JP2000074532A - Icemaker - Google Patents

Icemaker

Info

Publication number
JP2000074532A
JP2000074532A JP10254654A JP25465498A JP2000074532A JP 2000074532 A JP2000074532 A JP 2000074532A JP 10254654 A JP10254654 A JP 10254654A JP 25465498 A JP25465498 A JP 25465498A JP 2000074532 A JP2000074532 A JP 2000074532A
Authority
JP
Japan
Prior art keywords
ice
diameter pipe
water
small
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10254654A
Other languages
Japanese (ja)
Other versions
JP3338657B2 (en
Inventor
Hideki Nagato
秀樹 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP25465498A priority Critical patent/JP3338657B2/en
Publication of JP2000074532A publication Critical patent/JP2000074532A/en
Application granted granted Critical
Publication of JP3338657B2 publication Critical patent/JP3338657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an unevenness of an operating effect caused by a machin ing accuracy of a small bore tube, damage of a surface or a difference of ther mal conductivity and heat capacity by cutting a downstream side end inside the small bore tube in a tapered state, and preventing a phase change propaga tion from a large bore tube into the small bore tube. SOLUTION: Supercooled water 10 generated in a cooler 1 is accelerated via a small bore tube 4 so that a flowing velocity in the tube becomes 2.7 m/sec or more, and injected in a large bore tube 5. The injected supercooled water 10 changes the water of an amount corresponding to a supercooling degree to ice by an ice nucleus generated by a phase change inducing unit 7 installed on an outer periphery of the tube 5, and the water 10 is converted to a mixture of the water and the ice. At this time, in the case that an inner surface of the downstream side end of the tube 4 is cut in a tapered state, the ice is grown in the state that the ice is floated from a tapered surface, and hence the grown ice in blown away by the injecting velocity of the water 10 to prevent phase change propagation to the inner surface of the tube 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調用の冷熱源と
なる蓄熱用氷、屋内・屋外スキー場の散布用氷及び一般
冷却・保冷用氷等を蓄えるための氷製造システムに関
し、特に過冷却水を用いて密閉した配管内で連続的に安
定して氷を製造する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice manufacturing system for storing ice for heat storage as a cold heat source for air conditioning, ice for scattering at indoor and outdoor ski resorts, and ice for general cooling and cooling. The present invention relates to an apparatus for continuously and stably producing ice in a closed pipe using cooling water.

【0002】[0002]

【従来の技術】従来、水を0℃以下まで冷却して得られ
る過冷却水から相変化によって綿状(シャーベット状・
リキッド状)の氷を製造する装置として、例えば、特開
昭62−147271号、特開昭63−14063号、
特開昭63−21463号、特開平1−114682
号、特開平3−241251号等が知られている。これ
らの装置では、冷却器の冷却管から出た直後の過冷却水
を大気に開放・落下させ、下方に設置した衝撃板などに
衝突させることにより過冷却状態を解消させてシャーベ
ット状の氷を生成している。
2. Description of the Related Art Conventionally, a supercooled water obtained by cooling water to 0 ° C. or lower has a flocculent (sherbet-like /
Examples of an apparatus for producing liquid-like ice include, for example, JP-A-62-147271, JP-A-63-14063,
JP-A-63-21463, JP-A-1-114682
And JP-A-3-241251 are known. In these devices, the supercooled water immediately after flowing out of the cooling pipe of the cooler is released and dropped into the atmosphere, and collides with a shock plate installed below to eliminate the supercooled state and remove the sherbet-like ice. Has been generated.

【0003】また、特開平6−123455号、特開平
6−123456号のように、大気に放出した過冷却水
を解除パイプと呼ばれる縦パイプで受けて、解除パイプ
内で過冷却状態を解消し、生成されたシャーベット状の
氷を配管で蓄熱槽まで移送する方式がある。
Further, as disclosed in JP-A-6-123455 and JP-A-6-123456, supercooled water released to the atmosphere is received by a vertical pipe called a release pipe, and the supercooled state is eliminated in the release pipe. There is a method of transferring the generated sherbet-like ice to a heat storage tank by piping.

【0004】しかしながら、これらの方式では、 (1)冷却器と衝撃板又は解除パイプなどの間に、ある
一定以上の垂直距離が必要となり、装置設置上の高さに
制限が生じる (2)生成した氷を蓄える蓄熱槽と冷却器の間に、ある
一定以上の垂直距離が生じる (3)一度大気に開放するため大気との熱交換が生じ、
生成した氷の一部が溶けてしまう (4)自由落下及び水位差によって蓄氷及び氷搬送を行
うため、生成された氷を遠方に搬送するのが難しい 等の問題点がある。
However, in these systems, (1) a certain vertical distance or more is required between the cooler and the impact plate or the release pipe, and the height at which the apparatus is installed is limited. A vertical distance equal to or greater than a certain level occurs between the heat storage tank that stores the collected ice and the cooler. (3) Heat release with the atmosphere occurs because it is once released to the atmosphere.
Part of the generated ice melts. (4) Since ice storage and ice transportation are performed due to free fall and water level difference, it is difficult to transport the generated ice to a distant place.

【0005】また、生成した過冷却水を過冷却状態のま
ま蓄熱槽まで配管内を搬送する方式もあるが、配管内の
予期せぬ場所で過冷却状態が解消し氷が生成されてしま
うと、生成した氷で配管が閉塞したり、閉塞しないまで
も相変化が上流側へ伝搬し、冷却器に達した時点で冷却
器が凍結して、連続運転が不可能となる。そこで搬送配
管内で過冷却状態が解消してしまうのを防止するため、
過冷却水の温度を高くして過冷却状態が解消しにくい状
態で運転を行っているが、過冷却温度が高いと過冷却水
量あたりの生成される氷の量が少なくなり、過冷却水を
循環させる循環ポンプの動力が大きくなるという問題点
がある。
There is also a system in which the generated supercooled water is conveyed to the heat storage tank in a supercooled state to the heat storage tank. However, if the supercooled state is eliminated at an unexpected place in the pipe and ice is generated. The phase change propagates to the upstream side even if the pipe is clogged or not clogged with the generated ice, and the cooler freezes when it reaches the cooler, making continuous operation impossible. Therefore, in order to prevent the supercooled state from being eliminated in the transport piping,
Although the operation is performed in a state where the supercooling water is not easily resolved by raising the temperature of the supercooling water, if the supercooling temperature is high, the amount of ice generated per There is a problem that the power of the circulation pump for circulation is increased.

【0006】そこで、本発明者らは先に水を0℃以下ま
で冷却して得られる過冷却水を密閉した配管内でシャー
ベット氷に連続的に変換する装置として、特開平7−4
801号及び特開平8−110133号の氷製造装置を
提案した。これらの装置により、過冷却水から生成され
たシャーベット氷を配管でポンプ圧送でき、高さ及び空
間的に配置制限の生じない過冷却方式の氷製造装置が実
現できた。
Accordingly, the present inventors have proposed an apparatus for continuously converting supercooled water obtained by previously cooling water to 0 ° C. or lower into sherbet ice in a closed pipe as disclosed in Japanese Patent Application Laid-Open No. 7-4.
No. 801 and Japanese Patent Application Laid-Open No. H8-110133 have proposed an ice making apparatus. With these devices, the sherbet ice generated from the supercooled water can be pumped by a pipe, and a supercooled ice manufacturing device having no height and space limitation can be realized.

【0007】しかしながら、特開平8−110133号
のように過冷却解消部を構成する大口径管と小口径管が
接続されている垂直円板部を加熱して氷の堆積を防止
し、小口径管内への相変化の伝搬を防止する方法や、特
開平5−149653号のように過冷却水が流れる配管
を直接加熱して氷が存在する下流側から過冷却状態の上
流側への相変化伝搬を直接防止する方法では、加熱方法
に違いがあるものの、加熱するための熱源、エネルギが
必要であることや、装置が複雑になるなどの問題点があ
る。
However, as disclosed in Japanese Patent Application Laid-Open No. 8-110133, the vertical disk portion connecting the large-diameter pipe and the small-diameter pipe constituting the supercooling elimination section is heated to prevent the accumulation of ice and to reduce the diameter of the small-diameter pipe. A method of preventing propagation of a phase change into a pipe, or a method of directly heating a pipe through which supercooled water flows as in Japanese Patent Application Laid-Open No. 5-149653, to change a phase from a downstream side where ice exists to an upstream side in a supercooled state. Although the method of directly preventing propagation has a difference in the heating method, there are problems such as the necessity of a heat source and energy for heating and the complicated device.

【0008】また、特開平7−4801号では加熱手段
を用いず過冷却水から氷への相変化が上流への伝搬を防
止する手段として加熱手段を用いないで上流への相変化
伝搬を防止する装置を提案したが、小口径管(ノズル)
の材質(特に材質固有の熱伝導率、熱容量の値)やノズ
ル表面の加工精度によって作用効果にばらつきがあるこ
とが判明した。本発明は前述した先願の装置をさらに改
良したものである。
In Japanese Patent Application Laid-Open No. 7-4801, a phase change from supercooled water to ice is prevented from propagating upstream without using heating means. A small diameter pipe (nozzle)
It has been found that the effect varies depending on the material (especially the value of the heat conductivity and heat capacity inherent to the material) and the processing accuracy of the nozzle surface. The present invention is a further improvement of the above-mentioned prior application.

【0009】[0009]

【発明が解決しようとする課題】本発明の基本的な目的
は、過冷却水を用いて密閉配管内で連続的に氷を製造す
るために、加熱手段を用いることなく、過冷却水から氷
への相変化が上流側へと伝搬するのを防止することがで
きる氷製造装置を提供することにある。本発明の他の目
的は、氷製造装置においてその作用効果にばらつきが無
く安定した性能を発揮できることを可能にすることにあ
る。
SUMMARY OF THE INVENTION A basic object of the present invention is to produce ice continuously in a closed pipe using supercooled water. It is an object of the present invention to provide an ice manufacturing apparatus capable of preventing a phase change to be propagated to an upstream side. Another object of the present invention is to enable an ice producing apparatus to exhibit stable performance with no variation in its operation and effect.

【0010】[0010]

【課題を解決するための手段】本発明による氷製造装置
の基本的な構成は前述した先願発明と同様であり、水を
冷却して過冷却水を作る冷却器と、生成された過冷却水
の過冷却状態を解消させて水と氷の混合物に連続的に変
換させる過冷却解除装置とが、それらの内部を流れる水
及び氷が大気と接触しないように連結されており、前記
過冷却解除装置は小口径管と大口径管を包含し、過冷却
水の入口側は、管内流速が2.7m/s以上になるよう
に小口径管で作られ、該小口径管の下流側端縁に垂直円
板を介して大口径管が固着され、大口径管の外周に過冷
却水から氷への相変化を誘発させる相変化誘発装置が設
けられている。本発明の第1の態様では、前記小口径管
の下流側端部内側がテーパー状にカットされており、大
口径管内部から小口径管内部への相変化伝搬を防止する
ようになっている点に特徴を有する。
The basic structure of an ice making apparatus according to the present invention is the same as that of the above-mentioned prior application, and includes a cooler for cooling water to produce supercooled water, and a supercooled water generated. A supercooling release device for eliminating the supercooled state of the water and continuously converting the mixture into a mixture of water and ice, wherein the supercooling device is connected so that water and ice flowing therethrough do not come into contact with the atmosphere; The release device includes a small-diameter pipe and a large-diameter pipe, and the inlet side of the supercooled water is made of a small-diameter pipe so that the flow velocity in the pipe becomes 2.7 m / s or more, and a downstream end of the small-diameter pipe. A large-diameter pipe is fixed to an edge of the large-diameter pipe via a vertical disk, and a phase change inducing device that induces a phase change from supercooled water to ice is provided on an outer periphery of the large-diameter pipe. In the first aspect of the present invention, the inside of the downstream end of the small diameter pipe is tapered so as to prevent the phase change propagation from inside the large diameter pipe to the inside of the small diameter pipe. It is characterized by points.

【0011】[0011]

【作用】本発明において、大口径管内で生成された氷か
ら上流への相変化伝搬の防止は以下のように行われる。
一般に、過冷却水から生成される氷は、板状又は針状の
構造であり、過冷却水がその結晶に接触すると結晶方向
に真っ直ぐに氷が成長する。つまり壁面を伝った相変化
の伝搬といっても、水を過冷却なしに冷却して冷却面に
氷結させた固い氷のように、壁面に固着しながら上流に
向かって成長するのではなく、板状・針状の微細な結晶
自体が過冷却水からの冷熱により成長するため、管壁面
との付着力は弱い。氷が付着する管壁面等が、樹脂等の
熱容量・熱伝導の小さい材質で構成される場合はさらに
氷の付着力が弱く、水流によって吹き飛ばされやすくな
る。
In the present invention, the prevention of phase change propagation from ice generated in a large diameter pipe to the upstream is performed as follows.
Generally, ice generated from supercooled water has a plate-like or needle-like structure, and when the supercooled water contacts the crystal, the ice grows straight in the crystal direction. In other words, the propagation of the phase change on the wall surface does not mean that the water grows upstream while sticking to the wall surface like hard ice, which is cooled without supercooling and frozen on the cooling surface, Since the plate-like and needle-like fine crystals themselves grow by the cool heat from the supercooled water, the adhesion to the tube wall is weak. When the pipe wall surface to which ice adheres is made of a material having a small heat capacity and heat conduction such as resin, the ice has a weaker adhesive force and is more likely to be blown off by a water flow.

【0012】本発明のように小口径管の下流側端部内面
がテーパー状にカットされていると、小口径管の周囲か
ら内部への伝搬はテーパー面上に沿って相変化が伝搬す
るのではなく、氷の結晶方向に氷が成長していくので、
テーパー面からは氷が浮いた状態で氷が成長する。その
ため、過冷却水の噴出流速によって成長した氷が吹き飛
ばされて、小口径管の内面へは相変化が伝搬しないこと
になる。
When the inner surface of the downstream end of the small-diameter pipe is cut in a tapered shape as in the present invention, propagation from the periphery of the small-diameter pipe to the inside of the small-diameter pipe is such that a phase change propagates along the tapered surface. Instead, the ice grows in the direction of the ice crystal,
Ice grows from the tapered surface with the ice floating. Therefore, the ice grown by the jet velocity of the supercooled water is blown off, and the phase change does not propagate to the inner surface of the small-diameter pipe.

【0013】本発明は、その第2の態様において、前記
小口径管が大口径管内にノズル状に突き出して配置され
ており、前記ノズル状部分よりも下流側における前記大
口径管に過冷却水から氷への相変化を誘発させる相変化
誘発装置が設けられているタイプの氷製造装置において
も、同様の特徴点を備えることにより、同様の作用効果
を達成することができる。
According to the second aspect of the present invention, in the second aspect, the small-diameter pipe is disposed in a large-diameter pipe so as to protrude in a nozzle shape, and supercooled water is supplied to the large-diameter pipe downstream of the nozzle-shaped portion. In a type of ice manufacturing apparatus provided with a phase change inducing device that induces a phase change from ash to ice, the same operation and effect can be achieved by providing similar features.

【0014】本発明の好適な態様によれば、前記小口径
管はその内面が熱容量の小さい樹脂系ライニング材で覆
われている。本発明の他の好適な態様によれば、ノズル
状に突き出した小口径管は、内面及び/又は外面が熱容
量の小さい樹脂系ライニング材で覆われているか、ある
いは小口径管全体が熱容量の小さい樹脂で形成されてい
る。本発明のさらに他の好適な態様によれば、大口径管
の下流側端部付近から小口径管のノズル状に突き出した
部分の周囲へ、水及び氷を循環させて流すためのバイパ
ス管が接続されている。本発明のさらに他の好適な態様
によれば、過冷却水を生成する冷却器の上流側配管から
分岐したバイパス管が大口径管の上流側端部付近に接続
されている。これらの好適な態様によれば、大口径管内
部から小口径管の内面へと相変化が伝搬しない効果がさ
らに高められることになる。以下、添付図面の実施態様
を参照しながら、本発明の構成及び作用効果について詳
述する。
According to a preferred aspect of the present invention, the small-diameter pipe has an inner surface covered with a resin-based lining material having a small heat capacity. According to another preferred aspect of the present invention, the small-diameter pipe projecting in a nozzle shape has an inner surface and / or an outer surface covered with a resin-based lining material having a small heat capacity, or the entire small-diameter pipe has a small heat capacity. It is formed of resin. According to still another preferred aspect of the present invention, a bypass pipe for circulating and flowing water and ice from around the downstream end of the large-diameter pipe to a portion protruding in a nozzle shape of the small-diameter pipe is provided. It is connected. According to still another preferred aspect of the present invention, a bypass pipe branched from an upstream pipe of a cooler that generates supercooled water is connected near an upstream end of the large-diameter pipe. According to these preferred embodiments, the effect that the phase change does not propagate from the inside of the large-diameter tube to the inner surface of the small-diameter tube is further enhanced. Hereinafter, the configuration, operation, and effects of the present invention will be described in detail with reference to the accompanying drawings.

【0015】[0015]

【発明の実施の形態】図1は本発明の好適な実施態様に
よる過冷却水を用いた氷製造装置を包含する氷製造シス
テム(一次側)の全体を表している。冷却器1には貯氷
槽8からの水が水循環ポンプ9によって導入され、冷却
器1の内部を通過する水が氷点下(過冷却)まで冷却さ
れる。水の冷却には冷凍機2が用いられ、冷凍機2には
ブライン循環ポンプ3によってブライン(不冷凍液)が
供給される。過冷却に達した水10は、小口径管4から
大口径管5へと送られる。過冷却解除装置23は、小口
径管4,大口径管5及び周知の相変化誘発装置(回転体
や超音波振動子によるキャビテーションの発生や固体間
の衝突・摩擦等を利用して水から氷への相変化を誘発す
る装置)7を包含する。
FIG. 1 shows an entire ice making system (primary side) including an ice making apparatus using supercooled water according to a preferred embodiment of the present invention. Water from an ice storage tank 8 is introduced into the cooler 1 by a water circulation pump 9, and the water passing through the inside of the cooler 1 is cooled to a temperature below freezing (supercooling). A refrigerator 2 is used for cooling water, and brine (non-freezing liquid) is supplied to the refrigerator 2 by a brine circulation pump 3. The water 10 that has reached supercooling is sent from the small-diameter pipe 4 to the large-diameter pipe 5. The supercooling canceling device 23 includes a small-diameter pipe 4, a large-diameter pipe 5, and a well-known phase-change-inducing device (such as cavitation generated by a rotating body or an ultrasonic vibrator, or collision from friction or solids between water and ice). Device 7 for inducing a phase change to).

【0016】冷却器1で生成された過冷却水10は、小
口径管4により管内流速が2.7m/s以上になるよう
に増速され、大口径管5内に噴出される。大口径管5内
に噴出さた過冷却水10は、大口径管5の外周に設置さ
れた相変化誘発装置7によって生成された氷核により、
過冷却状態が解消されて過冷却度に応じた分の水が氷に
変化し、過冷却水は水と氷の混合物になる。
The supercooled water 10 generated by the cooler 1 is accelerated by the small-diameter pipe 4 so that the flow velocity in the pipe becomes 2.7 m / s or more, and is jetted into the large-diameter pipe 5. The supercooled water 10 spouted into the large-diameter pipe 5 is caused by ice nuclei generated by the phase change inducing device 7 installed on the outer periphery of the large-diameter pipe 5.
The supercooled state is eliminated, and water corresponding to the degree of supercooling changes to ice, and the supercooled water becomes a mixture of water and ice.

【0017】それ以降はこの氷が氷核となって連続的に
過冷却水から氷への相変化が起こる。このとき、大口径
管5内で発生する過冷却水から氷への相変化は、上流
(小口径管4内)へも進展する。小口径管4から大口径
管5内に噴出される過冷却水10の温度は水の氷結温度
以下であるため、小口径管4の内壁面及び小口径管4の
過冷却水噴出口周辺の管壁面は、過冷却水からの熱伝導
又は熱伝達によって氷結温度以下に冷却されている。
Thereafter, the ice becomes an ice nucleus and a phase change from supercooled water to ice occurs continuously. At this time, the phase change from supercooled water to ice generated in the large-diameter pipe 5 also advances to the upstream (in the small-diameter pipe 4). Since the temperature of the supercooled water 10 jetted from the small-diameter pipe 4 into the large-diameter pipe 5 is equal to or lower than the freezing temperature of the water, the temperature around the inner wall surface of the small-diameter pipe 4 and the supercooled water spout of the small-diameter pipe 4 is reduced. The pipe wall surface is cooled below the freezing temperature by heat conduction or heat transfer from the supercooled water.

【0018】図2A〜Eは過冷却水から氷への相変化が
上流側へ進展しようとする状態を表している。図2A,
Bに示すように、大口径管5内で氷が生成されると冷却
された壁面に氷が付着堆積する。壁面に付着した氷に過
冷却水が接触すると氷が成長し壁面伝いに小口径管4へ
向かって相変化が進展する。小口径管4端部付近に堆積
した氷13が小口径管4端部にまで成長すると小口径管
4内部へ相変化が伝搬しようとする。
FIGS. 2A to 2E show a state in which the phase change from supercooled water to ice tends to progress to the upstream side. FIG. 2A,
As shown in B, when ice is generated in the large-diameter tube 5, the ice adheres and accumulates on the cooled wall surface. When the supercooled water comes into contact with the ice adhered to the wall surface, the ice grows and a phase change progresses toward the small diameter pipe 4 along the wall surface. When the ice 13 deposited near the end of the small-diameter tube 4 grows to the end of the small-diameter tube 4, a phase change tends to propagate inside the small-diameter tube 4.

【0019】小口径管4及び小口径管4と大口径管5を
つなぐ垂直円板15が樹脂等の熱容量・熱伝導の小さな
材質で構成されている場合は、2.7m/s以上の流速
で吹き出される過冷却水によって、内部へ伝搬しようと
する氷は吹き飛ばされて小口径管内部へはなかなか伝搬
しない。ただし、小口径管出口付近に付着した氷は、吹
き飛ばされることなく残るため、常に小口径管内部へ相
変化が伝搬しようとしており、図2A,Bのように小口
径管4の下流側端部内側がテーパー状にカットされてい
ない場合は、大口径管5内部の水流の乱れ、過冷却水流
量の変動が発生すると、小口径管4内面に相変化が伝搬
する。
When the small-diameter tube 4 and the vertical disk 15 connecting the small-diameter tube 4 and the large-diameter tube 5 are made of a material having a small heat capacity and heat conduction, such as a resin, the flow velocity is 2.7 m / s or more. The ice that is going to propagate inside is blown off by the supercooled water blown out in the step, and is not easily propagated inside the small diameter pipe. However, since the ice attached near the outlet of the small-diameter pipe remains without being blown away, the phase change is always going to propagate inside the small-diameter pipe, and the downstream end of the small-diameter pipe 4 as shown in FIGS. 2A and 2B. If the inside is not cut in a tapered shape, when the water flow inside the large diameter pipe 5 is disturbed and the supercooled water flow rate fluctuates, a phase change propagates to the inner surface of the small diameter pipe 4.

【0020】一方、本発明に従い小口径管4の下流側端
部内側がテーパー状にカットされている図2C,Dの場
合、小口径管4内に相変化が進展するためには、テーパ
ー面14に沿って氷が成長する必要があるが、過冷却水
10から生成される氷は、板状又は針状の構造であり、
過冷却水がその結晶に接触すると結晶方向に真っ直ぐに
氷が成長する。つまり壁面を伝った相変化の伝搬といっ
ても、水を過冷却なしに冷却して冷却面に氷結させた固
い氷のように、壁面に固着しながら上流に向かって成長
するのではなく、板状・針状の微細な結晶自体が過冷却
水からの冷熱により成長するため、管壁面との付着力は
弱い。氷が付着する管壁面等が、樹脂等の熱容量・熱伝
導の小さい材質で構成される場合はさらに氷の付着力が
弱く、水流によって吹き飛ばされやすくなる。
On the other hand, in the case of FIGS. 2C and 2D in which the inside of the downstream end of the small diameter pipe 4 is cut in a tapered shape according to the present invention, in order for the phase change to progress in the small diameter pipe 4, the tapered surface is required. Although ice needs to grow along 14, the ice generated from the supercooled water 10 has a plate-like or needle-like structure,
When supercooled water comes into contact with the crystal, ice grows straight in the direction of the crystal. In other words, the propagation of the phase change on the wall surface does not mean that the water grows upstream while sticking to the wall surface like hard ice, which is cooled without supercooling and frozen on the cooling surface, Since the plate-like and needle-like fine crystals themselves grow by the cool heat from the supercooled water, the adhesion to the tube wall is weak. When the pipe wall surface to which ice adheres is made of a material having a small heat capacity and heat conduction such as resin, the ice has a weaker adhesive force and is more likely to be blown off by a water flow.

【0021】本発明のように小口径管4の下流側端部内
面がテーパー状にカットされている場合、小口径管4の
周囲から内部への伝搬はテーパー面上に沿って相変化が
伝搬するのではなく、氷の結晶方向に氷が成長していく
ので、図2Cに示すようにテーパー面からは氷が浮いた
状態で氷が成長する。そのため、図2Dに示すように過
冷却水10の噴出流速によって成長した氷13は吹き飛
ばされ、小口径管4の内面へは相変化が伝搬しない。
When the inner surface of the downstream end of the small-diameter pipe 4 is cut in a tapered shape as in the present invention, propagation from the periphery of the small-diameter pipe 4 to the inside is such that a phase change propagates along the tapered surface. Instead, the ice grows in the crystal direction of the ice, so that the ice grows with the ice floating from the tapered surface as shown in FIG. 2C. Therefore, as shown in FIG. 2D, the ice 13 grown by the jet flow speed of the supercooled water 10 is blown off, and the phase change does not propagate to the inner surface of the small-diameter tube 4.

【0022】図2Eは小口径管4の端部及びテーパー面
を樹脂製ライニング材20で覆って熱伝導を小さくした
例を表している。このように、氷が付着する管壁表面を
凹凸のないなめらかな状態にすることで、氷の付着力を
弱め、氷を剥離しやすくすることになり、相変化伝搬防
止効果が顕著となる。小口径管4として市販の塩ビ管等
の樹脂管を使用する場合、管表面や管切断面は無数のキ
ズ等の凹凸が存在するため、過冷却水から生成される氷
は針状・板状の氷がその凹凸に付着しやすく、水流によ
ってはがれにくい。そこに樹脂系のライニング材を塗布
することで、表面の微細なキズが覆われ氷が付着しにく
くなり、さらに熱伝導性及び熱容量の小さい樹脂系のラ
イニング素材によって管自体が冷却されにくいため、さ
らに氷の付着力が弱まることになる。これにより、小口
径管の加工精度や表面のキズ、熱伝導度・熱容量の違い
による作用効果のばらつきを無くし、安定して相変化の
伝搬を防止することができる。
FIG. 2E shows an example in which the end portion and the tapered surface of the small diameter pipe 4 are covered with a resin lining material 20 to reduce heat conduction. As described above, by making the surface of the tube wall to which ice adheres smooth without irregularities, the adhesion of ice is weakened and the ice is easily peeled off, and the effect of preventing phase change propagation becomes remarkable. When a resin pipe such as a commercially available PVC pipe is used as the small-diameter pipe 4, since the pipe surface and the cut surface of the pipe have numerous irregularities such as scratches, the ice generated from the supercooled water has a needle-like or plate-like shape. Ice easily adheres to the irregularities and does not easily peel off due to water flow. By applying a resin-based lining material there, fine scratches on the surface are covered and ice is less likely to adhere, and the resin itself is less likely to be cooled by the resin-based lining material with low thermal conductivity and heat capacity. In addition, the adhesion of ice will be weakened. Thereby, it is possible to eliminate the variation in the operation effect due to the difference in the processing accuracy and the surface of the small-diameter tube, the difference in the heat conductivity and the heat capacity, and to stably prevent the propagation of the phase change.

【0023】図3は、水循環ポンプ9と冷却器1の間か
ら過冷却水解除装置の大口径管5の上流側端部付近へバ
イパス回路11を設けた例であり、小口径管4の出口付
近に堆積する氷をバイパス流によって積極的に除去する
ことができる。バイパス流の目的は、氷による閉塞、氷
の堆積による小口径管内部への相変化伝搬の防止にあ
る。バイパス管がない場合は、図4Aのように小口径管
4の出口付近に渦が形成され、生成した氷が除々に堆積
し、閉塞しやすくなる。また小口径管4の周辺にも除々
に氷が堆積するため、小口径管4内部へ相変化が伝搬し
やすくなる。バイパス管11を設置すると図4Bのよう
にバイパス流によって堆積した氷が持ち去られて除去さ
れる。
FIG. 3 shows an example in which a bypass circuit 11 is provided between the water circulation pump 9 and the cooler 1 and near the upstream end of the large-diameter pipe 5 of the supercooled water release device. Ice that accumulates in the vicinity can be positively removed by the bypass flow. The purpose of the bypass flow is to prevent the phase change propagation inside the small diameter pipe due to ice blockage and ice accumulation. If there is no bypass pipe, a vortex is formed near the outlet of the small-diameter pipe 4 as shown in FIG. 4A, and the generated ice gradually accumulates and is easily blocked. In addition, since ice gradually accumulates around the small-diameter tube 4, a phase change easily propagates inside the small-diameter tube 4. When the bypass pipe 11 is installed, the ice deposited by the bypass flow is taken away and removed as shown in FIG. 4B.

【0024】バイパス管11は、大口径管5に対し、図
5A,Bに示すように大口径管5の接線方向に一カ所又
は二カ所以上接続して、小口径管4からの過冷却水の水
流に対しらせん形の形でバイパス流が大口径管内に形成
されるように接続する。このらせん形水流により、過冷
却水が直接大口径管5の壁面に接触しなくなるため、大
口径管5の内面での氷の堆積を防止することができる。
さらに氷の比重は水より軽いので、らせん形水流によっ
て氷がらせん形水流の中央部に運ばれ、小口径管4から
噴出される過冷却水10の水流によって下流に排出され
る。以上の作用によって、ヒーター等の加熱手段を用い
ず、大口径管から小口径管への相変化伝搬を防止し、安
定して氷の生成が可能となる。
As shown in FIGS. 5A and 5B, the bypass pipe 11 is connected to the large-diameter pipe 5 at one or more locations in the tangential direction of the large-diameter pipe 5 so that the supercooled water from the small-diameter pipe 4 can be connected. Is connected in such a manner that a bypass flow is formed in a large-diameter pipe in a helical shape with respect to the water flow. This spiral water flow prevents the supercooled water from directly contacting the wall surface of the large-diameter pipe 5, so that the accumulation of ice on the inner surface of the large-diameter pipe 5 can be prevented.
Further, since the specific gravity of the ice is lighter than that of water, the ice is carried to the center of the spiral water flow by the spiral water flow, and is discharged downstream by the water flow of the supercooled water 10 ejected from the small-diameter pipe 4. By the above operation, the phase change propagation from the large-diameter pipe to the small-diameter pipe is prevented without using a heating means such as a heater, and ice can be stably generated.

【0025】図6は、本発明のさらに好適な態様とし
て、小口径管4を大口径管5内にノズル状に突き出すこ
とによって、ノズル4a周辺の水流の流れを整え、相変
化の伝搬防止効果を高めることができる例を表してい
る。図4Aに示したように、小口径管4から大口径管5
に急激に流路を拡大させた場合、大口径管5内には渦流
が形成される。一方、図7に示すように小口径管4をノ
ズル状に突出させることによって、ノズル4a先端の周
囲の流れが過冷却水10の噴出方向に整えられ、ノズル
4aの出口部分での流体の乱れによる圧力変動(流量変
動)が防止され、過冷却水が安定して相変化誘発装置7
へと送られる。また、ノズル4a周囲の流体の流れが過
冷却水10の噴出方向に整えられることによって、渦流
により大口径管5の下流から後戻りする氷をノズル4a
先端に付着させることなく、スムーズに下流へ排出させ
る効果がある。本発明に従い、ノズル4aの下流側端部
内側をテーパー状にカットすることで、前述した例と同
様な効果が得られる。
FIG. 6 shows a further preferred embodiment of the present invention in which the small-diameter pipe 4 is protruded into the large-diameter pipe 5 in a nozzle shape to regulate the flow of the water flow around the nozzle 4a, thereby preventing the propagation of the phase change. Represents an example that can be increased. As shown in FIG. 4A, the small-diameter pipe 4
When the flow path is rapidly expanded, a vortex is formed in the large diameter pipe 5. On the other hand, by protruding the small-diameter pipe 4 in a nozzle shape as shown in FIG. 7, the flow around the tip of the nozzle 4a is adjusted in the jetting direction of the supercooled water 10, and the turbulence of the fluid at the outlet of the nozzle 4a is disturbed. Pressure fluctuations (flow rate fluctuations) due to pressure are prevented, and the supercooled water stabilizes and the phase change inducing device 7
Sent to. In addition, the flow of the fluid around the nozzle 4a is adjusted in the direction in which the supercooled water 10 is ejected, so that the ice returning from the downstream of the large-diameter pipe 5 due to the vortex flows through the nozzle 4a
This has the effect of smoothly discharging downstream without adhering to the tip. According to the present invention, by cutting the inside of the downstream end of the nozzle 4a in a tapered shape, the same effect as in the above-described example can be obtained.

【0026】図8A〜Eは図2A〜Eを参照した前述の
説明と同様のことを説明するためのものである。ノズル
状に突出した小口径管4の下流側端部内側がテーパー状
にカットされていない場合(図8A,B)は相変化が上
流側へと伝搬しやすいが、テーパー状にカットされてい
る場合(図8C,D)は相変化が上流側へと伝搬しにく
くなる。図8Eはノズル状部分4aの内側と外側及びテ
ーパー面を樹脂製ライニング材20,21で覆って熱伝
導を小さくした例を表している。樹脂製ライニング材は
内側と外側のいずれか一方だけでも良い。
FIGS. 8A to 8E are the same as those described above with reference to FIGS. 2A to 2E. When the inside of the downstream end of the small-diameter pipe 4 projecting in a nozzle shape is not cut in a tapered shape (FIGS. 8A and 8B), the phase change is easily propagated to the upstream side, but is cut in a tapered shape. In the case (FIGS. 8C and 8D), the phase change becomes difficult to propagate to the upstream side. FIG. 8E shows an example in which the inside and outside and the tapered surface of the nozzle-shaped portion 4a are covered with resin lining materials 20 and 21 to reduce heat conduction. The resin lining material may be only one of the inside and the outside.

【0027】図9A,Bは、図6の氷製造装置にパイパ
ス管を付設した場合の効果を表している。ノズル4aの
付け根部の大口径管5側には図9Aのように氷が堆積し
やすいが、バイパス管Pを設置して水を導入すれば堆積
した氷を容易に排出でき、閉塞に至ることはない。バイ
パス管Pは、図10Aのようにノズル4a先端部周囲の
圧力と大口径管5下流の圧力差を利用して大口径管5の
下流側端部付近から小口径管4のノズル4a先端部周囲
へとバイパス管11を接続するか、あるいは図10Bに
示すように水循環ポンプ9と冷却器1の間から小口径管
4のノズル4a先端部周囲へとバイパス管6を接続する
ことができる。これらのバイパス管は図5に示したよう
に、大口径管5の接線方向に接続することが望ましい。
FIGS. 9A and 9B show the effect when a bypass pipe is added to the ice making apparatus shown in FIG. Ice easily accumulates on the large-diameter pipe 5 side at the base of the nozzle 4a as shown in FIG. 9A. However, if the bypass pipe P is installed and water is introduced, the accumulated ice can be easily discharged to cause blockage. There is no. As shown in FIG. 10A, the bypass pipe P uses the pressure difference around the tip of the nozzle 4 a and the pressure difference downstream of the large-diameter pipe 5, from near the downstream end of the large-diameter pipe 5 to the tip of the nozzle 4 a of the small-diameter pipe 4. The bypass pipe 11 can be connected to the periphery, or the bypass pipe 6 can be connected between the water circulation pump 9 and the cooler 1 and around the tip of the nozzle 4a of the small diameter pipe 4 as shown in FIG. 10B. These bypass pipes are desirably connected in a tangential direction of the large diameter pipe 5 as shown in FIG.

【0028】なお、図8Eに示したように、ノズル4a
の外表面を樹脂系ライニング材21で覆うことにより、
ノズルの外表面への氷の付着を防止し、ノズル周辺の氷
をスムーズに排出する作用効果を高めることができる。
また、ノズル先端4aの内面を樹脂製ライニング材20
で覆い、熱伝導を小さくするとともに、氷が付着する管
壁表面を凹凸のない滑らかな状態にすることで、氷の付
着力を弱め、氷を剥離しやすくして相変化伝搬防止効果
を確実なものとし、ノズルの加工精度や表面のキズ、熱
伝導度・熱容量の違いによる作用効果のばらつきを無く
し、安定して相変化の伝搬を防止することができる。さ
らに変形例として、小口径管4の全体を熱容量の小さい
樹脂で形成することもできる。
As shown in FIG. 8E, the nozzle 4a
Is covered with a resin-based lining material 21,
It is possible to prevent ice from adhering to the outer surface of the nozzle and enhance the effect of smoothly discharging ice around the nozzle.
Further, the inner surface of the nozzle tip 4a is made of a resin lining material 20.
To reduce heat conduction and make the surface of the tube wall to which ice adheres smooth without irregularities, thereby weakening the adhesion of ice, making it easier to peel off ice and ensuring the effect of preventing phase change propagation. In addition, it is possible to eliminate the variation in the operation effect due to the difference in the processing accuracy and the surface of the nozzle, the difference in the thermal conductivity and the heat capacity, and to stably prevent the propagation of the phase change. Further, as a modification, the entire small-diameter tube 4 can be formed of a resin having a small heat capacity.

【0029】[0029]

【発明の効果】以上詳細に説明した如く、本発明によれ
ば、ヒーター等の加熱手段を用いることなく、過冷却水
から氷への相変化が上流へと伝搬するのを防止すること
ができる氷製造装置が提供される。小口径管に熱伝導性
及び熱容量の小さい樹脂系のライニング素材を用いれ
ば、管自体が冷却されにくいためさらに氷の付着力が弱
まることになり、これにより、小口径管の加工精度や表
面のキズ、熱伝導度・熱容量の違いによる作用効果のば
らつきを無くし、安定して相変化の伝搬を防止すること
ができることになり、その技術的効果には極めて顕著な
ものがある。
As described above in detail, according to the present invention, it is possible to prevent a phase change from supercooled water to ice from propagating upstream without using a heating means such as a heater. An ice making device is provided. If a resin-based lining material with small thermal conductivity and heat capacity is used for the small-diameter pipe, the pipe itself is difficult to cool, which further weakens the adhesion of ice, thereby reducing the processing accuracy and surface quality of the small-diameter pipe. Scattering, variation in the operation effect due to differences in heat conductivity and heat capacity can be eliminated, and the propagation of a phase change can be stably prevented. The technical effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく氷製造装置の好適な例を表す概
略図である。
FIG. 1 is a schematic diagram showing a preferred example of an ice producing apparatus according to the present invention.

【図2】過冷却水から氷への相変化が上流側へと伝搬す
る様子を表す断面図である。
FIG. 2 is a cross-sectional view illustrating a state in which a phase change from supercooled water to ice propagates upstream.

【図3】バイパス管を設けた例を表す概略図である。FIG. 3 is a schematic diagram illustrating an example in which a bypass pipe is provided.

【図4】バイパス管の効果を説明するための断面図であ
る。
FIG. 4 is a cross-sectional view for explaining an effect of the bypass pipe.

【図5】バイパス管が接線方向から流入する例を表す断
面図である。
FIG. 5 is a cross-sectional view illustrating an example in which a bypass pipe flows in from a tangential direction.

【図6】小口径管が大口径管内に突出している例を表す
概略図である。
FIG. 6 is a schematic diagram illustrating an example in which a small-diameter pipe projects into a large-diameter pipe.

【図7】ノズル状に突出した小口径管の作用を表す断面
図である。
FIG. 7 is a cross-sectional view illustrating an operation of a small-diameter tube protruding in a nozzle shape.

【図8】ノズル状部分の周囲における相変化の進展状態
を表す断面図である。
FIG. 8 is a cross-sectional view showing a state of progress of a phase change around a nozzle portion.

【図9】ノズル状部分に対するバイパス管の作用を表す
断面図である。
FIG. 9 is a sectional view showing the operation of the bypass pipe on the nozzle-shaped portion.

【図10】バイパス管の配置を表す概略図である。FIG. 10 is a schematic diagram illustrating an arrangement of a bypass pipe.

【符号の説明】[Explanation of symbols]

1 冷却器 2 冷凍機 3,9 ポンプ 4 小口径管 4a ノズル状部分 5 大口径管 6,11 バイパス管 7 相変化誘発装置 8 貯氷槽 10 過冷却水 13 氷 14 テーパー面 15 垂直円板 20,21 樹脂ライニング 23 過冷却解除装置 DESCRIPTION OF SYMBOLS 1 Cooler 2 Refrigerator 3, 9 Pump 4 Small diameter pipe 4a Nozzle part 5 Large diameter pipe 6, 11 Bypass pipe 7 Phase change inducing device 8 Ice storage tank 10 Supercooled water 13 Ice 14 Tapered surface 15 Vertical disk 20, 21 Resin lining 23 Subcooling release device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水を冷却して過冷却水を作る冷却器と、
生成された過冷却水の過冷却状態を解消させて水と氷の
混合物に連続的に変換させる過冷却解除装置とが、それ
らの内部を流れる水及び氷が大気と接触しないように連
結されており、前記過冷却解除装置は小口径管と大口径
管を包含し、過冷却水の入口側は管内流速が2.7m/
s以上になるように小口径管で作られ、該小口径管の下
流側端縁に垂直円板を介して大口径管が固着され、大口
径管の外周に過冷却水から氷への相変化を誘発させる相
変化誘発装置が設けられている氷製造装置において、 前記小口径管の下流側端部内側がテーパー状にカットさ
れており、大口径管内部から小口径管内部への相変化伝
搬を防止するようになっていることを特徴とする氷製造
装置。
A cooler for cooling water to produce supercooled water;
A supercooling release device that eliminates the supercooled state of the generated supercooled water and continuously converts the supercooled water into a mixture of water and ice, and is connected so that the water and ice flowing inside them do not come into contact with the atmosphere. The supercooling release device includes a small-diameter pipe and a large-diameter pipe, and the flow rate in the pipe at the inlet side of the supercooled water is 2.7 m /
The large-diameter pipe is fixed to the downstream end of the small-diameter pipe via a vertical disk, and the phase from the supercooled water to ice is formed on the outer periphery of the large-diameter pipe. In the ice making device provided with a phase change inducing device for inducing a change, the inside of the downstream end of the small diameter pipe is cut into a tapered shape, and the phase change from the inside of the large diameter pipe to the inside of the small diameter pipe is performed. An ice manufacturing apparatus characterized in that propagation is prevented.
【請求項2】 前記小口径管はその内面が熱容量の小さ
い樹脂系ライニング材で覆われている請求項1記載の氷
製造装置。
2. The ice producing apparatus according to claim 1, wherein the small diameter pipe has an inner surface covered with a resin-based lining material having a small heat capacity.
【請求項3】 水を冷却して過冷却水を作る冷却器と、
生成された過冷却水の過冷却状態を解消させて水と氷の
混合物に連続的に変換させる過冷却解除装置とが、それ
らの内部を流れる水及び氷が大気と接触しないように連
結されており、前記過冷却解除装置は小口径管と大口径
管を包含し、過冷却水の入口側は管内流速が2.7m/
s以上になるように小口径管で作られ、該小口径管は大
口径管内にノズル状に突き出して配置されており、前記
ノズル状部分よりも下流側における前記大口径管に過冷
却水から氷への相変化を誘発させる相変化誘発装置が設
けられている氷製造装置において、 前記ノズル状部分の先端内側がテーパー状にカットされ
ており、大口径管内部からノズル状部分内部への相変化
伝搬を防止するようになっていることを特徴とする氷製
造装置。
3. A cooler for cooling water to produce supercooled water,
A supercooling release device that eliminates the supercooled state of the generated supercooled water and continuously converts the supercooled water into a mixture of water and ice, and is connected so that the water and ice flowing inside them do not come into contact with the atmosphere. The supercooling release device includes a small-diameter pipe and a large-diameter pipe, and the flow rate in the pipe at the inlet side of the supercooled water is 2.7 m /
s or more, the small-diameter pipe is disposed in the large-diameter pipe so as to protrude in a nozzle shape, and the large-diameter pipe on the downstream side from the nozzle-shaped portion is supplied with supercooled water. In an ice manufacturing apparatus provided with a phase change inducing device for inducing a phase change to ice, the inside of the tip of the nozzle-shaped portion is cut in a tapered shape, and the phase from the inside of the large diameter pipe to the inside of the nozzle-shaped portion is reduced. An ice manufacturing apparatus characterized by preventing change propagation.
【請求項4】 前記ノズル状に突き出した小口径管は、
内面及び/又は外面が熱容量の小さい樹脂系ライニング
材で覆われている請求項3記載の氷製造装置。
4. The small-diameter pipe projecting in a nozzle shape,
The ice manufacturing device according to claim 3, wherein the inner surface and / or the outer surface is covered with a resin-based lining material having a small heat capacity.
【請求項5】 前記小口径管は全体が熱容量の小さい樹
脂で作られている請求項3記載の氷製造装置。
5. The ice manufacturing apparatus according to claim 3, wherein the small diameter pipe is entirely made of a resin having a small heat capacity.
【請求項6】 前記大口径管の下流側端部付近から前記
小口径管のノズル状に突き出した部分の周囲へ、水及び
氷を循環させて流すためのバイパス管が接続されている
請求項3乃至5のいずれかに記載の氷製造装置。
6. A bypass pipe for circulating and flowing water and ice from near the downstream end of the large-diameter pipe to a portion of the small-diameter pipe that protrudes in a nozzle shape. 6. The ice manufacturing device according to any one of 3 to 5.
【請求項7】 過冷却水を生成する冷却器の上流側配管
から分岐したバイパス管が大口径管の上流側端部付近に
接続されている請求項1乃至5のいずれかに記載の氷製
造装置。
7. The ice production according to claim 1, wherein a bypass pipe branched from an upstream pipe of the cooler for generating supercooled water is connected near an upstream end of the large-diameter pipe. apparatus.
JP25465498A 1998-08-26 1998-08-26 Ice making equipment Expired - Fee Related JP3338657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25465498A JP3338657B2 (en) 1998-08-26 1998-08-26 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25465498A JP3338657B2 (en) 1998-08-26 1998-08-26 Ice making equipment

Publications (2)

Publication Number Publication Date
JP2000074532A true JP2000074532A (en) 2000-03-14
JP3338657B2 JP3338657B2 (en) 2002-10-28

Family

ID=17268020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25465498A Expired - Fee Related JP3338657B2 (en) 1998-08-26 1998-08-26 Ice making equipment

Country Status (1)

Country Link
JP (1) JP3338657B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104982A1 (en) * 2001-09-28 2004-07-30 Takasago Thermal Engineering Ice making method and ice making apparatus
JP2007322073A (en) * 2006-06-01 2007-12-13 Taikisha Ltd Icemaker
JP2008075900A (en) * 2006-09-19 2008-04-03 Ihi Corp Propagation preventing method against ice attached to wall surface
CN102003856A (en) * 2010-11-04 2011-04-06 广州鑫誉蓄能科技有限公司 Jet type anti-ice crystal transmitter
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 A kind of enclosed type supercooling release device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104982A1 (en) * 2001-09-28 2004-07-30 Takasago Thermal Engineering Ice making method and ice making apparatus
CN100416189C (en) * 2001-09-28 2008-09-03 高砂热学工业株式会社 Ice making method and device
JP2007322073A (en) * 2006-06-01 2007-12-13 Taikisha Ltd Icemaker
JP2008075900A (en) * 2006-09-19 2008-04-03 Ihi Corp Propagation preventing method against ice attached to wall surface
CN102003856A (en) * 2010-11-04 2011-04-06 广州鑫誉蓄能科技有限公司 Jet type anti-ice crystal transmitter
CN106152340A (en) * 2015-04-28 2016-11-23 深圳市绿旭节能有限公司 A kind of enclosed type supercooling release device

Also Published As

Publication number Publication date
JP3338657B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
EP1476707B1 (en) Thermal storage apparatus
JP3338657B2 (en) Ice making equipment
KR100823813B1 (en) Ice making method and ice making apparatus
KR100774604B1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
JP2811271B2 (en) Ice making equipment
JP2006000753A (en) Washing material production method, manufacturing apparatus of washing material, and washing system
JP3996499B2 (en) Cleaning material manufacturing method, manufacturing apparatus therefor, and cleaning system using the same
JP4507224B2 (en) Ice making device and ice making method by releasing subcooling in water
JPH08110133A (en) Ice-making apparatus
JP4214837B2 (en) Ice heat storage device
JP2000274747A (en) Dynamic type ice storage system and its double pipe type heat-exchanger and supercooling release pipe
JP4248543B2 (en) Ice making method and ice making apparatus using supercooled water
JP2782588B2 (en) Ice storage system for ice storage
JP2002162136A (en) Ice making method and ice plant
JPH0370928A (en) Ice heat accumulator
US20090028764A1 (en) Continuous method for partially crystallising a solution and a device for carrying out said method
JPH04106380A (en) Ice making device
JP2007322073A (en) Icemaker
KR20040059003A (en) Ice slurry generator using supersonic waves
JP2002062002A (en) Falling type ice making apparatus
JP5066875B2 (en) Prevention of propagation of ice on the wall
JPH04306434A (en) Ice thermo-heat accumulation device
JPH10325657A (en) Ice thermal storage device
JPH04332363A (en) Ice heat accumulating device
JPS591165A (en) Ice blasting method and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees