JP2000075117A - Manufacture of diffraction grating and diffraction grating - Google Patents

Manufacture of diffraction grating and diffraction grating

Info

Publication number
JP2000075117A
JP2000075117A JP10248646A JP24864698A JP2000075117A JP 2000075117 A JP2000075117 A JP 2000075117A JP 10248646 A JP10248646 A JP 10248646A JP 24864698 A JP24864698 A JP 24864698A JP 2000075117 A JP2000075117 A JP 2000075117A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
substrate
layer
photoreceptor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10248646A
Other languages
Japanese (ja)
Other versions
JP3877444B2 (en
Inventor
Junji Tomita
順二 富田
Fumio Yamagishi
文雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24864698A priority Critical patent/JP3877444B2/en
Publication of JP2000075117A publication Critical patent/JP2000075117A/en
Priority to US09/795,442 priority patent/US6723474B2/en
Application granted granted Critical
Publication of JP3877444B2 publication Critical patent/JP3877444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture diffraction gratings which make it possible to effectively suppress the generation of noise light by decreasing or eliminating boundaries and have high diffraction efficiency. SOLUTION: The process for manufacturing the diffraction gratings by using a single substrate 23 includes a step of integrally forming a photoreceptor layer and light transparent attenuation films 25 of prescribed patterns on the substrate 23, a step for exposing this photoreceptor layer 27 via the light transparent attenuation films 25 by the exposure irradiating light and a step for developing the photoreceptor layer 27 after exposure and is so constituted that the exposure direction and the development direction are reversed. As a result, the diffraction gratings which are formed in parallel at a prescribed pitch on the prescribed substrate and are bonded in the root portions at the cross sections of the diffraction gratings may be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折格子作製方法
及び回折格子に関する。
The present invention relates to a method for manufacturing a diffraction grating and a diffraction grating.

【0002】[0002]

【従来の技術】従来は、例えば、図1に示すように、マ
スク基板1の上に所定パターンの遮光膜3を形成して成
る光学マスク5と、所定基板7の上にレジスト層(感光
体)9を形成して成るレジスト基板11、とをそれぞれ
準備し、レジスト基板11と光学マスク5とを重ねて、
光学マスク5側から垂直に露光光束(矢印)を照射し、
その後、この露光方向と同じ方向から現像処理すること
によって、回折格子を作製している。
2. Description of the Related Art Conventionally, for example, as shown in FIG. 1, an optical mask 5 formed by forming a light shielding film 3 having a predetermined pattern on a mask substrate 1 and a resist layer (photosensitive member) 9) is prepared, and the resist substrate 11 and the optical mask 5 are overlapped.
The exposure light beam (arrow) is irradiated vertically from the optical mask 5 side,
Thereafter, the diffraction grating is manufactured by performing development processing in the same direction as the exposure direction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、遮光膜
3とレジスト層9との間には、空気層や真空層が不可避
的に存在するために、露光処理時に界面反射によるノイ
ズ光が発生し、本来露光されてはならない部分がノイズ
光によって露光されてしまう。このため、例えば、高精
度な回折格子、微細形状の回折格子、断面が傾いた回折
格子等を作製することは非常に困難であった。
However, since an air layer or a vacuum layer is inevitably present between the light shielding film 3 and the resist layer 9, noise light is generated due to interface reflection during exposure processing. A portion that should not be exposed is exposed by noise light. For this reason, it has been very difficult to produce, for example, a highly accurate diffraction grating, a diffraction grating having a fine shape, a diffraction grating having an inclined cross section, and the like.

【0004】そこで、本発明においては、界面を減少な
いし排除してノイズ光の発生を効果的に抑制し得る、回
折格子作製方法を提供することをその課題とする。ま
た、本発明は、高い回折効率を有する斬新な断面形状の
回折格子を提供することをその課題とする。
Accordingly, it is an object of the present invention to provide a method of fabricating a diffraction grating capable of effectively suppressing generation of noise light by reducing or eliminating an interface. Another object of the present invention is to provide a diffraction grating having a novel sectional shape having high diffraction efficiency.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る回折格子作製方法は、単一の基板を用い
て回折格子を作製する方法であって、感光体層と所定パ
ターンの光透過減衰膜とを前記基板に一体化形成するス
テップと、露光照射光により、光透過減衰膜を介して、
感光体層を露光するステップと、露光後の感光体層を現
像するステップ、とを含むことを構成上の特徴とする。
好ましくは、前記基板の一面側に感光体層があり、反対
面側に光透過減衰膜がある。好ましくは、前記基板の同
一面側に、感光体層と光透過減衰膜とがある。好ましく
は、前記感光体層の外面には、反射防止層が設けられ
る。好ましくは、現像後の感光体層の表面をメッキ処理
するステップと、メッキ処理後の感光体層をマスタグレ
ーティングとして用いて、回折格子を作製するステッ
プ、とを含む。好ましくは、現像後の感光体層の表面に
樹脂を注入するステップと、注入樹脂を硬化させるステ
ップと、硬化樹脂を除去するステップ、とを含む。
In order to solve the above-mentioned problems, a diffraction grating manufacturing method according to the present invention is a method of manufacturing a diffraction grating by using a single substrate, wherein a photoreceptor layer and a predetermined pattern are formed. Step of integrally forming a light transmission attenuation film and the substrate, and, by exposure irradiation light, through the light transmission attenuation film,
The structure is characterized by including a step of exposing the photosensitive layer and a step of developing the exposed photosensitive layer.
Preferably, there is a photoreceptor layer on one side of the substrate, and a light transmission attenuation film on the other side. Preferably, a photoreceptor layer and a light transmission attenuation film are provided on the same surface side of the substrate. Preferably, an antireflection layer is provided on the outer surface of the photoconductor layer. Preferably, the method includes a step of plating the surface of the photoreceptor layer after development, and a step of forming a diffraction grating using the photoreceptor layer after plating as mass tag grating. Preferably, the method includes a step of injecting a resin onto the surface of the photoreceptor layer after development, a step of curing the injected resin, and a step of removing the cured resin.

【0006】本発明に係る感光基板は、所定パターンの
遮光膜が一方の面に形成され、感光体層が他方の面に形
成されて成ることを構成上の特徴とする。本発明に係る
別の感光基板は、所定パターンの遮光膜が一方の面に形
成され、該遮光膜の上に感光体層が形成されて成ること
を構成上の特徴とする。本発明に係る回折格子は、所定
基板の上に所定ピッチで並列に形成される回折格子であ
って、各回折格子の断面における根元部分は、括れてい
ることを構成上の特徴とする。好ましくは、各回折格子
の断面において、根元部分から先端部分にかけて全体的
に傾いている。好ましくは、各回折格子の断面におい
て、先端部分は、矩形を重畳したような形状を有する。
A photosensitive substrate according to the present invention is characterized in that a light-shielding film having a predetermined pattern is formed on one surface and a photosensitive layer is formed on the other surface. Another photosensitive substrate according to the present invention is characterized in that a light-shielding film having a predetermined pattern is formed on one surface, and a photoreceptor layer is formed on the light-shielding film. The diffraction grating according to the present invention is a diffraction grating formed in parallel on a predetermined substrate at a predetermined pitch, and is characterized in that a root portion in a cross section of each diffraction grating is constricted. Preferably, the cross section of each diffraction grating is entirely inclined from the root portion to the tip portion. Preferably, in the cross section of each diffraction grating, the tip portion has a shape such that rectangles overlap.

【0007】[0007]

【発明の実施の形態】以下、本発明の複数の実施態様を
図面を参照して説明する。図2は、本発明の第1実施態
様に係る露光プロセスを示す。図示光学マスク21は、
例えば、(紫外線の吸収が少ない)石英ガラス製の単一
のマスク基板23の一面(図では上面)に、所定パター
ンから成る遮光膜(光透過減衰膜)25を形成して成
る。尚、遮光膜25は、クロム、酸化クロム、アルミ、
チタン、ニッケル、銀、金等の透過光を減衰させ得る金
属膜であり、光学マスク21の作製は、例えば、金属膜
をマスク基板23に蒸着し、金属膜上にレジスト層を形
成し、電子線(EB)描画を行い、現像処理後、金属膜を
エッチングすることによって作製できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows an exposure process according to the first embodiment of the present invention. The illustrated optical mask 21
For example, a light-shielding film (light transmission attenuating film) 25 having a predetermined pattern is formed on one surface (the upper surface in the figure) of a single mask substrate 23 made of quartz glass (having little ultraviolet absorption). The light shielding film 25 is made of chromium, chromium oxide, aluminum,
The optical mask 21 is made of a metal film such as titanium, nickel, silver, or gold that can attenuate transmitted light. For example, the optical mask 21 is formed by depositing a metal film on a mask substrate 23, forming a resist layer on the metal film, It can be manufactured by drawing a line (EB), developing, and then etching the metal film.

【0008】マスク基板23の反対面(図では下面)に
は、レジスト層(感光体層)27が一体化形成される。
尚、レジスト層は、ポジ型レジスト材又はネガ型レジス
ト材の何れによっても構成できる。光学マスク21の遮
光膜側から露光光束(矢印)を照射し、レジスト層27
を露光する。露光後、現像処理によって回折格子を作製
することができる。
A resist layer (photoreceptor layer) 27 is integrally formed on the opposite surface (lower surface in the figure) of the mask substrate 23.
The resist layer can be made of either a positive resist material or a negative resist material. An exposure light beam (arrow) is irradiated from the light-shielding film side of the optical mask 21 to form a resist layer 27.
Is exposed. After the exposure, a diffraction grating can be produced by a development treatment.

【0009】遮光膜25とレジスト層27とがマスク基
板23に密着して一体化される構成から成る本実施態様
にあっては、(レジスト層9を具えた)レジスト基板1
1と(遮光膜3を具えた)マスク基板1とを近接させる
従来構成と比較して、遮光膜25及びレジスト層27の
間に空気層や真空層等を介在させずに済み、また、遮光
膜25とレジスト層27との間の寸法を高精度に均一化
できる。従って、ノイズ光の発生を抑制でき、回折格子
の作製精度を向上でき、歩留まりを改善できる。
In the present embodiment having a configuration in which the light-shielding film 25 and the resist layer 27 are tightly integrated with the mask substrate 23, the resist substrate 1 having the resist layer 9 is provided.
1 and the mask substrate 1 (including the light-shielding film 3) are close to each other, so that no air layer or vacuum layer is required between the light-shielding film 25 and the resist layer 27. The dimension between the film 25 and the resist layer 27 can be made uniform with high precision. Therefore, generation of noise light can be suppressed, the manufacturing accuracy of the diffraction grating can be improved, and the yield can be improved.

【0010】図3は、本発明の第2実施態様に係る露光
プロセスを示す。図示光学マスク31は、遮光膜35が
形成されるマスク基板33の同じ面(下面)に重ねてレ
ジスト層37を一体化形成して成る。遮光膜35とレジ
スト層37とが(間にマスク基板を挟まずに)一体化さ
れる構成から成る本実施態様にあっては、遮光膜35と
レジスト層37とが直にくっついているので、解像度の
劣化を更に低減でき、より高精度な回折格子を作製する
ことが可能である。
FIG. 3 shows an exposure process according to a second embodiment of the present invention. The illustrated optical mask 31 is formed by integrally forming a resist layer 37 on the same surface (lower surface) of the mask substrate 33 on which the light shielding film 35 is formed. In this embodiment having a configuration in which the light-shielding film 35 and the resist layer 37 are integrated (without the mask substrate therebetween), since the light-shielding film 35 and the resist layer 37 are directly attached to each other, Deterioration in resolution can be further reduced, and a more accurate diffraction grating can be manufactured.

【0011】ここで、このマスク基板(あるいはレジス
ト基板)33を用いた構成(図3)における界面反射率
と、従来構成(図1の光学マスク5及びレジスト基板1
1の組み合わせ)における界面反射率とを実験的に比較
したので、簡単に説明する。従来方式では、マスク基板
1及び空気層の界面の反射率が4.0%であり、レジス
ト層9及び空気層の界面の反射率が5.3%であり、露
光光線は空気層内を多重反射して解像度を極端に劣化さ
せ、結局高精度な回折格子の作製が困難である。
Here, the interface reflectance in the configuration (FIG. 3) using the mask substrate (or the resist substrate) 33 and the conventional configuration (the optical mask 5 and the resist substrate 1 in FIG. 1).
(Combination No. 1) was compared experimentally with the interface reflectivity, and will be briefly described. In the conventional method, the reflectance at the interface between the mask substrate 1 and the air layer is 4.0%, the reflectance at the interface between the resist layer 9 and the air layer is 5.3%, and the exposure light is multiplexed in the air layer. Reflection deteriorates the resolution extremely, which makes it difficult to produce a highly accurate diffraction grating after all.

【0012】これに対して、図3の本実施例構成の場
合、マスク基板33及びレジスト層37の界面の反射率
が0.1%であり、上記従来と比較して解像度劣化が飛
躍的に抑制されることが理解できよう。上記第1又は第
2実施態様に係る光学マスク21、31を用いれば、図
4、図5に示すように、所定入射角度(θ)で露光光束
を照射させることにより、傾斜した断面形状を有する回
折格子を作製することができる。この露光光束を斜めに
することは、市販の露光装置を特殊改造することによっ
て為し得るが、簡易・簡便には、例えば、図6に示すよ
うに所定のプリズム39をマスク基板33上に配設する
ことによって為し得る。
On the other hand, in the case of the configuration of the present embodiment shown in FIG. 3, the reflectance at the interface between the mask substrate 33 and the resist layer 37 is 0.1%, and the resolution is greatly reduced as compared with the conventional case. It can be seen that it is suppressed. When the optical masks 21 and 31 according to the first or second embodiment are used, as shown in FIGS. 4 and 5, by irradiating an exposure light beam at a predetermined incident angle (θ), the optical mask has an inclined cross-sectional shape. A diffraction grating can be made. The oblique exposure light beam can be achieved by specially modifying a commercially available exposure apparatus. However, for simplicity and convenience, for example, a predetermined prism 39 is disposed on the mask substrate 33 as shown in FIG. It can be done by setting.

【0013】ところで、露光時にレジスト層を透過した
光線は、レジスト表面で反射してノイズ光となり回折格
子の作製精度を悪化させる虞れがある。これを回避する
策を、例えば図2の光学マスクに適用した構成を図7に
示す。図7を参照すると、レジスト層27の表面(下
面)には、反射防止層が形成され、その一例として(感
光体又は油性材料(例えば、油性インク)から成る)光
吸収層41が形成される。より実際的には、後工程にお
ける光吸収層41の除去・剥離を容易化するために、光
吸収層41とレジスト層27との間には、(例えば、水
溶性のポリビニルアルコールから成る)混合防止層43
が介装される。
By the way, a light beam transmitted through the resist layer at the time of exposure may be reflected on the resist surface to become noise light, which may deteriorate the precision of manufacturing a diffraction grating. FIG. 7 shows a configuration in which a measure for avoiding this is applied to, for example, the optical mask of FIG. Referring to FIG. 7, an anti-reflection layer is formed on the surface (lower surface) of the resist layer 27, and a light absorbing layer 41 (made of a photoreceptor or an oil material (for example, oil ink)) is formed as an example. . More practically, in order to facilitate removal and peeling of the light absorbing layer 41 in a later step, a mixture (for example, made of water-soluble polyvinyl alcohol) is provided between the light absorbing layer 41 and the resist layer 27. Prevention layer 43
Is interposed.

【0014】反射防止層の別の例として、レジスト層表
面における反射を減少させ得る光透過性の膜、すなわ
ち、反射防止膜を形成してもよい。これを、例えば図2
の光学マスクに適用した構成を図8に示す。反射防止膜
45は、例えばポリビニルアルコールで形成でき、例え
ば露光波長の1/4λの厚さを有するように膜厚制御す
ることにより、反射防止効果を得ることができる。
As another example of the antireflection layer, a light transmissive film capable of reducing reflection on the surface of the resist layer, that is, an antireflection film may be formed. This is shown, for example, in FIG.
FIG. 8 shows a configuration applied to the optical mask of FIG. The antireflection film 45 can be formed of, for example, polyvinyl alcohol, and an antireflection effect can be obtained by controlling the film thickness so as to have a thickness of, for example, 4λ of the exposure wavelength.

【0015】上述した幾つかの実施態様において出来上
がる回折格子は、回折格子原盤として、その表面に蒸着
処理等により電極膜が形成され、メッキ処理等が施され
る等して、金属スタンパが作製される。このスタンパを
用いて、あるいは、更にこのスタンパを原盤として作製
したスタンパを用いて、大量の複製回折格子の安価な作
製が可能である。
In the diffraction gratings produced in the above-described embodiments, a metal stamper is manufactured by forming an electrode film on the surface of the diffraction grating master by a vapor deposition process or the like and performing a plating process or the like. You. Using this stamper, or using a stamper further using this stamper as a master, a large number of duplicated diffraction gratings can be manufactured at low cost.

【0016】この複製方法として具体的には、例えば、
(1) スタンパの(レリーフ)表面に、熱可逆性の樹脂を
注入して硬化させ、離型し複製回折格子を作製する射出
成形法と、(2) スタンパ表面に、紫外線硬化性樹脂を注
入し、転写基板(ガラス)を被せ、転写基板を通して紫
外線照射し、樹脂を硬化させ、転写基板とともに離型し
て複製回折格子を作製する2P法がある。尚、この2P
法で、転写基板に紫外線硬化樹脂を注入し、この転写基
板に回折格子原盤を被せるように工程変更することもで
きる。
[0016] Specifically, as this duplication method, for example,
(1) Injection molding method for injecting thermosetting resin into the (relief) surface of the stamper and curing it, and releasing it to produce a duplicated diffraction grating; and (2) Injecting ultraviolet curable resin on the stamper surface Then, there is a 2P method in which a transfer substrate (glass) is covered, ultraviolet light is irradiated through the transfer substrate, the resin is cured, and the mold is released together with the transfer substrate to produce a duplicated diffraction grating. In addition, this 2P
It is also possible to change the process by injecting an ultraviolet curable resin into the transfer substrate by a method and covering the transfer substrate with the diffraction grating master.

【0017】このようにスタンパを用いて(複製)回折
格子を作製する代わりに、回折格子原盤から直接複製す
ることもできる。この場合、より高精度な忠実な回折格
子の作製(複製)が可能であり、その複製方法は、前記
スタンパによる場合と基本的に同様である。上述した2
P法では転写基板(ガラス)を用いて複製処理を行う
が、これに代え、製造コスト低減のため、回折格子が形
成されるべき所定部材に直接に転写複製するように構成
できる。すなわち、上述した回折格子原盤の(レリー
フ)表面に、紫外線硬化性樹脂を直接注入し、所定部材
を被せ、回折格子原盤側から紫外線を照射して樹脂を硬
化させ、その後、回折格子原盤を剥離して、所定部材に
回折格子を作製する。これによれば、容易に反射型の表
面レリーフ回折格子も作製でき、例えば、アルミ蒸着ミ
ラーに直接回折格子を作製することができる。尚、所定
部材に紫外線硬化性樹脂を注入し、回折格子原盤を被せ
る、というように工程変更することもできる。
Instead of producing a (copy) diffraction grating using a stamper as described above, it is also possible to copy directly from a diffraction grating master. In this case, it is possible to manufacture (replicate) a more accurate and faithful diffraction grating, and the duplication method is basically the same as that using the stamper. 2 mentioned above
In the P method, the duplication process is performed using a transfer substrate (glass). Alternatively, in order to reduce the manufacturing cost, the duplication process can be directly performed on a predetermined member on which a diffraction grating is to be formed. That is, an ultraviolet curable resin is directly injected into the (relief) surface of the above-described diffraction grating master, covered with a predetermined member, and irradiated with ultraviolet rays from the diffraction grating master to cure the resin. Then, a diffraction grating is formed on a predetermined member. According to this, a reflection type surface relief diffraction grating can be easily produced, and for example, a diffraction grating can be directly produced on an aluminum vapor deposition mirror. The process can be changed such that an ultraviolet curable resin is injected into a predetermined member and a diffraction grating master is covered.

【0018】斯かる回折格子原盤は、転写・複製・離型
工程の後において、そのレジスト製回折格子が不可避的
に破損・破壊しているのに対し、遮光膜及びマスク基板
は殆ど破損していない。そこで、斯かる回折格子原盤の
レジスト層(回折格子)を除去し洗浄することによっ
て、光学マスク(遮光膜とマスク基板)として再使用
(リサイクル)することができ、非常に合理的・経済的
である。
In such a diffraction grating master, the resist diffraction grating is inevitably damaged or broken after the transfer, duplication and release steps, while the light-shielding film and the mask substrate are almost damaged. Absent. Therefore, by removing and cleaning the resist layer (diffraction grating) of such a diffraction grating master, it can be reused (recycled) as an optical mask (light-shielding film and mask substrate), which is very reasonable and economical. is there.

【0019】ところで、回折格子の回折効率は一般に溝
が深いほど良いことが知られており、深溝の回折格子作
製のため、レジスト層を単純に厚くしていくことが考え
られるが、露光光線の特性からレジスト層の厚さには限
界があり、従って、所望の深溝の回折格子ないし複製回
折格子の作製は一般的に困難である。しかしながら、図
9に示す構成のように厚い遮光膜35’により、図10
に示すような深い溝を具えた(レジスト製の)回折格子
1 を作製することができ、更に、図11に示すような
深い溝を具えた(複製)回折格子G2 を作製することが
できる。
It is generally known that the deeper the groove, the better the diffraction efficiency of the diffraction grating is. It is conceivable to simply increase the thickness of the resist layer in order to fabricate the diffraction grating with a deep groove. Due to the characteristics, the thickness of the resist layer is limited, and therefore, it is generally difficult to produce a diffraction grating having a desired deep groove or a duplicated diffraction grating. However, due to the thick light-shielding film 35 'as shown in FIG.
A diffraction grating G 1 (made of resist) having a deep groove as shown in FIG. 11 can be manufactured, and a (copy) diffraction grating G 2 having a deep groove as shown in FIG. 11 can be manufactured. it can.

【0020】要するに、遮光膜が溝形成に一役買ってお
り、遮光膜の厚さとレジストの溝深さとを足したもの
が、回折格子の溝深さに対応すると言い得る。従って、
理論的には、遮光膜の厚さの設定・制御により、従来で
は考えられなかったような非常に深い溝深さの回折格子
ないし複製回折格子を作製することが可能である。この
ような厚い遮光膜を有する光学マスクを形成する方法の
一例を説明する。それは、例えば、図12に示すよう
に、石英基板51に金属膜(遮光膜)53を1000Å程度
蒸着し、この金属膜53上にレジスト層を形成し、電子
線(EB)描画を行い、現像処理後、金属膜53をエッ
チングする方法である。しかしながら、この形成方法の
場合、厚い金属膜を形成しようとすると、エッチング処
理時間が増加し、レジストが損傷する虞れがあるから、
蒸着する金属膜の厚さをほどほどにし、後はメッキ法に
よって金属膜(遮光膜)を成長させる方法によって、厚
い遮光膜を形成することができる。
In short, the light shielding film plays a role in forming the groove, and it can be said that the sum of the thickness of the light shielding film and the groove depth of the resist corresponds to the groove depth of the diffraction grating. Therefore,
Theoretically, by setting and controlling the thickness of the light-shielding film, it is possible to produce a diffraction grating or a replica diffraction grating having a very deep groove depth, which has not been considered conventionally. An example of a method for forming an optical mask having such a thick light-shielding film will be described. For example, as shown in FIG. 12, a metal film (light-shielding film) 53 is deposited on a quartz substrate 51 by about 1000 °, a resist layer is formed on the metal film 53, electron beam (EB) drawing is performed, and development is performed. After the processing, the metal film 53 is etched. However, in the case of this forming method, if an attempt is made to form a thick metal film, the etching processing time increases, and the resist may be damaged.
A thick light-shielding film can be formed by reducing the thickness of the metal film to be deposited and then growing the metal film (light-shielding film) by plating.

【0021】厚い遮光膜を形成する代わりに、適当な厚
さの遮光膜を形成し、その遮光膜部分を突出させて(換
言すると、遮光膜部分を除いた部分を窪ませて)、厚い
遮光膜と同様の機能を奏するように構成することができ
る。すなわち、例えば、図13に示すように、石英基板
51に金属膜(遮光膜)63を蒸着し、露光・現像処理
により、レジストパターンを形成し、反応性ガス等を用
いたドライエッチング法によって所定パターンの遮光膜
を形成し、(例えばフロン系の反応性ガスによって)石
英基板51をエッチング処理して、深い溝65を具えた
光学マスク(段差付き光学マスク)を形成できる。これ
を用いれば、厚い遮光膜を具えた光学マスクと同じよう
に、深い溝を具えた回折格子を作製できる。
Instead of forming a thick light-shielding film, a light-shielding film having an appropriate thickness is formed, and the light-shielding film portion is made to protrude (in other words, a portion excluding the light-shielding film portion is depressed) to form a thick light-shielding film. It can be configured to perform the same function as the film. That is, for example, as shown in FIG. 13, a metal film (light shielding film) 63 is deposited on a quartz substrate 51, a resist pattern is formed by exposure and development processing, and a predetermined pattern is formed by a dry etching method using a reactive gas or the like. An optical mask (a stepped optical mask) having a deep groove 65 can be formed by forming a light-shielding film of a pattern and etching the quartz substrate 51 (for example, with a fluorocarbon-based reactive gas). By using this, a diffraction grating having a deep groove can be manufactured in the same manner as an optical mask having a thick light-shielding film.

【0022】最後に、本発明に従って形成可能な回折格
子の幾つかの形状例について説明する。従来プロセスで
は、レジスト層に対する露光方向と現像方向とが同じで
あるが、本実施態様に係るプロセスでは、露光方向と現
像方向とが相互に逆である。この特徴と、レジスト層と
遮光膜とが1つの基板に一体化されているという特徴、
とによって、通常の三角波状、鋸歯状、矩形波状、正弦
波状、正弦半波状等の回折格子を形成できることは勿論
のこと、例えば、図14〜17に示すような、所定基板
71の上に設けた、非常に斬新な特徴的な断面形状の回
折格子を作製することができる。これらの図において、
例えば、 θ1 , θ2 , θ3 , θ4 , θ6 , θ8 <90° θ5 , θ7 >90° であり、いずれの回折格子も逆台形状を呈しており、根
元部分が括れていることを特徴としている。図15の回
折格子G4 は、図14の回折格子G3 の上に矩形を足し
た様な断面形状を有し、図16の回折格子G5 は、図1
4の回折格子G 3 を更に傾けたような断面形状を有し、
図17の回折格子G6 は、図15の回折格子G4 を(矩
形を除いて)更に傾けたような断面形状を有している。
Finally, a diffraction pattern that can be formed according to the present invention
Some example shapes of the child will be described. Conventional process
Means that the exposure and development directions for the resist layer are the same
However, in the process according to the present embodiment, the exposure direction and the current
The image directions are opposite to each other. This feature and the resist layer
The feature that the light shielding film is integrated with one substrate,
Depending on the normal triangular, sawtooth, rectangular, sine
Of course, it is possible to form a wavy, half sinusoidal, etc. diffraction grating.
A predetermined substrate as shown in FIGS.
A very novel characteristic cross-sectional shape provided on 71
A folded grid can be made. In these figures,
For example, θ1, θTwo, θThree, θFour, θ6, θ8<90 ° θFive, θ7> 90 °, and both diffraction gratings have an inverted trapezoidal shape.
The feature is that the original part is constricted. 15 times
Folded lattice GFourIs the diffraction grating G of FIG.ThreeAdd a rectangle above
The diffraction grating G shown in FIG.FiveFigure 1
4 diffraction grating G ThreeHas a cross-sectional shape that is further inclined,
Diffraction grating G in FIG.6Is the diffraction grating G of FIG.FourTo (
It has a cross-sectional shape that is more inclined (except for its shape).

【0023】このような逆台形状の回折格子G3 〜G6
の場合、高い回折効率が得られ、また、複製が困難であ
る、換言すると、偽造が困難である、という利益を享受
でき、非常に好ましい。
Such an inverted trapezoidal diffraction grating G 3 -G 6
In the case of (1), a high diffraction efficiency can be obtained, and the advantage that replication is difficult, in other words, forgery is difficult can be enjoyed.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、界
面を減少ないし排除してノイズ光の発生を効果的に抑制
することができ、高い回折効率を有する回折格子を作製
することが可能になる。
As described above, according to the present invention, the generation of noise light can be effectively suppressed by reducing or eliminating the interface, and a diffraction grating having high diffraction efficiency can be manufactured. become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の回折格子作製方法を示す図である。FIG. 1 is a diagram showing a conventional diffraction grating manufacturing method.

【図2】本発明の第1実施態様に係る露光プロセスを示
す図である。
FIG. 2 is a view showing an exposure process according to the first embodiment of the present invention.

【図3】本発明の第2実施態様に係る露光プロセスを示
す図である。
FIG. 3 is a view showing an exposure process according to a second embodiment of the present invention.

【図4】第1実施態様の光学マスクを用いて斜めに露光
するプロセスを示す図である。
FIG. 4 is a diagram showing a process of obliquely exposing using the optical mask of the first embodiment.

【図5】第2実施態様の光学マスクを用いて斜めに露光
するプロセスを示す図である。
FIG. 5 is a view showing a process of obliquely exposing using the optical mask of the second embodiment.

【図6】プリズムを用いて斜めに露光するプロセスを示
す図である。
FIG. 6 is a view showing a process of obliquely exposing using a prism.

【図7】光吸収層を設けた構成を示す図である。FIG. 7 is a diagram showing a configuration provided with a light absorption layer.

【図8】反射防止膜を設けた構成を示す図である。FIG. 8 is a diagram showing a configuration provided with an antireflection film.

【図9】厚い遮光膜を具えた光学マスクを用いた露光プ
ロセスを示す図である。
FIG. 9 is a view showing an exposure process using an optical mask having a thick light-shielding film.

【図10】深い溝を具えた回折格子が作製された状態を
示す図である。
FIG. 10 is a diagram showing a state in which a diffraction grating having deep grooves is manufactured.

【図11】複製回折格子を示す図である。FIG. 11 is a diagram showing a duplicated diffraction grating.

【図12】厚い遮光膜を具えた基板を示す図である。FIG. 12 is a diagram showing a substrate provided with a thick light-shielding film.

【図13】深い溝を具えた基板を示す図である。FIG. 13 shows a substrate provided with a deep groove.

【図14】斬新な断面形状を有する回折格子を示す図で
ある。
FIG. 14 is a diagram showing a diffraction grating having a novel cross-sectional shape.

【図15】別の斬新な断面形状を有する回折格子を示す
図である。
FIG. 15 is a diagram showing a diffraction grating having another novel sectional shape.

【図16】更に別の斬新な断面形状を有する回折格子を
示す図である。
FIG. 16 is a diagram showing a diffraction grating having another novel cross-sectional shape.

【図17】他の斬新な断面形状を有する回折格子を示す
図である。
FIG. 17 is a diagram showing a diffraction grating having another novel cross-sectional shape.

【符号の説明】[Explanation of symbols]

1、23、33…マスク基板 3、25、35、35’…遮光膜 5、21、31…光学マスク 7…基板 9、27、37…レジスト層 11…レジスト基板 39…プリズム 41…光吸収層 43…混合防止層 45…反射防止膜 51…石英基板 53、63…金属膜 65…溝 71…基板 G1、G2、G3、G4、G5、G6…回折格子 1, 23, 33 ... mask substrate 3, 25, 35, 35 '... light-shielding film 5, 21, 31 ... optical mask 7 ... substrate 9, 27, 37 ... resist layer 11 ... resist substrate 39 ... prism 41 ... light absorption layer 43: anti-mixing layer 45: anti-reflection film 51: quartz substrate 53, 63: metal film 65: groove 71: substrate G1, G2, G3, G4, G5, G6: diffraction grating

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 単一の基板を用いて回折格子を作製する
方法であって、 感光体層と所定パターンの光透過減衰膜とを前記基板に
一体化形成するステップと、 露光照射光により、光透過減衰膜を介して、感光体層を
露光するステップと、 露光後の感光体層を現像するステップ、 とを含むことを特徴とする方法。
1. A method for producing a diffraction grating using a single substrate, comprising: a step of integrally forming a photoreceptor layer and a light transmission attenuation film of a predetermined pattern on the substrate; A method comprising: exposing a photoreceptor layer through a light transmission attenuating film; and developing the exposed photoreceptor layer.
【請求項2】 前記基板の一面側に感光体層があり、反
対面側に光透過減衰膜があることを特徴とする請求項1
記載の方法。
2. A photoreceptor layer is provided on one surface side of the substrate, and a light transmission attenuation film is provided on an opposite surface side.
The described method.
【請求項3】 前記基板の同一面側に、感光体層と光透
過減衰膜とがあることを特徴とする請求項1記載の方
法。
3. The method according to claim 1, wherein a photoreceptor layer and a light transmission attenuation film are provided on the same side of the substrate.
【請求項4】 前記感光体層の外面には、反射防止層が
設けられることを特徴とする請求項1記載の方法。
4. The method according to claim 1, wherein an anti-reflection layer is provided on an outer surface of the photoconductor layer.
【請求項5】 現像後の感光体層の表面をメッキ処理す
るステップと、 メッキ処理後の感光体層をマスタグレーティングとして
用いて、回折格子を作製するステップ、 とを含むことを特徴とする請求項1記載の方法。
5. The method according to claim 1, further comprising: plating the surface of the photoreceptor layer after development; and forming a diffraction grating by using the photoreceptor layer after plating as a mass tag grating. Item 7. The method according to Item 1.
【請求項6】 現像後の感光体層の表面に樹脂を注入す
るステップと、 注入樹脂を硬化させるステップと、 硬化樹脂を除去するステップ、 とを含むことを特徴とする請求項1記載の方法。
6. The method according to claim 1, further comprising: injecting a resin into the surface of the photoreceptor layer after development; curing the injected resin; and removing the cured resin. .
【請求項7】 所定パターンの遮光膜が一方の面に形成
され、感光体層が他方の面に形成されて成ることを特徴
とする感光基板。
7. A photosensitive substrate, wherein a light-shielding film having a predetermined pattern is formed on one surface, and a photoreceptor layer is formed on the other surface.
【請求項8】 所定パターンの遮光膜が一方の面に形成
され、該遮光膜の上に感光体層が形成されて成ることを
特徴とする感光基板。
8. A photosensitive substrate, wherein a light-shielding film having a predetermined pattern is formed on one surface, and a photosensitive layer is formed on the light-shielding film.
【請求項9】 所定基板の上に所定ピッチで並列に形成
される回折格子であって、 各回折格子の断面における根元部分は、括れていること
を特徴とする回折格子。
9. A diffraction grating formed in parallel on a predetermined substrate at a predetermined pitch, wherein a root portion in a cross section of each diffraction grating is narrowed.
【請求項10】 各回折格子の断面において、根元部分
から先端部分にかけて全体的に傾いていることを特徴と
する請求項9記載の回折格子。
10. The diffraction grating according to claim 9, wherein the cross section of each diffraction grating is entirely inclined from a root portion to a tip portion.
【請求項11】 各回折格子の断面において、先端部分
は、矩形を重畳したような形状を有することを特徴とす
る請求項9記載の回折格子。
11. The diffraction grating according to claim 9, wherein, in a cross section of each diffraction grating, a tip portion has a shape in which rectangles are overlapped.
JP24864698A 1998-09-02 1998-09-02 Diffraction grating Expired - Fee Related JP3877444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24864698A JP3877444B2 (en) 1998-09-02 1998-09-02 Diffraction grating
US09/795,442 US6723474B2 (en) 1998-09-02 2001-03-01 Method of fabricating diffraction grating and diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24864698A JP3877444B2 (en) 1998-09-02 1998-09-02 Diffraction grating

Publications (2)

Publication Number Publication Date
JP2000075117A true JP2000075117A (en) 2000-03-14
JP3877444B2 JP3877444B2 (en) 2007-02-07

Family

ID=17181225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24864698A Expired - Fee Related JP3877444B2 (en) 1998-09-02 1998-09-02 Diffraction grating

Country Status (2)

Country Link
US (1) US6723474B2 (en)
JP (1) JP3877444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350489B1 (en) * 2000-07-14 2002-08-28 삼성전자 주식회사 Fabrication apparatus for gain flattening filter using a optical attenuator
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2013528454A (en) * 2010-06-17 2013-07-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Tilted phase grating structure
CN108761616A (en) * 2018-03-23 2018-11-06 中国科学院上海光学精密机械研究所 Multiband high reflection flexibility wave plate and preparation method thereof
JP2021530862A (en) * 2018-06-28 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Manufacture of diffraction grating

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192692B2 (en) 2003-09-11 2007-03-20 Bright View Technologies, Inc. Methods for fabricating microstructures by imaging a radiation sensitive layer sandwiched between outer layers
US7867695B2 (en) * 2003-09-11 2011-01-11 Bright View Technologies Corporation Methods for mastering microstructures through a substrate using negative photoresist
US7190387B2 (en) * 2003-09-11 2007-03-13 Bright View Technologies, Inc. Systems for fabricating optical microstructures using a cylindrical platform and a rastered radiation beam
FR2878983B1 (en) * 2004-12-02 2007-01-05 Commissariat Energie Atomique IMPROVED PHOTOLITHOGRAPHIC DEVICE AND METHOD FOR REALIZING INCLINED FLANK PATTERNS
WO2007057500A1 (en) 2005-11-18 2007-05-24 Nanocomp Oy Ltd Method of producing a diffraction grating element
US20070148558A1 (en) * 2005-12-27 2007-06-28 Shahzad Akbar Double metal collimated photo masks, diffraction gratings, optics system, and method related thereto
US8003537B2 (en) * 2006-07-18 2011-08-23 Imec Method for the production of planar structures
JP2008159694A (en) * 2006-12-21 2008-07-10 Shinko Electric Ind Co Ltd Manufacturing method of electronic component
JP6534398B2 (en) * 2014-12-18 2019-06-26 ギガフォトン株式会社 Grating, method of manufacturing grating, and method of reproducing grating
JP7504574B2 (en) * 2018-10-22 2024-06-24 デクセリアルズ株式会社 Master, method for producing master, and method for producing transfer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033504A (en) 1983-08-05 1985-02-20 Agency Of Ind Science & Technol Production of blazed grating
US4948706A (en) * 1987-12-30 1990-08-14 Hoya Corporation Process for producing transparent substrate having thereon transparent conductive pattern elements separated by light-shielding insulating film, and process for producing surface-colored material
JPH06201909A (en) 1992-12-28 1994-07-22 Canon Inc Production of diffraction grating
US5712065A (en) * 1995-04-27 1998-01-27 Industrial Technology Research Institute Process for fabricating a multicolor filter
JPH08334610A (en) 1995-06-06 1996-12-17 Furukawa Electric Co Ltd:The Production of diffraction grating
JP3045180B2 (en) * 1996-06-04 2000-05-29 シチズン時計株式会社 Ink jet head and method of manufacturing the same
JPH10106047A (en) 1996-10-01 1998-04-24 Sony Corp Production of optical recording medium
US5786116A (en) * 1997-02-14 1998-07-28 Micron Technology, Inc. Atom lithographic mask having diffraction grating aligned with primary mask pattern

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350489B1 (en) * 2000-07-14 2002-08-28 삼성전자 주식회사 Fabrication apparatus for gain flattening filter using a optical attenuator
JP2010085722A (en) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd Optical element and pattern formation method
JP2013528454A (en) * 2010-06-17 2013-07-11 カールスルーアー・インスティトゥート・フュア・テヒノロギー Tilted phase grating structure
US9480447B2 (en) 2010-06-17 2016-11-01 Karlsruher Institut Fuer Technologie Inclined phase grating structures
CN108761616A (en) * 2018-03-23 2018-11-06 中国科学院上海光学精密机械研究所 Multiband high reflection flexibility wave plate and preparation method thereof
JP2021530862A (en) * 2018-06-28 2021-11-11 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Manufacture of diffraction grating
US11333896B2 (en) 2018-06-28 2022-05-17 Applied Materials, Inc. Fabrication of diffraction gratings
JP7176013B2 (en) 2018-06-28 2022-11-21 アプライド マテリアルズ インコーポレイテッド Manufacture of diffraction gratings
US11733533B2 (en) 2018-06-28 2023-08-22 Applied Materials, Inc. Fabrication of diffraction gratings

Also Published As

Publication number Publication date
US6723474B2 (en) 2004-04-20
US20010008741A1 (en) 2001-07-19
JP3877444B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
KR101095681B1 (en) Photomask for extreme ultraviolet lithography and method for fabricating the same
KR910005879B1 (en) Production of transmissivity modulation type photomask and production of diffraction grating using the photomask
JP2000075117A (en) Manufacture of diffraction grating and diffraction grating
JP2920164B2 (en) Reflective overcoat for replica gratings
US6200711B1 (en) Phase mask for manufacturing diffraction grating, and method of manufacture
JP2008074043A (en) Mold for fine molding and its regeneration method
JP2010169722A (en) Method of manufacturing optical element, and optical element
US6569608B2 (en) Method of manufacturing an element with multiple-level surface
JPH0435726B2 (en)
JPH06186412A (en) Formation of fine pattern
JPH01252902A (en) Low reflection diffraction grating and its production
JP2006243633A (en) Manufacturing method of member having antireflection structure body
JP2704938B2 (en) Method of manufacturing mask for pattern formation of semiconductor element
JPH0322601B2 (en)
JP2889062B2 (en) X-ray mask and manufacturing method thereof
KR20060076599A (en) Reflection photomask, fabricating method of the same
JP3130335B2 (en) Method of forming resist pattern
JPH041703A (en) Production of phase shift type diffraction grating
JPH08334610A (en) Production of diffraction grating
JP6135105B2 (en) Method for manufacturing a reflective mask
JPH09274425A (en) Hologram element and its production
JP2728732B2 (en) Method of forming hologram by electron beam lithography
JPH07104590B2 (en) Transmittance modulation type photomask, its manufacturing method and diffraction grating manufacturing method using the same
JPH05343806A (en) Manufacture of phase-shifting diffraction
JPH0374804B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees