JP2000074509A - Flooded cooler - Google Patents

Flooded cooler

Info

Publication number
JP2000074509A
JP2000074509A JP10239706A JP23970698A JP2000074509A JP 2000074509 A JP2000074509 A JP 2000074509A JP 10239706 A JP10239706 A JP 10239706A JP 23970698 A JP23970698 A JP 23970698A JP 2000074509 A JP2000074509 A JP 2000074509A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
heat exchanger
refrigerant gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10239706A
Other languages
Japanese (ja)
Other versions
JP4080605B2 (en
Inventor
Hiroshi Yanagisawa
博 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP23970698A priority Critical patent/JP4080605B2/en
Publication of JP2000074509A publication Critical patent/JP2000074509A/en
Application granted granted Critical
Publication of JP4080605B2 publication Critical patent/JP4080605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flooded cooler which uses ammonia as a refrigerant, can highly efficiently cool by using a small amount of low-temperature low- pressure refrigerant solution, and can separate and collect oil from the refrigerant solution. SOLUTION: A flooded cooler using an ammonia refrigerant is provided with a heat exchanger 10 constituting an evaporator, a refrigerant solution charging section composed of a vertical refrigerant solution separating and supplying pipe 11 and an internal equalizer 12, and a cold gas charging section composed of a vertical refrigerant gas returning pipe 13 and a horizontal refrigerant gas tank 14 as principal components. The refrigerant solution charging section and the refrigerant gas charging section are separated from each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温低圧冷媒の冷
媒液のみを使用して蒸発器を形成する熱交換器に満たし
て、被冷却媒体を冷却する満液式冷却器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-fill type cooler for cooling a medium to be cooled by filling a heat exchanger forming an evaporator using only a refrigerant liquid of a low-temperature low-pressure refrigerant.

【0002】[0002]

【従来の技術】蒸発器に低温低圧冷媒の冷媒液のみを満
たし使用する冷凍サイクルとしては、図2(A)に示す
ように、 圧縮機50により圧縮された高圧高温冷媒ガスは、油分
離器51、凝縮器52を介して高圧低温冷媒となり高圧
受液器53に導入される。高圧受液器53では受液した
高圧低温冷媒を膨張弁55を介して低圧受液器57に低
圧低温冷媒として導入し、導入した低圧低温冷媒の冷媒
液を液ポンプ58で調整弁60を介して蒸発器56に送
り、戻り冷媒ガスより未蒸発分を除き圧縮機へ還流させ
る液ポンプ方式がある。なお、液ポンプ58の出口側圧
力は圧力逃し弁59により定圧に保ち、さらに調整弁6
0により蒸発器56内の圧力損失相当分まで減圧して各
蒸発器56に送液するようにしてある。そのため、蒸発
器56の出口には冷媒の湿り蒸気が存在することにな
る。また、同図(B)に示すように、圧縮機50により
圧縮された高圧高温冷媒ガスは、油分離器51、凝縮器
52を介して高圧低温冷媒となり高圧受液器53に導入
される。高圧受液器53からは膨張弁55、図示しない
フロート弁を介してサージタンク62に低圧低温冷媒の
冷媒液を液面レベルHを常時維持するようにしたサージ
タンクを使用するようにした重力式自然循環方式があ
る。上記の場合は、蒸発器61の入り口の冷媒圧力は前
記液レベルHに相当する圧力を持ち、蒸発器内を冷媒が
流れ行く過程で、流れの摩擦、蒸発による蒸気の加速、
2相冷媒の静圧ヘッド等による圧力が降下し、蒸発器出
口でサージタンク上部と同一圧力となりその出口には冷
媒の湿り蒸気が存在することになる。上記のように、い
ずれの方式も蒸発器の出口端まで冷媒液が存在するた
め、伝熱面積を最大限に使用することができ、効率の良
い安定な冷却運転ができる。
2. Description of the Related Art As a refrigeration cycle in which an evaporator is filled with only a refrigerant liquid of a low-temperature and low-pressure refrigerant, as shown in FIG. 2A, a high-pressure and high-temperature refrigerant gas compressed by a compressor 50 is supplied to an oil separator. The refrigerant becomes a high-pressure low-temperature refrigerant via a condenser 52 and is introduced into a high-pressure receiver 53. In the high-pressure receiver 53, the received high-pressure low-temperature refrigerant is introduced as a low-pressure low-temperature refrigerant into the low-pressure receiver 57 via the expansion valve 55, and the introduced refrigerant liquid of the low-pressure low-temperature refrigerant is supplied via the adjustment valve 60 by the liquid pump 58. There is a liquid pump system in which the refrigerant gas is sent to the evaporator 56 and the unevaporated component is removed from the returned refrigerant gas and returned to the compressor. The pressure on the outlet side of the liquid pump 58 is kept constant by the pressure relief valve 59, and
The pressure is reduced to a value corresponding to the pressure loss in the evaporator 56 by 0, and the liquid is sent to each evaporator 56. Therefore, wet vapor of the refrigerant exists at the outlet of the evaporator 56. As shown in FIG. 2B, the high-pressure high-temperature refrigerant gas compressed by the compressor 50 becomes a high-pressure low-temperature refrigerant via the oil separator 51 and the condenser 52 and is introduced into the high-pressure receiver 53. From the high-pressure receiver 53, via a expansion valve 55 and a float valve (not shown), the surge tank 62 uses a surge tank that constantly maintains the liquid level of the low-pressure low-temperature refrigerant at the liquid level H in the surge tank 62. There is a natural circulation system. In the above case, the refrigerant pressure at the inlet of the evaporator 61 has a pressure corresponding to the liquid level H. In the process of the refrigerant flowing through the evaporator, friction of the flow, acceleration of vapor due to evaporation,
The pressure of the two-phase refrigerant by the static pressure head or the like drops, and the pressure at the evaporator outlet becomes the same as that of the upper part of the surge tank, and wet steam of the refrigerant exists at the outlet. As described above, since the refrigerant liquid exists up to the outlet end of the evaporator in any of the methods, the heat transfer area can be used to the maximum, and efficient and stable cooling operation can be performed.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来までの
蒸発器に低温冷媒液を満たす満液式冷凍サイクルにおい
ては、蒸発器を備えた冷却装置内には大量の冷媒を充填
する必要がある。現在、地球環境に影響するオゾン層破
壊の問題と地球温暖化問題から長い間使用されてきた安
全で取り扱いのし易いフロン冷媒が規制されるようにな
り、アンモニアがフロンの代替冷媒としての使用が見直
されてきた。即ち、アンモニア冷媒はフロンのような地
球環境破壊の恐れはなく、その冷凍効果はフロンに勝る
とも劣らず、而も安価である有利な点を持つ。しかし、
アンモニアは、過去においてフロンに取って代わられた
ように毒性、可燃性、及び潤滑油として使用する鉱物油
に対し非溶解性であり、さらに圧縮機よりの吐出温度が
高い等の問題点を持つ。特に冷却装置内に多量のアンモ
ニア冷媒を充填する装置は安全性の面から設置できない
問題がある。
Incidentally, in a conventional liquid-filled refrigeration cycle in which an evaporator is filled with a low-temperature refrigerant liquid, it is necessary to fill a large amount of refrigerant in a cooling device provided with the evaporator. Currently, safe and easy-to-use CFC refrigerants that have been used for a long time have been regulated due to the problem of ozone layer depletion affecting the global environment and the issue of global warming. It has been reviewed. That is, the ammonia refrigerant has no danger of destruction of the global environment like CFCs, and its refrigeration effect is as good as CFCs, and has the advantage of being inexpensive. But,
Ammonia has problems such as toxicity, flammability, and insolubility in mineral oil used as a lubricating oil, as replaced by CFCs in the past, and high discharge temperature from the compressor. . In particular, there is a problem that a device that fills a large amount of ammonia refrigerant in the cooling device cannot be installed from the viewpoint of safety.

【0004】また、従来のフロンガス等で使用された銅
製パイプよりなる熱交換器は、アンモニア自体が銅系統
の材料に対し腐食性を有するため使用できないため、装
置も大型になり冷媒充填量が増える問題がある。さらに
アンモニア冷媒は従来からの冷凍機油である鉱物油に対
して不溶性であるため、蒸発器に冷凍機油を残留させな
いように液ポンプによる強制循環方式が採用され装置も
大型になり冷媒充填量が増える傾向になる問題がある。
In addition, a conventional heat exchanger comprising a copper pipe used for chlorofluorocarbon gas and the like cannot be used because ammonia itself is corrosive to copper-based materials, so that the apparatus becomes large and the amount of refrigerant charged increases. There's a problem. Further, since ammonia refrigerant is insoluble in mineral oil, which is a conventional refrigeration oil, a forced circulation system using a liquid pump is adopted so that the refrigeration oil does not remain in the evaporator, the apparatus becomes large, and the amount of refrigerant charged increases. There is a problem that tends to.

【0005】本発明は上記問題点に鑑みなされたもの
で、アンモニアを冷媒として使用した満液式冷却器にお
いて、少量の低温低圧冷媒液により高効率の冷却を可能
とするとともに油の冷媒液より分離と回収を可能とした
満液式冷却器の提供を目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems. In a liquid-fill type cooler using ammonia as a refrigerant, a small amount of a low-temperature low-pressure refrigerant liquid enables high-efficiency cooling and an oil-based refrigerant liquid. It is intended to provide a liquid-filled cooler that enables separation and recovery.

【0006】[0006]

【課題を解決するための手段】そこで、本発明の満液式
冷却器は、従来のように冷媒液と冷媒ガスを同一容器内
に収容するようにしたサージングタンクの代わりに、冷
媒液の充填部と冷媒ガスの充填部は個別に用意して冷媒
液の充填部を最小になるようにしたものである。即ち、
低温低圧の冷媒液のみにより蒸発器を形成する熱交換器
に満たして、被冷却媒体を冷却する重力供給方式の満液
式冷却器において、前記冷媒液を満たす熱交換器と、冷
媒液を分離供給する直立冷媒液分離供給管と、前記2者
を結ぶ内部均圧管とよりなる冷媒液充填部と、冷媒ガス
を圧縮機へ還流させる水平冷媒ガスタンクよりなる冷媒
ガス充填部とに分離構成したことを特徴とする。
In view of the above, a liquid-filled cooler according to the present invention is not limited to a conventional storage tank in which a refrigerant liquid and a refrigerant gas are accommodated in the same container, but is filled with a refrigerant liquid. The part and the filling part of the refrigerant gas are separately prepared so that the part filled with the refrigerant liquid is minimized. That is,
Filling the heat exchanger forming the evaporator only with the low-temperature low-pressure refrigerant liquid and separating the refrigerant liquid from the heat exchanger that fills the refrigerant liquid in the gravity-supply type liquid-liquid cooler that cools the medium to be cooled. A refrigerant liquid filling section comprising an upright refrigerant liquid separation / supply pipe to be supplied, an internal pressure equalizing pipe connecting the two, and a refrigerant gas filling section comprising a horizontal refrigerant gas tank for returning refrigerant gas to a compressor. It is characterized by.

【0007】また、請求項1記載の前記直立冷媒液分離
供給管は、膨張弁を介して低圧低温冷媒の供給を受け、
冷媒液のみを分離して熱交換器に圧力損に打ち勝つヘッ
ドのもとに重力供給するとともに、底部に油溜めを持
ち、冷媒循環量と冷媒ガスのガス速度とにより決まる断
面積を持つ構成とし、前記内部均圧管は直立冷媒液分離
供給管の下部より熱交換器のボトムに向け上げ勾配に連
結する構成とし、前記水平冷媒ガスタンクは、直立冷媒
液分離供給管よりの低圧冷媒への膨張時発生する冷媒ガ
スと、熱交換器出口よりの気化した冷媒ガスとを導入し
て、圧縮機へ冷媒ガスのみを還流するように構成とした
ことを特徴とする。
Further, the upright refrigerant liquid separation / supply pipe according to claim 1 receives supply of low-pressure low-temperature refrigerant through an expansion valve,
Separates only the refrigerant liquid and supplies gravity to the heat exchanger under the head that overcomes pressure loss, has an oil reservoir at the bottom, and has a cross-sectional area determined by the refrigerant circulation amount and the gas velocity of the refrigerant gas. The internal pressure equalizing pipe is configured to be connected to the lower part of the upright refrigerant liquid separation / supply pipe at an upward gradient from the lower part to the bottom of the heat exchanger, and the horizontal refrigerant gas tank is used when the upright refrigerant liquid separation / supply pipe expands to low pressure refrigerant. It is characterized in that the generated refrigerant gas and the vaporized refrigerant gas from the heat exchanger outlet are introduced so that only the refrigerant gas is returned to the compressor.

【0008】上記構成により、本発明の満液式冷却器
は、主として冷媒液が満たされる直立冷媒液分離供給管
と内部均圧管と熱交換器と、冷媒ガスが満たされる水平
冷媒ガスタンクとより構成し、冷媒液の満たされる部位
の容積を最小にして、少量の冷媒の使用によりなる満液
式冷却器を構成したものである。即ち、高圧受液部より
膨張弁を介して供給された低圧低温冷媒の冷媒液のみを
分離して、熱交換器圧力損に打ち勝つヘッドに液レベル
を維持する直立冷媒液分離供給管を設ける構成とし、そ
のため該冷媒分離供給管より冷媒液の供給を受けた熱交
換器は、その出口まで冷媒の湿り蒸気が存在する満液状
況に置かれ、アンモニア冷媒の場合は過熱蒸気を吸入圧
縮することはなく、高効率の冷却ができる。
With the above arrangement, the liquid-fill type cooler of the present invention mainly comprises an upright refrigerant liquid separation / supply pipe filled with refrigerant liquid, an internal pressure equalizing pipe, a heat exchanger, and a horizontal refrigerant gas tank filled with refrigerant gas. In addition, a liquid-fill type cooler is formed by using a small amount of refrigerant by minimizing the volume of a portion filled with the refrigerant liquid. That is, a configuration in which only the refrigerant liquid of the low-pressure low-temperature refrigerant supplied from the high-pressure liquid receiving section via the expansion valve is separated, and an upright refrigerant liquid separation / supply pipe for maintaining the liquid level in the head overcoming the heat exchanger pressure loss is provided. Therefore, the heat exchanger receiving the supply of the refrigerant liquid from the refrigerant separation / supply pipe is placed in a liquid full state in which the wet vapor of the refrigerant exists up to the outlet thereof, and in the case of the ammonia refrigerant, the superheated vapor is sucked and compressed. No, high efficiency cooling is possible.

【0009】また、上記直立冷媒液分離供給管は、上部
の水平冷媒ガスタンクに直結する構成にしてあるため、
高圧低温受液部より膨張弁を介して供給を受けた低圧低
温冷媒に含まれている冷媒ガスは、冷媒液分離供給管内
の冷媒液より分離上昇し、該供給管の下部には冷媒液の
みが分離貯留され熱交換器へ送られるようにしてある。
また、前記熱交換器の上部出口より直立状に延設され
た冷媒ガス戻し直立管により、被冷却媒体より奪った熱
により気化した冷媒ガスのみは湿り蒸気より分離して、
上部に配設した水平冷媒ガスタンクに導入する構成にし
てあるため、湿り蒸気が圧縮機へ戻されることはない。
Further, since the upright refrigerant liquid separation / supply pipe is directly connected to the upper horizontal refrigerant gas tank,
The refrigerant gas contained in the low-pressure low-temperature refrigerant supplied through the expansion valve from the high-pressure low-temperature liquid receiving section separates and rises from the refrigerant liquid in the refrigerant liquid separation supply pipe, and only the refrigerant liquid is provided at the lower part of the supply pipe. Is stored separately and sent to a heat exchanger.
Further, by the refrigerant gas return upright pipe extending upright from the upper outlet of the heat exchanger, only the refrigerant gas vaporized by the heat taken from the medium to be cooled is separated from the wet steam,
Since it is configured to be introduced into the horizontal refrigerant gas tank provided at the upper part, the wet steam is not returned to the compressor.

【0010】また、上記直立冷媒液分離供給管の断面積
は、熱交換器内の冷媒の気化により発生した冷媒ガス量
から割り出された冷媒循環量とガス速度とにより決まる
構成としてあるため、前記冷媒分離供給管に充填される
冷媒液の量を最小に押さえることができる。
The cross-sectional area of the upright refrigerant liquid separation and supply pipe is determined by the refrigerant circulation amount and the gas velocity determined from the refrigerant gas amount generated by the vaporization of the refrigerant in the heat exchanger. The amount of the refrigerant liquid filled in the refrigerant separation and supply pipe can be minimized.

【0011】また、冷媒ガスが満たされる容器は別途用
意した水平冷媒ガスタンクで形成し、直立冷媒液分離供
給管に満たされた低圧低温冷媒より分離した冷媒ガス
と、熱交換器において気化した冷媒ガスとを前記水平冷
媒ガスタンクに導入する構成としたもので、冷媒循環量
に対し最小のアンモニア量を用意することができ、従来
の冷媒液充填部と冷媒ガス充填部を同一容器に収容する
満液式冷却器のように多量のアンモニア冷媒を使用する
ことはない。
The container filled with the refrigerant gas is formed by a separately prepared horizontal refrigerant gas tank, and the refrigerant gas separated from the low-pressure low-temperature refrigerant filled in the upright refrigerant liquid separation supply pipe and the refrigerant gas vaporized in the heat exchanger Is introduced into the horizontal refrigerant gas tank, so that a minimum amount of ammonia can be prepared with respect to the refrigerant circulation amount. There is no need to use a large amount of ammonia refrigerant as in the type cooler.

【0012】また、上記内部均圧管は熱交換器のボトム
に向け上がり勾配に設けてあるため、熱交換器のボトム
側の入り口に溜まった油は均圧管に沿い下降して、直立
冷媒液分離供給管の底部に設けてある油溜めに貯留さ
れ、適宜圧縮機の吸入時に冷媒ガスとともに還流するよ
うにしてある。
Further, since the internal pressure equalizing pipe is provided with a rising gradient toward the bottom of the heat exchanger, the oil accumulated at the inlet on the bottom side of the heat exchanger descends along the pressure equalizing pipe to separate the upright refrigerant liquid. It is stored in an oil sump provided at the bottom of the supply pipe, and is appropriately recirculated together with the refrigerant gas at the time of suction of the compressor.

【0013】また、請求項1、請求項2記載の水平冷媒
ガスタンクは、冷媒ガスのガス圧と、被冷却媒体の出入
り口の温度差とにより作動する蒸気圧力制御多機能弁を
備えたことを特徴とするものである。
Further, the horizontal refrigerant gas tank according to the present invention is characterized in that the horizontal refrigerant gas tank is provided with a steam pressure control multi-function valve which operates according to the gas pressure of the refrigerant gas and the temperature difference between the inlet and the outlet of the medium to be cooled. It is assumed that.

【0014】上記構成により、圧縮機の冷媒ガスの吸入
は、冷媒ガスが満たされている水平冷媒ガスタンク内の
ガス圧と、冷却負荷である被冷却媒体の出入り口の冷水
温度差により制御するようにしてある。
According to the above construction, the suction of the refrigerant gas from the compressor is controlled by the gas pressure in the horizontal refrigerant gas tank filled with the refrigerant gas and the difference in the temperature of the chilled water at the inlet and outlet of the medium to be cooled, which is a cooling load. It is.

【0015】また、請求項1記載の熱交換器はプレート
熱交換器より構成したことを特徴とする。
Further, the heat exchanger according to the first aspect is characterized by comprising a plate heat exchanger.

【0016】上記構成によりアンモニア冷媒の腐食性に
耐性の高い蒸発器を用意することができる。
According to the above configuration, an evaporator having a high resistance to the corrosiveness of the ammonia refrigerant can be prepared.

【0017】また、請求項1記載の冷媒はアンモニア冷
媒であることを特徴とするものである。
Further, the refrigerant according to claim 1 is an ammonia refrigerant.

【0018】即ち、本発明によりアンモニア冷媒の使用
に対しても高い耐性のある熱交換器を使用し、該冷媒の
使用に対して高い冷却効率を持つ満液式蒸発器の使用を
少量のアンモニア冷媒で可能にすることができる。
That is, according to the present invention, a heat exchanger having a high resistance to the use of an ammonia refrigerant is used, and the use of a liquid-filled evaporator having a high cooling efficiency for the use of the refrigerant is reduced to a small amount of ammonia. It can be made possible with a refrigerant.

【0019】[0019]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的な記載が無い限り、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples unless otherwise specified. Absent.

【0020】図1は本発明のアンモニア冷媒を使用した
満液式冷却器の概略の構成を示す図である。図に示すよ
うに、本発明のアンモニア冷媒を使用した満液式冷却器
は、蒸発器を形成する熱交換器10と、直立冷媒液分離
供給管11と内部均圧管12とよりなる冷媒液充填部
と、冷媒ガス戻し直立管13と水平冷媒ガスタンク14
よりなる冷媒ガス充填部と、吸入管15とを主構成要素
とし、冷媒液充填部と冷媒ガス充填部とを分離切り離す
構造として、使用する冷媒を最小に押さえる構成にして
ある。
FIG. 1 is a diagram showing a schematic configuration of a liquid-fill type cooler using an ammonia refrigerant of the present invention. As shown in the figure, a liquid-fill type cooler using the ammonia refrigerant of the present invention is a refrigerant liquid filling system comprising a heat exchanger 10 forming an evaporator, an upright refrigerant liquid separation / supply pipe 11 and an internal pressure equalizing pipe 12. Section, refrigerant gas return upright pipe 13 and horizontal refrigerant gas tank 14
The refrigerant gas filling section and the suction pipe 15 are main components, and the refrigerant liquid filling section and the refrigerant gas filling section are separated and separated from each other, so that the refrigerant to be used is minimized.

【0021】上記直立冷媒液分離供給管11は図示しな
い高圧受液器よりフロート式給液電磁弁11e、膨張弁
11gを介して低圧低温冷媒を導入する。導入した低圧
低温冷媒液は、レベル検出用直立管11cに設けた上、
中、下の液面を検出するLC3、LC2、LC1よりなる
フロートスイッチ11dを介して電磁弁11eを作動さ
せ、蒸発器を形成する熱交換器10の出口より該熱交換
器の圧力損に相当するヘッドHを持たせた液面レベルY
を維持する構成にしてある。そして、上記のようにして
膨張弁通過時に発生して低圧低温冷媒に含まれた冷媒ガ
スは前記直立冷媒分離供給管11のハッチングが示す冷
媒液より分離して上部空間11aへ上昇し、後記する水
平冷媒ガスタンク14内に導入される。上記分離された
冷媒液は、前記直立冷媒分離供給管11の最下端に設け
てある油溜め11bの上部に貯留される。貯留された冷
媒液は、熱交換器10に向け上げ勾配に設けられた内部
均圧管12を介して実線矢印に示すように熱交換器10
のボトムに供給され、前記ヘッドHにより熱交換器10
の出口まで充填され満液式蒸発器を形成する。
The upright refrigerant liquid separation / supply pipe 11 introduces a low pressure low temperature refrigerant from a high pressure receiver (not shown) through a float type liquid supply solenoid valve 11e and an expansion valve 11g. The introduced low-pressure low-temperature refrigerant liquid is provided in the upright pipe 11c for level detection,
The solenoid valve 11e is operated via a float switch 11d composed of LC 3 , LC 2 , and LC 1 for detecting the middle and lower liquid levels, and the pressure of the heat exchanger is formed from the outlet of the heat exchanger 10 forming an evaporator. Liquid level Y with head H corresponding to loss
Is maintained. As described above, the refrigerant gas generated at the time of passing through the expansion valve and contained in the low-pressure low-temperature refrigerant is separated from the refrigerant liquid indicated by the hatching in the upright refrigerant separation / supply pipe 11 and rises to the upper space 11a, which will be described later. It is introduced into the horizontal refrigerant gas tank 14. The separated refrigerant liquid is stored in an upper part of an oil reservoir 11b provided at a lowermost end of the upright refrigerant separation and supply pipe 11. The stored refrigerant liquid is passed through the internal pressure equalizing pipe 12 provided at a rising gradient toward the heat exchanger 10 as shown by a solid arrow in the heat exchanger 10.
Of the heat exchanger 10 by the head H.
To form an overflow evaporator.

【0022】上記熱交換器10で分離した油は熱交換器
のボトムに溜り、前記内部均圧管12を介して点線矢印
に示すように前記油溜め11bに貯留される。貯留され
た油は、油回収回路12bと図示しない圧縮機のON、
OFFに連動する電磁弁12aとを介して、圧縮機吸入
回路15に送られ回収する構成にしてある。
The oil separated in the heat exchanger 10 accumulates at the bottom of the heat exchanger and is stored in the oil sump 11b via the internal pressure equalizing pipe 12 as shown by a dotted arrow. The stored oil is turned on by an oil recovery circuit 12b and a compressor (not shown).
It is configured to be sent to and recovered from the compressor suction circuit 15 via the electromagnetic valve 12a linked to OFF.

【0023】上記熱交換器10の出口には、上部に配設
した水平冷媒ガスタンク14との間を結ぶ冷媒ガス戻し
直立管13を設け、熱交換器10で発生した気化冷媒ガ
スを回収するようにしてある。上記のようにして、水平
冷媒ガスタンク14内には、直立冷媒分離供給管11か
ら分離した低圧低温冷媒に含まれていた膨張時の冷媒ガ
スと前記熱交換器10での気化冷媒ガスで充填される。
充填された冷媒ガスは多機能弁16、吸入管15を介し
て図示しない圧縮機へ回収するようにしてある。上記多
機能弁16は、CVQ機能16aとP機能16bとSV
機能16cを持つ。前記CVQ機能16aは熱交換器1
0での被冷却媒体の出入り口の冷水温度差による微調整
機能で、P機能16bは蒸発圧力を調整するEPR機能
で、SV機能16cはON、OFF機能である。上記多
機能弁16の使用により前記冷水温度差を0.5℃に押
さえている。
At the outlet of the heat exchanger 10, there is provided a refrigerant gas return upright pipe 13 for connecting with a horizontal refrigerant gas tank 14 disposed at the upper part, so that the vaporized refrigerant gas generated in the heat exchanger 10 is recovered. It is. As described above, the horizontal refrigerant gas tank 14 is filled with the expanded refrigerant gas contained in the low-pressure low-temperature refrigerant separated from the upright refrigerant separation / supply pipe 11 and the vaporized refrigerant gas in the heat exchanger 10. You.
The charged refrigerant gas is recovered to a compressor (not shown) via the multi-function valve 16 and the suction pipe 15. The multi-function valve 16 includes a CVQ function 16a, a P function 16b, and an SV
It has a function 16c. The CVQ function 16a is a heat exchanger 1
The P function 16b is an EPR function for adjusting the evaporation pressure, and the SV function 16c is an ON / OFF function. The use of the multi-function valve 16 keeps the cold water temperature difference at 0.5 ° C.

【0024】なお、直立冷媒分離供給管11は、冷媒循
環量と冷媒ガスのガス速度とにより決まる断面積を持つ
構成とし、冷媒充填量を最小とする構成にしてある。
The upright refrigerant separation / supply pipe 11 has a cross-sectional area determined by the amount of circulating refrigerant and the gas velocity of the refrigerant gas, and is configured to minimize the amount of refrigerant charged.

【0025】なお、熱交換器10には銅製部材を使用し
ないプレート熱交換器を使用し、アンモニア冷媒の腐食
に対する耐性を持たせる構成にしてある。
The heat exchanger 10 employs a plate heat exchanger that does not use a copper member, and is configured to have resistance to corrosion of the ammonia refrigerant.

【0026】[0026]

【発明の効果】上記構成により、低温冷媒が充填される
のは低圧液面を持つ直立冷媒液分離供給管とプレート熱
交換器であり、いずれも容積は小さい。そのため、乾式
冷却装置に比べても冷媒充填量の増加も少量となる。例
えば、アンモニア冷媒を使用しても、従来の冷凍機油を
使用して従来の乾式冷却装置と変わらない冷媒充填量
で、コンパクトで、安定で高効率の冷却装置を提供でき
る。
According to the above structure, the low-temperature refrigerant is filled in the upright refrigerant liquid separation / supply pipe having the low-pressure liquid level and the plate heat exchanger, both of which have small volumes. For this reason, the increase in the amount of charged refrigerant is smaller than that in the dry cooling device. For example, even if an ammonia refrigerant is used, a compact, stable, and highly efficient cooling device can be provided using a conventional refrigerating machine oil and having the same refrigerant charging amount as a conventional dry cooling device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアンモニア冷媒を使用した満液式冷却
器の概略の構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a liquid-fill type cooler using an ammonia refrigerant of the present invention.

【図2】従来の冷却装置の概要を示す図で、(A)は液
ポンプ循環方式のもので、(B)は重力自然循環方式の
ものである。
FIG. 2 is a diagram showing an outline of a conventional cooling device, wherein (A) is of a liquid pump circulation type and (B) is of a gravity natural circulation type.

【符号の説明】[Explanation of symbols]

10 熱交換器 11 直立冷媒液分離供給管 11b 油溜め 12 内部均圧管 13 冷媒ガス戻し直立管 14 水平冷媒ガスタンク 15 吸入管 16 多機能弁 DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Upright refrigerant liquid separation supply pipe 11b Oil reservoir 12 Internal pressure equalization pipe 13 Refrigerant gas return upright pipe 14 Horizontal refrigerant gas tank 15 Suction pipe 16 Multifunctional valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低温低圧の冷媒液のみにより蒸発器を形
成する熱交換器に満たして、被冷却媒体を冷却する重力
供給方式の満液式冷却器において、 前記冷媒液を満たす熱交換器と、冷媒液を分離供給する
直立冷媒液分離供給管と前記2者を結ぶ内部均圧管とよ
りなる冷媒液充填部と、冷媒ガスを圧縮機へ還流させる
水平冷媒ガスタンクよりなる冷媒ガス充填部とに分離構
成したことを特徴とする満液式冷却器。
1. A gravity-supply type liquid-fill type cooler that fills a heat exchanger forming an evaporator only with a low-temperature and low-pressure refrigerant liquid and cools a medium to be cooled, comprising: a heat exchanger that fills the refrigerant liquid; A refrigerant liquid filling section comprising an upright refrigerant liquid separation / supply pipe for separating and supplying a refrigerant liquid and an internal pressure equalizing pipe connecting the two, and a refrigerant gas filling section comprising a horizontal refrigerant gas tank for returning refrigerant gas to the compressor. A liquid-filled cooler characterized by being separated.
【請求項2】 前記直立冷媒液分離供給管は、膨張弁を
介して低圧低温冷媒の供給を受け、冷媒液のみを分離し
て熱交換器に圧力損に打ち勝つヘッドのもとに重力供給
するとともに、底部に油溜めを持ち、冷媒循環量と冷媒
ガスのガス速度とにより決まる断面積を持つ構成とし、 前記内部均圧管は直立冷媒液分離供給管の下部より熱交
換器のボトムに向け上げ勾配に連結する構成とし、 前記水平冷媒ガスタンクは、直立冷媒液分離供給管より
の低圧冷媒への膨張時発生する冷媒ガスと、熱交換器出
口よりの気化した冷媒ガスとを導入して、圧縮機へ冷媒
ガスのみを還流するように構成したことを特徴とする満
液式冷却器。
2. The upright refrigerant liquid separation supply pipe receives a supply of low-pressure low-temperature refrigerant through an expansion valve, separates only the refrigerant liquid, and supplies the heat exchanger with gravity under a head that overcomes pressure loss. At the same time, it has an oil reservoir at the bottom and has a cross-sectional area determined by the refrigerant circulation amount and the gas velocity of the refrigerant gas, and the internal pressure equalizing pipe rises from the lower part of the upright refrigerant liquid separation supply pipe toward the bottom of the heat exchanger. The horizontal refrigerant gas tank introduces a refrigerant gas generated when expanding into a low-pressure refrigerant from an upright refrigerant liquid separation supply pipe, and a vaporized refrigerant gas from a heat exchanger outlet, and compresses the refrigerant gas. A liquid-filled cooler characterized in that only refrigerant gas is recirculated to the machine.
【請求項3】 前記水平冷媒ガスタンクは、内部に満た
された冷媒ガスのガス圧と被冷却媒体の冷水で入り口の
温度差とにより作動する蒸気圧力制御多機能弁を備えた
ことを特徴とする請求項1記載の満液式冷却器。
3. The multifunction valve according to claim 1, wherein the horizontal refrigerant gas tank is provided with a steam pressure control multi-function valve that operates according to the gas pressure of the refrigerant gas filled therein and the temperature difference between the inlet and the cold water of the medium to be cooled. The liquid-filled cooler according to claim 1.
【請求項4】 前記熱交換器はプレート熱交換器より構
成したことを特徴とする請求項1記載の満液式冷却器。
4. The liquid-fill type cooler according to claim 1, wherein said heat exchanger comprises a plate heat exchanger.
【請求項5】 前記冷媒はアンモニア冷媒であることを
特徴とする請求項1記載の満液式冷却器。
5. The liquid-fill type cooler according to claim 1, wherein the refrigerant is an ammonia refrigerant.
JP23970698A 1998-08-26 1998-08-26 Full liquid cooler Expired - Fee Related JP4080605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23970698A JP4080605B2 (en) 1998-08-26 1998-08-26 Full liquid cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23970698A JP4080605B2 (en) 1998-08-26 1998-08-26 Full liquid cooler

Publications (2)

Publication Number Publication Date
JP2000074509A true JP2000074509A (en) 2000-03-14
JP4080605B2 JP4080605B2 (en) 2008-04-23

Family

ID=17048723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23970698A Expired - Fee Related JP4080605B2 (en) 1998-08-26 1998-08-26 Full liquid cooler

Country Status (1)

Country Link
JP (1) JP4080605B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2007163005A (en) * 2005-12-13 2007-06-28 Sanden Corp Refrigeration cycle
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2011038704A (en) * 2009-08-11 2011-02-24 Mayekawa Mfg Co Ltd Method and device for circulating refrigerant to low-pressure liquid receiving apparatus in refrigeration unit
JP2012172920A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
JP2013147152A (en) * 2012-01-19 2013-08-01 Nippon Soken Inc Cooling device for vehicle
CN105299941A (en) * 2015-11-05 2016-02-03 谭洪德 Water cooling unit of full-liquid type screw machine
CN105299942A (en) * 2015-11-05 2016-02-03 谭洪德 Quick-freezer unit of full-liquid type screw machine
CN105571188A (en) * 2015-11-18 2016-05-11 吴家伟 CO2 cascade refrigeration device with improved oil returning system
CN105650788A (en) * 2016-03-11 2016-06-08 任俊 Ice storage central air conditioner device
JP2016161226A (en) * 2015-03-03 2016-09-05 三菱重工業株式会社 Refrigeration system, operation method of refrigeration system and design method of refrigeration system
CN106482303A (en) * 2016-11-25 2017-03-08 广州华凌制冷设备有限公司 A kind of air-conditioner and its refrigeration control method
CN115031440A (en) * 2022-07-29 2022-09-09 湖南东尤水汽能节能有限公司 Soaking heat exchange type water vapor energy heat pump air conditioning device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090633A (en) * 2001-09-14 2003-03-28 Mayekawa Mfg Co Ltd Liquid return device of flooded type evaporator
JP2007163005A (en) * 2005-12-13 2007-06-28 Sanden Corp Refrigeration cycle
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2011038704A (en) * 2009-08-11 2011-02-24 Mayekawa Mfg Co Ltd Method and device for circulating refrigerant to low-pressure liquid receiving apparatus in refrigeration unit
JP2012172920A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
JP2013147152A (en) * 2012-01-19 2013-08-01 Nippon Soken Inc Cooling device for vehicle
JP2016161226A (en) * 2015-03-03 2016-09-05 三菱重工業株式会社 Refrigeration system, operation method of refrigeration system and design method of refrigeration system
CN105299941A (en) * 2015-11-05 2016-02-03 谭洪德 Water cooling unit of full-liquid type screw machine
CN105299942A (en) * 2015-11-05 2016-02-03 谭洪德 Quick-freezer unit of full-liquid type screw machine
CN105571188A (en) * 2015-11-18 2016-05-11 吴家伟 CO2 cascade refrigeration device with improved oil returning system
CN105650788A (en) * 2016-03-11 2016-06-08 任俊 Ice storage central air conditioner device
CN106482303A (en) * 2016-11-25 2017-03-08 广州华凌制冷设备有限公司 A kind of air-conditioner and its refrigeration control method
CN115031440A (en) * 2022-07-29 2022-09-09 湖南东尤水汽能节能有限公司 Soaking heat exchange type water vapor energy heat pump air conditioning device
CN115031440B (en) * 2022-07-29 2024-01-16 湖南东尤水汽能节能有限公司 Soaking heat exchange type water vapor energy heat pump air conditioning device

Also Published As

Publication number Publication date
JP4080605B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US6009715A (en) Refrigerating apparatus, refrigerator, air-cooled type condensor unit for refrigerating apparatus and compressor unit
US9657977B2 (en) Cascade refrigeration system with modular ammonia chiller units
JP4623600B2 (en) High performance heat storage and cooling system using refrigerant
JP2000074509A (en) Flooded cooler
KR101220583B1 (en) Freezing device
KR101220741B1 (en) Freezing device
JP5971548B2 (en) Refrigeration equipment
JP3125778B2 (en) Air conditioner
KR20110097367A (en) Chiller
JP2000179957A (en) Air conditioner
JP2002071237A (en) Stirling cooling system and cooling compartment
CN100545550C (en) Refrigerant-cycle systems
JP2000018735A (en) Refrigerating machine
JP2013217623A (en) Accumulator and refrigeration cycle device
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller
JPH0763427A (en) Refrigerating plant
KR100560684B1 (en) Refrigerating cycle apparatus
JP2021101134A (en) Oil separating device and oil separating method
CN111981715B (en) Refrigerating apparatus
KR100676763B1 (en) Accumulator of evaporator in refrigerator
JP2003262411A (en) Refrigerating device
JPH0539406Y2 (en)
KR20230119412A (en) Cascade Refrigerator
JPH053859U (en) Refrigeration equipment
Chen et al. Liquid Refrigerant Migration Control by Using an Oil Heater and Its Effects on Mixture Miscibility and Viscosity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees