWMパルス波
形の電圧を出力することができる自励式電力変換装置用
PWM制御装置を提供することを目的としている。
The present invention has been made in order to solve such problems, and provides a PWM control apparatus for a self-excited power converter capable of outputting a voltage having an optimum PWM pulse waveform according to the purpose. It is intended to be.

【0015】[0015]

【課題を解決するための手段】本発明(請求項1)に係
る自励式電力変換装置用PWM制御装置は、制御信号に
応じてON/OFFして、直流電圧からパルス波形の交
流電圧を発生する自励式電力変換装置に用いられ、上記
発生する交流電圧の位相と該交流電圧に基づいて流れる
交流電流の値とを検出し、該検出した交流電圧の位相及
び交流電流の値から該交流電圧の位相と同期した2軸の
回転座標系での交流電流の有効分及び無効分を算出し、
該算出した交流電流の有効分及び無効分と外部から入力
される上記交流電流の有効分及び無効分に対する指令値
とに基づいて上記制御信号を出力することにより、上記
自励式電力変換装置にPWMパルス波形の交流電圧を発
生させて、上記交流電流の有効分及び無効分を制御する
PWM制御装置において、上記算出した交流電流の有効
分及び無効分と上記外部から入力される交流電流の有効
分及び無効分に対する指令値とに基づいて、上記発生さ
せるPWMパルス波形の交流電圧の変調信号たる電圧指
令信号の有効分と無効分とを算出し、該算出した電圧指
令信号の有効分と無効分とから、該電圧指令信号の振幅
値と位相とを算出し、該算出した振幅値に基づいて所定
のPWMパルス波形の各パルスの始端及び終端の位相を
求め、該求めた所定のPWMパルス波形の各パルスの始
端及び終端の位相と上記算出した電圧指令信号の位相と
に基づいて、上記制御信号を出力するようにしたもので
ある。
According to a first aspect of the present invention, a PWM controller for a self-excited power converter is turned on / off according to a control signal to generate an AC voltage having a pulse waveform from a DC voltage. The phase of the generated AC voltage and the value of the AC current flowing based on the AC voltage are detected, and the AC voltage is detected based on the detected phase and the value of the AC current. Calculate the effective and ineffective components of the alternating current in the two-axis rotating coordinate system synchronized with the phase of
By outputting the control signal based on the calculated active component and reactive component of the AC current and a command value for the active component and the reactive component of the AC current input from the outside, the PWM is transmitted to the self-excited power converter. In a PWM control device which generates an AC voltage having a pulse waveform and controls the effective and ineffective components of the AC current, the PWM controller includes an effective component and an invalid component of the calculated AC current and an effective component of the AC current input from the outside. Based on the command value for the invalid component and the command value for the invalid component, the effective component and the invalid component of the voltage command signal, which is the modulation signal of the AC voltage of the generated PWM pulse waveform, are calculated, and the effective component and the invalid component of the calculated voltage command signal are calculated. From the above, the amplitude value and the phase of the voltage command signal are calculated, and the starting and ending phases of each pulse of a predetermined PWM pulse waveform are obtained based on the calculated amplitude value. Based on the phase of the beginning and end of each pulse of the PWM pulse waveform phase and the calculated voltage command signals, in which to output the control signal.

【0016】本発明(請求項2)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項1)が、上記算出した振幅値から
所定のPWMパルス波形の各パルスの始端及び終端の位
相を演算するパルス発生/終了位相演算器と、該求めた
所定のPWMパルス波形の各パルスの始端及び終端の位
相と上記算出した電圧指令信号の位相とに基づいて、上
記制御信号を出力するPWM制御器とを有するものとし
たものである。
[0016] The PWM control apparatus for a self-excited power converter according to the present invention (claim 2) is a PWM control apparatus for the self-excited power converter.
A pulse generation / end phase calculator for calculating a starting and ending phase of each pulse of the predetermined PWM pulse waveform from the calculated amplitude value, a WM control device (claim 1), and the obtained predetermined PWM pulse waveform And a PWM controller that outputs the control signal based on the phase of the start and end of each pulse and the phase of the calculated voltage command signal.

【0017】本発明(請求項3)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項1)において、上記電圧指令信号
の振幅値に対する所定のPWMパルス波形の各パルスの
始端及び終端の位相を表すテーブルを予め記憶し、上記
算出した電圧指令信号の振幅値を該記憶しているテーブ
ルと対比して所定のPWMパルス波形の各パルスの始端
及び終端の位相を求め、該求めた所定のPWMパルス波
形の各パルスの始端及び終端の位相と上記算出した電圧
指令信号の位相とに基づいて、上記制御信号を出力する
ようにしたものである。
The PWM control device for a self-excited power converter according to the present invention (claim 3) is a PWM control device for the self-excited power converter.
In the WM control device (claim 1), a table representing the start and end phases of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal is stored in advance, and the calculated amplitude value of the voltage command signal is stored in the WM control device. The starting and ending phases of each pulse of the predetermined PWM pulse waveform are obtained by comparing with the stored table, and the obtained starting and ending phases of each pulse of the predetermined PWM pulse waveform are calculated with the calculated voltage command. The control signal is output based on the phase of the signal.

【0018】本発明(請求項4)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項1)において、上記自励式電力変
換装置は3相の制御信号に応じて3相交流電圧を発生す
るものであり、上記算出した電圧指令信号の有効分及び
無効分を、検出した3相交流電圧の位相を用いて3相交
流の電圧指令信号の有効分及び無効分に変換し、該変換
した3相交流の電圧指令信号の有効分及び無効分から各
相ごとの振幅値と位相とを算出し、該算出した各相ごと
の振幅値に基づいて、各相ごとに所定のPWMパルス波
形の各パルスの始端及び終端の位相を求め、該求めた所
定のPWMパルス波形の各パルスの始端及び終端の位相
と上記算出した電圧指令信号の各相ごとの位相とに基づ
いて、上記3相の制御信号を出力するようにしたもので
ある。
The PWM control device for a self-excited power converter according to the present invention (claim 4) is a PWM control device for a self-excited power converter.
In the WM control device (Claim 1), the self-excited power conversion device generates a three-phase AC voltage according to a three-phase control signal. Using the detected phase of the three-phase AC voltage, the three-phase AC voltage command signal is converted into an effective component and an invalid component, and the converted three-phase AC voltage command signal is converted into an effective component and an invalid component, and the amplitude value for each phase is calculated. And the phase are calculated, and the start and end phases of each pulse of the predetermined PWM pulse waveform are obtained for each phase based on the calculated amplitude value for each phase, and the obtained predetermined PWM pulse waveform is calculated. The three-phase control signals are output based on the phases at the start and end of each pulse and the phase of each of the calculated voltage command signals.

【0019】本発明(請求項5)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項1)において、上記自励式電力変
換装置を2以上多重化して有し、上記算出された電圧指
令信号の位相を上記自励式電力変換装置の多重化の段数
に応じて各段ごとに補正し、上記求めた所定のPWMパ
ルス波形の各パルスの始端及び終端の位相と該各段ごと
に補正された電圧指令信号の位相とに基づいて、各段の
自励式電力変換装置に上記制御信号を出力するようにし
たものである。
The PWM control apparatus for a self-excited power converter according to the present invention (claim 5) is a PWM control apparatus for a self-excited power converter.
In the WM control device (Claim 1), the self-excited power converter has two or more multiplexed power converters, and the phase of the calculated voltage command signal is determined according to the number of multiplexing stages of the self-excited power converter. The self-excited power converter of each stage is corrected based on the phases of the start and end of each pulse of the predetermined PWM pulse waveform and the phase of the voltage command signal corrected for each stage. The above-mentioned control signal is outputted.

【0020】本発明(請求項6)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項5)において、上記算出した振幅
値から所定のPWMパルス波形の各パルスの始端及び終
端の位相を演算により求め、該求めた所定のPWMパル
ス波形の各パルスの始端及び終端の位相と上記各段ごと
に補正された電圧指令信号の位相とに基づいて、各段の
自励式電力変換装置に上記制御信号を出力するようにし
たものである。
[0020] The PWM control apparatus for a self-excited power converter according to the present invention (claim 6) is a PWM control apparatus for the self-excited power converter.
In the WM control device, the starting and ending phases of each pulse of the predetermined PWM pulse waveform are calculated from the calculated amplitude value, and the starting and ending points of each pulse of the obtained predetermined PWM pulse waveform are calculated. And the control signal is output to the self-excited power converter of each stage based on the phase of the voltage command signal corrected for each stage.

【0021】本発明(請求項7)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項5)において、上記電圧指令信号
の振幅値に対する所定のPWMパルス波形の各パルスの
始端及び終端の位相を表すテーブルを予め記憶し、上記
算出した電圧指令信号の振幅値を該記憶しているテーブ
ルと対比して所定のPWMパルス波形の各パルスの始端
及び終端の位相を求め、該求めた所定のPWMパルス波
形の各パルスの始端及び終端の位相と上記各段ごとに補
正された電圧指令信号の位相とに基づいて、各段の自励
式電力変換装置に上記制御信号を出力するようにしたも
のである。
The PWM control apparatus for a self-excited power converter according to the present invention (claim 7) is a PWM control apparatus for a self-excited power converter.
In the WM control device (claim 5), a table representing the start and end phases of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal is stored in advance, and the calculated amplitude value of the voltage command signal is stored in the WM control device. The starting and ending phases of the respective pulses of the predetermined PWM pulse waveform are obtained by comparing with the stored table, and the starting and ending phases of the obtained respective pulses of the predetermined PWM pulse waveform are determined according to the respective stages. The control signal is output to the self-excited power converter of each stage based on the corrected phase of the voltage command signal.

【0022】本発明(請求項8)に係る自励式電力変換
装置用PWM制御装置は、上記自励式電力変換装置用P
WM制御装置(請求項5)において、上記多重化された
自励式電力変換装置は3相の制御信号に応じて3相交流
電圧を発生するものであり、上記算出した電圧指令信号
の有効分及び無効分を、検出した3相交流電圧の位相を
用いて3相交流の電圧指令信号の有効分及び無効分に変
換し、該変換した3相交流の電圧指令信号の有効分及び
無効分から各相ごとの振幅値と位相とを算出するととも
に、該算出された電圧指令信号の位相を上記自励式電力
変換装置の多重化の段数に応じて各段ごとに補正し、上
記算出した各相ごとの振幅値に基づいて、各相ごとに所
定のPWMパルス波形の各パルスの始端及び終端の位相
を求め、該求めた所定のPWMパルス波形の各パルスの
始端及び終端の位相と上記各段ごとに補正された電圧指
令信号の各相ごとの位相とに基づいて、各段の自励式電
力変換装置に上記3相の制御信号を出力するようにした
ものである。
[0022] The PWM control apparatus for a self-excited power converter according to the present invention (claim 8) includes the PWM control apparatus for a self-excited power converter.
In the WM control device (claim 5), the multiplexed self-excited power converter generates a three-phase AC voltage in accordance with a three-phase control signal. The invalid component is converted into a valid component and an invalid component of the three-phase AC voltage command signal using the detected phase of the three-phase AC voltage, and each phase is converted from the valid component and the invalid component of the converted three-phase AC voltage command signal. And the phase of the calculated voltage command signal is corrected for each stage according to the number of multiplexing stages of the self-excited power conversion device, and the calculated value for each phase is calculated. Based on the amplitude value, the starting and ending phases of each pulse of the predetermined PWM pulse waveform are obtained for each phase, and the starting and ending phases of each pulse of the obtained predetermined PWM pulse waveform are calculated for each of the above stages. For each phase of the corrected voltage command signal Based on the phase, in which to output the control signal of the 3-phase self-commutated power converter for each stage.

【0023】[0023]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1によるPMW制御装置を用いた自励式電力変
換装置の構成を示すブロック図である。図において、1
は自励式電力変換装置であり、自己消弧形の制御整流素
子を用いた3相ブリッジ等で構成され、該制御整流素子
にゲートパルスが入力されると該入力されるゲートパル
スに応じて、直流電圧から矩形のパルス列からなる交流
電圧を発生する。2は自励式電力変換装置1の交流側と
3相交流系統との間に配設された変換装置用変圧器、3
は自励式電力変換装置1の直流側の電圧を安定化するた
めの直流コンデンサである。4は変換装置用変圧器2の
交流系統側の3相の交流電流を検出してこれを交流電流
検出信号として出力する交流電流検出器、5は変換装置
用変圧器2の交流系統側の3相の交流電圧を検出してこ
れを交流電圧検出信号として出力する交流電圧検出器で
ある。6は交流電圧検出器5から出力される3相の交流
電圧検出信号のうちのいずれか1相の交流電圧検出信号
の位相を同期検出してこれを交流電圧位相検出信号とし
て出力するPLL装置、7はPLL装置6から出力され
る交流電圧位相検出信号を用いて、交流電流検出器4か
ら出力される交流電流検出信号を有効電流成分(有効
分)と無効電流成分(無効分)との2成分に変換する3
相/2相変換器、8,9は、それぞれ、外部から入力さ
れる有効電流指令,及び無効電流指令に対する3相/2
相変換器7から出力される交流電流検出信号の有効電流
成分,及び無効電流成分の差分を算出する減算器、10
は減算器8の出力を増幅する有効電流制御器、11は減
算器9の出力を増幅する無効電流制御器である。17は
有効電流制御器10の出力と無効電流制御器11の出力
とから、自励式電力変換装置1が実際に発生すべき交流
電圧を表す電圧指令値(電圧指令信号)の振幅を算出す
る電圧指令値振幅演算器、18は有効電流制御器10の
出力と、無効電流制御器11の出力と、PLL装置6の
出力とから交流電圧検出信号に対する交流電流検出信号
の位相差(以下、交流電圧位相との位相ずれという)を
算出する電圧指令値位相ずれ演算器である。19は電圧
指令値位相ずれ演算器18で算出された位相ずれをPL
L装置6から出力される交流電圧位相検出信号に加算し
て電圧指令値の絶対位相を算出する加算器、20は加算
器19から出力される電圧指令値の絶対位相から3相の
各相の電圧指令値の位相を算出して出力する位相3相配
分器、21は電圧指令値振幅演算器17から出力される
電圧指令値の振幅から従来の技術で述べた3つのパラメ
ータ、すなわち、中央のパルスのパルス幅θ1、両サイ
ドのパルスのパルス幅θ2、及びその位置の位相±γを
算出し、これをパルスの発生(始端)/終了(終端)位
相で表すようにして出力するパルス発生/終了位相演算
器である。22,23,24は、パルス発生/終了位相
演算器21から出力されるパルス発生/終了位相と位相
3相配分器20から出力される各相の電圧指令値の位相
とに基づいてゲートパルスを生成し、これを自励式電力
変換器1の各相の制御整流素子のゲートに出力するPW
M制御器である。ここで、交流電流検出器4、交流電圧
検出器5、PLL装置6、3相/2相変換器7、減算器
8,9、有効電流制御器10、無効電流制御器11、電
圧指令値振幅演算器17、電圧指令値位相ずれ演算器1
8、加算器19、位相3相配分器、パルス発生/終了位
相演算器21、PWM制御器22〜24がPWM制御装
置101を構成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a block diagram showing a configuration of a self-excited power converter using a PWM controller according to Embodiment 1 of the present invention. In the figure, 1
Is a self-excited power converter, which is constituted by a three-phase bridge or the like using a self-extinguishing control rectifier, and when a gate pulse is input to the control rectifier, according to the input gate pulse, An AC voltage composed of a rectangular pulse train is generated from the DC voltage. Reference numeral 2 denotes a converter transformer provided between the AC side of the self-excited power converter 1 and the three-phase AC system.
Is a DC capacitor for stabilizing the DC voltage of the self-excited power converter 1. Reference numeral 4 denotes an AC current detector for detecting three-phase AC currents on the AC system side of the converter transformer 2 and outputting this as an AC current detection signal. Reference numeral 5 denotes an AC system side 3 of the converter transformer 2. This is an AC voltage detector that detects an AC voltage of a phase and outputs this as an AC voltage detection signal. 6, a PLL device for synchronously detecting the phase of any one of the three-phase AC voltage detection signals output from the AC voltage detector 5 and outputting this as an AC voltage phase detection signal; Reference numeral 7 denotes an AC voltage phase detection signal output from the PLL device 6 and converts the AC current detection signal output from the AC current detector 4 into two components, an active current component (active component) and a reactive current component (inactive component). Convert to component 3
The phase / two-phase converters 8 and 9 respectively provide three-phase / 2-phase converters for an active current command and a reactive current command input from the outside.
A subtractor 10 for calculating a difference between an active current component and a reactive current component of the AC current detection signal output from the phase converter 7;
Is an active current controller for amplifying the output of the subtractor 8, and 11 is a reactive current controller for amplifying the output of the subtractor 9. Reference numeral 17 denotes a voltage for calculating the amplitude of a voltage command value (voltage command signal) representing an AC voltage to be actually generated by the self-excited power converter 1 from the output of the active current controller 10 and the output of the reactive current controller 11. A command value amplitude calculator 18 is a phase difference between an AC voltage detection signal and an AC voltage detection signal based on the output of the active current controller 10, the output of the reactive current controller 11, and the output of the PLL device 6. This is a voltage command value phase shift calculator for calculating the phase shift with respect to the phase. Reference numeral 19 denotes the phase shift calculated by the voltage command value phase shift calculator 18 as PL.
The adder 20 calculates the absolute phase of the voltage command value by adding to the AC voltage phase detection signal output from the L device 6. The adder 20 calculates the three phases from the absolute phase of the voltage command value output from the adder 19. The phase three-phase distributor 21 calculates and outputs the phase of the voltage command value. The three-phase allocator 21 calculates three parameters described in the related art from the amplitude of the voltage command value output from the voltage command value amplitude calculator 17, Calculate the pulse width θ1 of the pulse, the pulse width θ2 of the pulses on both sides, and the phase ± γ of the position, and output them by expressing them as the pulse generation (starting end) / ending (end) phase. The ending phase calculator. Reference numerals 22, 23, and 24 denote gate pulses based on the pulse generation / end phase output from the pulse generation / end phase calculator 21 and the phase of the voltage command value of each phase output from the three-phase distributor 20. PW which generates and outputs this to the gate of the control rectifier of each phase of the self-excited power converter 1
M controller. Here, AC current detector 4, AC voltage detector 5, PLL device 6, 3-phase / 2-phase converter 7, subtractors 8, 9, active current controller 10, reactive current controller 11, voltage command value amplitude Calculator 17, Voltage command value phase shift calculator 1
8, the adder 19, the three-phase distributor, the pulse generation / termination phase calculator 21, and the PWM controllers 22 to 24 constitute the PWM controller 101.

【0024】次に、以上のように構成された自励式電力
変換装置1及びPWM制御装置101の動作を図1,図
2を用いて説明する。図2はPWMパルス波形を示す図
であって、図2(a) は従来例によるPWMパルス波形を
示す図、図2(b) は本実施の形態1によるPWMパルス
波形を示す図である。
Next, the operation of the self-excited power converter 1 and the PWM controller 101 configured as described above will be described with reference to FIGS. 2A and 2B are diagrams showing a PWM pulse waveform, FIG. 2A is a diagram showing a PWM pulse waveform according to a conventional example, and FIG. 2B is a diagram showing a PWM pulse waveform according to the first embodiment.

【0025】図1において、自励式電力変換装置1は、
直流系統の直流電圧からPWMパルス波形の交流電圧を
3相の各相について発生する。この発生した3相の交流
電圧は変換装置用変圧器2を介して交流系統の交流電圧
と平衡する。
In FIG. 1, a self-excited power converter 1
An AC voltage having a PWM pulse waveform is generated for each of the three phases from the DC voltage of the DC system. The generated three-phase AC voltage is balanced with the AC voltage of the AC system via the converter transformer 2.

【0026】この3相の交流電圧を交流電圧検出器5が
検出して、これを3相の交流電圧検出信号として出力す
る一方、該交流電圧によって流れる交流電流を交流電流
検出器4が検出して、これを3相の交流電流検出信号と
して出力する。
The three-phase AC voltage is detected by an AC voltage detector 5 and is output as a three-phase AC voltage detection signal, while the AC current detector 4 detects an AC current flowing by the AC voltage. This is output as a three-phase alternating current detection signal.

【0027】上記出力される3相の交流電圧検出信号を
受け、PLL装置6が3相の交流電圧検出信号のうちの
いずれか1相についての交流電圧位相検出信号を出力す
る。
Upon receiving the output three-phase AC voltage detection signal, the PLL device 6 outputs an AC voltage phase detection signal for any one of the three-phase AC voltage detection signals.

【0028】この出力された交流電圧検出信号と上記出
力された交流電流検出信号とを受け、3相/2相変換器
7が、交流電流検出信号(3相分)を、交流電圧位相検
出信号を用いて該交流電圧位相検出信号と同期して回転
するd−q座標系に変換し、有効電流成分と無効電流成
分との2成分に分解して、これらを出力する。
Upon receiving the output AC voltage detection signal and the output AC current detection signal, the three-phase / two-phase converter 7 converts the AC current detection signal (for three phases) into an AC voltage phase detection signal. Is converted into a dq coordinate system that rotates in synchronization with the AC voltage phase detection signal, is decomposed into two components, an active current component and a reactive current component, and is output.

【0029】これらの出力を受け、減算器8,9が、交
流電流検出信号の有効電流成分,及び無効電流成分と、
上位の制御系から指令される有効電流指令値,及び無効
電流指令値との差分をそれぞれ算出し、これら算出され
た各差分を、それぞれ、有効電流制御器10,及び無効
電流制御器11が増幅して出力する。
In response to these outputs, the subtracters 8 and 9 generate an active current component and a reactive current component of the AC current detection signal,
The difference between the active current command value and the reactive current command value commanded from the host control system is calculated, and the calculated current difference is amplified by the active current controller 10 and the reactive current controller 11, respectively. And output.

【0030】これらの出力を受け、電圧指令値振幅演算
器17が次の演算を行う。すなわち、有効電流制御器1
0の出力をVd、無効電流制御器11の出力をVqとし
た場合において、√(Vd2 +Vq2 )=Voを演算す
る。そして、この演算結果Voを電圧指令値の振幅とし
て出力する。一方、上記出力を受け、電圧指令値位相ず
れ演算器18が、tan-1(Vq/Vd)=△αを演算
し、この演算結果△αを交流電圧の位相との位相ずれと
して出力する。ここで、位相ずれ△αはPLL装置6か
ら出力されている交流電圧位相検出信号の位相θとの位
相ずれを表す。上記出力と上記PLL装置6の出力とを
受け、加算器19が、交流電圧の位相θと△αとを加算
し、これを電圧指令値の絶対位相として出力する。
In response to these outputs, the voltage command value amplitude calculator 17 performs the following calculation. That is, the active current controller 1
When the output of 0 is Vd and the output of the reactive current controller 11 is Vq, √ (Vd 2 + Vq 2 ) = Vo is calculated. Then, the calculation result Vo is output as the amplitude of the voltage command value. On the other hand, receiving the output, the voltage command value phase shift calculator 18 calculates tan -1 (Vq / Vd) =) α, and outputs the calculation result △ α as a phase shift from the phase of the AC voltage. Here, the phase shift Δα represents a phase shift from the phase θ of the AC voltage phase detection signal output from the PLL device 6. Upon receiving the output and the output of the PLL device 6, the adder 19 adds the phases θ and △ α of the AC voltage, and outputs this as the absolute phase of the voltage command value.

【0031】この出力を受け、位相3相配分器20が以
下の演算を行う。すなわち、加算器19の出力である電
圧指令値の絶対位相は3相のうちのいずれか1相のもの
であるので、該電圧指令値の絶対位相と同じ位相のもの
と、これを120度進めた位相のものと、これを120
度遅らせた位相のものとを生成し、該生成したものを3
相の各相の電圧指令値の位相として出力する。
Receiving this output, the phase three-phase distributor 20 performs the following calculation. That is, since the absolute phase of the voltage command value output from the adder 19 is one of the three phases, the absolute phase of the voltage command value is the same as the absolute phase of the voltage command value, and this is advanced by 120 degrees. Phase and this is 120
And a phase delayed by three degrees, and the generated
Output as the phase of the voltage command value of each phase.

【0032】一方、上記電圧指令値振幅演算器17の出
力を受け、パルス発生/終了位相演算器21は、電圧指
令値の振幅Voを用いて、例えば、従来の技術で述べた
(1),(2),(3)式を演算し、図2(b) に示すよ
うに、中央のパルスのパルス幅θ1、両サイドのパルス
のパルス幅θ2、及びその位置の位相±γを算出し、パ
ルス発生位相として、−γ−(θ2 / 2)、−θ1 /
2、γ−(θ2 / 2)を出力し、また、パルス終了位相
として、−γ+(θ2 / 2)、θ1 / 2、γ+(θ2 /
2)を出力する。
On the other hand, upon receiving the output of the voltage command value amplitude calculator 17, the pulse generation / termination phase calculator 21 uses the amplitude Vo of the voltage command value, for example, as described in the prior art (1), By calculating the equations (2) and (3), the pulse width θ1 of the center pulse, the pulse width θ2 of the pulses on both sides, and the phase ± γ of the position are calculated as shown in FIG. as the pulse generation phase, -γ- (θ 2/2) , - θ 1 /
2, and outputs the γ- (θ 2/2), also, as the pulse end phase, -γ + (θ 2/2 ), θ 1/2, γ + (θ 2 /
Output 2).

【0033】この出力と、上記位相3相配分器20の出
力とを受け、PWM制御器22,23,24は、それぞ
れ、パルス発生/終了位相と、電圧指令値の位相とを比
較し、それぞれの電圧指令値の位相においてパルスを発
生/終了すべき位相に至るとゲートパルスを出力する。
この出力されたゲートパルスを受け、自励式電力変換装
置1の各相の制御整流素子がON/OFFし、それによ
り、直流側の直流電圧から、図2(b) に示すようなPW
Mパルス波形の交流電圧が各相ごとに生成され、交流側
に3相のPWMパルス波形からなる交流電圧が発生す
る。また、ゲートパルスの出力タイミングは、交流電流
の有効分及び無効分について、外部から入力される指令
値に対する出力値の偏差に基づいて決定されるので、交
流電流の有効分及び無効分は、指令値に応じてフィード
バック制御される。
Receiving this output and the output of the three-phase distributor 20, the PWM controllers 22, 23, and 24 compare the pulse generation / end phase with the phase of the voltage command value, respectively. When a phase at which a pulse is to be generated / terminated is reached at the phase of the voltage command value, a gate pulse is output.
In response to the output gate pulse, the control rectifiers of each phase of the self-excited power converter 1 are turned ON / OFF, and the DC voltage on the DC side is converted into a PW signal as shown in FIG.
An AC voltage having an M pulse waveform is generated for each phase, and an AC voltage having a three-phase PWM pulse waveform is generated on the AC side. Further, the output timing of the gate pulse is determined based on the deviation of the output value from the command value input from the outside for the effective component and the invalid component of the AC current. Feedback control is performed according to the value.

【0034】次に、本実施の形態1による効果を図2を
用いて説明する。図2において、従来の三角波キャリア
信号比較PWM制御方式による3パルス電圧波形では、
各パルスのパルス幅,及び位置の位相は、図2(a) に示
すようなものとなり、5次、及び7次の高調波を含んだ
ものとなっている。一方、本実施の形態1による3パル
ス電圧波形では、各パルスのパルス幅,及び位置の位相
は、図2(b) に示すようなものとなり、5次、及び7次
の高調波を含まないものとなっている。また、従来の三
角波キャリア信号比較PWM制御方式による3パルス電
圧波形では電圧時間積が1.0puであるのに対し、本
実施の形態1による3パルス電圧波形では、電圧時間積
が0.93puとなっている。従って、従来の三角波キ
ャリア信号比較PWM制御方式よりも、本実施の形態1
によるPWM制御方式の方が、高調波特性、電圧時間積
特性ともに優れていることが分かる。
Next, the effect of the first embodiment will be described with reference to FIG. In FIG. 2, in a three-pulse voltage waveform according to the conventional triangular wave carrier signal comparison PWM control method,
The pulse width of each pulse and the phase of the position are as shown in FIG. 2A, and include the fifth and seventh harmonics. On the other hand, in the three-pulse voltage waveform according to the first embodiment, the pulse width and the phase of each pulse are as shown in FIG. 2B, and do not include the fifth and seventh harmonics. It has become something. In the three-pulse voltage waveform according to the conventional triangular wave carrier signal comparison PWM control method, the voltage-time product is 1.0 pu, whereas in the three-pulse voltage waveform according to the first embodiment, the voltage-time product is 0.93 pu. Has become. Therefore, the first embodiment is more effective than the conventional triangular wave carrier signal comparison PWM control method.
It can be understood that the PWM control method according to the above is superior in both harmonic characteristics and voltage-time product characteristics.

【0035】なお、上記の説明では、5次、及び7次の
高調波を含まないようなPWMパルス波形を発生させる
ようにしたが、目的に応じて他のPWMパルス波形を発
生させるようにしても構わない。
In the above description, a PWM pulse waveform that does not include the fifth and seventh harmonics is generated. However, another PWM pulse waveform may be generated according to the purpose. No problem.

【0036】以上のように、本実施の形態1において
は、電圧指令値の有効分と無効分とから電圧指令値の振
幅値と位相とを算出し、その算出した振幅値と位相とに
基づいて交流電圧のPWMパルス波形の各パルスの発生
/終了位相を制御するようにしたので、パルス波形が本
来持つ自由度を生かして目的に応じた最適なPWMパル
ス波形を発生させることができるため、高調波特性改
善、電圧利用率向上、電圧時間積低減、変換器損失低
減、制御性能向上などを図ることができ、その結果、自
励式電力変換装置のコンパクト化、電圧時間積低減によ
る変換装置用変圧器のコンパクト化等を実現することが
できる。
As described above, in the first embodiment, the amplitude value and the phase of the voltage command value are calculated from the effective portion and the ineffective portion of the voltage command value, and based on the calculated amplitude value and phase. Since the generation / termination phase of each pulse of the PWM pulse waveform of the AC voltage is controlled in this manner, the optimum PWM pulse waveform according to the purpose can be generated by utilizing the inherent flexibility of the pulse waveform. It can improve harmonic characteristics, improve voltage utilization, reduce voltage-time product, reduce converter loss, and improve control performance. As a result, the self-excited power converter can be made more compact, and the voltage-time product can be reduced. It is possible to realize a compact transformer for use.

【0037】実施の形態2.図3は本発明の実施の形態
2によるPWM制御装置を用いた自励式電力変換装置の
構成を示すブロック図である。図において、図1と同一
符号は同一又は相当する部分を示し、本実施の形態2
は、図1のパルス発生/終了位相演算器21を省略し、
図1のゲートパルスを生成するだけのPWM制御器22
〜24に代えて、図1のパルス発生/終了位相演算器2
1の演算内容を予め計算したテーブルを記憶する記憶手
段(図示せず)を備えたPWM制御器25〜27を有す
る点が実施の形態1と異なるものである。
Embodiment 2 FIG. 3 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to Embodiment 2 of the present invention. In the figure, the same reference numerals as those in FIG.
Omits the pulse generation / end phase calculator 21 in FIG.
PWM controller 22 that only generates the gate pulse of FIG.
To 24, the pulse generation / end phase calculator 2 of FIG.
The present embodiment is different from the first embodiment in that it has PWM controllers 25 to 27 each having a storage means (not shown) for storing a table in which the content of operation 1 is calculated in advance.

【0038】すなわち、PWM制御器25〜27は、そ
れぞれ、記憶手段を備え、該記憶手段に、電圧指令値の
振幅値Voに対する3パルス電圧波形の各パルスの発生
位相及び終了位相を表すテーブルを予め記憶しており、
電圧指令値振幅演算器17から電圧指令値の振幅値が入
力され、位相3相配分器20から電圧指令値の位相が入
力されると、該入力された電圧指令値の振幅値Voを、
該記憶しているテーブルと対比して、該算出した電圧指
令値の振幅値Voに対応する3パルス電圧波形の各パル
スの発生位相及び終了位相を求め、その求めた各パルス
の発生位相及び終了位相と、上記入力された電圧指令値
の位相とを比較し、それぞれの電圧指令値の位相におい
てパルスを発生/終了すべき位相に至るとゲートパルス
を出力するように構成されている。
That is, each of the PWM controllers 25 to 27 has a storage means, and the storage means stores a table showing the generation phase and end phase of each pulse of the three-pulse voltage waveform with respect to the amplitude value Vo of the voltage command value. Remembered in advance,
When the amplitude value of the voltage command value is input from the voltage command value amplitude calculator 17 and the phase of the voltage command value is input from the phase three-phase distributor 20, the amplitude value Vo of the input voltage command value is calculated as
Compared with the stored table, the generation phase and end phase of each pulse of the three-pulse voltage waveform corresponding to the calculated amplitude value Vo of the voltage command value are obtained, and the generation phase and end of each obtained pulse are obtained. The phase is compared with the phase of the input voltage command value, and a gate pulse is output when a phase at which a pulse is to be generated / terminated at each voltage command value is reached.

【0039】このように、本実施の形態2においては、
電圧指令値の振幅値Voに対する3パルス電圧波形の各
パルスの発生位相及び終了位相を表すテーブルを予め記
憶するようにしたので、PWMパルス波形の制御信号の
生成処理の高速化を図ることができる。
As described above, in the second embodiment,
Since the table indicating the generation phase and the termination phase of each pulse of the three-pulse voltage waveform with respect to the amplitude value Vo of the voltage command value is stored in advance, the processing for generating the control signal of the PWM pulse waveform can be speeded up. .

【0040】実施の形態3.図4は本発明の実施の形態
3によるPWM制御装置を用いた自励式電力変換装置の
構成を示すブロック図である。図において、図1と同一
符号は同一又は相当する部分を示し、本実施の形態3
は、図1の電圧指令値振幅演算器17、電圧指令値位相
ずれ演算器18、加算器19、位相3相配分器20、パ
ルス発生/終了位相演算器21、及びPWM制御器22
〜24に代えて、2相/3相変換器12、各相電圧指令
値振幅演算器28〜30、各相パルス発生/終了位相演
算器31〜33、及びPWM制御器34〜36を有する
点が実施の形態1と異なるものである。
Embodiment 3 FIG. 4 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to Embodiment 3 of the present invention. In the figure, the same reference numerals as those in FIG.
Is a voltage command value amplitude calculator 17, a voltage command value phase shift calculator 18, an adder 19, a phase three-phase distributor 20, a pulse generation / termination phase calculator 21, and a PWM controller 22 shown in FIG.
2 to 3 phase converters 12, phase voltage command value amplitude calculators 28 to 30, phase pulse generation / termination phase calculators 31 to 33, and PWM controllers 34 to 36. Are different from the first embodiment.

【0041】2相/3相変換器12は、有効電流制御器
10の出力と無効電流制御器11の出力とを、自励式電
力変換装置1が実際に発生すべき交流電圧を表す電圧指
令値に変換する。
The two-phase / three-phase converter 12 converts the output of the active current controller 10 and the output of the reactive current controller 11 into a voltage command value representing an AC voltage to be actually generated by the self-excited power converter 1. Convert to

【0042】各相電圧指令値振幅位相演算器28〜30
は、2相/3相変換器12によって変換された各相ごと
の電圧指令値から、各相ごとの振幅値と位相とを算出す
る。
Each phase voltage command value amplitude phase calculator 28-30
Calculates the amplitude value and the phase for each phase from the voltage command value for each phase converted by the two-phase / 3-phase converter 12.

【0043】例えば、電圧指令値を正弦波と仮定すれ
ば、2点のサンプリングデータから振幅値や位相を計算
できる。
For example, assuming that the voltage command value is a sine wave, the amplitude value and phase can be calculated from the sampling data at two points.

【0044】各相パルス発生/終了位相演算器31〜3
3は、各相電圧指令値振幅位相演算器28〜30で各相
ごとに計算された振幅値から、例えば、従来の技術で述
べた(1),(2),(3)式のような計算をして、パ
ルスの発生/終了位相を算出する。
Each phase pulse generation / end phase calculator 31-3
Reference numeral 3 denotes, for example, from the amplitude values calculated for each phase by the phase voltage command value amplitude / phase calculators 28 to 30, as in the equations (1), (2), and (3) described in the related art, for example. The calculation is performed to calculate the pulse generation / end phase.

【0045】PWM制御器34〜36は、各相電圧指令
値振幅位相演算器28〜30で算出された各相ごとの電
圧指令位相値と、各相パルス発生/終了位相演算器31
〜33で算出された各相ごとのパルス発生/終了位相と
の比較により、各相ごとにゲートパルスを生成して、こ
れを自励式電力変換装置1の制御整流素子に出力する。
The PWM controllers 34 to 36 include a voltage command phase value for each phase calculated by each phase voltage command value amplitude / phase calculator 28 to 30 and a pulse generation / termination phase calculator 31 for each phase.
A gate pulse is generated for each phase by comparison with the pulse generation / termination phase for each phase calculated in steps (33) to (33), and this is output to the control rectifier of the self-excited power converter 1.

【0046】以上のように、本実施の形態3において
は、各相ごとに独立にPWMパルス波形を計算/制御す
るので、各相ごとに独立にPWMパルス波形を制御する
ことができるため、例えば、交流系統の事故で3相不平
衡状態になっても、最適に対応することができる。
As described above, in the third embodiment, since the PWM pulse waveform is calculated and controlled independently for each phase, the PWM pulse waveform can be controlled independently for each phase. Even if a three-phase imbalance occurs due to an AC system accident, it is possible to optimally cope with the situation.

【0047】実施の形態4.図5は本発明の実施の形態
4によるPWM制御装置を用いた自励式電力変換装置の
構成を示すブロック図である。図において、図1と同一
符号は同一又は相当する部分を示し、本実施の形態4
は、図1の単独の自励式電力変換装置1に代えて、多重
化された自励式電力変換装置37,38を備えるように
した点が実施の形態1と異なるものである。
Embodiment 4 FIG. 5 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to Embodiment 4 of the present invention. In the figure, the same reference numerals as those in FIG.
Is different from the first embodiment in that multiplexed self-excited power converters 37 and 38 are provided instead of the single self-excited power converter 1 in FIG.

【0048】すなわち、第1段の自励式電力変換装置3
7と、第2段の自励式電力変換装置38とが、その交流
側を変換装置用多重変圧器39を介して並列に交流系統
に接続されるとともに、その直流側を直接直流系統に接
続され、それにより、多重化されている。
That is, the first-stage self-excited power converter 3
7 and a second-stage self-excited power converter 38 whose AC side is connected in parallel to an AC system via a converter multiplex transformer 39 and whose DC side is directly connected to a DC system. , Thereby being multiplexed.

【0049】40,41,42は、位相3相配分器20
から出力される各相の電圧指令値の位相を、多重化の段
数(本実施の形態4では2段)に応じて、段ごとに電圧
指令値の位相をシフトさせる多重化用段間位相シフト器
である。
Reference numerals 40, 41, and 42 denote the three-phase distributor 20.
Shifts the phase of the voltage command value of each phase output from the multiplexing stage to shift the phase of the voltage command value for each stage according to the number of multiplexing stages (two stages in the fourth embodiment). It is a vessel.

【0050】43,44,45,46,47,48は、
パルス発生/終了位相演算器21から出力されるパルス
発生/終了位相と多重化用段間位相シフト器40〜42
から出力される段ごとの電圧指令値の位相とを比較し
て、段ごとに各相のゲートパルスを生成して出力するP
WM制御器である。
43, 44, 45, 46, 47 and 48 are
Pulse generation / end phase output from pulse generation / end phase calculator 21 and multiplexing inter-stage phase shifters 40 to 42
P which generates and outputs a gate pulse of each phase for each stage by comparing the phase of the voltage command value for each stage output from
It is a WM controller.

【0051】自励式電力変換装置を多重化して、高調波
低減などを図るために、段間の位相をずらすことは従来
のPWM制御方式でもキャリア信号の位相をシフトさせ
るなどして行われているが、本実施の形態4において
も、上記多重化用段間位相シフト器40〜42により、
各段への電圧指令値の位相をずらすことにより、高調波
低減や制御応答の高速化等の多重化メリットを出そうと
するものである。
In order to multiplex the self-excited power converter and reduce harmonics, the phase between the stages is shifted by shifting the phase of the carrier signal in the conventional PWM control system. However, also in the fourth embodiment, the multiplexing inter-stage phase shifters 40 to 42
By shifting the phase of the voltage command value to each stage, multiplexing advantages such as reduction of harmonics and speeding up of control response are obtained.

【0052】なお、上記の説明では、多重化の段数を2
段として説明したが、3段、4段と段数が増えればそれ
に応じて、各段に多重化用段間位相シフト器を設け、段
ごとにPWM制御器を追加していけばよく、それによ
り、上記した2段の場合と同じ効果が得られることは明
らかである。
In the above description, the number of multiplexing stages is 2
Although the number of stages has been described as three stages, if the number of stages is increased to three or four stages, a multiplexing inter-stage phase shifter may be provided for each stage and a PWM controller may be added for each stage. It is apparent that the same effect as in the case of the two stages described above can be obtained.

【0053】以上のように、本実施の形態4において
は、自励式電力変換装置を多重化したので、高調波低減
や制御応答の高速化などの多重化によるメリット得るこ
とができる。
As described above, in the fourth embodiment, since the self-excited power converter is multiplexed, it is possible to obtain merits by multiplexing such as reduction of harmonics and high-speed control response.

【0054】実施の形態5.図6は本発明の実施の形態
5によるPWM制御装置を用いた自励式電力変換装置の
構成を示すブロック図である。図において、図5と同一
符号は同一又は相当する部分を示し、本実施の形態5
は、図5のパルス発生/終了位相演算器21を省略し、
図5のゲートパルスを生成するだけのPWM制御器43
〜48に代えて、図5のパルス発生/終了位相演算器2
1の演算内容を予め計算したテーブルを記憶する記憶手
段(図示せず)を備えたPWM制御器49〜54を有す
る点が実施の形態4と異なるものである。また、PWM
制御器49〜54の動作は、テーブルの利用に関しては
実施の形態2のPWM制御器25〜27と同様であり、
ゲートパルスの生成に関しては実施の形態4のPWM制
御器43〜48と同様であるので、その説明を省略す
る。
Embodiment 5 FIG. FIG. 6 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to Embodiment 5 of the present invention. In the figure, the same reference numerals as those in FIG.
Omits the pulse generation / end phase calculator 21 in FIG.
The PWM controller 43 which only generates the gate pulse of FIG.
To 48, the pulse generation / end phase calculator 2 in FIG.
The present embodiment differs from the fourth embodiment in that it has PWM controllers 49 to 54 provided with storage means (not shown) for storing a table in which the contents of operation 1 are calculated in advance. In addition, PWM
The operation of the controllers 49 to 54 is similar to that of the PWM controllers 25 to 27 of the second embodiment with respect to the use of the table.
Since the generation of the gate pulse is the same as that of the PWM controllers 43 to 48 of the fourth embodiment, the description is omitted.

【0055】以上のように、本実施の形態5において
は、多重化された自励式電力変換装置において、電圧指
令値の振幅値Voに対する3パルス電圧波形の各パルス
の発生位相及び終了位相を表すテーブルを予め記憶する
ようにしたので、多重化によるメリットを得ると同時
に、PWMパルス波形の制御信号の生成処理の高速化を
図ることができる。
As described above, in the fifth embodiment, in the multiplexed self-excited power converter, the generation phase and the termination phase of each pulse of the three-pulse voltage waveform with respect to the amplitude value Vo of the voltage command value are shown. Since the table is stored in advance, the advantage of the multiplexing can be obtained, and the speed of the process of generating the control signal having the PWM pulse waveform can be increased.

【0056】実施の形態6.図7は本発明の実施の形態
6によるPWM制御装置を用いた自励式電力変換装置の
構成を示すブロック図である。図において、図4と同一
符号は同一又は相当する部分を示し、本実施の形態6
は、図4の単独の自励式電力変換装置1に代えて、多重
化された自励式電力変換装置37,38を備えるように
した点が実施の形態3と異なるものである。
Embodiment 6 FIG. FIG. 7 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to Embodiment 6 of the present invention. In the figure, the same reference numerals as those in FIG.
The third embodiment is different from the third embodiment in that multiplexed self-excited power converters 37 and 38 are provided instead of the single self-excited power converter 1 shown in FIG.

【0057】すなわち、第1段の自励式電力変換装置3
7と、第2段の自励式電力変換装置38とが、その交流
側を変換装置用多重変圧器39を介して並列に交流系統
に接続されるとともに、その直流側を直接直流系統に接
続され、それにより、多重化されている。
That is, the first-stage self-excited power converter 3
7 and a second-stage self-excited power converter 38 whose AC side is connected in parallel to an AC system via a converter multiplex transformer 39 and whose DC side is directly connected to a DC system. , Thereby being multiplexed.

【0058】55,56,57は、各相電圧指令値振幅
位相演算器28〜30から出力される各相の電圧指令値
の位相を、多重化の段数(本実施の形態6では2段)に
応じて、段ごとに電圧指令値の位相をシフトさせる多重
化用段間位相シフト器である。
Reference numerals 55, 56, and 57 denote the phases of the voltage command values of each phase output from the phase voltage command value amplitude / phase calculators 28 to 30 as the number of multiplexing stages (two stages in the sixth embodiment). Is a multiplexing inter-stage phase shifter that shifts the phase of the voltage command value for each stage according to.

【0059】58、59は、U相用の各相パルス発生/
終了位相演算器31から出力されるU相用のパルス発生
/終了位相と、U相用の多重化用段間位相シフト器55
から出力される段ごとの電圧指令値の位相との比較によ
って、段ごとのゲートパルスを生成するPWM制御器で
ある。
Reference numerals 58 and 59 denote each phase pulse generation /
U-phase pulse generation / end phase output from end-phase calculator 31 and U-phase multiplexing interstage phase shifter 55
Is a PWM controller that generates a gate pulse for each stage by comparing the phase of the voltage command value for each stage output from the controller.

【0060】60、61は、V相用の各相パルス発生/
終了位相演算器32から出力されるV相用のパルス発生
/終了位相と、V相用の多重化用段間位相シフト器56
から出力される段ごとの電圧指令値の位相との比較によ
って、段ごとのゲートパルスを生成するPWM制御器で
ある。
Reference numerals 60 and 61 denote each phase pulse generation /
V phase pulse generation / end phase output from end phase calculator 32 and V phase multiplexing interstage phase shifter 56
Is a PWM controller that generates a gate pulse for each stage by comparing the phase of the voltage command value for each stage output from the controller.

【0061】62、63は、W相用の各相パルス発生/
終了位相演算器33から出力されるW相用のパルス発生
/終了位相と、W相用の多重化用段間位相シフト器57
から出力される段ごとの電圧指令値の位相との比較によ
って、段ごとのゲートパルスを生成するPWM制御器で
ある。
Reference numerals 62 and 63 denote each phase pulse generation for the W phase /
W-phase pulse generation / end phase output from end-phase calculator 33 and W-phase multiplexing interstage phase shifter 57
Is a PWM controller that generates a gate pulse for each stage by comparing the phase of the voltage command value for each stage output from the controller.

【0062】以上のように、本発明の実施の形態6にお
いては、多重化された自励式電力変換装置において、各
相ごとに独立にPWMパルス波形を計算/制御するよう
にしたので、多重化によるメリットを得ると同時に、交
流系統の事故で3相不平衡状態になっても、最適に対応
することができる。
As described above, in the sixth embodiment of the present invention, in the multiplexed self-excited power converter, the PWM pulse waveform is calculated / controlled independently for each phase. And at the same time, can optimally cope with a three-phase imbalance caused by an AC system accident.

【0063】なお、上記実施の形態5〜7では、多重化
の段数を2段として説明したが、3段、4段と段数が増
えればそれに応じて、各段に多重化用段間位相シフト器
を設け、段ごとにPWM制御器を追加していけばよく、
それにより、上記実施の形態5〜7で2段にした場合と
同じ効果が得られることは明らかである。
In the above-described fifth to seventh embodiments, the number of multiplexing stages has been described as two. However, if the number of stages is increased to three, four, or the like, the multiplexing inter-stage phase shift is added to each stage. It is only necessary to add a PWM controller for each stage,
Thus, it is apparent that the same effect as in the case of two stages in Embodiments 5 to 7 can be obtained.

【0064】また、上記実施の形態1〜7では、自励式
電力変換装置の交流側が3相である場合を説明したが、
3相以外であってもよく、例えば、単相の場合には3相
の場合と同様にして本発明を適用することができる。
In the first to seventh embodiments, the case where the AC side of the self-excited power converter has three phases has been described.
The present invention may be applied in a manner other than three phases, for example, in the case of a single phase, similarly to the case of three phases.

【0065】[0065]

【発明の効果】以上のように、請求項1に係る発明によ
れば、PWMパルス波形の変調信号たる電圧指令信号の
有効分と無効分とから、電圧指令信号の振幅値と位相と
を算出し、その算出した振幅値に基づいて所定のPWM
パルス波形の各パルスの始端及び終端の位相を求め、そ
の求めた所定のPWMパルス波形の各パルスの始端及び
終端の位相と上記算出した電圧指令信号の位相とに基づ
いて、自励式電力変換装置におけるPWMパルス波形の
交流電圧を発生させるようにしたので、パルス波形が本
来持つ自由度を生かして目的に応じた最適なPWMパル
ス波形を発生させることができるため、高調波特性改
善、電圧利用率向上、電圧時間積低減、変換器損失低
減、制御性能向上などを図ることができる。
As described above, according to the first aspect of the present invention, the amplitude value and the phase of the voltage command signal are calculated from the effective and invalid components of the voltage command signal, which is a modulation signal of the PWM pulse waveform. Then, based on the calculated amplitude value, a predetermined PWM
A self-excited power conversion device is obtained based on the phases of the start and end of each pulse of the pulse waveform and the obtained phases of the start and end of each pulse of the predetermined PWM pulse waveform and the calculated voltage command signal. Since the AC voltage of the PWM pulse waveform in the above is generated, an optimal PWM pulse waveform according to the purpose can be generated by utilizing the inherent flexibility of the pulse waveform. It is possible to improve the rate, reduce the voltage-time product, reduce the converter loss, and improve the control performance.

【0066】また、請求項2に係る発明によれば、請求
項1の自励式電力変換装置用PWM制御装置が、算出し
た振幅値から所定のPWMパルス波形の各パルスの始端
及び終端の位相を演算するパルス発生/終了位相演算器
と、該求めた所定のPWMパルス波形の各パルスの始端
及び終端の位相と上記算出した電圧指令信号の位相とに
基づいて、制御信号を出力するPWM制御器とを有する
ものとしたので、構成を簡素化することができる。
According to the second aspect of the present invention, the PWM control apparatus for a self-excited power converter according to the first aspect determines the phase of the start and end of each pulse of a predetermined PWM pulse waveform from the calculated amplitude value. A pulse generation / end phase calculator for calculating, and a PWM controller for outputting a control signal based on the phase of the start and end of each pulse of the determined predetermined PWM pulse waveform and the phase of the calculated voltage command signal And the configuration can be simplified.

【0067】また、請求項3に係る発明によれば、請求
項1の発明において、電圧指令信号の振幅値に対する所
定のPWMパルス波形の各パルスの始端及び終端の位相
を表すテーブルを予め記憶し、算出した電圧指令信号の
振幅値をその記憶しているテーブルと対比して所定のP
WMパルス波形の各パルスの始端及び終端の位相を求
め、その求めた所定のPWMパルス波形の各パルスの始
端及び終端の位相と算出した電圧指令信号の位相とに基
づいて、自励式電力変換装置におけるPWMパルス波形
の交流電圧を発生させるようにしたので、PWMパルス
波形の制御信号の生成処理の高速化を図ることができ
る。
According to a third aspect of the present invention, in the first aspect of the present invention, a table is stored in advance which indicates the phase of the start and end of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal. , The calculated amplitude value of the voltage command signal is compared with a stored table to obtain a predetermined P value.
A self-excited power conversion device is obtained based on the determined start and end phases of each pulse of the WM pulse waveform, and based on the determined start and end phases of each pulse of the predetermined PWM pulse waveform and the calculated voltage command signal phase. Since the AC voltage having the PWM pulse waveform is generated in (1), the speed of the process of generating the control signal having the PWM pulse waveform can be increased.

【0068】また、請求項4に係る発明によれば、請求
項1の発明において、交流電力が3相交流電力であり、
算出した電圧指令信号の有効分及び無効分を、検出した
3相交流電圧の位相を用いて3相交流の電圧指令信号の
有効分及び無効分に変換し、その変換した3相交流の電
圧指令信号の有効分及び無効分から各相ごとの振幅値と
位相とを算出し、その算出した各相ごとの振幅値に基づ
いて、各相ごとに所定のPWMパルス波形の各パルスの
始端及び終端の位相を求め、その求めた所定のPWMパ
ルス波形の各パルスの始端及び終端の位相と算出した電
圧指令信号の各相ごとの位相とに基づいて、自励式電力
変換装置におけるPWMパルス波形の3相の交流電圧を
発生させるようにしたので、各相ごとに独立にPWMパ
ルス波形を制御することができるため、例えば交流系統
の事故で3相不平衡状態になっても、最適に対応するこ
とができる。
According to the invention of claim 4, in the invention of claim 1, the AC power is three-phase AC power,
The calculated valid and invalid components of the voltage command signal are converted into valid and invalid components of the three-phase AC voltage command signal using the phase of the detected three-phase AC voltage, and the converted three-phase AC voltage command is converted. An amplitude value and a phase for each phase are calculated from an effective component and an invalid component of the signal. Based on the calculated amplitude value for each phase, the start and end of each pulse of a predetermined PWM pulse waveform for each phase are calculated. The phase is determined, and the three phases of the PWM pulse waveform in the self-excited power converter are determined based on the determined starting and ending phases of each pulse of the predetermined PWM pulse waveform and the calculated phase of each phase of the voltage command signal. Since the AC voltage is generated, it is possible to independently control the PWM pulse waveform for each phase, so that, for example, even if a three-phase imbalance occurs due to an AC system accident, it is possible to optimally cope with the situation. it can.

【0069】また、請求項5に係る発明によれば、請求
項1の発明において、多重化された自励式電力変換装置
を有し、算出された電圧指令信号の位相を自励式電力変
換装置の多重化の段数に応じて各段ごとに補正し、求め
た所定のPWMパルス波形の各パルスの始端及び終端の
位相と該各段ごとに補正された電圧指令信号の位相とに
基づいて、各段の自励式電力変換装置におけるPWMパ
ルス波形の交流電圧を発生させるようにしたので、高調
波の低減や制御応答の高速化等を図ることができる。
According to a fifth aspect of the present invention, in the first aspect of the present invention, there is provided a multiplexed self-excited power converter, and the calculated phase of the voltage command signal is converted to the self-excited power converter. The correction is performed for each stage according to the number of multiplexing stages, and based on the phases of the start and end of each pulse of the determined predetermined PWM pulse waveform and the phase of the voltage command signal corrected for each stage, Since an AC voltage having a PWM pulse waveform is generated in the self-excited power conversion device of the stage, it is possible to reduce harmonics and speed up the control response.

【0070】また、請求項6に係る発明によれば、請求
項5の発明において、電圧指令信号の振幅値から所定の
PWMパルス波形の各パルスの始端及び終端の位相を演
算により求め、その求めた所定のPWMパルス波形の各
パルスの始端及び終端の位相と上記各段ごとに補正され
た電圧指令信号の位相とに基づいて、各段の自励式電力
変換装置におけるPWMパルス波形の交流電圧を発生さ
せるようにしたので、高調波の低減や制御応答の高速化
等を図ることができるとともに、構成を簡素化すること
ができる。
According to the invention of claim 6, in the invention of claim 5, the starting and ending phases of each pulse of the predetermined PWM pulse waveform are obtained by calculation from the amplitude value of the voltage command signal. Based on the phases of the start and end of each pulse of the predetermined PWM pulse waveform and the phase of the voltage command signal corrected for each stage, the AC voltage of the PWM pulse waveform in the self-excited power converter of each stage is calculated. Since it is generated, it is possible to reduce harmonics, speed up control response, and the like, and simplify the configuration.

【0071】また、請求項7に係る発明によれば、請求
項5の発明において、電圧指令信号の振幅値に対する所
定のPWMパルス波形の各パルスの始端及び終端の位相
を表すテーブルを予め記憶し、算出した電圧指令信号の
振幅値をその記憶しているテーブルと対比して所定のP
WMパルス波形の各パルスの始端及び終端の位相を求
め、その求めた所定のPWMパルス波形の各パルスの始
端及び終端の位相と各段ごとに補正された電圧指令信号
の位相とに基づいて、各段の自励式電力変換装置におけ
るPWMパルス波形の交流電圧を発生させるようにした
ので、高調波の低減や制御応答の高速化等を図ることが
できるとともに、PWMパルス波形の制御信号の生成処
理の高速化を図ることができる。
According to a seventh aspect of the present invention, in the fifth aspect of the present invention, a table representing the start and end phases of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal is stored in advance. , The calculated amplitude value of the voltage command signal is compared with a stored table to obtain a predetermined P value.
The phase of the start and end of each pulse of the WM pulse waveform is obtained, and based on the obtained phase of the start and end of each pulse of the predetermined PWM pulse waveform and the phase of the voltage command signal corrected for each stage, Since an AC voltage having a PWM pulse waveform is generated in each stage of the self-excited power converter, it is possible to reduce harmonics and speed up a control response, and to generate a PWM pulse waveform control signal. Can be speeded up.

【0072】また、請求項8に係る発明によれば、請求
項5の発明において、多重化された自励式電力変換装置
の交流電力が3相交流電力であり、算出した電圧指令信
号の有効分及び無効分を、検出した3相交流電圧の位相
を用いて3相交流の電圧指令信号の有効分及び無効分に
変換し、その変換した3相交流の電圧指令信号の有効分
及び無効分から各相ごとの振幅値と位相とを算出すると
ともに、その算出された電圧指令信号の位相を自励式電
力変換装置の多重化の段数に応じて各段ごとに補正し、
算出した各相ごとの振幅値に基づいて、各相ごとに所定
のPWMパルス波形の各パルスの始端及び終端の位相を
求め、その求めた所定のPWMパルス波形の各パルスの
始端及び終端の位相と上記各段ごとに補正された電圧指
令信号の各相ごとの位相とに基づいて、各段の自励式電
力変換装置におけるPWMパルス波形の3相の交流電圧
を発生させるようにしたので、高調波の低減や制御応答
の高速化等を図ることができるとともに、交流系統の事
故で3相不平衡状態になっても、最適に対応することが
できる。
According to the invention of claim 8, in the invention of claim 5, the AC power of the multiplexed self-excited power converter is three-phase AC power, and the effective component of the calculated voltage command signal is And the ineffective part is converted into an effective part and an ineffective part of the three-phase AC voltage command signal using the detected phase of the three-phase AC voltage, and each of the three-phase AC voltage command signal is converted into an effective part and an ineffective part. While calculating the amplitude value and the phase for each phase, the phase of the calculated voltage command signal is corrected for each stage according to the number of multiplexing stages of the self-excited power converter,
Based on the calculated amplitude value for each phase, the starting and ending phases of each pulse of the predetermined PWM pulse waveform are obtained for each phase, and the starting and ending phases of each pulse of the obtained predetermined PWM pulse waveform are obtained. Since the three-phase AC voltage of the PWM pulse waveform in the self-excited power converter of each stage is generated based on the above and the phase of each phase of the voltage command signal corrected for each stage, Waves can be reduced, control response can be speeded up, and the like, and even if a three-phase unbalanced state occurs due to an AC system accident, it can be optimally dealt with.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a first embodiment of the present invention.

【図2】 PWMパルス波形を示す図であって、従来例
によるPWMパルス波形を示す図(a) 、及び本実施の形
態1によるPWMパルス波形を示す図(b) である。
FIGS. 2A and 2B are diagrams showing a PWM pulse waveform, and are a diagram (a) showing a PWM pulse waveform according to a conventional example and a diagram (b) showing a PWM pulse waveform according to the first embodiment.

【図3】 本発明の実施の形態2によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a second embodiment of the present invention.

【図4】 本発明の実施の形態3によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 4 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a third embodiment of the present invention.

【図5】 本発明の実施の形態4によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 5 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a fourth embodiment of the present invention.

【図6】 本発明の実施の形態5によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 6 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a fifth embodiment of the present invention.

【図7】 本発明の実施の形態6によるPWM制御装置
を用いた自励式電力変換装置の構成を示すブロック図で
ある。
FIG. 7 is a block diagram showing a configuration of a self-excited power conversion device using a PWM control device according to a sixth embodiment of the present invention.

【図8】 従来の自励式電力変換装置の構成を示すブロ
ック図である。
FIG. 8 is a block diagram showing a configuration of a conventional self-excited power converter.

【図9】 従来の三角波キャリア信号比較PWM制御方
式を示す図であって、制御整流素子からなる単相ブリッ
ジを示す回路図(a)、三角波キャリア信号及び電圧指令
値を示すグラフ図(b) 、及びPWMパルス波形を示すグ
ラフ図(c)である。
FIG. 9 is a diagram illustrating a conventional triangular wave carrier signal comparison PWM control method, and is a circuit diagram illustrating a single-phase bridge including a control rectifying element (a), and a graph diagram illustrating a triangular wave carrier signal and a voltage command value (b). , And a graph (c) showing a PWM pulse waveform.

【図10】 半サイクル中に3パルスを有するPWMパ
ルス波形を一般的な形で表したグラフ図である。
FIG. 10 is a graph showing a PWM pulse waveform having three pulses in a half cycle in a general form.

【符号の説明】[Explanation of symbols]

1 自励式電力変換装置、2 変換装置用変圧器、3
直流コンデンサ、4 交流電流検出器、5 交流電圧検
出器、6 PLL装置、7 3相/2相変換器、8,9
減算器、10 有効電流制御器、11 無効電流制御
器、12 2相/3相変換器、13 キャリア発生器、
14〜16 PWM制御器、17 電圧指令値振幅演算
器、18 電圧指令値位相ずれ演算器、19 加算器、
20 位相3相配分器、21 パルス発生/終了位相演
算器、22〜27 PWM制御器、28〜30 各相電
圧指令値振幅位相演算器、31〜33 各相パルス発生
/終了位相演算器、34〜36 PWM制御器、37
第1段の自励式電力変換装置、38 第2段の自励式電
力変換装置、39 変換装置用多重変圧器、40〜42
多重化用段間位相シフト器、43〜54 PWM制御
器、55〜57 多重化用段間位相シフト器、58〜6
3 PWM制御器、101 PWM制御装置、102
制御整流素子、103 電圧指令値、104 上段用3
パルスキャリア信号、105 下段用3パルスキャリア
信号、106 PWMパルス波形の交流電圧、T1,T
2 出力端子。
1 self-excited power converter, 2 transformer for converter, 3
DC capacitor, 4 AC current detector, 5 AC voltage detector, 6 PLL device, 7 3-phase / 2-phase converter, 8, 9
Subtractor, 10 Active current controller, 11 Reactive current controller, 12 2-phase / 3-phase converter, 13 Carrier generator,
14 to 16 PWM controller, 17 voltage command value amplitude calculator, 18 voltage command value phase shift calculator, 19 adder,
Reference Signs List 20 phase three-phase distributor, 21 pulse generation / end phase calculator, 22-27 PWM controller, 28-30 each phase voltage command value amplitude phase calculator, 31-33 each phase pulse generation / end phase calculator, 34 ~ 36 PWM controller, 37
First-stage self-excited power converter, 38 Second-stage self-excited power converter, 39 Multiplexer for converter, 40 to 42
Multiplexing interstage phase shifter, 43-54 PWM controller, 55-57 Multiplexing interstage phase shifter, 58-6
3 PWM controller, 101 PWM controller, 102
Control rectifier, 103 Voltage command value, 104 Upper stage 3
Pulse carrier signal, 105 Lower three-pulse carrier signal, 106 PWM pulse waveform AC voltage, T1, T
2 Output terminal.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 制御信号に応じてON/OFFして、直
流電圧からパルス波形の交流電圧を発生する自励式電力
変換装置に用いられ、 上記発生する交流電圧の位相と該交流電圧に基づいて流
れる交流電流の値とを検出し、該検出した交流電圧の位
相及び交流電流の値から該交流電圧の位相と同期した2
軸の回転座標系での交流電流の有効分及び無効分を算出
し、該算出した交流電流の有効分及び無効分と外部から
入力される上記交流電流の有効分及び無効分に対する指
令値とに基づいて上記制御信号を出力することにより、
上記自励式電力変換装置にPWMパルス波形の交流電圧
を発生させて、上記交流電流の有効分及び無効分を制御
するPWM制御装置において、 上記算出した交流電流の有効分及び無効分と上記外部か
ら入力される交流電流の有効分及び無効分に対する指令
値とに基づいて、上記発生させるPWMパルス波形の交
流電圧の変調信号たる電圧指令信号の有効分と無効分と
を算出し、該算出した電圧指令信号の有効分と無効分と
から、該電圧指令信号の振幅値と位相とを算出し、該算
出した振幅値に基づいて所定のPWMパルス波形の各パ
ルスの始端及び終端の位相を求め、該求めた所定のPW
Mパルス波形の各パルスの始端及び終端の位相と上記算
出した電圧指令信号の位相とに基づいて、上記制御信号
を出力するようにしたことを特徴とする自励式電力変換
装置用PWM制御装置。
1. A self-excited power converter that generates an AC voltage having a pulse waveform from a DC voltage by turning ON / OFF in response to a control signal, based on the phase of the generated AC voltage and the AC voltage. The value of the flowing AC current is detected, and the phase of the AC voltage synchronized with the phase of the AC voltage is determined based on the detected phase of the AC voltage and the value of the AC current.
The effective and ineffective components of the alternating current in the rotating coordinate system of the shaft are calculated, and the calculated effective and ineffective components of the alternating current and the command values for the effective and ineffective components of the alternating current input from the outside are calculated. By outputting the control signal based on the
A PWM controller that generates an AC voltage having a PWM pulse waveform in the self-excited power converter and controls an effective component and an inactive component of the AC current. Based on the input values of the effective component and the invalid component of the alternating current, the effective component and the invalid component of the voltage command signal, which is the modulation signal of the AC voltage of the generated PWM pulse waveform, are calculated, and the calculated voltage is calculated. From the effective component and the invalid component of the command signal, the amplitude value and the phase of the voltage command signal are calculated, and the start and end phases of each pulse of the predetermined PWM pulse waveform are calculated based on the calculated amplitude value. The determined predetermined PW
A PWM control device for a self-excited power converter, wherein the control signal is output based on the phases of the start and end of each pulse of the M pulse waveform and the phase of the calculated voltage command signal.
【請求項2】 請求項1に記載の自励式電力変換装置用
PWM制御装置は、 上記算出した振幅値から所定のPWMパルス波形の各パ
ルスの始端及び終端の位相を演算するパルス発生/終了
位相演算器と、該求めた所定のPWMパルス波形の各パ
ルスの始端及び終端の位相と上記算出した電圧指令信号
の位相とに基づいて、上記制御信号を出力するPWM制
御器とを有するものであることを特徴とする自励式電力
変換装置用PWM制御装置。
2. The PWM control device for a self-excited power conversion device according to claim 1, wherein a pulse generation / end phase for calculating a start end and an end phase of each pulse of a predetermined PWM pulse waveform from the calculated amplitude value. An arithmetic unit, and a PWM controller that outputs the control signal based on the phases of the start and end of each pulse of the determined predetermined PWM pulse waveform and the calculated phase of the voltage command signal. A PWM control device for a self-excited power conversion device, characterized in that:
【請求項3】 請求項1に記載の自励式電力変換装置用
PWM制御装置において、 上記電圧指令信号の振幅値に対する所定のPWMパルス
波形の各パルスの始端及び終端の位相を表すテーブルを
予め記憶し、上記算出した電圧指令信号の振幅値を該記
憶したテーブルと対比して所定のPWMパルス波形の各
パルスの始端及び終端の位相を求め、該求めた所定のP
WMパルス波形の各パルスの始端及び終端の位相と上記
算出した電圧指令信号の位相とに基づいて、上記制御信
号を出力するようにしたことを特徴とする自励式電力変
換装置用PWM制御装置。
3. The PWM control device for a self-excited power conversion device according to claim 1, wherein a table is stored in advance that indicates the phase of the start and end of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal. Then, by comparing the calculated amplitude value of the voltage command signal with the stored table, the starting and ending phases of each pulse of a predetermined PWM pulse waveform are obtained, and the obtained predetermined P
A PWM control device for a self-excited power converter, wherein the control signal is output based on the phases of the start and end of each pulse of a WM pulse waveform and the calculated phase of the voltage command signal.
【請求項4】 請求項1に記載の自励式電力変換装置用
PWM制御装置において、 上記自励式電力変換装置は3相の制御信号に応じて3相
交流電圧を発生するものであり、 上記算出した電圧指令信号の有効分及び無効分を、検出
した3相交流電圧の位相を用いて3相交流の電圧指令信
号の有効分及び無効分に変換し、 該変換した3相交流の電圧指令信号の有効分及び無効分
から各相ごとの振幅値と位相とを算出し、該算出した各
相ごとの振幅値に基づいて、各相ごとに所定のPWMパ
ルス波形の各パルスの始端及び終端の位相を求め、該求
めた所定のPWMパルス波形の各パルスの始端及び終端
の位相と上記算出した電圧指令信号の各相ごとの位相と
に基づいて、上記3相の制御信号を出力するようにした
ことを特徴とする自励式電力変換装置用PWM制御装
置。
4. The PWM control device for a self-excited power converter according to claim 1, wherein the self-excited power converter generates a three-phase AC voltage in accordance with a three-phase control signal. The valid and invalid components of the detected voltage command signal are converted into the valid and invalid components of the three-phase AC voltage command signal using the phase of the detected three-phase AC voltage, and the converted three-phase AC voltage command signal is converted. Calculate the amplitude value and the phase of each phase from the effective component and the invalid component of the above, and, based on the calculated amplitude value of each phase, calculate the phase at the beginning and end of each pulse of a predetermined PWM pulse waveform for each phase. And the three-phase control signal is output based on the obtained start and end phases of each pulse of the predetermined PWM pulse waveform and the calculated phase of each voltage command signal. Self-excited power converter Installation PWM control device.
【請求項5】 請求項1に記載の自励式電力変換装置用
PWM制御装置において、 上記自励式電力変換装置を2以上多重化して有し、 上記算出された電圧指令信号の位相を上記自励式電力変
換装置の多重化の段数に応じて各段ごとに補正し、上記
求めた所定のPWMパルス波形の各パルスの始端及び終
端の位相と該各段ごとに補正された電圧指令信号の位相
とに基づいて、各段の自励式電力変換装置に上記制御信
号を出力するようにしたことを特徴とする自励式電力変
換装置用PWM制御装置。
5. The PWM control device for a self-excited power conversion device according to claim 1, wherein the self-excited power conversion device has two or more multiplexed power conversion devices, and the calculated phase of the voltage command signal is the self-excited power conversion device. Correction is made for each stage according to the number of multiplexing stages of the power conversion device, and the starting and ending phases of each pulse of the predetermined PWM pulse waveform obtained above and the phase of the voltage command signal corrected for each stage are A PWM control device for a self-excited power converter, wherein the control signal is output to the self-excited power converter of each stage based on the following.
【請求項6】 請求項5に記載の自励式電力変換装置用
PWM制御装置において、 上記算出した振幅値から所定のPWMパルス波形の各パ
ルスの始端及び終端の位相を演算により求め、該求めた
所定のPWMパルス波形の各パルスの始端及び終端の位
相と上記各段ごとに補正された電圧指令信号の位相とに
基づいて、各段の自励式電力変換装置に上記制御信号を
出力するようにしたことを特徴とする自励式電力変換装
置用PWM制御装置。
6. The PWM control device for a self-excited power converter according to claim 5, wherein the starting and ending phases of each pulse of a predetermined PWM pulse waveform are calculated from the calculated amplitude value. Outputting the control signal to the self-excited power converter of each stage based on the phase of the start and end of each pulse of the predetermined PWM pulse waveform and the phase of the voltage command signal corrected for each stage. A PWM control device for a self-excited power conversion device, comprising:
【請求項7】 請求項5に記載の自励式電力変換装置用
PWM制御装置において、 上記電圧指令信号の振幅値に対する所定のPWMパルス
波形の各パルスの始端及び終端の位相を表すテーブルを
予め記憶し、上記算出した電圧指令信号の振幅値を該記
憶しているテーブルと対比して所定のPWMパルス波形
の各パルスの始端及び終端の位相を求め、該求めた所定
のPWMパルス波形の各パルスの始端及び終端の位相と
上記各段ごとに補正された電圧指令信号の位相とに基づ
いて、各段の自励式電力変換装置に上記制御信号を出力
するようにしたことを特徴とする自励式電力変換装置用
PWM制御装置。
7. The PWM control device for a self-excited power conversion device according to claim 5, wherein a table representing the phase of the start and end of each pulse of a predetermined PWM pulse waveform with respect to the amplitude value of the voltage command signal is stored in advance. Then, by comparing the calculated amplitude value of the voltage command signal with the stored table, the starting and ending phases of each pulse of the predetermined PWM pulse waveform are obtained, and each pulse of the obtained predetermined PWM pulse waveform is obtained. Based on the phases of the start end and the end and the phase of the voltage command signal corrected for each of the stages, outputting the control signal to the self-excited power converter of each stage. PWM control device for power converter.
【請求項8】 請求項5に記載の自励式電力変換装置用
PWM制御装置において、 上記多重化された自励式電力変換装置は3相の制御信号
に応じて3相交流電圧を発生するものであり、 上記算出した電圧指令信号の有効分及び無効分を、検出
した3相交流電圧の位相を用いて3相交流の電圧指令信
号の有効分及び無効分に変換し、 該変換した3相交流の電圧指令信号の有効分及び無効分
から各相ごとの振幅値と位相とを算出するとともに、該
算出された電圧指令信号の位相を上記自励式電力変換装
置の多重化の段数に応じて各段ごとに補正し、上記算出
した各相ごとの振幅値に基づいて、各相ごとに所定のP
WMパルス波形の各パルスの始端及び終端の位相を求
め、該求めた所定のPWMパルス波形の各パルスの始端
及び終端の位相と上記各段ごとに補正された電圧指令信
号の各相ごとの位相とに基づいて、各段の自励式電力変
換装置に上記3相の制御信号を出力するようにしたこと
を特徴とする自励式電力変換装置用PWM制御装置。
8. The PWM controller for a self-excited power converter according to claim 5, wherein the multiplexed self-excited power converter generates a three-phase AC voltage according to a three-phase control signal. And converting the valid and invalid components of the calculated voltage command signal into valid and invalid components of the three-phase AC voltage command signal using the phase of the detected three-phase AC voltage. Calculate the amplitude value and phase of each phase from the effective component and the invalid component of the voltage command signal, and calculate the phase of the calculated voltage command signal according to the number of multiplexing stages of the self-excited power converter. Is corrected for each phase, and based on the calculated amplitude value for each phase, a predetermined P
The phase of the start and end of each pulse of the WM pulse waveform is obtained, and the phase of the start and end of each pulse of the predetermined PWM pulse waveform and the phase of each voltage command signal corrected for each stage are obtained. Wherein the three-phase control signal is output to the self-excited power converter of each stage based on the above.
JP24854898A 1998-09-02 1998-09-02 PWM controller for self-excited power converter Expired - Lifetime JP3598308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24854898A JP3598308B2 (en) 1998-09-02 1998-09-02 PWM controller for self-excited power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24854898A JP3598308B2 (en) 1998-09-02 1998-09-02 PWM controller for self-excited power converter

Publications (2)

Publication Number Publication Date
JP2000083386A true JP2000083386A (en) 2000-03-21
JP3598308B2 JP3598308B2 (en) 2004-12-08

Family

ID=17179824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24854898A Expired - Lifetime JP3598308B2 (en) 1998-09-02 1998-09-02 PWM controller for self-excited power converter

Country Status (1)

Country Link
JP (1) JP3598308B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173340A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Control system for synchronous motor
US7075274B2 (en) 2004-08-27 2006-07-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Reactive power compensator
JP2012085500A (en) * 2010-10-15 2012-04-26 Mitsubishi Electric Corp Reactive power compensation device
JP2017016556A (en) * 2015-07-06 2017-01-19 東芝三菱電機産業システム株式会社 Self-excited power conversion device
CN110892635A (en) * 2017-07-21 2020-03-17 罗伯特·博世有限公司 Electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173340A (en) * 2002-11-18 2004-06-17 Mitsubishi Electric Corp Control system for synchronous motor
US7075274B2 (en) 2004-08-27 2006-07-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Reactive power compensator
JP2012085500A (en) * 2010-10-15 2012-04-26 Mitsubishi Electric Corp Reactive power compensation device
JP2017016556A (en) * 2015-07-06 2017-01-19 東芝三菱電機産業システム株式会社 Self-excited power conversion device
CN110892635A (en) * 2017-07-21 2020-03-17 罗伯特·博世有限公司 Electric machine
CN110892635B (en) * 2017-07-21 2023-03-03 罗伯特·博世有限公司 Electrical machine

Also Published As

Publication number Publication date
JP3598308B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
RU2410831C1 (en) Device for electric power transformation
JPS59169369A (en) Ac current controller
Abad et al. Three-level NPC converter-based predictive direct power control of the doubly fed induction machine at low constant switching frequency
JPS5850119B2 (en) Control device for commutatorless motor
JPWO2008139518A1 (en) Power converter
Dabour et al. Analysis and implementation of space vector modulated five-phase matrix converter
JPH08289588A (en) Power converter
JP2012110074A (en) Current detection device and motor control device
JP2007143320A (en) Dead time compensation arrangement of invertor
Iwaji et al. A new PWM method to reduce beat phenomenon in large-capacity inverters with low switching frequency
JP2733724B2 (en) Current control device for multi-winding AC motor
US4349867A (en) Control apparatus for a cycloconverter
JP2020088880A (en) Motor control device and motor control method
JP3598308B2 (en) PWM controller for self-excited power converter
JPH10191677A (en) Speed control apparatus for ac motor
Holagh et al. Improved selective harmonic elimination for reducing torque harmonics of induction motors in wide DC bus voltage variations
JP2012151998A (en) Control device for power converter
JP4177983B2 (en) Multiple power converter and control method thereof
JP2020150693A (en) Power conversion device
JP2004320964A (en) Power conversion system
JP2653873B2 (en) Inverter current controller
WO2021156923A1 (en) Power converter control system
JPH08191600A (en) Device for controlling inverter current
JP3412017B2 (en) Power converter
Pacas et al. A predictive torque control for inverter-fed induction machines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term