JP2000073193A - Ozonized water forming device - Google Patents

Ozonized water forming device

Info

Publication number
JP2000073193A
JP2000073193A JP10242067A JP24206798A JP2000073193A JP 2000073193 A JP2000073193 A JP 2000073193A JP 10242067 A JP10242067 A JP 10242067A JP 24206798 A JP24206798 A JP 24206798A JP 2000073193 A JP2000073193 A JP 2000073193A
Authority
JP
Japan
Prior art keywords
water
ozone
ozone water
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242067A
Other languages
Japanese (ja)
Inventor
Mikio Yamamoto
美紀夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP10242067A priority Critical patent/JP2000073193A/en
Publication of JP2000073193A publication Critical patent/JP2000073193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To form high-concn. ozonized water. SOLUTION: This ozonized water forming device is constituted by holding a cation exchange resin layer 14 with an anode 12 and a cathode 13, housing this layer into an electrolytic cell 10, supplying water into this electrolytic cell 10, impressing DC voltage between the anode 12 and the cathode 13, forming the ozonized water in the electrolytic cell 10 and introducing this ozonized water to the outside of the electrolytic cell 10. This device is provided with a supply device (an acetic acid soln. supply device 40) for supplying and mixing the water in which ozone is easily soluble into the ozonized water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水を電気分解して
オゾン水を生成する電解式のオゾン水生成装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ozone water generator for generating ozone water by electrolyzing water.

【0002】[0002]

【従来の技術】この種の装置は、例えば特公平3−36
912号公報に示されていて、この公報に示されている
オゾン水生成装置は、陽イオン交換樹脂層を陽極及び陰
極で挟んで電解槽に収容し、この電解槽内に水を供給す
るとともに、前記陽極及び陰極間に直流電圧を印加し
て、前記電解槽内にてオゾン水を生成し、同オゾン水を
前記電解槽外に導出するようになっている。
2. Description of the Related Art This type of apparatus is disclosed, for example, in Japanese Patent Publication No. 3-36.
No. 912, the ozone water generation apparatus disclosed in this publication contains a cation exchange resin layer in an electrolytic cell sandwiched between an anode and a cathode, and supplies water into the electrolytic cell. A DC voltage is applied between the anode and the cathode to generate ozone water in the electrolytic cell, and the ozone water is led out of the electrolytic cell.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記した公
報に示されているオゾン水生成装置においては、電気分
解によって発生したオゾンを水に溶解させてオゾン水を
生成するものであるが、その溶解度を高める工夫がなさ
れていないため、水に溶解しない気体状態のままのオゾ
ン、あるいは一旦水に溶解したものの気体状態に戻るオ
ゾンも多く、高濃度のオゾン水が生成されないという問
題がある。
In the ozone water generator disclosed in the above-mentioned publication, ozone generated by electrolysis is dissolved in water to generate ozone water. Therefore, there is a lot of ozone in a gaseous state that does not dissolve in water or ozone that has been dissolved in water but returns to a gaseous state, so that high-concentration ozone water is not generated.

【0004】[0004]

【課題を解決するための手段】本発明は、pH値が低い
水ほど、あるいは水温が低い水ほどオゾンの溶解度が高
いというオゾンの性質に着目してなされたものであり、
陽イオン交換樹脂層を陽極及び陰極で挟んで電解槽に収
容し、この電解槽内に水を供給するとともに、前記陽極
及び陰極間に直流電圧を印加して、前記電解槽内にてオ
ゾン水を生成し、同オゾン水を前記電解槽外に導出する
ようにしたオゾン水生成装置において、前記オゾン水に
酸性溶液(例えば、酢酸溶液)あるいは冷水等のオゾン
が溶け易い水を供給混合する供給装置を設けたことに特
徴がある。この場合において、前記陽イオン交換樹脂層
が、前記電解槽内を前記陽極が収容される陽極室と前記
陰極が収容される陰極室とに区画する隔膜機能を有して
いることが望ましい。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the property of ozone that water having a lower pH value or water having a lower temperature has a higher ozone solubility.
The cation exchange resin layer is housed in an electrolytic cell sandwiched between an anode and a cathode, and water is supplied into the electrolytic cell, and a DC voltage is applied between the anode and the cathode, and ozone water is applied in the electrolytic cell. And supplying the ozone water with an ozone-soluble water such as an acidic solution (for example, an acetic acid solution) or cold water, wherein the ozone water is supplied to the ozone water generator. The feature is that the device is provided. In this case, it is preferable that the cation exchange resin layer has a diaphragm function of partitioning the inside of the electrolytic cell into an anode chamber in which the anode is accommodated and a cathode chamber in which the cathode is accommodated.

【0005】[0005]

【発明の作用効果】本発明によるオゾン水生成装置にお
いては、供給装置からオゾン水に酸性溶液あるいは冷水
等のオゾンが溶け易い水を供給混合することができるた
め、この酸性溶液あるいは冷水等のオゾンが溶け易い水
の供給混合により、オゾンの性質を利用してオゾンを水
に高濃度に溶解させることができて、従来のオゾン水生
成装置に比して高濃度のオゾン水を得ることができる。
In the ozone water generating apparatus according to the present invention, the ozone water can be supplied and mixed with water in which ozone is easily dissolved, such as an acidic solution or cold water, from the supply device. Water can be easily dissolved, the ozone can be dissolved in water at a high concentration by utilizing the properties of ozone, and ozone water having a higher concentration can be obtained as compared with a conventional ozone water generator. .

【0006】また、オゾンが溶け易い水として酸性溶液
を用いるとともに、陽イオン交換樹脂層として、電解槽
内を陽極が収容される陽極室と陰極が収容される陰極室
とに区画する隔膜機能を有しているものを採用した場合
には、陽極室にてオゾン水が生成され、このオゾン水が
弱酸性とされるため、オゾン水のpH値を所定の弱酸性
に調整するために必要な酸性溶液の消費量を減らすこと
ができて、ランニングコストを抑えることができる。ま
た、この場合において、脱塩処理水を電気分解してオゾ
ン水を生成するようにしたときには、陽極室に脱塩処理
水を供給するとともに、陰極室には水道水を供給して実
施することができるため、脱塩処理水の消費量を減らす
ことができて、ランニングコストを抑えることができ
る。
In addition, an acidic solution is used as water in which ozone is easily dissolved, and a cation exchange resin layer has a diaphragm function of partitioning the inside of an electrolytic cell into an anode chamber containing an anode and a cathode chamber containing a cathode. When the ozone water is used, ozone water is generated in the anode chamber and the ozone water is made weakly acidic, so that it is necessary to adjust the pH value of the ozone water to a predetermined weak acidity. The consumption of the acidic solution can be reduced, and the running cost can be reduced. In this case, when the ozone water is generated by electrolyzing the desalinated water, the desalinated water should be supplied to the anode chamber and the tap water should be supplied to the cathode chamber. Therefore, the consumption of the desalted water can be reduced, and the running cost can be reduced.

【0007】[0007]

【発明の実施の形態】以下に本発明の一実施形態を図面
に基づいて説明する。図1は本発明によるオゾン水生成
装置を示していて、このオゾン水生成装置は、電解槽1
0と、直流電源装置20と、電解槽10に接続された供
給管31,32及び導出管33,34と、酢酸溶液供給
装置40を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an ozone water generation apparatus according to the present invention.
0, a DC power supply 20, supply pipes 31 and 32 and outlet pipes 33 and 34 connected to the electrolytic cell 10, and an acetic acid solution supply device 40.

【0008】電解槽10は、内部に水が供給される槽本
体11と、同槽本体11内に対向配設された陽極12及
び陰極13と、槽本体11内を陽極12が収容される陽
極室R1と陰極13が収容される陰極室R2とに区画す
る陽イオン交換膜14とを備えていて、槽本体11に
は、陽極室R1に向けて開口する供給口11a,11b
と、陰極室R2に向けて開口する供給口11cが上部に
それぞれ設けられるとともに、陽極室R1に向けて開口
する排出口11dと、陰極室R2に向けて開口する排出
口11eが下部にそれぞれ設けられている。
The electrolytic cell 10 includes a cell main body 11 into which water is supplied, an anode 12 and a cathode 13 disposed opposite to each other in the cell main body 11, and an anode in which the anode 12 is accommodated in the cell main body 11. A cation exchange membrane 14 partitioned into a chamber R1 and a cathode chamber R2 in which the cathode 13 is accommodated, and supply ports 11a and 11b opened toward the anode chamber R1 in the tank body 11.
And a supply port 11c opening toward the cathode chamber R2 is provided at the upper portion, and a discharge port 11d opening toward the anode chamber R1 and a discharge port 11e opening toward the cathode chamber R2 are provided at the lower portion. Have been.

【0009】陽極12及び陰極13は、多孔質な白金め
っきチタンからなるもので、陽極12は、直流電源装置
20の陽極端子に接続され、陰極13は、直流電源装置
20の陰極端子に接続されている。陽イオン交換膜14
は、槽本体11内を陽極室R1と陰極室R2とに区画す
る隔膜機能を有した膜であって、陽極12及び陰極13
に挟まれて配設されている。また、陽極室R1には、供
給口11bから導出口11dに至る通路P1と供給口1
1aから導出口11dに至る通路P2を区画する隔壁1
5が槽本体11上部から下方に向けて設けられ、下方の
連通路16を介して連通するようになっている。
The anode 12 and the cathode 13 are made of porous platinum-plated titanium. The anode 12 is connected to the anode terminal of the DC power supply 20, and the cathode 13 is connected to the cathode terminal of the DC power supply 20. ing. Cation exchange membrane 14
Is a membrane having a diaphragm function for partitioning the inside of the tank body 11 into an anode chamber R1 and a cathode chamber R2, and the anode 12 and the cathode 13
It is arranged in between. In addition, a passage P1 from the supply port 11b to the outlet port 11d and the supply port 1 are provided in the anode chamber R1.
Partition wall 1 that partitions passage P2 from 1a to outlet 11d
5 is provided downward from the upper part of the tank main body 11, and communicates with each other through a lower communication path 16.

【0010】供給管31は、槽本体11の供給口11b
に接続されていて、脱塩処理水(例えば、水道水から純
水器で塩素分を除去した水、あるいは蒸留処理した水)
を陽極室R1の通路P1に供給するようになっている。
供給管32は、槽本体11の供給口11cに接続されて
いて、水道水を陰極室R2に供給するようになってい
る。導出管33は、槽本体11の導出口11dに接続さ
れていて、陽極室R1内で生成されるオゾン水を電解槽
10外へ導くようになっている。導出管34は、槽本体
11の導出口11eに接続されていて、陰極室R2内の
水を電解槽10外へ導くようになっている。
The supply pipe 31 is connected to the supply port 11 b of the tank body 11.
And desalinated water (eg, water from which tap water has been dechlorinated with a pure water purifier, or water that has been distilled)
Is supplied to the passage P1 of the anode chamber R1.
The supply pipe 32 is connected to the supply port 11c of the tank body 11, and supplies tap water to the cathode chamber R2. The outlet pipe 33 is connected to the outlet 11d of the tank body 11, and guides the ozone water generated in the anode chamber R1 to the outside of the electrolytic tank 10. The outlet pipe 34 is connected to the outlet 11 e of the tank body 11, and guides water in the cathode chamber R <b> 2 to the outside of the electrolytic cell 10.

【0011】酢酸溶液供給装置40は、酢酸溶液を貯溜
する酢酸溶液タンク41と、一端が酢酸溶液タンク41
に接続されるとともに他端が槽本体11の供給口11a
に接続された供給管42と、導出管33を流れるオゾン
水のpH値を検出するpHセンサ(図示省略)からの検
出信号に基づいて作動を制御される供給手段(図示省略
の例えばポンプあるいはバルブ)等から構成されてお
り、酢酸溶液タンク41内の酢酸が供給手段の作動によ
り供給管42と供給口11aを通して陽極室R1の通路
P2に供給されることにより、導出管33を流れるオゾ
ン水のpH値が所定の弱酸性に調整されるようになって
いる。
An acetic acid solution supply device 40 includes an acetic acid solution tank 41 for storing an acetic acid solution,
And the other end is connected to the supply port 11a of the tank body 11.
And a supply means (not shown, for example, a pump or a valve) whose operation is controlled based on a detection signal from a pH sensor (not shown) for detecting the pH value of the ozone water flowing through the outlet pipe 33. The acetic acid in the acetic acid solution tank 41 is supplied to the passage P2 of the anode chamber R1 through the supply pipe 42 and the supply port 11a by the operation of the supply means, so that the ozone water flowing through the outlet pipe 33 is formed. The pH value is adjusted to a predetermined weak acidity.

【0012】上記のように構成した本実施形態において
は、直流電源装置20の作動により陽極12及び陰極1
3間に直流電圧が印加されるとともに、供給管31を通
して脱塩処理水が陽極室R1の通路P1に供給され、供
給管32を通して水道水が陰極室R2に供給されると、
両電極12,13間にて電気分解が行われて陽極室R1
の通路P1にて中性に近い弱酸性のオゾン水が生成さ
れ、生成されたオゾン水は通路P1を下方に流れて連通
路16に至り、導出管33から導出される。また、この
とき、pHセンサからの検出信号に基づいて酢酸溶液タ
ンク41から供給管42を通して通路P2に酢酸溶液が
供給されて、この酢酸溶液は連通路16にてオゾン水と
混合される。
In this embodiment constructed as described above, the operation of the DC power supply 20 causes the anode 12 and the cathode 1 to operate.
When a DC voltage is applied between the three, the desalinated water is supplied to the passage P1 of the anode chamber R1 through the supply pipe 31, and the tap water is supplied to the cathode chamber R2 through the supply pipe 32.
Electrolysis is performed between the two electrodes 12 and 13 to form an anode chamber R1.
The near-neutral weakly acidic ozone water is generated in the passage P1, and the generated ozone water flows downward through the passage P1 to reach the communication passage 16 and is led out from the outlet pipe 33. At this time, the acetic acid solution is supplied to the passage P2 from the acetic acid solution tank 41 through the supply pipe 42 based on the detection signal from the pH sensor, and the acetic acid solution is mixed with the ozone water in the communication passage 16.

【0013】ところで、陽極室R1の通路P1にて生成
されたオゾン水のpH値は、比較的高くて中性に近いた
め、オゾン水に溶解しているオゾンの一部は気体となっ
てしまうものの、連通路16に至ったオゾン水は、連通
路16にて、酢酸溶液タンク41から供給管42を通し
て供給される酢酸溶液と混合されてそのpH値が所定の
弱酸性(例えばpH4程度)に調整される。このため、
連通路16に至ったオゾン水においては、pH値が低い
水ほどオゾンの溶解度が高いというオゾンの性質から、
気体状態のオゾンを効率良くオゾン水中に溶解させるこ
とができ、従来のオゾン水生成装置に比して高濃度のオ
ゾン水を得ることができる。
Since the pH value of the ozone water generated in the passage P1 of the anode chamber R1 is relatively high and nearly neutral, a part of the ozone dissolved in the ozone water becomes gas. However, the ozone water which has reached the communication path 16 is mixed with the acetic acid solution supplied from the acetic acid solution tank 41 through the supply pipe 42 in the communication path 16 and its pH value becomes a predetermined weak acidity (for example, about pH 4). Adjusted. For this reason,
In the ozone water that has reached the communication passage 16, the water having a lower pH value has a higher solubility of ozone, so that the ozone water has a higher solubility.
Ozone in a gaseous state can be efficiently dissolved in ozone water, and ozone water having a higher concentration can be obtained as compared with a conventional ozone water generator.

【0014】また、本実施形態においては、槽本体11
内を陽極室R1と陰極室R2とに区画する隔膜機能を有
した陽イオン交換膜14を採用しているため、陽極室R
1にてオゾン水が生成され、このオゾン水は弱酸性とさ
れる。したがって、オゾン水のpH値を所定の弱酸性に
調整するために必要な酢酸溶液の消費量を減らすことが
できて、ランニングコストを抑えることができる。ま
た、陽極室R1と陰極室R2の水が混じり合うことがな
いため、陽極室R1に脱塩処理水を供給するとともに、
陰極室R2には水道水を供給して実施することができる
ため、脱塩処理水の消費量を減らすことができて、ラン
ニングコストを抑えることができる。
In this embodiment, the tank body 11
Since the cation exchange membrane 14 having a diaphragm function of partitioning the inside into an anode chamber R1 and a cathode chamber R2 is adopted, the anode chamber R
In step 1, ozone water is generated, and the ozone water is made weakly acidic. Therefore, the consumption of the acetic acid solution required for adjusting the pH value of the ozone water to a predetermined weak acidity can be reduced, and the running cost can be suppressed. In addition, since the water in the anode chamber R1 and the water in the cathode chamber R2 do not mix with each other, the desalinated water is supplied to the anode chamber R1.
Since tap water can be supplied to the cathode chamber R2, the consumption of the desalted water can be reduced, and the running cost can be reduced.

【0015】上記した実施形態においては、酢酸溶液供
給装置40の供給管42を槽本体11の供給口11aに
接続して陽極室R1の通路P2に酢酸溶液を供給し、連
通路16にてオゾン水と酢酸溶液が混合されるようにし
たが、この供給管42は、酢酸溶液をオゾン水に供給混
合できる箇所に接続すればよく、例えば図2に示したよ
うに供給管42を導出管33に接続して、酢酸溶液を導
出管33に供給し、導出管33内にてオゾン水と酢酸溶
液が混合されるようにして実施することも可能である。
なお、この場合には、供給口11a及び隔壁15は設け
なくてもよい。
In the above-described embodiment, the supply pipe 42 of the acetic acid solution supply device 40 is connected to the supply port 11a of the tank body 11, the acetic acid solution is supplied to the passage P2 of the anode chamber R1, and the ozone Although the water and the acetic acid solution are mixed, the supply pipe 42 may be connected to a location where the acetic acid solution can be supplied to and mixed with the ozone water. For example, as shown in FIG. , The acetic acid solution is supplied to the outlet pipe 33, and the ozone water and the acetic acid solution are mixed in the outlet pipe 33.
In this case, the supply port 11a and the partition 15 need not be provided.

【0016】また、上記した実施形態においては、酢酸
溶液をオゾン水に供給混合して、このオゾン水のpH値
を所定の弱酸性に調整するようにしたが、酢酸溶液に代
えてその他の酸性溶液をオゾン水に供給混合して、この
オゾン水のpH値を所定の弱酸性に調整するように実施
しても上記実施形態と同様の作用効果を得ることができ
る。また、オゾンは冷水にも高濃度に溶解し得るため、
上記実施形態の酢酸溶液に代えて冷水を供給混合するよ
うにして実施することも可能である。
In the above embodiment, the acetic acid solution is supplied and mixed with the ozone water to adjust the pH value of the ozone water to a predetermined weak acidity. Even when the solution is supplied to and mixed with ozone water and the pH value of the ozone water is adjusted to a predetermined weak acidity, the same operation and effect as in the above embodiment can be obtained. Also, ozone can be dissolved in cold water at a high concentration,
It is also possible to carry out by supplying and mixing cold water instead of the acetic acid solution of the above embodiment.

【0017】また、上記実施形態においては、陽イオン
交換樹脂層として、槽本体11内を陽極室R1と陰極室
R2とに区画する隔膜機能を有した陽イオン交換膜14
を採用したが、隔膜機能を有さない陽イオン交換樹脂層
を採用して実施することも可能であり、この場合には、
供給管32及び導出管34を設けないで実施すればよ
い。
In the above embodiment, the cation exchange resin layer 14 is a cation exchange resin layer having a diaphragm function for partitioning the inside of the tank body 11 into an anode chamber R1 and a cathode chamber R2.
However, it is also possible to employ a cation exchange resin layer having no diaphragm function, and in this case,
What is necessary is just to implement without providing the supply pipe 32 and the outlet pipe 34.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるオゾン水生成装置の一実施形態
を概略的に示した全体構成図である。
FIG. 1 is an overall configuration diagram schematically showing an embodiment of an ozone water generating apparatus according to the present invention.

【図2】 本発明によるオゾン水生成装置の変形実施形
態を概略的に示した全体構成図である。
FIG. 2 is an overall configuration diagram schematically showing a modified embodiment of the ozone water generating apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10…電解槽、12…陽極、13…陰極、14…陽イオ
ン交換膜、20…直流電源装置、31,32…供給管、
33,34…導出管、40…酢酸溶液供給装置(供給装
置)、41…酢酸溶液タンク、42…供給管、R1…陽
極室、R2…陰極室。
DESCRIPTION OF SYMBOLS 10 ... Electrolysis tank, 12 ... Anode, 13 ... Cathode, 14 ... Cation exchange membrane, 20 ... DC power supply, 31, 32 ... Supply pipe,
33, 34 ... outlet tube, 40 ... acetic acid solution supply device (supply device), 41 ... acetic acid solution tank, 42 ... supply tube, R1 ... anode room, R2 ... cathode room.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂層を陽極及び陰極で挟
んで電解槽に収容し、この電解槽内に水を供給するとと
もに、前記陽極及び陰極間に直流電圧を印加して、前記
電解槽内にてオゾン水を生成し、同オゾン水を前記電解
槽外に導出するようにしたオゾン水生成装置において、
前記オゾン水にオゾンが溶け易い水を供給混合する供給
装置を設けたことを特徴とするオゾン水生成装置。
A cation exchange resin layer is accommodated in an electrolytic cell sandwiched between an anode and a cathode, water is supplied into the electrolytic cell, and a DC voltage is applied between the anode and the cathode to form the electrolytic cell. In the ozone water generating apparatus which generates ozone water inside and the same ozone water is led out of the electrolytic cell,
An ozone water generation device, further comprising a supply device for supplying and mixing water in which ozone is easily dissolved in the ozone water.
【請求項2】 前記オゾンが溶け易い水として、酸性溶
液を用いたことを特徴とする請求項1記載のオゾン水生
成装置。
2. The ozone water generator according to claim 1, wherein an acidic solution is used as the water in which the ozone is easily dissolved.
【請求項3】 前記陽イオン交換樹脂層が、前記電解槽
内を前記陽極が収容される陽極室と前記陰極が収容され
る陰極室とに区画する隔膜機能を有していることを特徴
とする請求項2記載のオゾン水生成装置。
3. The cation exchange resin layer has a diaphragm function of partitioning the inside of the electrolytic cell into an anode chamber containing the anode and a cathode chamber containing the cathode. The ozone water generation device according to claim 2.
JP10242067A 1998-08-27 1998-08-27 Ozonized water forming device Pending JP2000073193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242067A JP2000073193A (en) 1998-08-27 1998-08-27 Ozonized water forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242067A JP2000073193A (en) 1998-08-27 1998-08-27 Ozonized water forming device

Publications (1)

Publication Number Publication Date
JP2000073193A true JP2000073193A (en) 2000-03-07

Family

ID=17083797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242067A Pending JP2000073193A (en) 1998-08-27 1998-08-27 Ozonized water forming device

Country Status (1)

Country Link
JP (1) JP2000073193A (en)

Similar Documents

Publication Publication Date Title
KR101575164B1 (en) Apparatus for manufacturing ionic water
EP1380537A1 (en) Ozone water producing apparatus and gas-liquid mixture producing apparatus
JP3986820B2 (en) Electrolyzed water production equipment
JP4031877B2 (en) Hypochlorous acid aqueous solution generator
JP3264893B2 (en) Hydrogen / oxygen generator
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP2000073193A (en) Ozonized water forming device
US20040232004A1 (en) Electrolytic gas generation method and electrolytic gas generation device
JPH1076270A (en) Method for simultaneous generation of strongly alkaline water and hypochlorous acid sterilizing water by electrolysis
JPH07155764A (en) Device for producing acidic ionized water
JPH09192667A (en) Electrolyzed water generating device
JPH07256263A (en) Apparatus for preparation of electrolytically sterilized water
JP3568291B2 (en) Electrolyzed water generator
KR100405144B1 (en) Apparatus for producing strong-acidic water and mild-basic water
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH07290061A (en) Ionized water producer
JPH11114569A (en) Electrolyzed water producing device
JPH1080685A (en) Alkali ionized water adjuster
KR100663256B1 (en) An onside type generating device for hydrogen peroxide and providing device for hydrogen peroxide
JP2001321770A (en) Electrolytic water generator
JPH06238280A (en) Electrolytic water preparation and its device
JPH11350177A (en) Apparatus for producing electrolyzed water
KR20070075624A (en) Electrolytic water generation apparatus
JPH09122652A (en) Electrolytic water making apparatus
KR20220100130A (en) Water purifier for generating functional water