JP2000074816A - Particle analytical device - Google Patents

Particle analytical device

Info

Publication number
JP2000074816A
JP2000074816A JP10248930A JP24893098A JP2000074816A JP 2000074816 A JP2000074816 A JP 2000074816A JP 10248930 A JP10248930 A JP 10248930A JP 24893098 A JP24893098 A JP 24893098A JP 2000074816 A JP2000074816 A JP 2000074816A
Authority
JP
Japan
Prior art keywords
particles
particle
opening
camera
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10248930A
Other languages
Japanese (ja)
Other versions
JP3662423B2 (en
Inventor
Katsuyasu Aikawa
勝保 相川
Masaaki Kobayashi
正明 小林
Suuichiro Koba
崇一郎 木場
Hideaki Imai
英明 今井
Hayaaki Yo
逸明 楊
Takahiro Iida
隆宏 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEKKUMAN KOORUTAA KK
Nireco Corp
Original Assignee
BEKKUMAN KOORUTAA KK
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEKKUMAN KOORUTAA KK, Nireco Corp filed Critical BEKKUMAN KOORUTAA KK
Priority to JP24893098A priority Critical patent/JP3662423B2/en
Publication of JP2000074816A publication Critical patent/JP2000074816A/en
Application granted granted Critical
Publication of JP3662423B2 publication Critical patent/JP3662423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle analytical device capable of measuring securely the volume and the number of particles, and capable of three-dimensional analysis from the volume and the projected area of the particles. SOLUTION: This particle analytical device is equipped with a particle detecting device 8 for measuring the volume and the number of particles 5 by measuring the change of an electric resistance between both electrodes at the time of passing of the particles 5 through an opening 3, after arranging a tube 2 having the opening 3 in electrolytic solution 4 and after installing electrodes 6, 7 in the inside and the outside of the tube 2, a stroboscope 11 for illuminating the opening 3 at the timing of the change of the electric resistance, a camera 12 for imaging the particles 5 illuminated by the stroboscope 11, and a picture image processing device 16 for executing image analysis of the particles 5 from the picture image imaged by the camera 12 and the particle data detected by the particle detecting device 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解液中に分散し
た粒子を電気的に捉え光学的に撮像して解析する粒子解
析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle analyzer for electrically capturing particles dispersed in an electrolyte and optically capturing and analyzing the particles.

【0002】[0002]

【従来の技術】金属粉やトナー粒子などの粒子形状や数
量の計測方法としていくつかの方法が用いられている。
このような粒子を電気的に計測する方法としてコールタ
ー法がよく知られており、図4はコールター法を用いた
粒子計測装置を示す。コールター法は図4に示すように
容器1に粒子が分散した電解液4を入れ、粒子5が通過
できる開口3を設けたチューブ2を配置し、チューブ2
の内側と外側にそれぞれ電極6、7を設け、チューブ2
内も電解液4で満たし、上部より電解液4を吸引するよ
うにする。開口3を通り電解液4とともに粒子5が開口
3を通過してチューブ2内に入る。この時、開口3中の
電解液4は粒子5の容積に相当する量だけ減少し、開口
3の電気抵抗はこの排除された電解液量に比例して、よ
り大きくなる。従って、粒子5の容積に比例した電気抵
抗変化が開口部に生じる。両電極6,7間に一定電流を
流すと、両電極6,7間の電圧変化量が開口3の電気抵
抗の変化量に比例して大きくなる。この電圧変化量から
粒子の体積が測定でき、電圧変化回数から粒子の開口3
の通過数を計数することができる。これをコールターの
原理と言い、この方法を用いて粒子を計測する装置をコ
ールターカウンターと呼んでいる。
2. Description of the Related Art Several methods have been used for measuring the shape and quantity of metal powder and toner particles.
The Coulter method is well known as a method for electrically measuring such particles, and FIG. 4 shows a particle measuring apparatus using the Coulter method. In the Coulter method, as shown in FIG. 4, an electrolytic solution 4 in which particles are dispersed is placed in a container 1, and a tube 2 provided with an opening 3 through which particles 5 can pass is arranged.
The electrodes 6 and 7 are provided inside and outside the
The inside is filled with the electrolytic solution 4 and the electrolytic solution 4 is sucked from above. The particles 5 pass through the opening 3 and enter the tube 2 through the opening 3 together with the electrolytic solution 4. At this time, the electrolyte 4 in the opening 3 decreases by an amount corresponding to the volume of the particles 5, and the electric resistance of the opening 3 increases in proportion to the amount of the eliminated electrolyte. Therefore, a change in electric resistance proportional to the volume of the particles 5 occurs in the opening. When a constant current is applied between the electrodes 6 and 7, the amount of voltage change between the electrodes 6 and 7 increases in proportion to the amount of change in the electrical resistance of the opening 3. The volume of the particle can be measured from the voltage change amount, and the particle opening 3 can be determined from the number of voltage changes.
Can be counted. This is called the Coulter principle, and a device that measures particles using this method is called a Coulter counter.

【0003】図4において、9は第1モニタを示し、1
個の粒子5が通過した際の電圧の変動を示す。この波形
の積分値が粒子5の体積に比例した値を表す。10は第
2モニタを示し、電圧変化回数と電圧波形の積分値から
一定時間に通過した粒子の体積分布のヒストグラム(粒
子の粒度分布)を示す。横軸は粒子の体積を示し、縦軸
は粒子数を示す。
In FIG. 4, reference numeral 9 denotes a first monitor,
This shows the fluctuation of the voltage when the individual particles 5 pass. The integral value of this waveform represents a value proportional to the volume of the particle 5. Reference numeral 10 denotes a second monitor, which shows a histogram (particle size distribution) of the volume distribution of particles that have passed for a certain period of time based on the number of voltage changes and the integral value of the voltage waveform. The horizontal axis shows the volume of the particles, and the vertical axis shows the number of particles.

【0004】図5は液体中に分散した粒子をカメラで撮
像し、画像解析することにより粒子の大きさや数を測定
する装置の、試料と撮像装置を示す図である。シースフ
ローセルと言う透明の流路の中央に粒子を含む液体より
なる試料を流し、この両側にシース液と言う透明の液を
流して、試料が中央を流れるようにする。シースフロー
セルを挟んでストロボとCCDカメラを配置し、CCD
カメラの前には対物レンズを配置し粒子の拡大画像を得
る。ストロボは一定時間間隔で発光し、このときの試料
をCCDカメラで撮影する。得られた画像は図示しない
画像処理装置により画像解析し、粒子の二次元的形状や
個数を測定する。
FIG. 5 is a view showing a sample and an image pickup device of an apparatus for measuring the size and number of particles by taking an image of particles dispersed in a liquid with a camera and analyzing the image. A sample made of a liquid containing particles flows in the center of a transparent flow path called a sheath flow cell, and a transparent liquid called a sheath liquid flows on both sides of the sample so that the sample flows in the center. Arrange the strobe and CCD camera across the sheath flow cell,
An objective lens is placed in front of the camera to obtain an enlarged image of the particles. The strobe emits light at fixed time intervals, and the sample at this time is photographed by a CCD camera. The obtained image is analyzed by an image processing device (not shown), and the two-dimensional shape and the number of particles are measured.

【0005】[0005]

【発明が解決しようとする課題】しかし、図4に示すコ
ールターカウンターの場合、開口に2つの粒子が重なっ
て入ってきたとき、これを1つの粒子として体積と個数
を計測してしまう場合が発生する。また図5に示す装置
の場合、一定時間間隔、例えば1/30秒毎にストロボ
を発光して撮影するため、粒子が存在しない画面や重な
り過ぎた画像が得られ、このような重なり過ぎた画像で
は粒子の大きさや数を画像処理装置で解析できない場合
が発生する。
However, in the case of the coulter counter shown in FIG. 4, when two particles enter the opening in an overlapping manner, the volume and the number may be measured as one particle. I do. Further, in the case of the apparatus shown in FIG. 5, since a strobe light is emitted at regular time intervals, for example, every 1/30 second to take an image, a screen without particles or an overly overlapped image is obtained. In some cases, the size and number of particles cannot be analyzed by the image processing device.

【0006】本発明は、上述の問題点に鑑みてなされた
もので、粒子の体積と数を確実に測定でき、さらに粒子
の体積と投影面積から三次元的解析が可能な粒子解析装
置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a particle analyzing apparatus capable of reliably measuring the volume and number of particles and performing three-dimensional analysis from the volume and projected area of the particles. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
請求項1の発明では、電解液中に開口を有するチューブ
を配置し、チューブの内側と外側に電極を設け、粒子が
開口を通過する際の両電極間の電気抵抗の変化を測定し
て粒子の体積と数を測定する粒子検出装置と、前記電気
抵抗の変化するタイミングで前記開口を照明するストロ
ボと、このストロボにより照明された粒子を撮像するカ
メラと、このカメラで撮像した画像と前記粒子検出装置
で検出した粒子データとから粒子の画像解析を行なう画
像処理装置と、を備える。
In order to achieve the above object, according to the first aspect of the present invention, a tube having an opening in an electrolytic solution is provided, electrodes are provided inside and outside the tube, and particles pass through the opening. A particle detector that measures the change in electric resistance between the two electrodes to measure the volume and number of particles, a strobe that illuminates the opening at a timing when the electric resistance changes, and particles illuminated by the strobe And an image processing device that performs image analysis of particles from the image captured by the camera and the particle data detected by the particle detection device.

【0008】電極間の電気抵抗の変化時にストロボを発
光して撮影するので、開口を通過する粒子の画像を得る
ことができる。また開口を複数の粒子が通過するとき
は、画像から複数の粒子を確認できるので、このような
データを排除することにより、複数の粒子の合計体積を
1個の粒子の体積としたり、複数の粒子を1個と誤って
計測することも防止できる。また、粒子の体積と二次元
画像を組み合わせることにより粒子の三次元的解析が可
能になる。また、開口にカメラの視野を合わせ、この開
口を通過する粒子を撮影するので、粒子の鮮明な画像が
得られる。
Since the strobe light is emitted when the electric resistance between the electrodes changes, an image of particles passing through the aperture can be obtained. Also, when a plurality of particles pass through the opening, a plurality of particles can be confirmed from the image. By excluding such data, the total volume of the plurality of particles can be set to the volume of one particle, Incorrect measurement of one particle can be prevented. In addition, the three-dimensional analysis of the particles can be performed by combining the two-dimensional image with the volume of the particles. Further, since the field of view of the camera is adjusted to the opening and the particles passing through the opening are photographed, a clear image of the particles can be obtained.

【0009】請求項2の発明では、前記カメラは光学系
にハーフミラーを有し、ストロボからの光をハーフミラ
ーで反射して粒子を照射し、その反射光がハーフミラー
を透過するのを撮像する。
According to a second aspect of the present invention, the camera has a half mirror in the optical system, reflects light from the strobe by the half mirror, irradiates the particles, and captures the reflected light transmitted through the half mirror. I do.

【0010】ハーフミラーにより粒子の反射光をカメラ
で撮像することにより、粒子の形状のみならず色まで撮
像することができ、粒子の解析に役立つ。例えば、色彩
の違いから粒子の特定を確実に行なうことができる。
[0010] By imaging the reflected light of the particles with a camera using a half mirror, not only the shape of the particles but also the color can be imaged, which is useful for analyzing the particles. For example, it is possible to reliably specify the particles from the difference in color.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は第1実施形態の粒子解析装置
の構成を示す図である。1は透明な容器で、粒子5が分
散している電解液4を入れるものである。容器1内には
透明なチューブ2が配置され、下部には粒子5が通る開
口3が設けられ、上部は内部の電解液4を吸引するポン
プにつながるホースに接続されている。なお、サイホン
の原理で吸引するようにしてもよい。開口3の直径の大
きさは計測する粒子5に応じた大きさとなっており、例
えば、小さなもので15μm,大きなもので2000μ
mと広い範囲の粒子に対応できるようになっている。開
口3の径の2%〜60%程度の径の粒子を測定すること
ができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of the particle analyzer of the first embodiment. Reference numeral 1 denotes a transparent container into which an electrolyte 4 in which particles 5 are dispersed is put. A transparent tube 2 is disposed in the container 1, an opening 3 through which particles 5 pass is provided at a lower portion, and an upper portion is connected to a hose connected to a pump for sucking an internal electrolyte 4. In addition, you may make it suction by the principle of a siphon. The size of the diameter of the opening 3 is in accordance with the particle 5 to be measured, for example, 15 μm for a small one and 2000 μm for a large one.
m and a wide range of particles. Particles having a diameter of about 2% to 60% of the diameter of the opening 3 can be measured.

【0012】チューブ2内に+の電極6、チューブ2外
の容器1内に−の電極7が設けられ、一定電流を流して
いる。電流は開口3を通り両電極6,7間を流れる。開
口3は厚みがありそれのみで電気抵抗を有している。チ
ューブ2上部より電解液4を吸引すると、粒子5は電解
液4とともに開口3を通過する。このとき粒子5の容積
に相当する量の電解液4が減少し、開口3の電気抵抗は
減少した電解液4の量に比例して大きな値となる。電極
6,7間には一定電流が流れており、この抵抗変化は電
圧変化となって表れるので、この電圧変化量から粒子5
の体積を計測することができ、電圧変化の回数から粒子
5の数を計測する。なお、チューブ2内を−電極、外を
+電極としてもよい。
A positive electrode 6 is provided in the tube 2 and a negative electrode 7 is provided in the container 1 outside the tube 2, and a constant current flows. The current flows between the electrodes 6 and 7 through the opening 3. The opening 3 is thick and has electrical resistance by itself. When the electrolyte 4 is sucked from the upper part of the tube 2, the particles 5 pass through the opening 3 together with the electrolyte 4. At this time, the amount of the electrolyte 4 corresponding to the volume of the particles 5 decreases, and the electric resistance of the opening 3 becomes a large value in proportion to the amount of the electrolyte 4 that has decreased. A constant current flows between the electrodes 6 and 7, and this resistance change appears as a voltage change.
Can be measured, and the number of particles 5 is measured from the number of voltage changes. The inside of the tube 2 may be a negative electrode, and the outside may be a positive electrode.

【0013】コールターカウンター8はコンピュータを
有しており、両電極6,7の電圧変化信号を入力し、電
圧変化波形を積分して粒子の体積を求め、電圧変化数を
計数して一定時間に開口3を通過する粒子5の数や粒子
5の粒度分布などを出力することができる。第1モニタ
9には粒子5の電圧変化波形が示され、第2モニタ10
には粒子5の大きさ別の分布を示すヒストグラムが示さ
れている。本装置は市販されている。
The coulter counter 8 has a computer, receives voltage change signals of both electrodes 6 and 7, integrates the voltage change waveform to determine the volume of the particles, counts the number of voltage changes, and counts the number of voltage changes for a certain period of time. The number of particles 5 passing through the opening 3 and the particle size distribution of the particles 5 can be output. The first monitor 9 shows the voltage change waveform of the particle 5 and the second monitor 10
Shows a histogram showing the distribution of the particles 5 according to the size. This device is commercially available.

【0014】容器1を挟んで、その中心線がチューブ2
の開口3を通るように、ストロボ11と顕微鏡13を装
備したカメラ12が配置されている。トリガー信号発生
器14は両電極6,7からの電圧変化信号を入力し、電
圧パルスにして出力する。この電圧パルスがストロボ1
1の発光信号となる。カメラコントローラ15はカメラ
12の制御をするとともにカメラ12で撮像した画像を
画像処理解析装置16へ出力する。
The center line of the container 1 is sandwiched between the tube 2
A camera 12 equipped with a strobe 11 and a microscope 13 is disposed so as to pass through the opening 3. The trigger signal generator 14 receives voltage change signals from both electrodes 6 and 7 and outputs them as voltage pulses. This voltage pulse is strobe 1
1 light emission signal. The camera controller 15 controls the camera 12 and outputs an image captured by the camera 12 to the image processing / analysis device 16.

【0015】画像処理解析装置16は、トリガー信号発
生器14からの電圧パルスを入力し、ストロボ11へス
トロボ発光信号として出力する。この際、電圧パルスの
立ち上がり、立ち下がり、またはその中間で発光するよ
うにストロボ発光信号を設定することにより、粒子5が
開口3に入る前の状態、開口3を通過した状態、通過中
の状態などを撮像することができる。
The image processing / analyzing device 16 receives the voltage pulse from the trigger signal generator 14 and outputs it to the strobe 11 as a strobe light emission signal. At this time, by setting the strobe light emission signal so as to emit light at the rising, falling, or the middle of the voltage pulse, the state before the particle 5 enters the opening 3, the state after passing through the opening 3, and the state during passing Etc. can be imaged.

【0016】画像処理解析装置16は、コールターカウ
ンター8からの粒子解析信号とカメラ12からの撮像デ
ータを入力して画像解析する。撮像データは粒子5の投
影形状であり、この形状や面積の解析が行われるが、コ
ールターカウンター8からの粒子5の体積データを用い
ることにより、粒子の三次元的解析も可能になる。例え
ば、粒子5が回転楕円形状や円筒形状と分かっていれ
ば、楕円の長径や短径、円筒の径や長さなどを精度よく
解析することができる。
The image processing / analysis device 16 inputs a particle analysis signal from the coulter counter 8 and image data from the camera 12 and analyzes the image. The imaging data is the projection shape of the particle 5, and the shape and area are analyzed. By using the volume data of the particle 5 from the coulter counter 8, three-dimensional analysis of the particle is also possible. For example, if the particle 5 is known to have a spheroidal shape or a cylindrical shape, the major and minor diameters of the ellipse and the diameter and length of the cylinder can be accurately analyzed.

【0017】モニタ17はカメラ12が撮像した画像や
解析結果をリアルタイムに表示する。図2は、粒子5が
開口3を通過する状況を示すもので、(A)は開口3を
通過前、(B)は開口3を通過中、(C)は開口3を通
過後の状況を示す。
The monitor 17 displays images captured by the camera 12 and analysis results in real time. 2A and 2B show a situation where the particles 5 pass through the opening 3, wherein FIG. 2A shows a situation before passing through the opening 3, FIG. 2B shows a situation after passing through the opening 3, and FIG. Show.

【0018】図3は第2実施形態を示す。図1と同一符
号は同一のものを表す。第2実施形態は第1実施形態が
粒子の透過光を撮像するのに対し、反射光を撮像する点
が相違し、他は同じである。顕微鏡18の光学系にハー
フミラー19を光軸20に45°傾斜して設け、光軸2
0に直角方向からストロボ11の照射光を照射すると、
ハーフミラー19で反射した照射光は粒子5で反射し、
ハーフミラー19を透過してCCDカラーカメラ21に
撮像される。図1に示す透過光を撮像する場合、投影光
になるため粒子5の色彩は得られないが、図3のように
反射光とすることにより、粒子5の鮮明な色彩が得られ
る。これにより粒子5の正確な解析が可能になる。
FIG. 3 shows a second embodiment. 1 denote the same components. The second embodiment is different from the first embodiment in that the first embodiment captures the transmitted light of the particles, whereas the second embodiment captures the reflected light. A half mirror 19 is provided in the optical system of the microscope 18 at an angle of 45 ° with respect to the optical axis 20.
When the irradiation light of the strobe 11 is irradiated from a direction perpendicular to 0,
The irradiation light reflected by the half mirror 19 is reflected by the particles 5,
The light passes through the half mirror 19 and is imaged by the CCD color camera 21. When the transmitted light shown in FIG. 1 is imaged, the color of the particles 5 cannot be obtained because the light is projected light, but by using reflected light as shown in FIG. 3, a clear color of the particles 5 can be obtained. This enables accurate analysis of the particles 5.

【0019】[0019]

【発明の効果】以上の説明より明らかなように、本発明
は、従来粒子の測定に特徴を有するコールター法(電気
抵抗法)と画像処理解析法を、電気抵抗法特有の信号を
利用して一体とし、両法の優れた解析方法を実現するの
みに止まらず、新たに、両方法で得られるデータより粒
子の三次元的解析を可能にした。また電気抵抗法では得
られなかった、粒子がチューブの開口を通過する状態を
鮮明に撮像することができ、粒子の解析を精度よく行な
うことができるようになった。また照明をカメラと同軸
照射することにより、鮮明なカラー画像を得ることが出
来る。さらに粒子の状況はモニタ画面にリアルタイムに
表示されるので、複数粒子を1個と判断するような誤計
測も排除される。
As is apparent from the above description, the present invention uses the Coulter method (electrical resistance method) and the image processing analysis method, which are characterized by the conventional measurement of particles, by utilizing signals specific to the electric resistance method. In addition to realizing the superior analysis methods of both methods, three-dimensional analysis of particles based on data obtained by both methods is now possible. In addition, a state in which particles pass through the opening of the tube, which cannot be obtained by the electric resistance method, can be clearly imaged, and the analysis of the particles can be performed with high accuracy. By irradiating the illumination with the camera coaxially, a clear color image can be obtained. Further, since the status of the particles is displayed on the monitor screen in real time, erroneous measurement such as determining that a plurality of particles are one is also eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】チューブ開口を粒子が通過して行く過程を示す
図である。
FIG. 2 is a diagram showing a process in which particles pass through a tube opening.

【図3】本発明の第2実施形態の構成を示す図である。FIG. 3 is a diagram showing a configuration of a second embodiment of the present invention.

【図4】従来のコールター法による粒子計測装置を説明
する図である。
FIG. 4 is a diagram illustrating a conventional particle measuring apparatus based on the Coulter method.

【図5】従来の画像処理解析法による粒子計測装置を説
明する図である。
FIG. 5 is a view for explaining a particle measuring apparatus using a conventional image processing analysis method.

【符号の説明】[Explanation of symbols]

1 本体 2 チューブ 3 開口 4 電解液 5 粒子 6,7 電極 8 コールターカウンター 9 第1モニタ 10 第2モニタ 11 ストロボ 12 カメラ 13 顕微鏡 14 トリガー信号発生器 15 カメラコントローラ 16 画像処理解析装置 17 モニタ 18 顕微鏡 19 ハーフミラー 20 光軸 21 CCDカラーカメラ DESCRIPTION OF SYMBOLS 1 Main body 2 Tube 3 Opening 4 Electrolyte 5 Particles 6,7 Electrode 8 Coulter counter 9 First monitor 10 Second monitor 11 Strobe 12 Camera 13 Microscope 14 Trigger signal generator 15 Camera controller 16 Image processing / analysis device 17 Monitor 18 Microscope 19 Half mirror 20 Optical axis 21 CCD color camera

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 正明 東京都八王子市石川町2951番地4 株式会 社ニレコ内 (72)発明者 木場 崇一郎 東京都八王子市石川町2951番地4 株式会 社ニレコ内 (72)発明者 今井 英明 東京都港区愛宕1丁目1番10号 コールタ ー株式会社内 (72)発明者 楊 逸明 東京都港区愛宕1丁目1番10号 コールタ ー株式会社内 (72)発明者 飯田 隆宏 東京都港区愛宕1丁目1番10号 コールタ ー株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masaaki Kobayashi 2951-4 Ishikawa-cho, Hachioji-shi, Tokyo Inside Nireco Co., Ltd. 72) Inventor Hideaki Imai 1-1-10 Atago, Minato-ku, Tokyo Coulter Co., Ltd. (72) Inventor Yang 1-1-1 Atago, Minato-ku, Tokyo Coulter Co., Ltd. (72) Invention Person Takahiro Iida Inside Coulter Co., Ltd. 1-1-10 Atago, Minato-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解液中に開口を有するチューブを配置
し、チューブの内側と外側に電極を設け、粒子が開口を
通過する際の両電極間の電気抵抗の変化を測定して粒子
の体積と数を測定する粒子検出装置と、前記電気抵抗の
変化するタイミングで前記開口を照明するストロボと、
このストロボにより照明された粒子を撮像するカメラ
と、このカメラで撮像した画像と前記粒子検出装置で検
出した粒子データとから粒子の画像解析を行なう画像処
理装置と、を備えたことを特徴とする粒子解析装置。
1. A tube having an opening in an electrolytic solution, electrodes provided inside and outside the tube, and a change in electric resistance between the electrodes when the particle passes through the opening is measured to measure the volume of the particle. A particle detection device that measures the number and a strobe that illuminates the opening at a timing when the electric resistance changes,
A camera for imaging particles illuminated by the strobe, and an image processing device for analyzing the image of the particles from the image captured by the camera and the particle data detected by the particle detection device. Particle analyzer.
【請求項2】 前記カメラは光学系にハーフミラーを有
し、ストロボからの光をハーフミラーで反射して粒子を
照射し、その反射光がハーフミラーを透過するのを撮像
することを特徴とする請求項1記載の粒子解析装置。
2. The camera according to claim 1, wherein the camera has a half mirror in the optical system, reflects light from the strobe by the half mirror, irradiates the particles, and captures an image of the reflected light passing through the half mirror. The particle analysis device according to claim 1.
JP24893098A 1998-09-03 1998-09-03 Particle analyzer Expired - Fee Related JP3662423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24893098A JP3662423B2 (en) 1998-09-03 1998-09-03 Particle analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24893098A JP3662423B2 (en) 1998-09-03 1998-09-03 Particle analyzer

Publications (2)

Publication Number Publication Date
JP2000074816A true JP2000074816A (en) 2000-03-14
JP3662423B2 JP3662423B2 (en) 2005-06-22

Family

ID=17185540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24893098A Expired - Fee Related JP3662423B2 (en) 1998-09-03 1998-09-03 Particle analyzer

Country Status (1)

Country Link
JP (1) JP3662423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071386A1 (en) * 2004-01-23 2005-08-04 Hitachi Plant Technologies, Ltd. Microorganism separating device
EP1862534A1 (en) * 2006-06-02 2007-12-05 Hitachi Plant Technologies, Ltd. Microorganism separation system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146950A (en) * 1985-12-23 1987-06-30 Toray Ind Inc Polyethylene terephthalate molding resin composition
JPH07286953A (en) * 1994-04-19 1995-10-31 Toa Medical Electronics Co Ltd Imaging flow sight meter
JPH07308311A (en) * 1994-05-17 1995-11-28 Ken Ishihara Apparatus for noninvasive hemanalysis
JPH0972842A (en) * 1995-09-05 1997-03-18 Hitachi Ltd Method and apparatus for flow-type particle image analysis
JPH09178644A (en) * 1995-12-22 1997-07-11 Toa Medical Electronics Co Ltd Apparatus and method for measuring particle
JPH09196916A (en) * 1995-11-17 1997-07-31 Toa Medical Electronics Co Ltd Standard solution for flow site meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146950A (en) * 1985-12-23 1987-06-30 Toray Ind Inc Polyethylene terephthalate molding resin composition
JPH07286953A (en) * 1994-04-19 1995-10-31 Toa Medical Electronics Co Ltd Imaging flow sight meter
JPH07308311A (en) * 1994-05-17 1995-11-28 Ken Ishihara Apparatus for noninvasive hemanalysis
JPH0972842A (en) * 1995-09-05 1997-03-18 Hitachi Ltd Method and apparatus for flow-type particle image analysis
JPH09196916A (en) * 1995-11-17 1997-07-31 Toa Medical Electronics Co Ltd Standard solution for flow site meter
JPH09178644A (en) * 1995-12-22 1997-07-11 Toa Medical Electronics Co Ltd Apparatus and method for measuring particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071386A1 (en) * 2004-01-23 2005-08-04 Hitachi Plant Technologies, Ltd. Microorganism separating device
EP1862534A1 (en) * 2006-06-02 2007-12-05 Hitachi Plant Technologies, Ltd. Microorganism separation system and method

Also Published As

Publication number Publication date
JP3662423B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP3640461B2 (en) Particle analyzer
JP3121849B2 (en) Flow image cytometer
US5247340A (en) Flow imaging cytometer
EP0791816B1 (en) Method and apparatus for particle image analysis using a flow cell
BR112015022073B1 (en) AUTOMATED CELL CLASSIFICATION ORGANIZATION
JPH04270962A (en) Flow image sight meter
US7379577B2 (en) Method and apparatus for particle measurement employing optical imaging
JP4980477B2 (en) Particle measuring apparatus and particle measuring method
JPS61159135A (en) Particle analyzing device
JPH09178644A (en) Apparatus and method for measuring particle
JP3102925B2 (en) Particle analyzer
JP2959813B2 (en) Particle image analyzer
JP3662423B2 (en) Particle analyzer
JPH04337460A (en) Device for analyzing cell in urine
JPH0783817A (en) Flow type method and device for analysis of particle image
JP4046446B2 (en) Particle analyzer
JP3946918B2 (en) Image processing method and apparatus for removing false detections
JP2003270240A (en) Method and apparatus for measurement of sedimentation velocity of liquid sample
JPH06288895A (en) Particle analytical apparatus
JPH11337470A (en) Flow-type particle image analyzer
JPH06229904A (en) Method and apparatus for analyzing particle
JPH06221986A (en) Flow-type method and apparatus for analyzing particle image
JP3165272B2 (en) Flow type particle image analysis method and flow type particle image analysis device
JPH08178829A (en) Flow cytometer
JPH08304263A (en) Particle analyzing instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees