JP2000072501A - Aggregate and its production - Google Patents

Aggregate and its production

Info

Publication number
JP2000072501A
JP2000072501A JP24570298A JP24570298A JP2000072501A JP 2000072501 A JP2000072501 A JP 2000072501A JP 24570298 A JP24570298 A JP 24570298A JP 24570298 A JP24570298 A JP 24570298A JP 2000072501 A JP2000072501 A JP 2000072501A
Authority
JP
Japan
Prior art keywords
aggregate
concrete
fine powder
particles
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24570298A
Other languages
Japanese (ja)
Inventor
Takeaki Ogami
剛章 大神
Satoru Fujii
悟 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP24570298A priority Critical patent/JP2000072501A/en
Publication of JP2000072501A publication Critical patent/JP2000072501A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, from the viewpoint of resource re-utilization, an aggregate having a good enough properties to used as a cement aggregate produced from fine concrete powder containing solid cement paste and a method for producing an aggregate having such properties stably and easily without making a strict control of the manufacturing conditions. SOLUTION: This aggregate is melted and cooled material of concrete fine power and has substantially noncrystalline structure. This method for producing the aggregate comprises melting concrete fine powder, cooling the melted concrete fine powder in the state having substantially amorphous structure, powdering or disintegrating the cooled material. In the production, the melting is preferably carried out by heating at >=1300 deg.C and further, the cooling is preferably carried out at a temperature-lowering rate of >=15 deg.C and particles obtained by powering or disintegrating the cooled material is classified and the classified particles comprise having >=0.6 mm particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、コンクリートを破
砕する際などに発生するコンクリート微粉を原料とした
骨材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aggregate made from concrete fine powder generated when crushing concrete or the like and a method for producing the aggregate.

【0002】[0002]

【従来技術】建造物の解体や改築に伴い、多量のコンク
リート廃材が発生する。コンクリート廃材はおよそ半数
が路盤材や埋め戻し材などに再利用されているが、新た
な再資源化の活用策として、該廃材中の含有骨材を回収
し、再度骨材として利用する試みも行われている。コン
クリート廃材から含有骨材を回収するには一般にはコン
クリート廃材を破砕や粉砕処理することが考えられる
が、この処理により通常、細骨材の大きさ以下のコンク
リート微粉がかなり発生する。
2. Description of the Related Art A large amount of concrete waste is generated as buildings are demolished or renovated. Approximately half of concrete waste is reused for roadbed materials and backfill materials, but as a new measure for recycling, it has been attempted to collect the aggregate contained in the waste material and reuse it as aggregate. Is being done. In order to recover the contained aggregate from the concrete waste material, it is generally considered that the concrete waste material is crushed or pulverized. However, this process usually generates a considerable amount of concrete fine powder having a size less than the size of the fine aggregate.

【0003】このような微粉は一般に粒径が小さくなる
に連れてコンクリート材中で骨材を結合していたセメン
トペースト成分の含有率が高まるため、そのまま骨材と
して用いるとコンクリートの強度や耐久性が著しく低下
する。このため該微粉を骨材とするには、これを焼結さ
せ、密度や強度を高める方策が知られている。しかるに
この方法では、コンクリートの化学成分はコンクリート
含有骨材種やセメント種及びそれらの含有量が多岐に渡
るため一定ではなく、化学成分の僅かな違いによって焼
結温度がかなり異なるので該温度選定が容易でなく、更
にこの材質系では焼結に適する温度範囲が狭いことも難
点で、該範囲を下回る温度では十分緻密化せず脆弱な骨
材となり、また焼結温度を僅かに越えると発泡や軟化現
象が起こり性状が不安定になるなど、焼成条件の微妙な
変化によって得られる骨材の性状が大きく左右された。
焼結温度域を広くするには焼結原料の成分調整が必要
で、このためには対象となるコンクリート微粉の化学成
分の認識、及び調整用の成分添加も必要となる。しかる
に、コンクリート廃材としての微粉の処理活用を念頭と
した場合、対象となるコンクリート微粉の派生源は多岐
に渡るのが普通で、常に同じ成分・品質のコンクリート
微粉のみを対象とできることは殆ど無い。それ故、処理
毎に対象微粉の化学成分を分析する必要があり、それに
応じて調整用の化学成分を添加し、更にはその混合作業
をするなど実際には大変手間のかかる前処理を施す必要
があった。
[0003] In general, the content of the cement paste component, which binds the aggregate in the concrete material, increases as the particle size of the fine powder becomes smaller. Is significantly reduced. For this reason, in order to use the fine powder as an aggregate, there is known a method of sintering the fine powder to increase the density and strength. However, in this method, the chemical components of concrete are not constant because the concrete-containing aggregate types and cement types and their contents are various, and the sintering temperature is considerably different due to a slight difference in the chemical components. It is not easy, and in this material system, the temperature range suitable for sintering is also disadvantageous in that it is disadvantageous. At a temperature below this range, the aggregate is not sufficiently densified and becomes a brittle aggregate. The properties of the obtained aggregates were greatly affected by subtle changes in firing conditions, such as softening and unstable properties.
In order to widen the sintering temperature range, it is necessary to adjust the components of the sintering raw material. For this purpose, it is necessary to recognize the chemical components of the target concrete fine powder and to add components for adjustment. However, in consideration of the treatment and utilization of fine powder as concrete waste material, the source of the concrete fine powder to be targeted is generally diversified, and almost no concrete fine powder of the same component and quality can be targeted at all times. Therefore, it is necessary to analyze the chemical composition of the target fine powder for each treatment, and it is necessary to add a chemical composition for adjustment in accordance with that, and to perform a pre-treatment that is very laborious in practice, such as mixing. was there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、主にコンク
リートを破砕・粉砕処理する際に発生する固形セメント
ペースト分や骨材成分からなるコンクリート微粉を原料
とした骨材であって、少なくともセメント用骨材として
使用可能なJASS 5N規格相当の性状を有する骨
材、及び該性状の骨材を、原料成分の調整等を施すこと
なく、かつ製造条件を特に厳密に調整することなくして
も安定かつ容易に得ることができる製造方法を提供す
る。
SUMMARY OF THE INVENTION The present invention relates to an aggregate which is mainly made of concrete fine powder comprising a solid cement paste component and an aggregate component generated when crushing and pulverizing concrete. Aggregate with properties equivalent to JASS 5N standard that can be used as aggregates for use, and stable aggregates without the need to adjust raw material components and without particularly strictly adjusting production conditions. And a production method which can be easily obtained.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記課題解
決のため鋭意検討した結果、コンクリートを破砕又は粉
砕処理する過程で発生するコンクリート微粉を成分調整
することなく溶融し、この溶融物を実質的に非晶質構造
となるように冷却したものが、少なくともJASS 5
N相当のセメント用骨材としての性状を備え、従来の天
然骨材などと比較しても遜色無い性状を有するものであ
ることを見出し、しかも溶融時の温度条件が多少変動し
ても前記性状のものが安定して得られることを見出し、
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have melted concrete fine powder generated in the process of crushing or pulverizing concrete without adjusting the components, and melted the melt. What has been cooled so as to have a substantially amorphous structure is at least JASS 5
It has properties as an aggregate for cement equivalent to N, and has been found to have properties comparable to those of conventional natural aggregates and the like, and even if the temperature conditions during melting slightly vary, the above properties Found that it can be obtained stably,
The present invention has been completed.

【0006】即ち本発明は、(1)コンクリート微粉の
溶融冷却物であって、実質的に非晶質構造であることを
特徴とする骨材。及び下記(2)〜(5)で表すその製
造方法である。(2) コンクリート微粉を溶融し、こ
れを実質的に非晶質構造のまま冷却し、この冷却物を粉
砕又は解砕することを特徴とする骨材の製造方法。
(3)溶融が1300℃以上の加熱によって行われるこ
とを特徴とする前記(2)の骨材の製造方法。(4)冷
却が降温速度15℃/分以上で行われることを特徴とす
る前記(2)又は(3)の骨材の製造方法。(5)冷却
物を粉砕又は解砕した粒子を分級し、粒径0.6mm以
上の粒子からなることを特徴とする前記(2)〜(4)
の何れかの骨材の製造方法。
That is, the present invention provides (1) a molten and cooled concrete fine powder, which is characterized in that it has a substantially amorphous structure. And its production method represented by the following (2) to (5). (2) A method for producing an aggregate, comprising melting concrete fine powder, cooling the powder in a substantially amorphous structure, and pulverizing or crushing the cooled product.
(3) The method for producing an aggregate according to (2), wherein the melting is performed by heating at 1300 ° C. or more. (4) The method for producing an aggregate according to the above (2) or (3), wherein the cooling is performed at a cooling rate of 15 ° C./min or more. (5) The above-mentioned (2) to (4), wherein the particles obtained by pulverizing or crushing the cooled material are classified and composed of particles having a particle diameter of 0.6 mm or more.
Any one of the methods for producing an aggregate.

【0007】[0007]

【発明の実施の形態】本発明の非晶質骨材は、例えばコ
ンクリート廃材から含有骨材を回収したり、コンクリー
ト構造物を解体する時などのコンクリートの破砕若しく
は粉砕処理時に発生するコンクリート微粉を原料とす
る。該微粉はセメント用骨材、セメントペーストが付着
した骨材、骨材から剥離したセメントペーストなどの粒
子からなるものである。本発明のコンクリート微粉とは
このような個々の粒子の集合体を称する。骨材含有率が
著しく高い粒子は本発明に処するべくもなく、そのまま
回収することで概ね骨材として再利用することが可能で
あるが故に、本発明では従来焼結が容易でなかったセメ
ントペースト分を大量に含む微粉を特に好適な対象とす
るものである。但し、セメントペースト分の含有割合が
少ない微粉であっても対象となり得る。また微粉の原料
化に際しては、化学成分を添加し成分調整を行う必要は
無く、望ましくは微粉径の調整程度で良い。即ち、該微
粉の大きさとしては、概ね2.5mm以下の大きさとす
るのが微粉として混入する骨材の含有率を低くできると
共に、溶融反応効率を高める点からも望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The amorphous aggregate of the present invention is capable of removing concrete fine powder generated during concrete crushing or crushing treatment, for example, when collecting contained aggregate from concrete waste or dismantling concrete structures. Raw materials. The fine powder is composed of particles such as aggregate for cement, aggregate to which cement paste is adhered, and cement paste separated from the aggregate. The concrete powder of the present invention refers to an aggregate of such individual particles. Particles having an extremely high aggregate content are not subject to the present invention, and can be generally reused as aggregates by collecting them as they are. Particularly suitable are fine powders containing a large amount of components. However, even fine powder having a small content ratio of cement paste can be a target. Further, when the fine powder is used as a raw material, it is not necessary to adjust the components by adding a chemical component, and it is preferable to adjust the fine powder diameter. That is, the size of the fine powder is desirably approximately 2.5 mm or less, from the viewpoint of reducing the content of the aggregate mixed as the fine powder and increasing the melting reaction efficiency.

【0008】かかる微粉を結晶構造を消失せしめガラス
状態になるよう溶融する。溶融は、好ましくは1300
℃以上に加熱して行う。1300℃未満の加熱温度では
CaO含有分が多いものでは完全には溶融しないことも
あるため好ましくない。加熱装置としては所望の温度で
行えるものであれば特に限定されないが、生産効率の点
などから例えばアーク炉、電弧炉等を用いると良い。加
熱後は、溶融物を晶質化させないよう冷却する。一般に
非晶質体中に結晶が析出すると材料の脆弱化の原因にな
るため、結晶析出を極力抑える必要がある。このため冷
却は好ましくは降温速度15℃/分以上で少なくとも5
00℃付近迄行い、その後は徐冷却でも良い。より好ま
しくは降温速度20℃/分以上とする。高速度の冷却は
結晶再析出を十分抑制できる他、強い熱歪みが発生して
冷却物が小塊状に破砕されることが怏々にして見られる
為、骨材サイズに適した溶融物の粉砕又は解砕処理に関
する省力化に繋がる。冷却手段は、例えば圧縮空気等を
溶融物に吹き付ける方法や水中に投入する方法等の公知
の急冷手法が推奨されるが、常温近くの耐熱容器内に溶
融物を入れ自然放冷することでも良く、特に限定される
ものではない。このような冷却によって得られた冷却物
は完全なガラス質若しくは結晶や固溶体としての配列を
十分形成するには至っていない過冷却状態の液体に近い
構造からなるものであって、明確な結晶構造の組成物を
殆ど含むことのない実質的に非晶質構造のものである。
[0008] Such fine powder is melted so that the crystal structure disappears and a glass state is obtained. Melting is preferably 1300
Heat to above ℃. If the heating temperature is lower than 1300 ° C., it is not preferable that the material having a large CaO content is not completely melted in some cases. The heating device is not particularly limited as long as it can be heated at a desired temperature, but for example, an arc furnace, an electric arc furnace, or the like may be used from the viewpoint of production efficiency. After the heating, the melt is cooled so as not to crystallize. In general, the precipitation of crystals in an amorphous body causes the material to become brittle, and thus it is necessary to suppress the precipitation of crystals as much as possible. Therefore, cooling is preferably performed at a cooling rate of at least 15 ° C./min for at least 5 minutes.
The temperature may be reduced to around 00 ° C., and then the temperature may be gradually cooled. More preferably, the temperature is lowered at a rate of 20 ° C./min or more. High-speed cooling can sufficiently suppress crystal re-precipitation, and it can be seen that the cooling material is crushed into small blocks due to strong thermal strain. Or it leads to labor saving regarding the crushing process. The cooling means is, for example, a known quenching method such as a method of blowing compressed air or the like onto the melt or a method of throwing into the water is recommended, but it is also possible to put the melt in a heat-resistant container near room temperature and allow it to cool naturally. However, there is no particular limitation. The cooling material obtained by such cooling has a structure close to a liquid in a supercooled state that has not yet been formed into a complete vitreous or crystalline or solid solution arrangement, and has a clear crystal structure. It has a substantially amorphous structure with almost no composition.

【0009】冷却後、固化した概ね一塊状の冷却物は粉
砕し、一方、冷却により破砕を起こした冷却物は解砕す
る。粉砕又は解砕は何れの装置や手法を用いても良い
が、一般に破砕したガラス質破砕物は貝殻状の破面を有
するので取り扱い上の点から解砕の他、望ましくは解砕
物の角取りも行える装置を用い、形状を滑らか、より望
ましくは球形に近い形状に調整する。粉砕又は解砕した
粒子は分級し、0.6mm未満の粒子を排除することが
好ましい。分級後は0.6mm以上5mm未満の粒子を
細骨材、5mm以上の粒子が存在すれば粗骨材としてそ
れぞれ回収する。本発明の実質的に非晶質構造の骨材は
このような細骨材及び/又は粗骨材である。尚、0.6
mm未満の粒子は骨材に適した粒子形状への調整が困難
などの理由から除去するが、更に粉砕を進めることでセ
メント原料などとして再利用することもできる。
[0009] After cooling, the solidified substantially solid mass of the cooled material is pulverized, while the cooled material that has been crushed by cooling is broken up. Any device or method may be used for crushing or crushing, but generally crushed vitreous crushed material has a shell-like rupture surface. The shape is adjusted to a smooth shape, more preferably a spherical shape, using a device that can also perform the above. Preferably, the ground or crushed particles are classified to exclude particles smaller than 0.6 mm. After classification, particles of 0.6 mm or more and less than 5 mm are collected as fine aggregates, if there are particles of 5 mm or more, as coarse aggregates. The aggregate having a substantially amorphous structure of the present invention is such fine aggregate and / or coarse aggregate. Note that 0.6
Particles smaller than mm are removed because it is difficult to adjust the particle shape to a shape suitable for the aggregate, but they can be reused as a cement raw material or the like by further pulverizing.

【0010】[0010]

【実施例】[実施例1] コンクリート廃材をジョーク
ラッシャーで破砕し、表1の化学成分からなる概ね2.
5mm以下のコンクリート微粉を回収した。回収した微
粉を内容積0.3m3のアーク炉を用いて1600℃で
20分間加熱溶融した。溶融物を水中へ流し込むことに
より細粒化された冷却物を得た。該冷却物をKMスーパ
ーミル(関西マテック株式会社製)により解砕し、解砕
物を分級して0.6mm以上の粒子を回収した。この粒
子を粉末X線により分析した結果、特に回折ピークは認
められなかった。またこの粒子をJIS A1109に
準じた方法で絶乾比重、並びに24時間吸水率を、JI
S A1104に準じた方法で単位容積質量を、骨材と
しての安定性をJIS A1122に準じた方法でそれ
ぞれ測定した。その結果、絶乾比重は2.67、24時
間吸水率は0.53%、単位容積質量は1.56kg/
l、骨材としての安定性は良であった。
EXAMPLES Example 1 Concrete waste material was crushed with a jaw crusher, and was roughly composed of the chemical components shown in Table 1.
Concrete fine powder of 5 mm or less was collected. The collected fine powder was heated and melted at 1600 ° C. for 20 minutes using an arc furnace having an inner volume of 0.3 m 3 . The melt was poured into water to obtain a finely divided cooled product. The cooled product was crushed by a KM Super Mill (manufactured by Kansai Matech Co., Ltd.), and the crushed material was classified to collect particles having a size of 0.6 mm or more. As a result of analyzing the particles by powder X-ray, no particular diffraction peak was observed. The absolute density and the 24-hour water absorption of the particles were measured according to JIS A1109 in accordance with JIS A1109.
The unit volume mass was measured by a method according to SA1104, and the stability as an aggregate was measured by a method according to JIS A1122. As a result, the absolute dry gravity was 2.67, the 24-hour water absorption was 0.53%, and the unit volume mass was 1.56 kg /
1. The stability as aggregate was good.

【0011】[0011]

【表1】 化 学 成 分 化学成分名 SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO Na 2 0 K 2 O SO 3 ig.loss 含有量(重量%) 45.8 12.7 4.3 21.8 1.6 1.7 1.2 0.7 10.2 [Table 1] Chemical Ingredients Chemical Component Name SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO Na 2 0 K 2 O SO 3 ig.loss content (wt%) 45.8 12.7 4.3 21.8 1.6 1.7 1.2 0.7 10.2

【0012】[実施例2] 前記実施例1と同様のコン
クリート微粉を、同様のアーク炉を用いて1600℃で
20分間加熱溶融した。溶融物を耐熱容器内に緩やかに
入れ、自然放冷した後塊状の冷却物を取り出し、これを
ジョークラッシャーにより粉砕した。該粉砕物をエアロ
フラクトロン(東海テクノ株式会社製)を用いて粒形を
調整した後分級し0.6mm以上の粒子を回収した。こ
の粒子を粉末X線により分析した結果、極僅かにゲーレ
ナイト化合物と思われる回折ピークが検出された以外は
特に回折ピークはなかった。また、この粒子の前記実施
例1と同様の方法で測定した諸特性値は、絶乾比重が
2.69、24時間吸水率が0.35%、単位容積質量
が1.65kg/l、骨材としての安定性は良であっ
た。
Example 2 The same concrete fine powder as in Example 1 was heated and melted at 1600 ° C. for 20 minutes using the same arc furnace. The melt was gently placed in a heat-resistant container, allowed to cool naturally, and then taken out of the mass of the cooled product, which was pulverized by a jaw crusher. The pulverized material was adjusted for particle size using an aerofractron (manufactured by Tokai Techno Co., Ltd.) and then classified to collect particles having a size of 0.6 mm or more. As a result of analyzing the particles by powder X-ray, there was no particular diffraction peak except for a very slight diffraction peak which was considered to be a gehlenite compound. The characteristic values of the particles measured in the same manner as in Example 1 were as follows: the absolute dry gravity was 2.69, the 24-hour water absorption was 0.35%, the unit volume mass was 1.65 kg / l, The stability as a material was good.

【0013】[実施例3] 前記実施例1と同様のコン
クリート微粉を、同様のアーク炉を用いて1400℃で
40分間加熱溶融した。溶融物を水中へ流し込み、得ら
れた冷却物をKMスーパーミル(関西マテック株式会社
製)により解砕し、解砕物を分級して0.6mm以上の
粒子を回収した。この粒子を粉末X線により分析した結
果、僅かにゲーレナイト化合物と思われる回折ピークが
検出された以外は特に回折ピークはなかった。また、こ
の粒子の前記実施例1と同様の方法で測定した絶乾比重
は2.69、24時間吸水率は0.35%、単位容積質
量は1.65kg/l、骨材としての安定性は良であっ
た。
Example 3 The same concrete fine powder as in Example 1 was heated and melted at 1400 ° C. for 40 minutes using the same arc furnace. The melt was poured into water, and the obtained cooled product was crushed by a KM super mill (manufactured by Kansai Matech Co., Ltd.), and the crushed material was classified to collect particles having a size of 0.6 mm or more. As a result of analyzing the particles by powder X-ray, there was no particular diffraction peak except for a slight diffraction peak which was considered to be a gehlenite compound. The absolute specific gravity of the particles measured in the same manner as in Example 1 was 2.69, the 24-hour water absorption was 0.35%, the mass per unit volume was 1.65 kg / l, and the stability as aggregate was as follows. Was good.

【0014】[実施例4] 前記実施例1と同様のコン
クリート微粉を、電気炉を用いて1600℃で20分間
加熱溶融した。溶融物は降温速度約16〜17℃/分で
約600℃まで冷却し、その後は自然放冷を行った。こ
れをジョークラッシャーにより粉砕した。該粉砕物をエ
アロフラクトロンを用いて粒形を調整した後分級し0.
6mm以上の粒子を回収した。この粒子を粉末X線によ
り分析した結果、僅かにゲーレナイト化合物と思われる
回折ピークが検出された以外は特にピークが認められな
かった。また、この粒子の前記実施例1と同様の方法で
測定した諸特性値は、絶乾比重が2.66、24時間吸
水率が0.75%、単位容積質量が1.63kg/l、
骨材としての安定性は良であった。
Example 4 The same concrete fine powder as in Example 1 was melted by heating at 1600 ° C. for 20 minutes using an electric furnace. The melt was cooled to about 600 ° C. at a rate of temperature drop of about 16 to 17 ° C./min, and then allowed to cool naturally. This was ground with a jaw crusher. The pulverized material was classified after adjusting the particle shape using an aerofractron.
Particles of 6 mm or more were collected. The particles were analyzed by powder X-ray. As a result, no particular peak was recognized except for a slight diffraction peak which was considered to be a gehlenite compound. The characteristic values of the particles measured by the same method as in Example 1 were as follows: the absolute dry gravity was 2.66, the 24-hour water absorption was 0.75%, the unit volume mass was 1.63 kg / l,
The stability as aggregate was good.

【0015】[実施例5] 前記実施例1〜4とは異な
るコンクリート廃材をジョークラッシャーで破砕し、表
2の化学成分からなる約2.5mm以下のコンクリート
微粉を回収した。この微粉を前記実施例1と同様のアー
ク炉を用いて1700℃で40分間加熱溶融した。溶融
物を水中へ流し込み、得られた冷却物をKMスーパーミ
ル(関西マテック株式会社製)により解砕し、解砕物を
分級して0.6mm以上の粒子を回収した。この粒子を
粉末X線により分析した結果、僅かにゲーレナイトと思
われる回折ピークが検出された以外は他に回折ピークは
見られなかった。また、この粒子の前記実施例1と同様
の方法で測定した絶乾比重は2.61、24時間吸水率
は0.69%、単位容積質量は1.61kg/l、骨材
としての安定性は良であった。
Example 5 Concrete waste materials different from those in Examples 1 to 4 were crushed by a jaw crusher, and concrete fine powder having a chemical composition shown in Table 2 and having a size of about 2.5 mm or less was recovered. This fine powder was heated and melted at 1700 ° C. for 40 minutes using the same arc furnace as in Example 1. The melt was poured into water, and the obtained cooled product was crushed by a KM super mill (manufactured by Kansai Matech Co., Ltd.), and the crushed material was classified to collect particles having a size of 0.6 mm or more. The particles were analyzed by powder X-ray. As a result, no diffraction peak was observed except for a diffraction peak slightly considered to be gehlenite. The absolute dry weight of the particles measured by the same method as in Example 1 was 2.61, the 24-hour water absorption was 0.69%, the mass per unit volume was 1.61 kg / l, and the stability as aggregate was as follows. Was good.

【0016】[0016]

【表2】 化 学 成 分 化学成分名 SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO Na 2 0 K 2 O SO 3 ig.loss 含有量(重量%) 63.7 13.4 2.7 8.5 1.9 1.9 1.5 0.5 6.8 [Table 2] Chemical Ingredients Chemical Component Name SiO 2 Al 2 O 3 Fe 2 O 3 CaO MgO Na 2 0 K 2 O SO 3 ig.loss content (wt%) 63.7 13.4 2.7 8.5 1.9 1.9 1.5 0.5 6.8

【0017】[比較例1] 前記実施例1と同様のコン
クリート微粉を、内容積0.3m3のアーク炉を用いて
1100℃で30分間加熱した。加熱物を耐熱容器内に
緩やかに入れ、自然放冷した後塊状の冷却物を取り出
し、これをジョークラッシャーにより粉砕した。該粉砕
物を分級し、0.6mm以上の粒子を回収した。この粒
子を粉末X線により分析した結果、珪灰石、灰長石及び
ゲーレナイト化合物の回折ピークが検出され、更に偏光
顕微鏡による観察ではガラス質が概ね半分以下の存在で
あった。また、この粒子の前記実施例1と同様の方法で
測定した絶乾比重は2.43、24時間吸水率は4.5
5%、単位容積質量は1.45kg/l、骨材としての
安定性は不良であった。
Comparative Example 1 Concrete fine powder similar to that of Example 1 was heated at 1100 ° C. for 30 minutes using an arc furnace having an inner volume of 0.3 m 3 . The heated product was gently placed in a heat-resistant container, allowed to cool naturally, and then a mass of cooled product was taken out and crushed by a jaw crusher. The pulverized product was classified, and particles of 0.6 mm or more were collected. The particles were analyzed by powder X-ray. As a result, diffraction peaks of wollastonite, anorthite and a gehlenite compound were detected. Further, observation by a polarizing microscope revealed that the glass quality was almost half or less. The particles had an absolute dry gravity of 2.43 and a 24-hour water absorption of 4.5 measured in the same manner as in Example 1 above.
5%, the unit volume mass was 1.45 kg / l, and the stability as aggregate was poor.

【0018】[比較例2] 前記実施例5と同様の化学
成分からなる概ね5mm以下のコンクリート微粉を回収
した。この微粉を電気炉を用いて1700℃で40分間
加熱溶融した。この溶融物を降温速度約4〜5℃で60
0℃迄冷却し以後自然放冷して得られた冷却物をKMス
ーパーミルにより解砕した。該解砕物を分級し、0.6
mm以上の粒子を回収した。この粒子を粉末X線により
分析した結果、珪灰石、灰長石及びゲーレナイト化合物
の回折ピークが検出され、更に偏光顕微鏡による観察で
はガラス質の存在率は全体のおよそ半分程度であった。
また、この粒子の前記実施例1と同様の方法で測定した
絶乾比重は2.42、24時間吸水率は3.16%、単
位容積質量は1.46kg/l、骨材としての安定性は
良であったものの、JASS 5N相当には遠く及ばな
い品位の低いものであった。
Comparative Example 2 Concrete fine powder having a chemical composition similar to that of Example 5 and having a size of about 5 mm or less was recovered. This fine powder was heated and melted at 1700 ° C. for 40 minutes using an electric furnace. The melt is cooled to a temperature of about 4-5 ° C. for 60
The mixture was cooled to 0 ° C. and allowed to cool naturally, and the resulting cooled product was disintegrated with a KM supermill. The crushed material was classified, and 0.6
Particles of mm or more were collected. As a result of analyzing the particles by powder X-ray, diffraction peaks of wollastonite, anorthite and a gehlenite compound were detected, and further, observation by a polarizing microscope revealed that the glassy abundance was about half of the whole.
The absolute dry weight of the particles measured by the same method as in Example 1 was 2.42, the 24-hour water absorption was 3.16%, the unit volume mass was 1.46 kg / l, and the stability as aggregate was obtained. Although it was good, it was of low quality which was not as far as JASS 5N.

【0019】[0019]

【発明の効果】本発明によれば、ともすれば廃棄される
ことが多かったセメントペースト分を大量に含むコンク
リート微粉の大量再利用が可能となり、また本発明の製
造方法では原料対象となる化学成分領域がかなり広く、
世間で使用されている殆どのコンクリートの破砕物から
発生するコンクリート微粉を成分調整することなくその
まま原料とすることが可能で、更には製造時の加熱条件
も許容度が広く、JASS 5N相当の優れた品位の骨
材を極めて高い再現性で得ることができる。
According to the present invention, it is possible to reuse a large amount of concrete fine powder containing a large amount of cement paste which is often discarded. The component area is quite wide,
It is possible to use concrete fine powder generated from most concrete crushed materials used in the world as raw materials without adjusting the components, and furthermore, the heating conditions at the time of manufacturing are wide, and JASS 5N equivalent is excellent. A high quality aggregate can be obtained with extremely high reproducibility.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート微粉の溶融冷却物であっ
て、実質的に非晶質構造であることを特徴とする骨材。
1. An aggregate comprising a melt-cooled concrete fine powder and having a substantially amorphous structure.
【請求項2】 コンクリート微粉を溶融し、これを実質
的に非晶質構造のまま冷却し、この冷却物を粉砕又は解
砕することを特徴とする骨材の製造方法。
2. A method for manufacturing an aggregate, comprising melting concrete fine powder, cooling the same while maintaining a substantially amorphous structure, and pulverizing or crushing the cooled product.
【請求項3】 溶融が1300℃以上の加熱によって行
われることを特徴とする請求項2記載の骨材の製造方
法。
3. The method for producing an aggregate according to claim 2, wherein the melting is performed by heating at 1300 ° C. or higher.
【請求項4】 冷却が降温速度15℃/分以上で行われ
ることを特徴とする請求項2又は3に記載の骨材の製造
方法。
4. The method for producing an aggregate according to claim 2, wherein the cooling is performed at a cooling rate of 15 ° C./min or more.
【請求項5】 冷却物を粉砕又は解砕した粒子を分級
し、粒径0.6mm以上の粒子からなることを特徴とす
る請求項2〜4の何れか記載の骨材の製造方法。
5. The method for producing an aggregate according to claim 2, wherein particles obtained by pulverizing or pulverizing the cooled material are classified, and are composed of particles having a particle diameter of 0.6 mm or more.
JP24570298A 1998-08-31 1998-08-31 Aggregate and its production Pending JP2000072501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24570298A JP2000072501A (en) 1998-08-31 1998-08-31 Aggregate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24570298A JP2000072501A (en) 1998-08-31 1998-08-31 Aggregate and its production

Publications (1)

Publication Number Publication Date
JP2000072501A true JP2000072501A (en) 2000-03-07

Family

ID=17137545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24570298A Pending JP2000072501A (en) 1998-08-31 1998-08-31 Aggregate and its production

Country Status (1)

Country Link
JP (1) JP2000072501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092637A (en) * 2019-05-31 2019-08-06 广西理工职业技术学校 A method of Green environmental-protection building material is prepared using building waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092637A (en) * 2019-05-31 2019-08-06 广西理工职业技术学校 A method of Green environmental-protection building material is prepared using building waste

Similar Documents

Publication Publication Date Title
Peng et al. Nano-crystal glass–ceramics obtained from high alumina coal fly ash
Zheng et al. Effects of P2O5 and heat treatment on crystallization and microstructure in lithium disilicate glass ceramics
CN101433950B (en) Method for preparing protecting residue from recovery refining slag
EP2623475B1 (en) Method for manufacturing reductive stone material using molten slag
JPH029706A (en) Method for pulverizing a solid silicon lump
BE1024028A1 (en) IMPROVED SNAIL FROM THE PRODUCTION OF NON-FERRO METALS
Peng et al. Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash
CN113651538A (en) Method for preparing microcrystalline glass by melting waste incineration fly ash
KR101794808B1 (en) A preparation for a crystal of cremated remains using a surface tension of a molten salt
CN101906663A (en) Blue ssuperindividual corundum and preparation method thereof
Saucedo-Salazar et al. Production of glass spheres from blast furnace slags by a thermal flame projection process
JP2000072501A (en) Aggregate and its production
CN107012294A (en) A kind of HIGH-PURITY SILICON iron powder and preparation method thereof
KR100683834B1 (en) Manufacturing method of glass-ceramics using steel dust in furnace
CN106041759A (en) Additive raw material composite and additive for superhard material product, preparation method of additive, combined binder and superhard material product
KR101794805B1 (en) A composition for preparing a crystal of cremated remains and a preparation thereof
CN113548842A (en) Method for preparing baking-free brick by using ash
KR101994682B1 (en) Crystallized glass composition and crystallized glass using waste glass for architecture interior and exterior material producing method thereof
WO2021049979A1 (en) Charge for making artificial glass-crystal sand and method for producing same
WO2007138149A1 (en) Process for obtaining vitreous fibres from slate residues and other industrial residues
JP3165626U (en) Foam glass spherical particles
CN108409144A (en) A kind of preparation method of low-temperature sintering type cinder microcrystalline glass material
JP2000264684A (en) Hydraulic material and its production
Kazmina et al. Single-stage technogy for granulated foam glass production based on the composition of tripoli and technogical microsilica
WO1991003433A1 (en) Method of manufacturing glass-ceramic articles