JP2008075900A - Propagation preventing method against ice attached to wall surface - Google Patents

Propagation preventing method against ice attached to wall surface Download PDF

Info

Publication number
JP2008075900A
JP2008075900A JP2006252823A JP2006252823A JP2008075900A JP 2008075900 A JP2008075900 A JP 2008075900A JP 2006252823 A JP2006252823 A JP 2006252823A JP 2006252823 A JP2006252823 A JP 2006252823A JP 2008075900 A JP2008075900 A JP 2008075900A
Authority
JP
Japan
Prior art keywords
ice
heat storage
supercooling
storage material
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252823A
Other languages
Japanese (ja)
Other versions
JP5066875B2 (en
Inventor
Shoichiro Baba
尚一郎 馬場
Masasuke Nakajima
雅祐 中島
Yoshihisa Eshita
義久 江下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006252823A priority Critical patent/JP5066875B2/en
Publication of JP2008075900A publication Critical patent/JP2008075900A/en
Application granted granted Critical
Publication of JP5066875B2 publication Critical patent/JP5066875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a propagation preventing method against ice attached to a wall surface, capable of making upstream-side piping of a supercooling releasing device hard to be coated with ice without lowering efficiency and complicating a structure, or easily separating ice even when ice coating is found, thus the growing and expansion of ice on the upstream-side piping of the supercooling releasing device can be prevented, and a continuous operation of a system can be stabilized. <P>SOLUTION: In this propagation preventing method, an expansion preventing film 16 for inhibiting attachment of ice and preventing its growing and expansion, is formed on at least an inner face of a supercooling heat storage material introduction nozzle 12 as piping for introducing a supercooling heat storage material to the supercooling releasing device, and an operation is performed in a state that a flow velocity V of the supercooling heat storage material flowing in the supercooling heat storage material introduction nozzle 12 as the piping does not become under a predetermined lower limit value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、壁面付着氷の伝播防止方法に関するものである。   The present invention relates to a method for preventing propagation of wall-attached ice.

図4は本発明者等によって既に開発されている氷蓄熱システムの一例を示すものであって、図中、1は冷凍サイクルにより低温の冷媒を得る冷凍ユニットであり、蓄熱材に水もしくはアルコール系水溶液を用い、前記冷凍ユニット1の冷媒が流通される過冷却器2で過冷却状態に冷却された蓄熱材を過冷却解除装置3で過冷却解除することにより凝固点以下の氷水を製造し、氷水蓄熱槽4へ供給すると共に、該氷水蓄熱槽4の底部の蓄熱材を前記過冷却器2へ戻して循環させ、前記氷水蓄熱槽4に貯留された氷水を氷水取出口(図示せず)から取り出して冷熱源として利用するよう構成したものである。   FIG. 4 shows an example of an ice heat storage system that has already been developed by the present inventors. In the figure, 1 is a refrigeration unit that obtains a low-temperature refrigerant by a refrigeration cycle. Using the aqueous solution, the heat storage material cooled to the supercooled state by the supercooler 2 in which the refrigerant of the refrigeration unit 1 is circulated is released from the supercooling by the supercooling release device 3 to produce ice water below the freezing point. While supplying to the heat storage tank 4, the heat storage material at the bottom of the ice water heat storage tank 4 is returned to the supercooler 2 and circulated, and the ice water stored in the ice water heat storage tank 4 is discharged from an ice water outlet (not shown). It is configured to be taken out and used as a cold heat source.

又、前記過冷却解除装置3は、図5及び図6に示される如く、筒形の本体8を有し、該本体8の下端には端部に向かって縮径させた截頭円錐形部9を形成すると共に、本体8の上端にも截頭円錐形部9’を形成してその端部中心に氷水排出口10を形成し、前記本体8の下端と截頭円錐形部9との繋ぎ部11の近傍に、その接線方向に接続するようにした過冷却蓄熱材導入ノズル12を設け、該過冷却蓄熱材導入ノズル12に前記過冷却器2(図4参照)で過冷却された蓄熱材を導くようにし、前記截頭円錐形部9の端部(底面)には、該截頭円錐形部9の内部に過冷却状態解除用のトリガーを供給するトリガー供給口13を設け、該トリガー供給口13には、前記トリガーとして例えば空気14を供給可能な気体供給装置15を接続してある。   The supercooling release device 3 has a cylindrical main body 8 as shown in FIGS. 5 and 6, and the lower end of the main body 8 has a truncated conical portion whose diameter is reduced toward the end portion. 9, and a frustoconical portion 9 ′ is also formed at the upper end of the main body 8, and an ice water discharge port 10 is formed at the center of the end, and the lower end of the main body 8 and the frustoconical portion 9 are A supercooling heat storage material introduction nozzle 12 that is connected in the tangential direction is provided in the vicinity of the connecting portion 11, and the supercooling heat storage material introduction nozzle 12 is supercooled by the supercooler 2 (see FIG. 4). A heat storage material is guided, and at the end (bottom surface) of the truncated cone-shaped portion 9 is provided a trigger supply port 13 for supplying a trigger for releasing the supercooled state inside the truncated cone-shaped portion 9; For example, a gas supply device 15 capable of supplying air 14 is connected to the trigger supply port 13 as the trigger. .

尚、前記過冷却蓄熱材導入ノズル12は、その先端12a外周面がテーパ状に尖った形状に形成されて前記本体8の内部に突設されている。   The supercooling heat storage material introduction nozzle 12 has a tip 12a outer peripheral surface formed in a tapered shape and protrudes inside the main body 8.

即ち、前述の如き氷蓄熱システムにおいては、蓄熱材は、冷凍ユニット1の冷媒が流通される過冷却器2で過冷却状態に冷却された後、過冷却解除装置3で過冷却解除されることにより凝固点以下のシャーベット状の氷水が製造され、氷水蓄熱槽4へ供給されて貯留されるわけであるが、ここで、前記過冷却解除装置3として、図5及び図6に示されるような旋回流式のものを採用した場合には、前記過冷却器2にて過冷却された過冷却蓄熱材は、過冷却蓄熱材導入ノズル12により過冷却解除装置3の本体8の下端と截頭円錐形部9との繋ぎ部11の近傍に接線方向から供給され、氷水排出口10に向かう上向きの旋回流S1を形成すると同時に、截頭円錐形部9内に向かう強い旋回流S2を形成し、このとき、截頭円錐形部9の下端は閉塞されていて下方に流動できないために、強い旋回流S2によって上向きの力が高められ、よって接線方向の導入部に向かう引戻し流が消失して、安定した上昇流Yが形成されるようになり、気体供給装置15によりトリガー供給口13から供給された空気14は、截頭円錐形部9内の強い旋回流S2によって微細化されて過冷却蓄熱材と混合することによりその過冷却状態を解除し、更に微細化した気泡は気柱を形成することなく、過冷却解除された蓄熱材の氷水と共に旋回しながら本体8内部を上昇流Yに沿って上昇し、過冷却解除された蓄熱材の氷水が氷水排出口10から排出され、前記氷水蓄熱槽4へ供給される形となる。   That is, in the ice heat storage system as described above, the heat storage material is cooled to the supercooling state by the supercooler 2 through which the refrigerant of the refrigeration unit 1 is circulated, and then the supercooling release device 3 releases the supercooling. Thus, sherbet-like ice water below the freezing point is manufactured, supplied to the ice water heat storage tank 4 and stored. Here, as the supercooling release device 3, swirling as shown in FIG. 5 and FIG. When the flow type is adopted, the supercooled heat storage material supercooled by the supercooler 2 is separated from the lower end of the main body 8 of the supercooling release device 3 and the truncated cone by the supercooling heat storage material introduction nozzle 12. In the vicinity of the connecting portion 11 with the shape portion 9 is supplied from a tangential direction, and forms an upward swirling flow S1 toward the ice water discharge port 10 and at the same time forms a strong swirling flow S2 toward the frustoconical portion 9; At this time, the lower end of the truncated cone portion 9 is closed. The upward force is increased by the strong swirl flow S2 because it is not allowed to flow downward, so the withdrawal flow toward the tangential introduction portion disappears, and a stable upward flow Y is formed, The air 14 supplied from the trigger supply port 13 by the gas supply device 15 is refined by the strong swirl flow S2 in the frustoconical portion 9 and mixed with the supercooled heat storage material to release the supercooled state. Further, the finer bubbles do not form an air column, and rise along the upward flow Y while swirling together with the ice water of the heat storage material released from the supercooling, and the ice water of the heat storage material released from the supercooling. Is discharged from the ice water discharge port 10 and supplied to the ice water heat storage tank 4.

尚、図5及び図6に示されるような旋回流式の過冷却解除装置3では、截頭円錐形部9の内部において氷の生成が最大に行われるようになるが、截頭円錐形部9の内部には強い旋回流S2が形成されているので、氷を剥ぎ取る効果が強く、よって截頭円錐形部9の内面に氷が付着して成長・進展する問題を防止することができ、且つ本体8の上端部にも截頭円錐形部9’を形成してあり、該截頭円錐形部9’の内部にも強い旋回流が形成されるので、截頭円錐形部9’の内面に氷が付着して成長・進展する問題を防止できる。又、本体8内部では、旋回流S1によって比重の小さい気泡と氷が本体8の軸中心側に徐々に集まるように作用するので、本体8の軸中心部では氷の生成が促進されて過冷却状態の解除が完了されるようになり、逆に本体8内面近傍では氷の生成が弱められるので、本体8の内面に氷が付着・成長する問題が低減されるようになる。   Incidentally, in the swirling flow type supercooling release device 3 as shown in FIGS. 5 and 6, ice generation is maximized inside the truncated cone portion 9, but the truncated cone portion Since a strong swirl flow S2 is formed inside 9, the effect of stripping off the ice is strong, so that it is possible to prevent the problem that the ice adheres to the inner surface of the frustoconical portion 9 and grows and progresses. In addition, a frustoconical portion 9 'is also formed at the upper end of the main body 8, and a strong swirl flow is also formed inside the frustoconical portion 9', so that the frustoconical portion 9 ' Can prevent the problem of growth and progress due to ice adhering to the inner surface of the steel. Further, inside the main body 8, the swirl flow S <b> 1 acts so that bubbles and ice having a small specific gravity gradually gather on the axial center side of the main body 8. The release of the state is completed, and conversely, since ice formation is weakened in the vicinity of the inner surface of the main body 8, the problem of ice adhering and growing on the inner surface of the main body 8 is reduced.

しかしながら、前記過冷却解除装置3に接続される過冷却蓄熱材導入ノズル12の部分は、過冷却水と氷水の境界となるため、該過冷却解除装置3の本体8内面に付着した氷が過冷却蓄熱材導入ノズル12から上流の過冷却器2側の配管に成長・進展し、更に前記過冷却器2の伝熱管に到達すると、閉塞を引き起こし、連続運転を阻害する虞があった。   However, since the portion of the supercooling heat storage material introduction nozzle 12 connected to the supercooling release device 3 serves as a boundary between supercooling water and ice water, ice adhering to the inner surface of the main body 8 of the supercooling release device 3 is excessive. If it grows and progresses from the cooling heat storage material introduction nozzle 12 to the pipe on the upstream side of the supercooler 2 and further reaches the heat transfer pipe of the supercooler 2, there is a possibility of blocking and continuous operation being hindered.

このため、従来においては、過冷却解除装置の上流側における配管外部を加熱し氷を融解させることにより、その成長・進展を防止するもの(例えば、特許文献1参照)や、過冷却解除装置の入口側に設けられた小口径管から0[℃]の氷水を管内流速が所定値以上となるように噴射させることにより、氷を流体力で剥離させ、過冷却水から氷への相変化が上流側へと伝播するのを防止するもの(例えば、特許文献2参照)等が提案されていた。
特許第2727754号 特許第3338657号
For this reason, conventionally, by heating the outside of the pipe on the upstream side of the supercooling release device and melting the ice, the growth / progress of the supercooling release device is prevented (for example, see Patent Document 1). By injecting ice water of 0 [° C] from a small-diameter pipe provided on the inlet side so that the flow velocity in the pipe exceeds a predetermined value, the ice is separated by fluid force, and the phase change from supercooled water to ice occurs. A device for preventing the propagation to the upstream side (for example, see Patent Document 2) has been proposed.
Japanese Patent No. 2727754 Japanese Patent No. 3338657

しかしながら、特許文献1に開示されているように、過冷却解除装置の上流側における配管外部を加熱し氷を融解させることにより、その成長・進展を防止するのでは、エネルギー的にロスがあり、あまり好ましいとは言えず、又、特許文献2に開示されているように、過冷却解除装置の入口側に設けられた小口径管から0[℃]の氷水を管内流速が所定値以上となるように噴射させることにより、氷を流体力で剥離させ、過冷却水から氷への相変化が上流側へと伝播するのを防止するのでは、構造が煩雑化するという不具合を有していた。   However, as disclosed in Patent Document 1, by heating the outside of the pipe on the upstream side of the supercooling release device and melting the ice to prevent its growth and progress, there is a loss in energy, It is not very preferable, and as disclosed in Patent Document 2, ice water at 0 [° C.] from the small-diameter pipe provided on the inlet side of the supercooling release device has a flow velocity in the pipe of a predetermined value or more. In this way, the ice is peeled off by the fluid force, and the phase change from the supercooling water to the ice is prevented from propagating upstream, which has a problem that the structure becomes complicated. .

本発明は、斯かる実情に鑑み、効率を低下させたり構造を煩雑化させたりすることなく、過冷却解除装置の上流側配管に氷を付着させにくくすることができ、又、付着したとしてもその氷を剥離しやすくすることができ、過冷却解除装置の上流側配管への氷の成長・進展を防止し得、システムの連続運転の安定化を図り得る壁面付着氷の伝播防止方法を提供しようとするものである。   In view of such circumstances, the present invention can make it difficult to attach ice to the upstream piping of the supercooling release device without reducing efficiency or complicating the structure. Providing a method for preventing the propagation of ice adhering to the wall, which can make it easier to peel off, prevent the growth and progress of ice in the upstream piping of the supercooling release device, and stabilize the continuous operation of the system It is something to try.

本発明は、過冷却器で過冷却状態に冷却された蓄熱材を過冷却解除装置で過冷却解除することにより凝固点以下の氷水を製造して氷水蓄熱槽に貯留し、該氷水蓄熱槽に貯留された氷水を取り出して冷熱源として利用するようにした壁面付着氷の伝播防止方法であって、
前記過冷却解除装置へ過冷却蓄熱材を導入する配管の少なくとも内面に、氷の付着を抑制してその成長・進展を防止する進展防止皮膜を形成し、該配管内を流れる過冷却蓄熱材の流速が予め設定した下限値未満とならないよう運転を行うことを特徴とする壁面付着氷の伝播防止方法にかかるものである。
The present invention manufactures ice water below the freezing point by releasing the supercooling of the heat storage material cooled to the supercooled state by the supercooler and storing it in the ice water heat storage tank, and storing it in the ice water heat storage tank. A method of preventing the propagation of ice adhering to the wall surface by taking out the frozen ice water and using it as a cold heat source,
A progress preventing film for preventing the growth and progress of the supercooling heat storage material flowing through the pipe is formed on at least the inner surface of the pipe for introducing the supercooling heat storage material into the supercooling release device. The present invention relates to a method for preventing propagation of wall-attached ice, wherein the operation is performed so that the flow velocity does not become less than a preset lower limit value.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く、過冷却解除装置へ過冷却蓄熱材を導入する配管の少なくとも内面に、氷の付着を抑制してその成長・進展を防止する進展防止皮膜を形成し、該配管内を流れる過冷却蓄熱材の流速が予め設定した下限値未満とならないよう運転を行うと、過冷却解除装置の上流側配管に氷が付着しにくくなると共に、仮に付着したとしてもその氷は剥離しやすくなり、過冷却解除装置の上流側配管への氷の成長・進展が確実に防止され、過冷却器が閉塞したりする心配がなく、システムの連続運転が阻害されなくなる。   As described above, a progress preventing film is formed on at least the inner surface of the pipe for introducing the supercooling heat storage material to the supercooling release device, thereby preventing the growth and progress of ice by preventing the adhesion of ice, and the supercooling flowing in the pipe If the operation is performed so that the flow rate of the heat storage material does not become less than the preset lower limit value, it is difficult for ice to adhere to the upstream piping of the supercooling release device. The growth and progress of ice to the upstream piping of the cooling release device is surely prevented, and there is no concern that the supercooler is blocked, and the continuous operation of the system is not hindered.

そして、特許文献1に開示されているように、過冷却解除装置の上流側における配管外部を加熱し氷を融解させることにより、その成長・進展を防止するのではないため、エネルギー的にロスがなく、又、特許文献2に開示されているように、過冷却解除装置の入口側に設けられた小口径管から0[℃]の氷水を管内流速が所定値以上となるように噴射させることにより、氷を流体力で剥離させ、過冷却水から氷への相変化が上流側へと伝播するのを防止するのに比べ、構造が煩雑化する心配もない。   And, as disclosed in Patent Document 1, the growth / progress is not prevented by heating the outside of the pipe on the upstream side of the supercooling release device and melting the ice, so there is a loss in energy. In addition, as disclosed in Patent Document 2, 0 [° C.] ice water is injected from a small-diameter pipe provided on the inlet side of the supercooling release device so that the flow velocity in the pipe becomes a predetermined value or more. Therefore, there is no concern that the structure becomes complicated as compared with the case where the ice is separated by fluid force and the phase change from the supercooling water to the ice is prevented from propagating upstream.

前記壁面付着氷の伝播防止方法においては、前記進展防止皮膜を、シリコーン変性フッ素系樹脂の塗布により形成することができる。   In the method of preventing propagation of wall-attached ice, the progress preventing film can be formed by applying a silicone-modified fluororesin.

又、前記壁面付着氷の伝播防止方法においては、前記進展防止皮膜を、フッ素樹脂の表面に無数の微細な突起が形成され且つ撥水性を有するメッキ皮膜の加工により形成しても良い。   In the method for preventing propagation of ice on the wall surface, the progress preventing film may be formed by processing a plating film having innumerable fine protrusions formed on the surface of the fluororesin and having water repellency.

更に又、前記壁面付着氷の伝播防止方法においては、前記配管内を流れる過冷却蓄熱材の流速の下限値を4[m/sec]とすることができる。   Furthermore, in the method for preventing propagation of wall-attached ice, the lower limit value of the flow rate of the supercooled heat storage material flowing in the pipe can be set to 4 [m / sec].

本発明の壁面付着氷の伝播防止方法によれば、効率を低下させたり構造を煩雑化させたりすることなく、過冷却解除装置の上流側配管に氷を付着させにくくすることができ、又、付着したとしてもその氷を剥離しやすくすることができ、過冷却解除装置の上流側配管への氷の成長・進展を防止し得、システムの連続運転の安定化を図り得るという優れた効果を奏し得る。   According to the method for preventing propagation of wall-attached ice of the present invention, it is possible to make it difficult for ice to adhere to the upstream piping of the supercooling release device without reducing efficiency or complicating the structure, Even if it adheres, the ice can be easily peeled off, and it is possible to prevent the ice from growing and progressing to the upstream piping of the supercooling release device, and to stabilize the continuous operation of the system. Can play.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であって、図中、図4〜図6と同一の符号を付した部分は同一物を表わしており、過冷却解除装置3へ過冷却蓄熱材を導入する配管としての過冷却蓄熱材導入ノズル12の少なくとも内面に、氷の付着を抑制してその成長・進展を防止する進展防止皮膜16を形成し、該配管としての過冷却蓄熱材導入ノズル12内を流れる過冷却蓄熱材の流速Vが予め設定した下限値未満とならないよう運転を行うものである。   FIG. 1 is an example of an embodiment for carrying out the present invention. In the figure, the parts denoted by the same reference numerals as those in FIGS. 4 to 6 represent the same thing, and a supercooling heat storage material is applied to the supercooling release device 3. A progress preventing film 16 for preventing the growth and progress of the supercooled heat storage material introduction nozzle 12 as a pipe to be introduced is formed on the at least inner surface of the supercooling heat storage material introduction nozzle 12 as the pipe. The operation is performed so that the flow velocity V of the supercooling heat storage material flowing inside does not become less than a preset lower limit value.

ここで、本発明を実施する形態の一例における氷の成長・進展防止効果を実証するために条件を変えて行った試験結果を図2に示す。   Here, FIG. 2 shows the results of tests performed under different conditions in order to demonstrate the effect of preventing the growth and progress of ice in an example of the embodiment of the present invention.

No.1として内径D:50A、長さL:100mmの三フッ化塩化エチレン樹脂製の過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを5.6[m/s]とし、過冷却度を−1.0[℃](1.0deg)とした場合、過冷却蓄熱材導入ノズル12に付着した氷がノズル全長に亘って成長・進展することが確認された。   No. 1, a supercooled heat storage material introduction nozzle 12 made of ethylene trifluoride chlorinated resin having an inner diameter D of 50 A and a length L of 100 mm was used, and the flow rate V of the supercooled heat storage material was set to 5.6 [m / s]. When the degree of cooling was −1.0 [° C.] (1.0 deg), it was confirmed that ice attached to the supercooled heat storage material introduction nozzle 12 grew and progressed over the entire length of the nozzle.

No.2として内径D:40A、長さL:100mmの三フッ化塩化エチレン樹脂製の過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを7.5[m/s]とし、過冷却度を−0.5[℃](0.5deg)とした場合にも、過冷却蓄熱材導入ノズル12に付着した氷がノズル全長に亘って成長・進展することが確認された。   No. 2 using a supercooled heat storage material introduction nozzle 12 made of ethylene trifluoride chlorinated resin having an inner diameter D of 40 A and a length L of 100 mm, and the flow rate V of the supercooled heat storage material is set to 7.5 [m / s] Even when the degree of cooling was −0.5 [° C.] (0.5 deg), it was confirmed that the ice attached to the supercooled heat storage material introduction nozzle 12 grew and progressed over the entire length of the nozzle.

No.3として内径D:50A、長さL:200mmの透明塩化ビニル製基材に、シリコーン変性フッ素系樹脂を塗布して進展防止皮膜16を形成した過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを5.6[m/s]とし、過冷却度を−1.9[℃](1.9deg)とした場合、過冷却蓄熱材導入ノズル12に氷は付着せずノズル全長に亘って成長・進展しないことが確認された。前記透明塩化ビニル製基材に、シリコーン変性フッ素系樹脂を塗布して進展防止皮膜16を形成する際には、欠損領域がなく且つ気泡やゴミがまきこまれないようにシリコーン変性フッ素系樹脂を塗布し、進展防止皮膜16に凹凸ができないように注意した。又、同じ条件で、過冷却度を−2.0[℃](2.0deg)とした場合、過冷却蓄熱材導入ノズル12に氷は付着するもののノズル先端から120mm上流で氷の成長・進展は停止し、この状態を3時間維持できることが確認された。更に、前記過冷却蓄熱材の流速Vは4.0[m/s]に下げても略同じ結果が得られることが確認された。   No. 3 using a supercooling heat storage material introduction nozzle 12 in which a silicone-modified fluororesin is formed on a transparent vinyl chloride base material having an inner diameter D of 50 A and a length L of 200 mm to form a progress prevention film 16. When the flow velocity V of the material is 5.6 [m / s] and the degree of supercooling is −1.9 [° C.] (1.9 deg), ice does not adhere to the supercooled heat storage material introduction nozzle 12 and the total length of the nozzle It was confirmed that there was no growth or progress over the entire period. When the silicone-modified fluororesin is applied to the transparent vinyl chloride base material to form the progress preventing film 16, the silicone-modified fluororesin is applied so that there is no defect area and air bubbles and dust are not trapped. However, care was taken so that the progress prevention film 16 was not uneven. Under the same conditions, when the degree of supercooling is −2.0 [° C.] (2.0 deg), ice adheres to the supercooled heat storage material introduction nozzle 12, but ice grows and progresses 120mm upstream from the nozzle tip. Was stopped, and it was confirmed that this state could be maintained for 3 hours. Further, it was confirmed that substantially the same result was obtained even when the flow velocity V of the supercooled heat storage material was lowered to 4.0 [m / s].

No.4として内径D:50A、長さL:200mmの透明塩化ビニル製基材に、特殊変性シリコーンを塗布して進展防止皮膜16を形成した過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを5.6[m/s]とし、過冷却度を−1.3[℃](1.3deg)とした場合、過冷却蓄熱材導入ノズル12に付着した氷がノズル全長に亘って成長・進展することが確認された。前記透明塩化ビニル製基材に、特殊変性シリコーンを塗布して進展防止皮膜16を形成する際には、欠損領域がなく且つ気泡やゴミがまきこまれないように特殊変性シリコーンを塗布し、進展防止皮膜16に凹凸ができないように注意した。   No. 4, a supercooled heat storage material introduction nozzle 12 in which a special modified silicone is applied to a transparent vinyl chloride base material having an inner diameter D: 50A and a length L: 200 mm to form a progress prevention film 16 is used. When the flow velocity V is 5.6 [m / s] and the degree of supercooling is −1.3 [° C.] (1.3 deg), the ice adhering to the supercooled heat storage material introduction nozzle 12 extends over the entire length of the nozzle. It was confirmed that it would grow and progress. When the specially modified silicone is applied to the transparent vinyl chloride base material to form the progress preventing film 16, the specially modified silicone is applied so that there is no defect area and air bubbles and dust are not trapped. Care was taken not to make the film 16 uneven.

No.5として内径D:50A、長さL:200mmのパイレックス(登録商標)ガラス製の過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを5.6[m/s]とし、過冷却度を−0.5[℃](0.5deg)とした場合、過冷却蓄熱材導入ノズル12に付着した氷がノズル全長に亘って成長・進展することが確認された。   No. 5, a Pyrex (registered trademark) glass-made supercooled heat storage material introduction nozzle 12 having an inner diameter D of 50 A and a length L of 200 mm was used, and the flow rate V of the supercooled heat storage material was set to 5.6 [m / s]. When the degree of cooling was −0.5 [° C.] (0.5 deg), it was confirmed that the ice attached to the supercooled heat storage material introduction nozzle 12 grew and progressed over the entire length of the nozzle.

No.6として内径D:50A、長さL:200mmの透明塩化ビニル製基材に、フッ素樹脂の表面に無数の微細な突起が形成され且つ撥水性を有するメッキ皮膜(超撥水性電気メッキ皮膜)の加工により進展防止皮膜16を形成した過冷却蓄熱材導入ノズル12を用い、過冷却蓄熱材の流速Vを5.6[m/s]とし、過冷却度を−2.0[℃](2.0deg)とした場合、過冷却蓄熱材導入ノズル12に氷は付着せず、2時間40分この状態を維持できることが確認された。更に、前記過冷却蓄熱材の流速Vは4.0[m/s]に下げても略同じ結果が得られることが確認された。   No. No. 6 is a transparent vinyl chloride base material having an inner diameter D of 50A and a length L of 200 mm, and a plating film (super water-repellent electroplating film) having numerous fine protrusions formed on the surface of the fluororesin and having water repellency. Using the supercooled heat storage material introduction nozzle 12 in which the progress preventing film 16 is formed by processing, the flow rate V of the supercooled heat storage material is set to 5.6 [m / s], and the degree of supercooling is −2.0 [° C.] (2 .0 deg), it was confirmed that ice does not adhere to the supercooling heat storage material introduction nozzle 12 and this state can be maintained for 2 hours and 40 minutes. Further, it was confirmed that substantially the same result was obtained even when the flow velocity V of the supercooled heat storage material was lowered to 4.0 [m / s].

尚、前記過冷却蓄熱材導入ノズル12の先端12a外周面は、勾配αが15°となるテーパ状に尖った形状に形成してある。   The outer peripheral surface of the tip 12a of the supercooling heat storage material introduction nozzle 12 is formed in a tapered shape with a gradient α of 15 °.

因みに、前記進展防止皮膜16としての超撥水性電気メッキ皮膜とは、図3に示す如く、四フッ化エチレン(PTFE:ポリテトラフルオロエチレン)等のフッ素樹脂の表面に無数の微細な突起(PTFE粒子)を形成させた、いわゆるフラクタル構造で、撥水性をもたせたメッキ皮膜であり、その表面上に触れてできた水滴の接触部分がつくる角度である接触角θがおよそ170°となり、非常に高い撥水性が得られるものである。   Incidentally, the super-water-repellent electroplating film as the progress preventing film 16 is an infinite number of fine protrusions (PTFE) on the surface of a fluororesin such as tetrafluoroethylene (PTFE: polytetrafluoroethylene) as shown in FIG. A so-called fractal structure with a water-repellent plating film, and a contact angle θ, which is an angle formed by a contact portion of a water droplet formed on the surface, is about 170 °, which is very High water repellency can be obtained.

今、氷の付着力に影響を及ぼす因子について考察した場合、該因子としては、配管内面における撥水性と表面粗さが挙げられるが、上記試験の結果より、撥水性を有するシリコーン(No.4参照)やフッ素樹脂(No.1及びNo.2参照)単独では氷の成長・進展防止効果がなく、又、表面粗さが低い親水性のパイレックス(登録商標)ガラス(No.5参照)では、氷の成長・進展を防止できないことがわかった。   Now, when considering the factors affecting the adhesion of ice, the factors include water repellency and surface roughness on the inner surface of the pipe. From the results of the above test, silicone having water repellency (No. 4 ) And fluororesin (see No. 1 and No. 2) alone have no effect of preventing ice growth and progress, and hydrophilic Pyrex (registered trademark) glass (see No. 5) with low surface roughness. It was found that ice growth and progress could not be prevented.

このことより、氷蓄熱システムにおいて、過冷却解除装置3と過冷却器2との間での氷の成長・進展防止に関しては、進展防止皮膜16の表面粗さより撥水性が重要であるものの、撥水性素材だけでは氷の成長・進展を防止できないことが判明し、シリコーン変性フッ素系樹脂を塗布して進展防止皮膜16を形成(No.3参照)したり、或いは、フッ素樹脂の表面に無数の微細な突起が形成され且つ撥水性を有するメッキ皮膜(超撥水性電気メッキ皮膜)の加工により進展防止皮膜16を形成(No.6参照)することが有効となり、こうした点が上記試験結果より明らかとなった。   Thus, in the ice heat storage system, water repellency is more important than the surface roughness of the progress preventing film 16 for preventing ice growth and progress between the supercooling release device 3 and the supercooler 2, but It turns out that the growth and progress of ice cannot be prevented only with an aqueous material, and a silicone-modified fluororesin is applied to form a progress prevention film 16 (see No. 3) or the surface of the fluororesin is innumerable. It is effective to form a progress preventing film 16 (see No. 6) by processing a plating film (super water-repellent electroplating film) having fine protrusions and having water repellency, which is clear from the above test results. It became.

即ち、前述の如く、過冷却解除装置3へ過冷却蓄熱材を導入する配管としての過冷却蓄熱材導入ノズル12の少なくとも内面に、氷の付着を抑制してその成長・進展を防止する進展防止皮膜16を形成し、該配管としての過冷却蓄熱材導入ノズル12内を流れる過冷却蓄熱材の流速Vが予め設定した下限値未満とならないよう運転を行うと、過冷却解除装置3の上流側配管に氷が付着しにくくなると共に、仮に付着したとしてもその氷は剥離しやすくなり、過冷却解除装置3の上流側配管への氷の成長・進展が確実に防止され、過冷却器が閉塞したりする心配がなく、システムの連続運転が阻害されなくなる。   That is, as described above, the progress prevention that prevents the growth and progress of ice by suppressing the adhesion of ice to at least the inner surface of the supercooling heat storage material introduction nozzle 12 as a pipe for introducing the supercooling heat storage material to the supercooling release device 3. When the film 16 is formed and the operation is performed so that the flow velocity V of the supercooling heat storage material flowing through the supercooling heat storage material introduction nozzle 12 as the pipe does not become lower than a preset lower limit value, the upstream side of the supercooling release device 3 Ice becomes difficult to adhere to the pipe, and even if it is attached, the ice is easily peeled off, and the growth and progress of ice to the upstream pipe of the supercooling release device 3 is surely prevented, and the supercooler is blocked. The continuous operation of the system is not hindered.

そして、特許文献1に開示されているように、過冷却解除装置の上流側における配管外部を加熱し氷を融解させることにより、その成長・進展を防止するのではないため、エネルギー的にロスがなく、又、特許文献2に開示されているように、過冷却解除装置の入口側に設けられた小口径管から0[℃]の氷水を管内流速が所定値以上となるように噴射させることにより、氷を流体力で剥離させ、過冷却水から氷への相変化が上流側へと伝播するのを防止するのに比べ、構造が煩雑化する心配もない。   And, as disclosed in Patent Document 1, the growth / progress is not prevented by heating the outside of the pipe on the upstream side of the supercooling release device and melting the ice, so there is a loss in energy. In addition, as disclosed in Patent Document 2, 0 [° C.] ice water is injected from a small-diameter pipe provided on the inlet side of the supercooling release device so that the flow velocity in the pipe becomes a predetermined value or more. Therefore, there is no concern that the structure becomes complicated as compared with the case where the ice is separated by fluid force and the phase change from the supercooling water to the ice is prevented from propagating upstream.

こうして、効率を低下させたり構造を煩雑化させたりすることなく、過冷却解除装置3の上流側配管に氷を付着させにくくすることができ、又、付着したとしてもその氷を剥離しやすくすることができ、過冷却解除装置3の上流側配管への氷の成長・進展を防止し得、システムの連続運転の安定化を図り得る。   Thus, it is possible to make it difficult to attach ice to the upstream piping of the supercooling release device 3 without reducing efficiency or complicating the structure, and even if it adheres, the ice can be easily peeled off. It is possible to prevent the ice from growing and progressing to the upstream piping of the supercooling release device 3, and to stabilize the continuous operation of the system.

尚、本発明の壁面付着氷の伝播防止方法は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the method for preventing the propagation of wall-attached ice according to the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例における過冷却蓄熱材導入ノズルを示す断面図である。It is sectional drawing which shows the supercooling heat storage material introduction | transduction nozzle in an example of embodiment which implements this invention. 本発明を実施する形態の一例における氷の成長・進展防止効果を実証するために条件を変えて行った試験結果を示す図である。It is a figure which shows the test result performed by changing conditions in order to demonstrate the growth and progress prevention effect of ice in an example of embodiment which implements this invention. 本発明を実施する形態の一例において用いられる撥水性を有するメッキ皮膜上の水滴の接触角を示す概念図である。It is a conceptual diagram which shows the contact angle of the water droplet on the plating film which has the water repellency used in an example of embodiment which implements this invention. 既に開発されている氷蓄熱システムの一例を示す概要構成図である。It is a schematic block diagram which shows an example of the ice heat storage system already developed. 図4に示される氷蓄熱システムに用いられる過冷却解除装置の一例を示す断面図である。It is sectional drawing which shows an example of the supercooling cancellation | release apparatus used for the ice thermal storage system shown by FIG. 図5のVI−VI断面図である。It is VI-VI sectional drawing of FIG.

符号の説明Explanation of symbols

1 冷凍ユニット
2 過冷却器
3 過冷却解除装置
4 氷水蓄熱槽
12 過冷却蓄熱材導入ノズル
12a 先端
16 進展防止皮膜
D 内径
L 長さ
α 勾配
V 流速
θ 接触角
DESCRIPTION OF SYMBOLS 1 Refrigeration unit 2 Supercooler 3 Supercooling cancellation | release apparatus 4 Ice water thermal storage tank 12 Supercooling thermal storage material introduction nozzle 12a Tip 16 Propagation prevention film D Inner diameter L Length α Gradient V Flow velocity θ Contact angle

Claims (4)

過冷却器で過冷却状態に冷却された蓄熱材を過冷却解除装置で過冷却解除することにより凝固点以下の氷水を製造して氷水蓄熱槽に貯留し、該氷水蓄熱槽に貯留された氷水を取り出して冷熱源として利用するようにした壁面付着氷の伝播防止方法であって、
前記過冷却解除装置へ過冷却蓄熱材を導入する配管の少なくとも内面に、氷の付着を抑制してその成長・進展を防止する進展防止皮膜を形成し、該配管内を流れる過冷却蓄熱材の流速が予め設定した下限値未満とならないよう運転を行うことを特徴とする壁面付着氷の伝播防止方法。
The heat storage material cooled to the supercooled state by the supercooler is released from the supercooling release device to produce the ice water below the freezing point and stored in the ice water heat storage tank, and the ice water stored in the ice water heat storage tank is stored in the ice water heat storage tank. It is a method for preventing the propagation of ice on the wall surface, which is taken out and used as a cold heat source,
A progress preventing film for preventing the growth and progress of the supercooling heat storage material flowing through the pipe is formed on at least the inner surface of the pipe for introducing the supercooling heat storage material into the supercooling release device. A method for preventing propagation of wall-attached ice, wherein the operation is performed so that the flow velocity does not fall below a preset lower limit value.
前記進展防止皮膜を、シリコーン変性フッ素系樹脂の塗布により形成した請求項1記載の壁面付着氷の伝播防止方法。   The method for preventing propagation of wall-attached ice according to claim 1, wherein the progress preventing film is formed by applying a silicone-modified fluororesin. 前記進展防止皮膜を、フッ素樹脂の表面に無数の微細な突起が形成され且つ撥水性を有するメッキ皮膜の加工により形成した請求項1記載の壁面付着氷の伝播防止方法。   The method for preventing propagation of wall-attached ice according to claim 1, wherein the progress preventing film is formed by processing a plating film having innumerable fine protrusions formed on the surface of a fluororesin and having water repellency. 前記配管内を流れる過冷却蓄熱材の流速の下限値を4[m/sec]とした請求項1〜3のいずれか一つに記載の壁面付着氷の伝播防止方法。   The method for preventing propagation of wall-attached ice according to any one of claims 1 to 3, wherein a lower limit value of a flow rate of the supercooled heat storage material flowing in the pipe is 4 [m / sec].
JP2006252823A 2006-09-19 2006-09-19 Prevention of propagation of ice on the wall Expired - Fee Related JP5066875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252823A JP5066875B2 (en) 2006-09-19 2006-09-19 Prevention of propagation of ice on the wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252823A JP5066875B2 (en) 2006-09-19 2006-09-19 Prevention of propagation of ice on the wall

Publications (2)

Publication Number Publication Date
JP2008075900A true JP2008075900A (en) 2008-04-03
JP5066875B2 JP5066875B2 (en) 2012-11-07

Family

ID=39348165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252823A Expired - Fee Related JP5066875B2 (en) 2006-09-19 2006-09-19 Prevention of propagation of ice on the wall

Country Status (1)

Country Link
JP (1) JP5066875B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147271A (en) * 1985-12-20 1987-07-01 新菱冷熱工業株式会社 Manufacture of supercooling water
JPH03139571A (en) * 1989-10-24 1991-06-13 Matsushita Refrig Co Ltd Water-repellent coating composition and heat exchanger coated therewith
JPH05296622A (en) * 1992-04-24 1993-11-09 Daikin Ind Ltd Ice maker
JPH10237430A (en) * 1997-02-25 1998-09-08 Toto Ltd Member with planing surface
JP2000074532A (en) * 1998-08-26 2000-03-14 Shinryo Corp Icemaker
JP2000160132A (en) * 1998-12-02 2000-06-13 Toppan Printing Co Ltd Pollution-controlling and ultra-water repellent functional material
JP2001241705A (en) * 2000-02-25 2001-09-07 Takasago Thermal Eng Co Ltd Method for relieving supercooling and ice plant
JP2003298264A (en) * 2002-04-05 2003-10-17 Nippon Light Metal Co Ltd Heat exchanger
JP2004293949A (en) * 2003-03-27 2004-10-21 Takasago Thermal Eng Co Ltd Freeze detection method of ice maker and ice maker

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147271A (en) * 1985-12-20 1987-07-01 新菱冷熱工業株式会社 Manufacture of supercooling water
JPH03139571A (en) * 1989-10-24 1991-06-13 Matsushita Refrig Co Ltd Water-repellent coating composition and heat exchanger coated therewith
JPH05296622A (en) * 1992-04-24 1993-11-09 Daikin Ind Ltd Ice maker
JPH10237430A (en) * 1997-02-25 1998-09-08 Toto Ltd Member with planing surface
JP2000074532A (en) * 1998-08-26 2000-03-14 Shinryo Corp Icemaker
JP2000160132A (en) * 1998-12-02 2000-06-13 Toppan Printing Co Ltd Pollution-controlling and ultra-water repellent functional material
JP2001241705A (en) * 2000-02-25 2001-09-07 Takasago Thermal Eng Co Ltd Method for relieving supercooling and ice plant
JP2003298264A (en) * 2002-04-05 2003-10-17 Nippon Light Metal Co Ltd Heat exchanger
JP2004293949A (en) * 2003-03-27 2004-10-21 Takasago Thermal Eng Co Ltd Freeze detection method of ice maker and ice maker

Also Published As

Publication number Publication date
JP5066875B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
EP1476707B1 (en) Thermal storage apparatus
JP6465753B2 (en) Scale remover and water heater
RU2232788C2 (en) Device for quenching of a stream of a hot gas
CA2815088C (en) Vaporization chambers and associated methods
CN1709591A (en) Cleaning material manufacturing method, cleaning material manufacturing apparatus and cleaning system
US20200263913A1 (en) Solid production methods, systems, and devices
KR100823813B1 (en) Ice making method and ice making apparatus
JP5066875B2 (en) Prevention of propagation of ice on the wall
JP2013111505A (en) Pressurized container and air dissolving device using the same
KR100774604B1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
JPS5826999A (en) Method of removing substance adhered to inside of tube
KR20230045017A (en) Heat exchange system for freezing, transfer, storage and utilization of phase change materials and application of the system to thermal energy storage system
CN104508152B (en) For preparing metal and maintaining loading and the blowing rifle of blowing operation condition
JP3338657B2 (en) Ice making equipment
JP2009115422A (en) Method and apparatus for manufacturing spherical ice grain by aerial release method
JP2010060058A (en) Liquefied gas vaporizer
JP2008106947A (en) Water-cooled plug bar
JP5871588B2 (en) Equipment with fine bubble generation function
JP4248543B2 (en) Ice making method and ice making apparatus using supercooled water
JP2004245485A (en) Heat storage system
JP2007322073A (en) Icemaker
CN209180653U (en) Liquid nitrogen release buffering auxiliary device
JP6910215B2 (en) Slurry ice making equipment and method
JPS5822609A (en) Perforation to high temperature wall body
JP2021124211A (en) Ice maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees