JP2000081405A - Electrochemical cell - Google Patents

Electrochemical cell

Info

Publication number
JP2000081405A
JP2000081405A JP10352224A JP35222498A JP2000081405A JP 2000081405 A JP2000081405 A JP 2000081405A JP 10352224 A JP10352224 A JP 10352224A JP 35222498 A JP35222498 A JP 35222498A JP 2000081405 A JP2000081405 A JP 2000081405A
Authority
JP
Japan
Prior art keywords
electrode
electrochemical cell
electrolyte
electrodes
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10352224A
Other languages
Japanese (ja)
Inventor
Koji Kanekiyo
浩司 兼清
Masataka Yamashita
正隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10352224A priority Critical patent/JP2000081405A/en
Publication of JP2000081405A publication Critical patent/JP2000081405A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To always maintain a fixed distance between respective electrodes strictly in assembly of a cell or in an evaluation time by including an electrolyte in a liquid retaining material and arranging the respective electrodes pressedly via the liquid retaining material. SOLUTION: In a tripolar evaluation electrochemical cell, for example, liquid retaining materials such as glass wool including an electrolyte or solid electrolytes 4, 4 are arranged between a first electrode 1 and a third electrode 3 and between a second electrode 2 and the third electrode 3 respectively. The third electrode 3 is formed into a bored shape or the like desirably, so that it does not prevent the electrolyte from moving. The first and second electrodes 1, 2 are guided by means of a vertical electrode guide 7 so as to be pressed uniformly by means of plungers 6, 6 energized by springs 5, 5. In this structure, the respective electrodes 1-3 are accurately held opposedly to each other at fixed intervals. In a quadrupolar electrochemical cell, in which a fourth electrode is additionally arranged between a first electrode 1 and a second electrode 2, a similar structure can be accomplished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気化学電極の電気
化学的挙動、例えば電池電極の充放電特性やインピーダ
ンスの評価、あるいは電解液やセパレータ(微多孔膜)
や固体電解質の電気伝導度等を評価するための評価用電
気化学セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical behavior of an electrochemical electrode, for example, evaluation of charge / discharge characteristics and impedance of a battery electrode, or an electrolyte or a separator (microporous membrane)
The present invention relates to an electrochemical cell for evaluation for evaluating electric conductivity and the like of a solid electrolyte.

【0002】[0002]

【従来の技術】電気化学電極の電気化学的挙動や電解液
等の電気伝導度等を評価するために、従来では図1に示
される様な評価用電気化学セルが用いられてきた。この
セルは、評価しようとする電極を作用電極aとし、これ
に対極b及び参照電極cを組み合わせ、これらをガラス
管内に収容した電解質溶液d中に吊り下げ配置して構成
されるものである。例えばリチウムイオン電池の正極と
して用いられる、リチウム含有複合酸化物を塗布した金
属箔の電極の放電曲線(作動電圧/持続時間の関係)を
評価する場合には、対極にリチウム、参照電極にリチウ
ム、そして電解液にLiPF6 /(エチレンカーボネー
ト+メチルエチルカーボネート)等の非水電解溶液が用
いられる。
2. Description of the Related Art In order to evaluate the electrochemical behavior of an electrochemical electrode and the electrical conductivity of an electrolytic solution and the like, an electrochemical cell for evaluation as shown in FIG. 1 has been conventionally used. In this cell, an electrode to be evaluated is used as a working electrode a, a counter electrode b and a reference electrode c are combined, and these are suspended and arranged in an electrolyte solution d contained in a glass tube. For example, when evaluating the discharge curve (operating voltage / duration relationship) of a metal foil electrode coated with a lithium-containing composite oxide used as a positive electrode of a lithium ion battery, lithium is used as a counter electrode, lithium is used as a reference electrode, and lithium is used as a reference electrode. Then, a non-aqueous electrolytic solution such as LiPF 6 / (ethylene carbonate + methyl ethyl carbonate) is used as the electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】ところで、この従来の
電気化学セルでは作用電極、対極及び参照電極の各電極
が電解溶液中に単に吊り下げ状態で配置されているの
で、評価セルを作製する時点で常に各電極間隔を厳密に
一定に保つのは困難なことである。そして、評価セルを
組み立てた後、電気化学電極を評価する際にも、一定に
保つのは困難な場合がある。例えば、リチウムイオン電
池の正極として用いられる、リチウム含有複合酸化物を
金属箔に塗布した電極を評価する場合、評価中に該複合
酸化物が膨張し、それに伴って電極が変形したり、湾曲
したりして容易に電極間の間隔が変化する。各電極間の
間隔が少しでも変化すれば測定誤差を生じ、正確な測定
値が得られない。近年、電気化学電極の電気化学的挙動
等の測定値についても、求められる精度が年々厳しくな
っていることから、評価用電気化学セルの各電極間距離
をセルの組み立て時にあるいは評価時間中に常に厳密に
一定に保持できないという問題は、この分野における解
決すべき大きな課題となっている。
In this conventional electrochemical cell, the working electrode, the counter electrode, and the reference electrode are simply suspended in the electrolytic solution. Therefore, it is difficult to keep the interval between the electrodes strictly constant. When the electrochemical cell is evaluated after the evaluation cell is assembled, it may be difficult to keep it constant. For example, when evaluating an electrode in which a lithium-containing composite oxide is applied to a metal foil, which is used as a positive electrode of a lithium-ion battery, the composite oxide expands during the evaluation, and the electrode deforms or curves with the evaluation. The gap between the electrodes easily changes. If the distance between the electrodes changes even slightly, a measurement error occurs, and an accurate measurement value cannot be obtained. In recent years, the required accuracy of the measured values of the electrochemical behavior of the electrochemical electrodes and the like is becoming stricter year by year, so the distance between the electrodes of the electrochemical cell for evaluation is always set at the time of assembling the cell or during the evaluation time. The problem of not being able to keep it strictly constant is a major problem to be solved in this field.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明者等は各電極の位置固定手段を検討するう
ち、各電極を電解溶液中に吊り下げることに替えて、保
液材に電解液を含有せしめ、この保液材を介して各電極
を加圧するようにして配置すれば、セル組み立て時にあ
るいは評価時間中に各電極間距離を常に厳密に一定に保
持できることを見出し、本発明に至った。即ち、本発明
は、以下の(1)〜(3)の電気化学セルである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have studied the means for fixing the position of each electrode, and instead of suspending each electrode in the electrolytic solution, a liquid retaining material was used. It has been found that the distance between the electrodes can be kept strictly constant at the time of cell assembly or during the evaluation time by arranging the electrodes so that the electrodes are pressurized through the liquid retaining material. Invented the invention. That is, the present invention provides the following electrochemical cells (1) to (3).

【0005】(1)第1電極部および第2電極部が
(i)保液材若しくは固体電解質と(ii)第3電極部
若しくは第3電極部及び第4電極部とを介して配置さ
れ、前記第1電極部と第2電極部は、可動手段により各
々独立に加圧される電気化学セル。 (2)第3電極部と第4電極部が、有孔である上記
(1)記載の電気化学セル。 (3)第1電極部および第2電極部の可動手段を、第1
電極部および第2電極部が重なり合うように案内するガ
イド機構を有する上記(1)又は(2)記載の電気化学
セル。
(1) A first electrode portion and a second electrode portion are arranged via (i) a liquid retaining material or a solid electrolyte and (ii) a third electrode portion or a third electrode portion and a fourth electrode portion, An electrochemical cell wherein the first electrode portion and the second electrode portion are independently pressurized by a movable means. (2) The electrochemical cell according to (1), wherein the third electrode portion and the fourth electrode portion are perforated. (3) The movable means of the first electrode unit and the second electrode unit is
The electrochemical cell according to the above (1) or (2), further comprising a guide mechanism for guiding the electrode portion and the second electrode portion so as to overlap each other.

【0006】次に、本発明の電気化学セルの各構成につ
いて3極式及び4極式について詳しく説明する。 3極式(第1〜3電極)の場合について 図2を用いて説明する。図2は3極式の電気化学セルの
概念図である。第1電極(1) と第2電極(2) との間に第
3電極(3) が、そして第1電極(1) と第3電極(3) 及び
第2電極(2) と第3電極(3) との間に夫々電解液を含有
する保液材、若しくは固体電解質(4),(4) が配置され
ている。第1電極(1) と第2電極(2) は同一面積であ
り、第3電極(3) は第1電極(1) と等しいか或いはより
大きな面積を有している。この第3電極(3) は、電解液
の移動を妨げない形状であればよく、好ましくは穴あき
又はグリッド状であって、具体的にはエキスパンドメタ
ル、パンチングメタル、エッチング箔等から構成される
のが好ましい。また開口率としては、20%以上である
ことが好ましい。保液材(4) 、(4) の材料としては、ガ
ラスウール、アラミド不織布又は抄紙、ポリエチレン又
はポリプロピレン不織布、微多孔膜等の1種又は2種以
上を組み合わせたものがある。また、固体電解質には、
ポリエチレンオキシド、ポリプロピレンオキシド、ポリ
アクリロニトリル、ポリフッ化ビニリデン、フッ化ビニ
リデン−ヘキサフルオロプロピレン共重合体、ビニルエ
ーテル共重合体などの高分子と電解質あるいは電解質溶
液との複合体、あるいは上記高分子に電解質溶液を担持
させたゲル状のものなどがある。
Next, the three-electrode type and the four-electrode type of the electrochemical cell of the present invention will be described in detail. The case of a three-pole type (first to third electrodes) will be described with reference to FIG. FIG. 2 is a conceptual diagram of a three-electrode electrochemical cell. There is a third electrode (3) between the first electrode (1) and the second electrode (2), and the first electrode (1) and the third electrode (3), and the second electrode (2) and the third electrode. A liquid retaining material containing an electrolytic solution or solid electrolytes (4) and (4) are arranged between (3) and (3). The first electrode (1) and the second electrode (2) have the same area, and the third electrode (3) has an area equal to or larger than the first electrode (1). The third electrode (3) may have any shape as long as it does not hinder the movement of the electrolytic solution, and is preferably perforated or grid-shaped, and is specifically made of expanded metal, punching metal, etching foil, or the like. Is preferred. The aperture ratio is preferably 20% or more. Examples of the liquid retaining materials (4) and (4) include one or a combination of two or more of glass wool, aramid nonwoven fabric or papermaking, polyethylene or polypropylene nonwoven fabric, and microporous membrane. In addition, the solid electrolyte includes
Polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinyl ether copolymer or other polymer and electrolyte or electrolyte solution complex, or the above polymer with electrolyte solution There is a gel-like one carried.

【0007】第1電極(1) と第2電極(2) は、その上下
方向よりバネ(5) ,(5) で付勢されたプランジャー(6)
,(6) 等の電極均等加圧手段により一定圧力で均等に
押圧されている。その圧力の大きさは保液材の種類によ
りかなり大きく異なるが、要は保液材から電解液が追い
出されないが、電極を一定位置に保持するのに必要な圧
力である。プランジャー(6) ,(6) の付勢は、バネ以外
にピストン−シリンダーの流体加圧方式であってもよ
い。
[0007] The first electrode (1) and the second electrode (2) are plunger (6) urged by springs (5), (5) from above and below.
, (6) and the like, the electrodes are uniformly pressed at a constant pressure. Although the magnitude of the pressure varies considerably depending on the type of liquid retaining material, the point is that the electrolyte is not expelled from the liquid retaining material, but it is the pressure required to hold the electrode in a fixed position. The plungers (6), (6) may be biased by a piston-cylinder fluid pressurization method other than a spring.

【0008】プランジャー(6) ,(6) は、第1電極(1)
又は第2電極(2) と同じ間隔で配置された電極ガイド
(7) ,(7) の間を案内され、第1〜3電極に垂直に均等
に圧力を加える。上下の電極ガイド(7) ,(7) は、第1
電極(1) 又は第2電極(2) が重なり合って案内され加圧
されるために、要すれば位置合わせ機構(8) を有する。
重なり合う程度としては、第1電極(1) と第2電極(2)
のずれが、これら電極間距離より小さいこと、好ましく
は上記電極間距離の10分の1以下である。この3極式
の電気化学セルの具体例を次の図3に、そして図3より
好ましい具体例を図4に示す。図3では上部側電極ガイ
ド(7) は電極ガイド押さえとバネ押さえ板との両方を有
しているのに対し、図4では電極ガイド(7) の上下どち
らもバネ押さえ板(10)により押さえられ上下対称となる
ため、部品点数が減り構成が簡潔となり取扱も簡便とな
る利点がある。図3〜4において、電気化学セルの構成
部材の材質が金属である場合には対向端面に絶縁物(9)
が配置される。絶縁物(9) は耐電解液性が必要であり、
更に電解液が非水系の場合は大気中の水分による悪影響
を受けやすいので、大気から遮断するシール機能を具備
する必要がある。この耐電解液性とシール機能を発揮さ
せる具体的態様としては、電極ガイド(7) の外側に耐電
解液性を有する絶縁物(9) を、そして更にその外側にシ
ール機能を有する絶縁物(9) を配置したり、両機能を同
時に併せ持つ素材で又は各々の機能を有する素材を積層
して構成した絶縁物(9) をその外側の1か所以上に配置
したりすることができる。また、バネ(5) 、プランジャ
ー(6) 、位置合わせ機構(8) 、バネ押さえ板(10)は、第
1電極(1) 〜第4電極(4) に対し通電又は集電機能を持
たせてもよい。
The plungers (6), (6) are first electrodes (1).
Or an electrode guide arranged at the same interval as the second electrode (2)
Guided between (7) and (7), pressure is evenly applied vertically to the first to third electrodes. The upper and lower electrode guides (7) and (7)
Since the electrode (1) or the second electrode (2) is guided and pressurized in an overlapping manner, a positioning mechanism (8) is provided if necessary.
As for the degree of overlap, the first electrode (1) and the second electrode (2)
Is smaller than these inter-electrode distances, preferably one-tenth or less of the inter-electrode distances. FIG. 3 shows a specific example of the three-electrode electrochemical cell, and FIG. 4 shows a specific example more preferable than FIG. In FIG. 3, the upper electrode guide (7) has both an electrode guide holder and a spring holder, while in FIG. 4, both the upper and lower sides of the electrode guide (7) are held by the spring holder (10). Since it is vertically symmetrical, there is an advantage that the number of parts is reduced, the configuration is simple, and the handling is simple. 3 and 4, when the material of the constituent members of the electrochemical cell is metal, an insulator (9)
Is arranged. The insulator (9) must have resistance to electrolyte,
Further, when the electrolyte is non-aqueous, it is liable to be adversely affected by moisture in the atmosphere, and therefore, it is necessary to provide a sealing function for shielding the electrolyte from the atmosphere. As a specific embodiment for exhibiting the electrolytic solution resistance and the sealing function, an insulator (9) having an electrolytic solution resistance is provided outside the electrode guide (7), and an insulator having a sealing function is further provided outside the electrode guide (7). 9), or an insulator (9) formed of a material having both functions simultaneously or a material obtained by laminating materials having the respective functions can be arranged at one or more locations outside the insulator (9). The spring (5), the plunger (6), the positioning mechanism (8), and the spring holding plate (10) have a function of energizing or collecting current for the first to fourth electrodes (1) to (4). You may let it.

【0009】この3極式の場合は、具体的には電池電極
の充放電特性やインピーダンスの測定(特願平9−79
115号)等の電気化学電極の電気化学的挙動を評価す
る場合に用いられる。このようにして構成された本発明
の電気化学セルは、第1〜3電極が電極ガイド(7) ,
(7) の間を案内される均等加圧手段(6),(6) により常に
一定圧力で均等に垂直に押圧されるので、セルの組み立
て時にあるいは電極の電気化学的挙動を評価中に、各電
極が一定間隔で且つずれることなく正確に対向され保持
されるので、その結果高精度で再現性のよいデータが取
得できる。このことは、特に電極が評価中に膨張し電極
が変形したり、湾曲したりする(電極間距離が変化す
る)場合にはさらに効果的である。 4極式(第1〜4電極)の場合について 図5を用いて説明する。図5は4極式の電気化学セルの
概念図である。
In the case of the three-electrode system, specifically, measurement of the charge / discharge characteristics and impedance of the battery electrode (Japanese Patent Application No. 9-79).
No. 115) is used to evaluate the electrochemical behavior of an electrochemical electrode. In the electrochemical cell of the present invention thus configured, the first to third electrodes have electrode guides (7),
(7) It is always evenly and vertically pressed at a constant pressure by the uniform pressurizing means (6), (6) guided between (7), so during the assembly of the cell or during the evaluation of the electrochemical behavior of the electrodes, Since the electrodes are accurately opposed and held at regular intervals and without deviation, data with high accuracy and high reproducibility can be obtained. This is particularly effective when the electrode expands during the evaluation and deforms or curves (the distance between the electrodes changes). The case of a four-pole type (first to fourth electrodes) will be described with reference to FIG. FIG. 5 is a conceptual diagram of a four-electrode electrochemical cell.

【0010】第1電極(1) と第2電極(2) との間に、第
3電極(3a)とさらに第4電極(3b)が、そして第1電極
(1) と第3電極(3a)、第2電極(2) と第4電極(3b)及び
第3電極(3a)と第4電極(3b)との間に夫々電解液を含有
する保液材(4) ,(4) ,(4´)が配置されている。それ
以外の構成は上記3極式(第1〜3電極)の場合と同様
である。この4極式の電気化学セルの具体例を次の図6
に示す。この4極式の場合は、具体的には電解液の外、
セパレータ(微多孔膜)や固体電解質の電気伝導度等の
電気化学的挙動を評価するのに用いられる。なお、この
場合には第3電極(3a)と第4電極(3b)には、評価する系
によって異なるが、不働態を作りにくいPtのメッシュ
を用いることが好ましい。また、セパレータ(微多孔
膜)や固体電解質の電気伝導度等を評価する際には、第
3電極(3a)と第4電極(3b)との間には、保液材に挟まれ
たセパレータ(微多孔膜)や固体電解質等を配置するこ
ともできる。
A third electrode (3a) and a fourth electrode (3b) are provided between the first electrode (1) and the second electrode (2).
(1) and a third electrode (3a); a second electrode (2) and a fourth electrode (3b); and a liquid containing an electrolyte between the third electrode (3a) and the fourth electrode (3b). Materials (4), (4) and (4 ') are arranged. Other configurations are the same as those of the above-described three-pole type (first to third electrodes). A specific example of this four-electrode electrochemical cell is shown in FIG.
Shown in In the case of this four-electrode type, specifically, outside the electrolyte,
It is used to evaluate electrochemical behavior such as electrical conductivity of a separator (microporous membrane) and solid electrolyte. Note that, in this case, it is preferable to use a Pt mesh that does not easily create a passivation, depending on the system to be evaluated, for the third electrode (3a) and the fourth electrode (3b). When evaluating the electrical conductivity of a separator (microporous membrane) or a solid electrolyte, a separator sandwiched between liquid retaining materials is provided between the third electrode (3a) and the fourth electrode (3b). (A microporous membrane), a solid electrolyte, and the like can also be provided.

【0011】このようにして構成された本発明の4極式
の電気化学セルも、その3極式のものと同様にセルの組
み立て時にあるいは電極の電気化学的挙動を評価中に、
各電極が一定間隔で且つずれなく正確に対向され保持さ
れるので、高精度で再現性のよいデータが取得できる。
[0011] The four-electrode electrochemical cell of the present invention thus constructed is also similar to the three-electrode cell during assembly of the cell or during evaluation of the electrochemical behavior of the electrode.
Since the electrodes are accurately opposed and held at regular intervals and without deviation, highly accurate and highly reproducible data can be obtained.

【発明の実施の形態】以下、本発明を実施例に基づいて
更に詳細に説明するが、本発明は実施例に制限されるも
のではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

【0012】[0012]

【実施例】(実施例1)図3の3極式の電気化学セルを
用いてアルミ箔に塗布したリチウム含有複合酸化物(L
iCo0.99Sn0.012 )の充放電特性を測定した。先
ず、第1電極(1) を次のように製作した。平均粒径4μ
mでSn含有正極活物質LiCo0.99Sn0.012 10
0重量部に対して、導電剤として平均粒径4μmのグラ
ファイトカーボン2.5重量部と平均粒径0.04μm
の非黒鉛炭素質粉末2.5重量部を混ぜ合わせてコンパ
ウンドとした。このコンパウンドに対してポリフッ化ビ
ニリデン3重量部を含むN−メチルピロリドン溶液にこ
のコンパウンドを分散させた。そして、この分散液を厚
さ15μmのAl箔に塗布量277g/mとなるようプ
レスした。このようにして塗布・プレスしたAl箔を、
面積2cm2 の円形に加工して第1電極を作製した。
EXAMPLE 1 A lithium-containing composite oxide (L) coated on aluminum foil using the three-electrode electrochemical cell of FIG.
The charge / discharge characteristics of iCo 0.99 Sn 0.01 O 2 ) were measured. First, the first electrode (1) was manufactured as follows. Average particle size 4μ
m, the Sn-containing positive electrode active material LiCo 0.99 Sn 0.01 O 2 10
0 parts by weight, 2.5 parts by weight of graphite carbon having an average particle size of 4 μm as a conductive agent and 0.04 μm of average particle size
Was mixed with 2.5 parts by weight of the non-graphite carbonaceous powder of Example 1 to obtain a compound. This compound was dispersed in an N-methylpyrrolidone solution containing 3 parts by weight of polyvinylidene fluoride with respect to this compound. Then, this dispersion was pressed onto an Al foil having a thickness of 15 μm so as to have a coating amount of 277 g / m. The Al foil coated and pressed in this way is
The first electrode was fabricated by processing into a circle having an area of 2 cm 2 .

【0013】次に、第2電極(2) を、面積2cm2 の円
形に加工したNiメッシュの全面に金属Liを圧着し、
更に第3電極(3) を、面積2cm2 の円形に加工したS
USメッシュにLiワイヤーを圧着(圧着した状態での
開口率は70%)して夫々製作した。保液材(4) はガラ
スウールにエチレンカーボネートとメチルエチルカーボ
ネートとの混合溶媒(1:2)1リットルに1molの
電解質LiPF6 を溶解した電解液を入れ含浸させて作
製した。
Next, the second electrode (2) is pressed with metal Li over the entire surface of a Ni mesh processed into a circular shape having an area of 2 cm 2 ,
Further, the third electrode (3) was processed into a circular shape having an area of 2 cm 2 by S
A Li wire was pressure-bonded to a US mesh (opening ratio in a pressure-bonded state was 70%) to produce each. The liquid retaining material (4) was prepared by impregnating glass wool with an electrolytic solution obtained by dissolving 1 mol of an electrolyte LiPF 6 in 1 liter of a mixed solvent of ethylene carbonate and methyl ethyl carbonate (1: 2).

【0014】そして、第1電極と第2電極との間に第3
電極を挿入するとともに、第1電極と第3電極との間及
び第2電極と第3電極との間に各々上記保液材(4) を配
置し積層体を構成し、この積層体を図3のプランジャー
(6),(6) 間にセットし、バネ(5),(5) で上下より800
g/cm2 の力で加圧した。続いて、この状態で第3電
極を参照電極として、第1電極と第3電極で電圧を制御
しながら、第1電極と第2電極間で充放電をおこなっ
た。その充放電条件は充電0.3CmA、6h、4.2
V定電圧定電流、放電0.3CmA、3.0V定電流で
あった。第1電極と第2電極間で常法により充放電容量
(mAh/g)と充放電効率(%)とを測定したとこ
ろ、各々142mAh/g、95%であった。この実験
を同様にして繰り返し行ったところ、毎回再現性良く正
確なデータが取得できた。
The third electrode is provided between the first electrode and the second electrode.
The electrodes are inserted, and the liquid retaining material (4) is arranged between the first electrode and the third electrode and between the second electrode and the third electrode to form a laminate. 3 plungers
(6) Set between (6) and (800) from above and below with springs (5) and (5)
It was pressurized with a force of g / cm 2 . Subsequently, in this state, charging and discharging were performed between the first and second electrodes while controlling the voltage with the first and third electrodes using the third electrode as a reference electrode. The charge and discharge conditions were as follows: charge 0.3 CmA, 6 h, 4.2
V constant voltage constant current, discharge 0.3 CmA, and 3.0 V constant current. When the charge / discharge capacity (mAh / g) and the charge / discharge efficiency (%) between the first electrode and the second electrode were measured by an ordinary method, they were 142 mAh / g and 95%, respectively. When this experiment was repeated in the same manner, accurate data was obtained with good reproducibility every time.

【0015】(実施例2)図6の4極式の電気化学セル
を用いて、エチレンカーボネートとメチルエチルカーボ
ネートとの混合溶媒(1:2)1リットルに1molの
電解質LiPF6を溶解した電解液の電気伝導度を測定
した。第1電極(1) 及び第2電極(2) として面積2cm
2 の円形に加工したPt電極を、そして第3電極(3a)及
び第4電極(3b)として面積2cm2 の円形に加工したP
tメッキしたSUSメッシュ電極を用いた。保液材(4)
はガラスウールにエチレンカーボネートとメチルエチル
カーボネートとの混合溶媒(1:2)1リットルに1m
olの電解質LiPF6 を溶解した電解液を入れ含浸さ
せて作製した。
(Example 2) An electrolytic solution obtained by dissolving 1 mol of electrolyte LiPF 6 in 1 liter of a mixed solvent of ethylene carbonate and methyl ethyl carbonate (1: 2) using a four-electrode electrochemical cell shown in FIG. Was measured for electrical conductivity. 2 cm area as the first electrode (1) and the second electrode (2)
2 of the processed Pt electrode to a circle, and processed into a circular area of 2 cm 2 as the third electrode (3a) and the fourth electrode (3b) P
A SUS mesh electrode plated with t was used. Liquid retention material (4)
Is 1 m in 1 liter of mixed solvent of ethylene carbonate and methyl ethyl carbonate (1: 2) in glass wool
ol electrolyte LiPF 6 was dissolved in the electrolyte and impregnated.

【0016】そして、第1電極(1) と第2電極(2) との
間に第3電極(3a)及び第4電極(3b)を挿入するととも
に、第1電極(1) と第3電極(3a)との間、第2電極(2)
と第3電極(3b)との間及び第3電極(3a)と第4電極(3b)
との間に各々上記保液材(4)(4´) を配置し積層体を構
成し、この積層体を図6のプランジャー(6),(6) にセッ
トし、バネ(5),(5) で上下より800g/cm2 の力で
加圧した。なお、第3電極(3a)と第4電極(3b)間の距離
は2mmであった。
A third electrode (3a) and a fourth electrode (3b) are inserted between the first electrode (1) and the second electrode (2), and the first electrode (1) and the third electrode (3) are inserted. (3a), the second electrode (2)
And the third electrode (3b) and between the third electrode (3a) and the fourth electrode (3b)
The above-mentioned liquid retaining materials (4) and (4 ') are arranged between them to form a laminate, and this laminate is set on plungers (6) and (6) in FIG. In (5), pressure was applied from above and below with a force of 800 g / cm 2 . The distance between the third electrode (3a) and the fourth electrode (3b) was 2 mm.

【0017】続いて、この状態で第1電極(1) と第2電
極(2) 間に電流0.5〜5.0mAを流した。その際第
3電極(3a)と第4電極(3b)間の電圧を測定したところ
6.9〜72mVであった。この電流値と電圧値を直線
近似して、その傾きより電気伝導度を求めると、上記電
解液の電気伝導度は7(mS/cm)であることが判っ
た。この実験を同様にして繰り返し行ったところ、毎回
再現性良く正確なデータが取得できた。
Subsequently, in this state, a current of 0.5 to 5.0 mA was passed between the first electrode (1) and the second electrode (2). At that time, when the voltage between the third electrode (3a) and the fourth electrode (3b) was measured, it was 6.9 to 72 mV. When the current value and the voltage value were linearly approximated and the electric conductivity was obtained from the slope, it was found that the electric conductivity of the electrolytic solution was 7 (mS / cm). When this experiment was repeated in the same manner, accurate data was obtained with good reproducibility every time.

【0018】[0018]

【発明の効果】以上のように、各電極を電解溶液中に吊
り下げることに替えて、保液材に電解液を含有せしめ、
この保液材を介して各電極を加圧するようにしたので、
電極の電気化学的挙動を評価中に、各電極が一定間隔で
且つずれなく正確に対向され保持できるので、正確で再
現性のよいデータが取得できる。
As described above, instead of suspending each electrode in the electrolytic solution, the liquid retaining material is made to contain the electrolytic solution.
Since each electrode was pressurized through this liquid retaining material,
During the evaluation of the electrochemical behavior of the electrodes, the electrodes can be opposed and held at regular intervals and without any deviation, so that accurate and reproducible data can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の評価用電気化学セルの組み立て図であ
る。
FIG. 1 is an assembly view of a conventional electrochemical cell for evaluation.

【図2】3極式電気化学セルの概念図である。FIG. 2 is a conceptual diagram of a three-electrode electrochemical cell.

【図3】3極式電気化学セルの具体例を示す図である。FIG. 3 is a diagram showing a specific example of a three-electrode electrochemical cell.

【図4】3極式電気化学セルの他の具体例を示す図であ
る。
FIG. 4 is a view showing another specific example of a three-electrode electrochemical cell.

【図5】4極式電気化学セルの概念図である。FIG. 5 is a conceptual diagram of a four-electrode electrochemical cell.

【図6】4極式電気化学セルの具体例を示す図である。FIG. 6 is a diagram showing a specific example of a four-electrode electrochemical cell.

【符号の説明】[Explanation of symbols]

1 第1電極 2 第2電極 3,3a 第3電極 3b 第4電極 4 保液材、固体電解質のいずれか 4´保液材、セパレータ(保液材/セパレータ/保液
材)、固体電解質(保液材/固体電解質/保液材)のい
ずれか 5 バネ 6 プランジャー 7 ガイド機構(電極ガイド) 8 位置合わせ機構 9 絶縁物 10 バネ押さえ板
Reference Signs List 1 1st electrode 2 2nd electrode 3, 3a 3rd electrode 3b 4th electrode 4 Any of liquid retention material and solid electrolyte 4 'liquid retention material, separator (liquid retention material / separator / liquid retention material), solid electrolyte ( Any of liquid retaining material / solid electrolyte / liquid retaining material) 5 spring 6 plunger 7 guide mechanism (electrode guide) 8 positioning mechanism 9 insulator 10 spring holding plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1電極部および第2電極部が、(i)
保液材若しくは固体電解質と(ii)第3電極部若しく
は第3電極部及び第4電極部とを介して配置され、前記
第1電極部と第2電極部は、可動手段により各々独立に
加圧されることを特徴とする電気化学セル。
1. The method according to claim 1, wherein the first electrode portion and the second electrode portion are (i)
The liquid retaining material or the solid electrolyte and (ii) a third electrode portion or a third electrode portion and a fourth electrode portion are interposed therebetween, and the first electrode portion and the second electrode portion are independently added by movable means. An electrochemical cell characterized by being pressurized.
【請求項2】 第3電極部と第4電極部が、有孔である
ことを特徴とする請求項1記載の電気化学セル。
2. The electrochemical cell according to claim 1, wherein the third electrode portion and the fourth electrode portion are perforated.
【請求項3】 第1電極部および第2電極部の可動手段
を、第1電極部および第2電極部が重なり合うように案
内するガイド機構を有することを特徴とする請求項1又
は請求項2記載の電気化学セル。
3. A guide mechanism for guiding the movable means of the first electrode portion and the second electrode portion so that the first electrode portion and the second electrode portion overlap each other. An electrochemical cell as described.
JP10352224A 1998-06-29 1998-12-11 Electrochemical cell Withdrawn JP2000081405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352224A JP2000081405A (en) 1998-06-29 1998-12-11 Electrochemical cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-196518 1998-06-29
JP19651898 1998-06-29
JP10352224A JP2000081405A (en) 1998-06-29 1998-12-11 Electrochemical cell

Publications (1)

Publication Number Publication Date
JP2000081405A true JP2000081405A (en) 2000-03-21

Family

ID=26509785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352224A Withdrawn JP2000081405A (en) 1998-06-29 1998-12-11 Electrochemical cell

Country Status (1)

Country Link
JP (1) JP2000081405A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same
JP2006179191A (en) * 2004-12-20 2006-07-06 Daihatsu Motor Co Ltd Electrochemical cell
KR20190122959A (en) * 2018-04-23 2019-10-31 한국과학기술연구원 Device having one-axis pressing structure for measuring electrochemical properties
US20210310975A1 (en) * 2018-12-19 2021-10-07 Korea Basic Science Institute In-situ optical and electrochemical analysis method and battery cell section measurement module therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147513A (en) * 2004-11-22 2006-06-08 Nippon Tomuseru:Kk Cell for electrochemical property measurement and electrochemical property measuring method using same
JP4580751B2 (en) * 2004-11-22 2010-11-17 有限会社日本トムセル Electrochemical property measuring cell and electrochemical property measuring method using the same
JP2006179191A (en) * 2004-12-20 2006-07-06 Daihatsu Motor Co Ltd Electrochemical cell
JP4541869B2 (en) * 2004-12-20 2010-09-08 ダイハツ工業株式会社 Electrochemical cell
KR20190122959A (en) * 2018-04-23 2019-10-31 한국과학기술연구원 Device having one-axis pressing structure for measuring electrochemical properties
KR102097287B1 (en) * 2018-04-23 2020-04-06 한국과학기술연구원 Device having one-axis pressing structure for measuring electrochemical properties
US20210310975A1 (en) * 2018-12-19 2021-10-07 Korea Basic Science Institute In-situ optical and electrochemical analysis method and battery cell section measurement module therefor

Similar Documents

Publication Publication Date Title
US11398656B2 (en) Lithium-air battery
KR101097586B1 (en) Method for estimating life of, method for suppressing deterioration of, device for estimating life of and device for suppressing deterioration of lithium secondary battery, and battery pack and charger using the same
US20080066297A1 (en) Forming Solid Electrolyte Interface Layer on Lithium-Ion Polymer Battery Electrode
JP2018505538A5 (en)
US10615452B2 (en) High voltage rechargeable magnesium cell
Dewi et al. Cationic polysulfonium membrane as separator in zinc–air cell
CN111009679A (en) Three-electrode battery cell, three-electrode soft package battery and preparation method thereof
Zhou et al. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems
WO2013031195A1 (en) Thin battery electrode group, thin battery, and electronic device
CN208460908U (en) For measuring the three-electrode battery of battery electrochemical specific surface area active
US5532087A (en) Electrochemical cell
Kim et al. Electrochemical behavior of compacted lithium powder electrode in Li/V2O5 rechargeable battery
JPH11204148A (en) Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor
KR101806416B1 (en) A lithium ion secondary battery comprising a reference electrode
US7527894B2 (en) Identifying defective electrodes in lithium-ion polymer batteries
US10693183B2 (en) Ether-based electrolyte for Na-ion battery anode
JP2000081405A (en) Electrochemical cell
US20080070104A1 (en) Forming Polymer Electrolyte Coating on Lithium-Ion Polymer Battery Electrode
US6383682B1 (en) Yttrium-ion rechargeable battery cells
US20080070103A1 (en) Activation of Anode and Cathode in Lithium-Ion Polymer Battery
KR20220036067A (en) 3-electrode battery cell capable of in-situ X-ray analysis
KR20230097574A (en) All solid state battery comprising symmetrically arranged reference electrode, device for producing the same, and producing method using the device
JP2002298925A (en) Aging method for lithium secondary battery, and manufacturing method for lithium secondary battery including the same
KR20220003771A (en) Battery cell including two reference electrodes and battery evaluation method using same
JPH05129036A (en) Closed type secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307