JP2000074858A - Method for quantitating palladium palladium catalyst - Google Patents

Method for quantitating palladium palladium catalyst

Info

Publication number
JP2000074858A
JP2000074858A JP10246732A JP24673298A JP2000074858A JP 2000074858 A JP2000074858 A JP 2000074858A JP 10246732 A JP10246732 A JP 10246732A JP 24673298 A JP24673298 A JP 24673298A JP 2000074858 A JP2000074858 A JP 2000074858A
Authority
JP
Japan
Prior art keywords
palladium
powder
sample
fluorescent
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10246732A
Other languages
Japanese (ja)
Inventor
Naohiko Sado
直彦 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10246732A priority Critical patent/JP2000074858A/en
Publication of JP2000074858A publication Critical patent/JP2000074858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for analyzing quantitatively a palladium quantity in a palladium catalyst upto relatively high concentration range (about 10 wt.%) quickly and highly precisely. SOLUTION: In this method, correlation between a palladium concentration (wt.%) and fluorescent X-ray intensity is prelimiarily measured by fluorescent X-ray measurement using a solid body as a standard sample prepared mixing.pulveriziong.pressure-molding powder of a base material (for example, lithium tetraborate), a prescribed standard amount of palladium oxide powder and a binder under a prescribed condition, a solid body prepared by mixing.pulverizing.pressure-molding a powder sample of a palladium catalyst as a measuring object, the powder of the base material and the binder under the prescribed condition is measured by fluorescent X-ray measurement, and palladium in the powder sample of the palladium catalyst of the measuring object is determined quantitatively based on a measured result of the correlation between the palladium concentration (wt.%) and the fluorescent X-ray intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜素子型半導
体ガスセンサの選択燃焼層材料中に含まれる触媒金属の
分析法に係わり、特に酸化アルミニウム(Al2O3:アルミナ)
に担持されたパラジウム(Pd)を定量分析する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a catalyst metal contained in a selective combustion layer material of a thin film element type semiconductor gas sensor, and particularly to aluminum oxide (Al 2 O 3 : alumina).
The present invention relates to a method for quantitatively analyzing palladium (Pd) supported on a substrate.

【0002】[0002]

【従来の技術】ガスセンサは、特定ガス成分を認識する
機能と、認識したものを電気的信号等に変換する機能を
備えており、測定対象は都市ガスなどの一般可燃ガスや
一酸化炭素などの有毒ガス等々である。半導体ガスセン
サの代表的な材料には酸化錫,酸化亜鉛,酸化チタンな
どがあり、信号変換方式は半導体表面へのガス吸着およ
び反応によって生ずる電子伝導変化を利用するものであ
る。特に可燃性ガスの測定には前記のような表面制御型
センサが用いられるのが一般的である。
2. Description of the Related Art A gas sensor has a function of recognizing a specific gas component and a function of converting the recognized signal into an electrical signal or the like. The measurement object is a general combustible gas such as city gas or carbon monoxide. Toxic gases and so on. Typical materials for a semiconductor gas sensor include tin oxide, zinc oxide, titanium oxide, and the like. The signal conversion method utilizes a change in electron conduction caused by gas adsorption and reaction on a semiconductor surface. In particular, the surface control type sensor as described above is generally used for measuring combustible gas.

【0003】さらに、感ガス特性を改善するためにセン
サ材料に貴金属を微量分散担持した材料の開発や、多種
類のガスを好感度で検出する高性能なガス警報器や、小
型で省電力の電池駆動型の薄膜型ガスセンサの開発など
が盛んに行われている。この場合の薄膜ガスセンサの選
択燃焼層材料には、メタン感度の増加およびガス選択性
の確保が重要であり、これに適応するものとして、酸化
アルミニウム担持パラジウム触媒などの開発適用が検討
されている。
Further, in order to improve gas sensing characteristics, a material in which a trace amount of noble metal is dispersed and supported on a sensor material has been developed, a high-performance gas alarm which detects various types of gases with good sensitivity, and a small and power-saving gas alarm. The development of a battery-driven thin-film gas sensor is being actively pursued. In this case, it is important to increase the methane sensitivity and ensure gas selectivity as a material for the selective combustion layer of the thin film gas sensor, and development and application of an aluminum oxide-supported palladium catalyst and the like are being studied as adapting to this.

【0004】酸化アルミニウム担持パラジウム触媒は、
酸化アルミニウム粉末に所定量の塩化パラジウム水溶液
を含浸後に乾燥させ、酸化アルミニウム系添加物(アルミナソ
゛ルなど)を加えて混合・粉砕・熱処理されて作られる。
パラジウム触媒は担体として酸化アルミニウムが用いら
れ、担持されたパラジウムは酸化パラジウムが主体の触
媒となっている。ガスセンサにおける前記パラジウム触
媒は、センサ部の最表面に位置するもので、塗布法やス
ピンコート法などで薄膜状に付けられて選択燃焼層を構
成している。
A palladium catalyst supported on aluminum oxide is
Aluminum oxide powder is impregnated with a predetermined amount of an aqueous solution of palladium chloride, then dried, and an aluminum oxide-based additive (alumina solu- tion, etc.) is added, mixed, pulverized, and heat-treated.
Aluminum oxide is used as a carrier for the palladium catalyst, and the supported palladium is a catalyst mainly composed of palladium oxide. The palladium catalyst in the gas sensor is located on the outermost surface of the sensor unit, and is applied in a thin film by a coating method, a spin coating method, or the like to form a selective combustion layer.

【0005】ガスセンサの開発は、ガス感度特性とセン
サ材料組成の定量的な評価が必要であり、特に前記パラ
ジウム触媒のパラジウム量の分析は重要であり精度よく
迅速に定量する方法が求められている。パラジウムの一
般的な定量法としては、例えば日本分析化学会編の『分
析化学便覧・改訂四版(1991)』に記載されている。ここ
には、分析試料形態が金属の場合のパラジウムを王水で
溶解する前処理方法や、共存物の分離法や、さらにその
後に定量分析する方法として重量法,電位差滴定法,吸
光光度法,原子吸光法などが記載されている。
The development of gas sensors requires quantitative evaluation of gas sensitivity characteristics and sensor material composition. In particular, the analysis of the amount of palladium in the palladium catalyst is important, and a method for accurate and rapid quantification is required. . A general method for determining palladium is described, for example, in “Analytical Chemistry Handbook, Fourth Revised Edition (1991)”, edited by the Japan Society for Analytical Chemistry. Here, the pretreatment method of dissolving palladium in aqua regia when the sample is in the form of a metal, the separation of coexisting substances, and the subsequent quantitative analysis methods include gravimetric method, potentiometric titration method, spectrophotometric method, Atomic absorption methods and the like are described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、酸化パ
ラジウムが主体の分析試料の前処理方法を含めた一般化
された分析方法は、まだ確立していない。また、分析試
料中のパラジウム(Pd)は材料が熱処理を経ているので
酸化パラジウム(PdO)を形成しており、王水には不溶
解性の状態になっている。したがって前記の方法は試料
の前処理として適用できない。
However, a generalized analytical method including a pretreatment method for an analytical sample mainly composed of palladium oxide has not been established yet. Further, palladium (Pd) in the analysis sample forms palladium oxide (PdO) because the material has undergone heat treatment, and is insoluble in aqua regia. Therefore, the above method cannot be applied as a sample pretreatment.

【0007】この対策として酸化パラジウムを含む材料
を水素還元する方法を適用する方法が考えられる。この
場合、新たに処理設備が必要になり、また水素還元の程
度の判定も困難であるなどの問題がある。さらに分析試
料の前処理方法として、炭酸カリウムナトリウム(NaKCO
3)などのアルカリ溶融法が考えられる。この場合、還元
作用が部分的となるため、金属パラジウムと酸化パラジ
ウムの混合状態となりパラジウム全量の回収処理ができ
ない問題があった。
As a countermeasure for this, a method of applying a method of reducing a material containing palladium oxide by hydrogen is considered. In this case, there is a problem that a new processing facility is required, and it is difficult to determine the degree of hydrogen reduction. Further, as a pretreatment method of the analysis sample, sodium potassium carbonate (NaKCO
An alkali melting method such as 3 ) can be considered. In this case, since the reducing action is partial, there is a problem that the mixed state of the metal palladium and the palladium oxide is caused, and the entire palladium cannot be recovered.

【0008】一方、担体が酸化スズで、この担体に白金
やパラジウムを担持した微量触媒金属の分析に、固体有
機材料を台座として粉末試料を加圧成形し、蛍光X線分
析法により測定する方法が、本発明者により提案されて
いる(特開平2−145949号公報参照)。しかしな
がら、この方法は、パラジウム濃度(wt%)と蛍光X線
強度との相関の直線性および再現性が、パラジウム濃度
の高いところでは得られず、1.2wt%程度までが限度
であるという問題があった。
On the other hand, for analysis of a trace amount of catalytic metal in which a carrier is tin oxide and platinum or palladium is carried on the carrier, a method in which a powder sample is pressure-formed using a solid organic material as a pedestal and measured by X-ray fluorescence analysis Has been proposed by the present inventor (see JP-A-2-145949). However, this method has a problem that the linearity and reproducibility of the correlation between the palladium concentration (wt%) and the fluorescent X-ray intensity cannot be obtained at a high palladium concentration, and is limited to about 1.2 wt%. was there.

【0009】この発明は、上記のような問題点を解決す
るためになされたもので、本発明の課題は、適切な方法
により分析試料の調製を行うことにより、パラジウム濃
度の高いところ(10wt%程度)まで蛍光X線分析によ
る定量を可能とし、酸やアルカリによる溶解や溶融をし
ない簡便な調製法で、酸化アルミニウムなどに担持され
たパラジウム触媒のパラジウム量を迅速にかつ精度よく
定量分析する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to prepare an analytical sample by an appropriate method so that a high palladium concentration (10 wt%) can be obtained. A method that enables rapid and accurate quantitative analysis of the amount of palladium of a palladium catalyst supported on aluminum oxide, etc., by a simple preparation method that enables quantification by fluorescent X-ray analysis up to the extent) and does not dissolve or melt with acids or alkalis. Is to provide.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
め、請求項1の発明では、酸化アルミニウムなどの担体
粉末にパラジウムを担持してなるガスセンサ用のパラジ
ウム触媒中のパラジウムの定量方法において、基材とな
る粉末と、所定の標準量の酸化パラジウム粉末と、バイ
ンダーとを所定の条件で混合・粉砕・加圧成形してなる
固形体を標準試料として、パラジウム濃度(wt%)と蛍
光X線強度との相関を、蛍光X線測定により予め検量し
ておき、測定対象の前記パラジウム触媒の粉末試料と、
前記基材となる粉末と、バインダーとを所定の条件で混
合・粉砕・加圧成形した固形体を蛍光X線測定し、前記
パラジウム濃度(wt%)と蛍光X線強度との相関の検量
結果に基づいて、測定対象のパラジウム触媒粉末試料中
のパラジウムを定量することとする。
Means for Solving the Problems To solve the above-mentioned problems, according to the invention of claim 1, in a method for determining palladium in a palladium catalyst for a gas sensor comprising palladium supported on a carrier powder such as aluminum oxide, A solid body obtained by mixing, pulverizing, and pressing a powder as a base material, a predetermined standard amount of palladium oxide powder, and a binder under predetermined conditions is used as a standard sample, and the palladium concentration (wt%) and the fluorescence X The correlation with the line intensity is calibrated in advance by X-ray fluorescence measurement, and the powder sample of the palladium catalyst to be measured,
X-ray fluorescence measurement of a solid obtained by mixing, pulverizing, and press-molding the powder as the base material and the binder under predetermined conditions, and a calibration result of a correlation between the palladium concentration (wt%) and the X-ray fluorescence intensity Based on the above, palladium in the palladium catalyst powder sample to be measured is determined.

【0011】好適な基材となる粉末を対象試料と混合
し、所定の条件で混合・粉砕・加圧成形した固形体とし
て、測定試料を調整することにより、パラジウム濃度の
高いところ(10wt%程度)まで蛍光X線分析による定
量が可能となる。
A powder having a high palladium concentration (about 10% by weight) is prepared by mixing a powder as a suitable base material with a target sample and mixing, pulverizing and pressing under predetermined conditions to prepare a solid sample. Up to) can be quantified by fluorescent X-ray analysis.

【0012】請求項2の発明によれば、好適な基材とし
て、四ホウ酸リチウムを用いる。四ホウ酸リチウムは、
蛍光X線の吸収が少なく、かつパラジウムの近接線など
の妨害がない。これにより、広い濃度範囲での定量が可
能となる。請求項3の発明によれば、バインダーとして
ステアリン酸を、固形体の加圧成形には試料保持枠とし
てアルミニウムリングを用いる。これにより、試料の調
整が、容易となる。
According to the second aspect of the present invention, lithium tetraborate is used as a preferable substrate. Lithium tetraborate
The absorption of fluorescent X-rays is small, and there is no interference such as the proximity line of palladium. This enables quantification in a wide concentration range. According to the invention of claim 3, stearic acid is used as a binder, and an aluminum ring is used as a sample holding frame for pressure-forming a solid body. This facilitates the adjustment of the sample.

【0013】請求項4の発明によれば、蛍光X線測定に
おいて、バックグランドを補正する。これにより、安定
した測定と高精度の分析を可能とする。
According to the present invention, the background is corrected in the X-ray fluorescence measurement. This enables stable measurement and high-precision analysis.

【0014】[0014]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】〔測定試料および標準試料の調製〕図1
は、本発明の実施例に係わるパラジウム触媒粉末試料中
のPdの定量分析のための固形体試料調製手順を示す流
れ図である。
[Preparation of measurement sample and standard sample] FIG.
3 is a flowchart showing a solid sample preparation procedure for quantitative analysis of Pd in a palladium catalyst powder sample according to an example of the present invention.

【0016】分析試料中のPdは、酸化アルミニウム粉
末に担持されて含まれるもので、粉末試料として0.1gを
正確に秤量する。加圧成形して固形体にするために基材
として四ホウ酸リチウム(Li2B4O7)の5gとバインダー
としてのステアリン酸を0.5gを秤量採取する。
[0016] Pd in the analysis sample is contained in the aluminum oxide powder supported thereon, and accurately weighs 0.1 g as a powder sample. 5 g of lithium tetraborate (Li 2 B 4 O 7 ) as a base material and 0.5 g of stearic acid as a binder are weighed and collected in order to form a solid by pressure molding.

【0017】次に、標準試料とする固形体試料の調製を
行う。標準試料としては、酸化パラジウム試薬の粉末を
0.001〜0.01gの範囲で秤量する量を変え、前記粉末試料
0.1gに対して1〜10wt%に相当する5点を秤量採取す
る。次に、基材としての四ホウ酸リチウム5gとバイン
ダーとしてのステアリン酸0.5gを、前記試料調製と
同様に秤量採取する。いずれも秤量後一時保管する容器
には、容量50mlのビーカーを用いる。採取した粉末試料
は、メノウ乳鉢を用いて混合・粉砕を行う。通常、パラ
ジウム触媒粉末は数十グラムレベルで製造される。この
ガスセンサ用材料として用いられる量はミリグラムレベ
ル以下の微量であり、その材料の組成分析には1グラム
以下の少量が用いられる。そこで、粉末試料を固形体試
料にするには、少量の分析試料の粉末を保持・増量する
基材が必要となる。
Next, a solid sample as a standard sample is prepared. As a standard sample, powder of palladium oxide reagent was used.
Change the amount to be weighed in the range of 0.001 to 0.01 g, and
Five points corresponding to 1 to 10 wt% with respect to 0.1 g are weighed and collected. Next, 5 g of lithium tetraborate as a base material and 0.5 g of stearic acid as a binder are weighed and collected in the same manner as in the sample preparation. In each case, a beaker with a capacity of 50 ml is used as a container for temporary storage after weighing. The collected powder sample is mixed and pulverized using an agate mortar. Usually, palladium catalyst powder is produced at the tens of grams level. The amount used as a material for this gas sensor is a trace amount of milligram level or less, and a small amount of 1 gram or less is used for composition analysis of the material. Therefore, in order to make a powder sample into a solid sample, a base material that holds and increases a small amount of powder of the analysis sample is required.

【0018】基材として用いる四ホウ酸リチウム(Li2B
4O7)の粉末は、吸湿性が比較的小さく、粉末基材とし
て扱えること、また、軽元素から構成される化合物であ
り、蛍光X線の吸収が小さく、かつパラジウムの測定上
は接近したX線がなく妨害しないので基材として用いる
増量剤的な使用に好適である。ここでの使用量は、固形
体の完成品の形態を満足する適量を検討して5gとした。
ステアリン酸〔CH3(CH 2)16COOH〕は、材質がロウ質で撥
水性があり粉末状で扱う事ができバインダーとして適し
ている。バインダーは、基材を含む試料全量の10wt%相当
量で、加圧成形して固形化するためバインダー量の最適
化を検討して決定した。
Lithium tetraborate (Li) used as a substrateTwoB
FourO7) Powder has relatively low hygroscopicity,
Compounds that are composed of light elements
Low absorption of fluorescent X-rays
Is used as a base material because there is no close X-ray and it does not interfere
Suitable for use as a bulking agent. The amount used here is solid
An appropriate amount that satisfies the form of the finished product of the body was examined and set to 5 g.
Stearic acid (CHThree(CH Two)16COOH] is waxy and repellent
Water-based and can be handled in powder form, suitable as a binder
ing. The binder is equivalent to 10 wt% of the total amount of the sample including the base material
Optimum amount of binder to solidify by pressure molding
It was decided after considering the conversion.

【0019】分析試料を調合する各粉末材料および試料
の粒度は、100μm以下になるように行う。この場合は篩
の目の開きが90μmのものを用いてふるうことによって
一定の粒度に調整できる。粒度は小さい程、加圧成形性
がよい。また、比表面積が大きい程、蛍光X線強度測定
に好適である。
The particle size of each powder material and the sample for preparing the analysis sample is adjusted to 100 μm or less. In this case, the particle size can be adjusted to a certain level by sieving the sieve with a sieve opening of 90 μm. The smaller the particle size, the better the pressure moldability. Further, the larger the specific surface area, the more suitable for the fluorescent X-ray intensity measurement.

【0020】次に加圧成形によって固形体の試料を作製
する。図2は、本発明の実施例に係わる固形体試料を調
製する加圧成形時の構成を示すものである。試料保護用
に40φ,1mm厚,高さ5mmのアルミリング5を用いて、こ
れに粉末試料を充填して加圧する。粉末試料の充填前に
加圧成形用台座22,23と、アルミリング5からなる
試料との間に有機薄膜3を挿入する。加圧は、油圧プレ
スで全圧15tとする。この加圧力は、試料が固形体化
し、取り扱いが十分な機械的強度が得られるような加圧
力を検討して決定した。有機薄膜3はマイラ膜(材質;
ホ゜リエステル,約5μm厚)を用いる。これにより、固形体試
料4の分析面の汚染が防止でき、また台座22,23か
らの剥離が容易となり、これにより分析面が平滑で良好
な固形体試料を得ることができる。このようにして固形
体は約40φ,高さ約3mmのものを得、分析試料と標準試
料の調製を完了する。
Next, a solid sample is prepared by pressure molding. FIG. 2 shows a configuration at the time of pressure molding for preparing a solid sample according to an embodiment of the present invention. An aluminum ring 5 having a diameter of 40 mm, a thickness of 1 mm, and a height of 5 mm is used for protecting the sample, and the sample is filled with the powder and pressed. Before the filling of the powder sample, the organic thin film 3 is inserted between the pressure forming pedestals 22 and 23 and the sample formed of the aluminum ring 5. Pressurization is performed with a hydraulic press to a total pressure of 15 t. This pressing force was determined by examining the pressing force such that the sample was solidified and sufficient mechanical strength for handling was obtained. The organic thin film 3 is a mylar film (material;
(Polyester, about 5 μm thick). Accordingly, contamination of the analysis surface of the solid sample 4 can be prevented, and the solid sample 4 can be easily separated from the pedestals 22 and 23, so that a good solid sample having a smooth analysis surface can be obtained. In this way, a solid body of about 40φ and a height of about 3 mm is obtained, and the preparation of the analysis sample and the standard sample is completed.

【0021】この固形体試料について蛍光X線強度の測
定を行うことにより、Pdの定量分析を行うことができ
る。
By measuring the fluorescent X-ray intensity of this solid sample, quantitative analysis of Pd can be performed.

【0022】〔Pdの蛍光X線測定〕次に、蛍光X線分
析によるPdの測定方法について以下に述べる。図3
は、本発明の実施例に係わる固形体試料中のPdの定量
分析のための蛍光X線分析装置の光学系の構成図であ
る。X線管からの一次X線を物質に照射すると二次X線
の蛍光X線が発生する。X線分光の条件はBraggの式
2dsinθ=nλ(d:分光結晶の面間隔,θ:X線の
分光結晶への入射角,λ:入射X線の波長,n:回折次
数)による。
[Pd Fluorescence X-Ray Measurement] Next, a method of measuring Pd by X-ray fluorescence analysis will be described below. FIG.
1 is a configuration diagram of an optical system of an X-ray fluorescence analyzer for quantitative analysis of Pd in a solid sample according to an embodiment of the present invention. When primary X-rays from an X-ray tube are irradiated on a substance, fluorescent X-rays of secondary X-rays are generated. X-ray spectroscopy conditions are Bragg's equation
2d sin θ = nλ (d: plane spacing of the dispersive crystal, θ: incident angle of the X-ray to the dispersive crystal, λ: wavelength of the incident X-ray, n: diffraction order).

【0023】この場合、試料セット位置に固形体試料を
セットし、この試料より発生した蛍光X線の波長から元
素(Pd)の定量分析ができる。図4は、本発明の実施
例に係わる固形体試料中のPdの定量分析のための蛍光
X線強度測定に関し、分析条件を含めたPdKα線のス
ペクトルと連続X線のバックグランド補正位置を示すス
ペクトル例図である。
In this case, a solid sample is set at the sample setting position, and the element (Pd) can be quantitatively analyzed from the wavelength of the fluorescent X-ray generated from the sample. FIG. 4 shows a spectrum of PdKα rays including the analysis conditions and a background correction position of continuous X-rays regarding the fluorescent X-ray intensity measurement for quantitative analysis of Pd in a solid sample according to the embodiment of the present invention. It is an example of a spectrum.

【0024】図4の蛍光X線スペクトルにおいては、P
dKα(16.75deg)位置で特性X線に連続X線がバック
グランドとなって含まれた強度を示す。一般に連続X線
は試料の構成元素や試料の表面状態の違いで試料間の強
度が多少変って現れる。Pdの定量分析では、バックグ
ランドを補正してPdKα特性X線の強度のみと試料中
のPd濃度の関係を求めるようにした。この際、バック
グランドBG1(16.2deg)とBG2(17.5deg)の和の1/2の強度
を求めて、これをPdKα(16.75deg)位置での強度か
ら差し引くことにより補正を行った。
In the fluorescent X-ray spectrum of FIG.
The characteristic X-ray at the dKα (16.75 deg) position indicates the intensity at which continuous X-rays are included as a background. Generally, the intensity of a continuous X-ray appears between samples due to differences in constituent elements of the sample and the surface state of the sample. In the quantitative analysis of Pd, the background was corrected to obtain the relationship between only the intensity of the PdKα characteristic X-ray and the Pd concentration in the sample. At this time, the correction was performed by obtaining the intensity of 和 of the sum of the background BG1 (16.2 deg) and BG2 (17.5 deg), and subtracting this from the intensity at the position of PdKα (16.75 deg).

【0025】[検量線の作成]次に、検量線の作成につ
いて述べる。
[Preparation of Calibration Curve] Next, preparation of a calibration curve will be described.

【0026】前記の蛍光X線強度測定値と試料中のPd
濃度(重量%)との関係から、最小自乗法により検量線
定数が決定される。図5と図6はバックグランド(B
G)補正前後の検量線を示す。その時の実験式はつぎの
とおりである。 BG補正前の検量線 Pd=0.0003746Y-12.95 相関係数0.
992 BG補正後の検量線 Pd=0.0004141Y-1.21 相関係数0.
999 ここでYはPdKα(16.75deg)の特性X線強度(cps)であ
る。
The measured values of the intensity of the fluorescent X-rays and the Pd in the sample
From the relationship with the concentration (% by weight), the calibration curve constant is determined by the least squares method. 5 and 6 show the background (B
G) Calibration curves before and after correction are shown. The empirical formula at that time is as follows. Calibration curve before BG correction Pd = 0.0003746Y-12.95 Correlation coefficient 0.
992 Calibration curve after BG correction Pd = 0.0004141Y-1.21 Correlation coefficient 0.
999 Here, Y is the characteristic X-ray intensity (cps) of PdKα (16.75 deg).

【0027】BG補正前の特性X線強度とPd濃度の相
関係数が0.992で、BG補正後は相関係数が0.999に改善
されることが分る。また、検量線の直線性が良好であり
分析精度の向上に役立つ。本法では、図6のバックグラ
ンド(BG)補正後の検量線を用いる。この時のPd濃
度の定量分析の適用範囲は、0.1〜12wt%である。パ
ラジウム触媒の担持量が数%レベルである場合が多いた
め実試料への適用は十分である。
It can be seen that the correlation coefficient between the characteristic X-ray intensity and the Pd concentration before the BG correction is 0.992, and the correlation coefficient after the BG correction is improved to 0.999. In addition, the linearity of the calibration curve is good, which is useful for improving the analysis accuracy. In this method, the calibration curve after the background (BG) correction of FIG. 6 is used. At this time, the applicable range of the quantitative analysis of the Pd concentration is 0.1 to 12 wt%. Since the carried amount of the palladium catalyst is often on the order of several percent, its application to actual samples is sufficient.

【0028】[Pdの分析精度の検討]図1に示した試料
調製法で作製した固形体試料を用いて、前記の方法でP
dの蛍光X線強度を測定し、図6に示した検量線に基づ
いて、Pd濃度を繰り返し測定した結果を表1に示す。
[Study of Pd Analysis Accuracy] Using the solid sample prepared by the sample preparation method shown in FIG.
Table 1 shows the result of measuring the fluorescent X-ray intensity of d and repeatedly measuring the Pd concentration based on the calibration curve shown in FIG.

【0029】(測定条件) 分析元素:Pd、 分光結晶:LiF、 X線管ターゲ
ット:Cr、X線管電圧:50KV、 X線管電流:5
0mA、 Pd Peak2θ:16.75 deg(波長:0.5869Å)、ハ゛ックク゛ラント゛ 2θ:BG1=16.2 ,BG2=17.5 deg
(Measurement conditions) Analytical element: Pd, spectral crystal: LiF, X-ray tube target: Cr, X-ray tube voltage: 50 KV, X-ray tube current: 5
0 mA, Pd Peak 2θ: 16.75 deg (wavelength: 0.5869 °), pack coolant 2θ: BG1 = 16.2, BG2 = 17.5 deg

【0030】[0030]

【表1】 表1より、固形体試料でのPdの繰り返し分析精度は、
変動係数で0.7%以下で良好であることがわかる。
[Table 1] From Table 1, the repeat analysis accuracy of Pd in the solid sample is
It can be seen that the coefficient of variation is good at 0.7% or less.

【0031】〔実試料のパラジウム触媒の分析〕前記の
確立した方法を実試料のパラジウム触媒粉末のPdの分
析に適用した結果を表2に示す。試料の触媒は、酸化ア
ルミニウム担体にPd担持量を1〜7.5wt%の範囲で5
種類変化させて製造したもので、熱処理工程後に粉砕
し、吸着水分の除去のため乾燥した後の粉末試料であ
る。
[Analysis of Palladium Catalyst of Actual Sample] Table 2 shows the results of applying the above-established method to the analysis of Pd of the palladium catalyst powder of the actual sample. The catalyst of the sample was prepared such that the amount of Pd supported on the aluminum oxide carrier was within a range of 1 to 7.5 wt%.
It is a powder sample that is manufactured by changing the kind, and is crushed after a heat treatment step and dried to remove adsorbed moisture.

【0032】[0032]

【表2】 表2によれば、酸化アルミニウム担持パラジウム触媒粉
末の試料は、0.1gの少量にもかかわらず、前記の試料調
製法とPdの測定法によって、数%レベルのPdの定量
分析ができPd担持量の評価が迅速に精度よくできるこ
とがわかる。なお、上記においては、担体として酸化ア
ルミニウムを使用するものについて説明したが、他の担
体材料を使用する場合にも、この発明の技術思想の範囲
内において、好適な固形体の調整と蛍光X線測定による
パラジウムの定量が可能である。
[Table 2] According to Table 2, the sample of the palladium catalyst powder supported on aluminum oxide, despite its small amount of 0.1 g, was capable of quantitative analysis of Pd at a level of several% by the above-mentioned sample preparation method and the measurement method of Pd. It can be seen that the evaluation can be quickly and accurately performed. In the above description, the case where aluminum oxide is used as the carrier has been described. However, even when other carrier materials are used, within the scope of the technical idea of the present invention, it is preferable to adjust a suitable solid body and obtain a fluorescent X-ray. Determination of palladium by measurement is possible.

【0033】[0033]

【発明の効果】請求項1の発明によれば、酸化アルミニ
ウムなどの担体粉末にパラジウムを担持してなるガスセ
ンサ用のパラジウム触媒中のパラジウムの定量方法にお
いて、基材となる粉末と、所定の標準量の酸化パラジウ
ム粉末と、バインダーとを所定の条件で混合・粉砕・加
圧成形してなる固形体を標準試料として、パラジウム濃
度(wt%)と蛍光X線強度との相関を、蛍光X線測定に
より予め検量しておき、測定対象の前記パラジウム触媒
の粉末試料と、前記基材となる粉末と、バインダーとを
所定の条件で混合・粉砕・加圧成形した固形体を蛍光X
線測定し、前記パラジウム濃度(wt%)と蛍光X線強度
との相関の検量結果に基づいて、測定対象のパラジウム
触媒粉末試料中のパラジウムを定量することにより、又
請求項2の発明によれば、好適な基材として、四ホウ酸
リチウムを用いることにより、パラジウム濃度の高いと
ころ(10wt%程度)まで、蛍光X線分析による広い濃
度範囲での定量が可能となる。
According to the first aspect of the present invention, in a method for quantifying palladium in a palladium catalyst for a gas sensor in which palladium is carried on a carrier powder such as aluminum oxide, the method comprises the steps of: The amount of palladium oxide powder and the binder were mixed, crushed and pressed under predetermined conditions, and a solid sample was used as a standard sample. The correlation between the palladium concentration (wt%) and the fluorescent X-ray intensity was determined using the fluorescent X-ray The solid body, which has been calibrated in advance by measurement and the powder sample of the palladium catalyst to be measured, the powder to be the base material, and the binder are mixed, pulverized, and pressed under predetermined conditions to obtain a fluorescent X
3. The method according to claim 2, wherein the palladium in the palladium catalyst powder sample to be measured is quantified based on a calibration result of a correlation between the palladium concentration (wt%) and the fluorescent X-ray intensity. For example, by using lithium tetraborate as a suitable substrate, it is possible to quantitatively determine the concentration of palladium in a wide concentration range by a fluorescent X-ray analysis up to a high palladium concentration (about 10 wt%).

【0034】また、請求項3の発明によれば、バインダ
ーとしてステアリン酸を、固形体の加圧成形には試料保
持枠としてアルミニウムリングを用いることにより、試
料の調整が、容易となる。さらに、請求項4の発明によ
れば、蛍光X線測定において、前述の方法によりバック
グランドを補正することとしたので、安定した測定と高
精度の分析が可能となる。
According to the third aspect of the present invention, the preparation of the sample is facilitated by using stearic acid as the binder and the aluminum ring as the sample holding frame for pressure-forming the solid. Further, according to the invention of claim 4, in the fluorescent X-ray measurement, the background is corrected by the above-described method, so that stable measurement and high-precision analysis can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に係わる固形体の分析試料の
調製手順を示す流れ図である。
FIG. 1 is a flowchart showing a procedure for preparing a solid analytical sample according to an embodiment of the present invention.

【図2】この発明の実施例に係わる固形体の分析試料の
加圧成形に用いる各部材の構成図である。
FIG. 2 is a configuration diagram of each member used for pressure molding of a solid analytical sample according to an embodiment of the present invention.

【図3】この発明の実施例に係わる蛍光X線分析装置・
光学系の構成図である。
FIG. 3 is an X-ray fluorescence analyzer according to an embodiment of the present invention.
It is a block diagram of an optical system.

【図4】この発明の実施例に係わるPdKα蛍光X線ス
ペクトルとバックグランド補正の例を示すスペクトル線
図である。
FIG. 4 is a spectrum diagram showing an example of a PdKα fluorescent X-ray spectrum and background correction according to the embodiment of the present invention.

【図5】この発明の実施例に係わるバックグランドの連
続X線強度補正前の検量を示す線図である。
FIG. 5 is a diagram showing a calibration before continuous X-ray intensity correction of a background according to the embodiment of the present invention.

【図6】この発明の実施例に係わるバックグランドの連
続X線強度補正後の検量を示す線図である。
FIG. 6 is a diagram showing a calibration after continuous X-ray intensity correction of a background according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3....有機薄膜 4....固形体試料 5...試料保持枠(アルミリング) 3. Organic thin film 4. Solid sample 5. Sample holding frame (aluminum ring)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化アルミニウムなどの担体粉末にパラ
ジウムを担持してなるガスセンサ用のパラジウム触媒中
のパラジウムの定量方法において、 基材となる粉末と、所定の標準量の酸化パラジウム粉末
と、バインダーとを所定の条件で混合・粉砕・加圧成形
してなる固形体を標準試料として、パラジウム濃度(wt
%)と蛍光X線強度との相関を、蛍光X線測定により予
め検量しておき、測定対象の前記パラジウム触媒の粉末
試料と、前記基材となる粉末と、バインダーとを所定の
条件で混合・粉砕・加圧成形した固形体を蛍光X線測定
し、前記パラジウム濃度(wt%)と蛍光X線強度との相
関の検量結果に基づいて、測定対象のパラジウム触媒粉
末試料中のパラジウムを定量することを特徴とするパラ
ジウム触媒中のパラジウムの定量方法。
1. A method for determining palladium in a palladium catalyst for a gas sensor in which palladium is carried on a carrier powder such as aluminum oxide, comprising: a base material powder; a predetermined standard amount of palladium oxide powder; Is mixed, crushed, and pressed under predetermined conditions, and the solid body is used as a standard sample, and the palladium concentration (wt.
%) And the X-ray fluorescence intensity are calibrated in advance by X-ray fluorescence measurement, and the powder sample of the palladium catalyst to be measured, the powder to be the base material, and the binder are mixed under predetermined conditions. -Fluorescent X-ray measurement of the pulverized and pressure-molded solid body is performed, and palladium in the palladium catalyst powder sample to be measured is determined based on the calibration result of the correlation between the palladium concentration (wt%) and the fluorescent X-ray intensity. A method for quantifying palladium in a palladium catalyst.
【請求項2】 請求項1記載の方法において、基材とす
る粉末は、四ホウ酸リチウムであることを特徴とするパ
ラジウム触媒中のパラジウムの定量方法。
2. The method for determining palladium in a palladium catalyst according to claim 1, wherein the powder used as the base material is lithium tetraborate.
【請求項3】 請求項1又は2記載の方法において、バ
インダーはステアリン酸であり、固形体の加圧成形には
試料保持枠としてアルミニウムリングを用いることを特
徴とするパラジウム触媒中のパラジウムの定量方法。
3. The method according to claim 1, wherein the binder is stearic acid, and an aluminum ring is used as a sample holding frame for pressure molding of the solid body. Method.
【請求項4】 請求項1記載の方法において、蛍光X線
測定には、特性X線波長のPdKα0.5869Åを用い、P
dKα0.5869Å位置における蛍光X線強度の値から、そ
の前後の位置における蛍光X線強度の平均値を差引き、
連続X線のバックグランド補正を行うことを特徴とする
パラジウム触媒中のパラジウムの定量方法。
4. The method according to claim 1, wherein the characteristic X-ray wavelength PdKα0.5869Å is used for the fluorescent X-ray measurement.
From the value of the fluorescent X-ray intensity at the dKα 0.5869 ° position, the average value of the fluorescent X-ray intensity at the positions before and after the value is subtracted,
A method for quantifying palladium in a palladium catalyst, comprising performing background correction of continuous X-rays.
JP10246732A 1998-09-01 1998-09-01 Method for quantitating palladium palladium catalyst Pending JP2000074858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10246732A JP2000074858A (en) 1998-09-01 1998-09-01 Method for quantitating palladium palladium catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10246732A JP2000074858A (en) 1998-09-01 1998-09-01 Method for quantitating palladium palladium catalyst

Publications (1)

Publication Number Publication Date
JP2000074858A true JP2000074858A (en) 2000-03-14

Family

ID=17152830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10246732A Pending JP2000074858A (en) 1998-09-01 1998-09-01 Method for quantitating palladium palladium catalyst

Country Status (1)

Country Link
JP (1) JP2000074858A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015831A1 (en) * 2004-08-10 2006-02-16 Umicore Ag & Co. Kg Method and apparatus for the mobile pretreatment and analysis of catalysts containing precious metals
JP2006300957A (en) * 2004-02-19 2006-11-02 House Foods Corp Method for measuring distribution density of detected component on cross section of solid material for measurement
JP2009535619A (en) * 2006-04-28 2009-10-01 エックスアールエフ アナリティカル エービー Method in spectroscopy for the investigation of samples containing at least two elements
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
JP2010044056A (en) * 2008-07-16 2010-02-25 Otsuka Denshi Co Ltd Powder measuring method in terahertz region, sample container used for the same, and sample loading system
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
CN108982560A (en) * 2017-05-30 2018-12-11 马尔文帕纳科公司 It is measured using the pressed powder sample of x-ray fluorescence

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300957A (en) * 2004-02-19 2006-11-02 House Foods Corp Method for measuring distribution density of detected component on cross section of solid material for measurement
JP4611931B2 (en) * 2004-02-19 2011-01-12 ハウス食品株式会社 Method for measuring concentration distribution of detected components in a cross section of a solid target substance
WO2006015831A1 (en) * 2004-08-10 2006-02-16 Umicore Ag & Co. Kg Method and apparatus for the mobile pretreatment and analysis of catalysts containing precious metals
JP2009535619A (en) * 2006-04-28 2009-10-01 エックスアールエフ アナリティカル エービー Method in spectroscopy for the investigation of samples containing at least two elements
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
JP2010044056A (en) * 2008-07-16 2010-02-25 Otsuka Denshi Co Ltd Powder measuring method in terahertz region, sample container used for the same, and sample loading system
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
CN108982560A (en) * 2017-05-30 2018-12-11 马尔文帕纳科公司 It is measured using the pressed powder sample of x-ray fluorescence

Similar Documents

Publication Publication Date Title
Krachler et al. Digestion procedures for the determination of antimony and arsenic in small amounts of peat samples by hydride generation–atomic absorption spectrometry
CN100498309C (en) Method for analyzing metal content in catalytic cracking catalyst through X ray fluorescence method
JP2000074858A (en) Method for quantitating palladium palladium catalyst
Buica et al. Colorimetric and voltammetric sensing of mercury ions using 2, 2′-(ethane-1, 2-diylbis ((2-(azulen-2-ylamino)-2-oxoethyl) azanediyl)) diacetic acid
Beccat et al. Quantitative surface analysis by XPS (X-ray photoelectron spectroscopy): application to hydrotreating catalysts
Wang et al. Research progress of SERS on uranyl ions and uranyl compounds: a review
Feldman Spectrochemical Determination of Hafnium-Zirconium Ratios
Giauque et al. Trace element determination using synchrotron radiation
JP2726816B2 (en) Secondary ion mass spectrometry and standard sample preparation method
JP4670589B2 (en) X-ray diffractometer
JP2009031072A (en) Impurity concentration analysis method of siliceous powder
JPH02145949A (en) Analysis of precious metal in gas sensor
Nakano et al. Preparation of standard materials of aerosol particles for X‐ray fluorescence analysis using a small chamber sampling unit
Campbell et al. Limiting spectroscopic interferences of 239 Pu and 237 Np in a UO 2 matrix using LA-ICP-MS
JP2539557B2 (en) Analytical sample pretreatment method
CN116930485B (en) Trace pollutant infrared signal enhancement and in-situ rapid detection method and detection system based on immune biological reaction
CN112304995B (en) Utilize WDXRF to survey LaNi x Method for Ni/La atomic ratio in alloy
Klima et al. A chemical concentration method for the determination of niobium, zirconium and tantalum in carbon steel by X-ray fluorescence spectrometry
RU2258918C1 (en) Method of finding mole content of metals in heterobimetal compounds
Abolghasemi-Fakhri et al. Highly sensitive colorimetric assay for penconazole using gold nanostar-graphene quantum dot composite
Andersson et al. Determination of lead in fly-ash from a garbage incinerator by atomic-absorption and x-ray fluorescence spectrometry
Pitzke et al. Arsenic–Determination of arsenic and its particulate compounds in workplace air using atomic absorption spectrometry (GF-AAS)
JP3139264B2 (en) Electrode analysis method
McElroy et al. Precious metal assay analysis of fresh reforming catalyst by X-ray fluorescence spectrometry
Bahathiq et al. Fabrication of a novel palladium membrane sensor for its determination in environmental and biological samples